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Providing an accurate modeling of neutrino physics in dense astrophysical environments such as binary
neutron star mergers presents a challenge for hydrodynamic simulations. Nevertheless, understanding how
flavor transformation can occur and affect the dynamics, the mass ejection, and the nucleosynthesis will
need to be achieved in the future. Computationally expensive, large-scale simulations frequently evolve the
first classical angular moments of the neutrino distributions. By promoting these quantities to matrices in
flavor space, we develop a linear stability analysis of fast flavor oscillations using only the first two
“quantum” moments, which notably requires generalizing the classical closure relations that appropriately
truncate the hierarchy of moment equations in order to treat quantum flavor coherence. After showing the
efficiency of this method on a well-understood test situation, we perform a systematic search of the
occurrence of fast flavor instabilities in a neutron star merger simulation. We discuss the successes and
shortcomings of moment linear stability analysis, as this framework provides a time-efficient way to design
and study better closure prescriptions in the future.
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I. INTRODUCTION

A thorough understanding of neutrino physics in dense
astrophysical environments is crucial if we are to fully
comprehend systems such as core-collapse supernovae
(CCSNe) or neutron star mergers (NSMs). Neutrino emis-
sion and transport impact the explosion mechanism of
CCSNe, mass ejection from NSMs, and the subsequent
nucleosynthesis in both. While multiple advances have
been made in the level of detail of the physics that goes into
state-of-the-art simulations (radiation transport, general
relativistic corrections, magnetohydrodynamics, equation
of state, progenitor modeling, etc.) [1–13], neutrino flavor
oscillations—which might play an important role—are not
yet included consistently.
As with many other aspects of CCSNe and NSMs, the

extreme conditions in these environments mean that the
neutrino flavor oscillations are far from simple. A neutrino
will encounter multiple regimes in such systems [14]
and the flavor transformation will be driven by different
contributions from the mean-field Hamiltonian which
describes flavor evolution. The flavor transformation
regimes include MSW resonances [15–20], parametric

resonances due to turbulence [21–25], matter-neutrino
resonances [26–32], and “slow” collective oscillations
[33–35]. Recently, so-called “fast” flavor instabilities
(FFIs), which are characterized by a typical growth rate
for the flavor coherence of the order of ∼

ffiffiffi
2

p
GFnν with GF

Fermi’s constant and nν the neutrino density, have received
a lot of attention (see [36–38] for recent reviews). In a two-
flavor system, these instabilities are known to be triggered
by the presence of an angular crossing in the difference
of electron lepton number (ELN) and heavy-lepton flavor
number (XLN) distributions. In other words, at a given
location there must be directions in which the lepton
number difference current has opposite signs, meaning
that there is a direction in which the lepton number
difference current crosses from positive to negative.
Initially discovered with toy models [39,40], FFIs were

subsequently studied in dense astrophysical environments.
Scans of CCSN and NSM simulations which employed
discrete ordinate transport (but which did not include
oscillations) indicate the conditions that lead to the FFI
can be found throughout the simulation [41–45]. In order to
determine if the FFI should occur in classical simulations
which use moment transport, one must undertake an
angular reconstruction, of which many variations have
appeared in the literature (e.g., [46–52]). The FFI has been*jfroustey@berkeley.edu

PHYSICAL REVIEW D 109, 043046 (2024)

2470-0010=2024=109(4)=043046(20) 043046-1 © 2024 American Physical Society

https://orcid.org/0000-0002-6466-8232
https://orcid.org/0000-0001-5031-6829
https://orcid.org/0000-0002-9409-3468
https://orcid.org/0000-0003-4617-4738
https://orcid.org/0000-0002-3502-3830
https://orcid.org/0000-0001-6811-6657
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.043046&domain=pdf&date_stamp=2024-02-26
https://doi.org/10.1103/PhysRevD.109.043046
https://doi.org/10.1103/PhysRevD.109.043046
https://doi.org/10.1103/PhysRevD.109.043046
https://doi.org/10.1103/PhysRevD.109.043046


studied through both linear stability analysis (e.g., [53–59])
and numerical calculations of small regions (see [60] and
references therein), along with analytical works on the
structure and solutions of the equations of motion [61,62].
In addition, various groups investigated the effect of
collisions on fast flavor conversions [63–67], which also
led to the discovery of a new kind of instability, called the
collisional instability [68–77].
Although the conditions found in CCSNe and NSMs are

such that the lengthscale (∼cm) and timescale (∼0.1 ns)
of the FFI currently prevent our ability to solve for the
flavor transformation concurrent with the hydrodynamics,
several recent studies have nevertheless aimed to assess
the potential effect of flavor transformation using prescrip-
tions that inexpensively approximate this subgrid physics
[78–81]. A second, alternative approach to the huge
problem of disparate length- and time- scales consists of
artificially reducing the strength of the neutrino self-
interaction potential responsible for fast flavor oscillations
in order to increase the length- and time- scales of the
oscillations to the point where FFI can be included in a
large-scale simulation. The results are then extrapolated to
a realistic interaction strength [82–85].
Finally a third approach is to generalize the classical

angular moments to quantum moments [86–88] and evolve a
limited number of them (e.g., the number densities and
fluxes) rather than a much larger number of ordinates. The
quantum kinetic equations for neutrinos traveling in different
directions become a hierarchy of evolution equations for
the moments which one truncates using a closure relation
(e.g., [87,89,90], though the truncated moment formalism in
general dates back to [91,92]). Such a method was used
in [88] to describe neutrino flavor transformation in a
spherically symmetric bulb model, and it was subsequently
shown in [93] that much of the phenomenology of the FFI
can be captured directly by quantum moments. Given the
reduced number of quantities that are numerically evolved in
a quantum moment method plus the straightforward con-
nection with classical moment transport, the computational
efficiency of quantum moment transport is very attractive.
However, the timescales associated with FFIs are so small
that even a moment code cannot be used to describe the
transport everywhere in large-scale simulations. A more
feasible approach may be to use it only where quantum
effects are important. The key to identifying where and when
to use a quantum moment approach is to understand better
where the FFI can take place. To that end, linear stability
analysis (LSA) plays a crucial role in determining the time-
and length- scales of FFI, while requiring considerably less
computation time. Linear stability analysis provides a
powerful framework to efficiently determine the possibility
and the growth characteristics of fast flavor conversion in
virtually any scenario. However, it cannot say anything
about the quasi-steady state reached after the saturation of
the instability. Notably, the growth rate is not related to the

final amount of flavor conversion in general [59,83].
Notwithstanding these shortcomings, LSA could act as a
useful guide for determining when a quantum moment
treatment is necessary. The power of LSA has long been
recognized and previous works have designed such a
moment LSA but necessarily restricted the analysis to the
“zero mode,”which is the homogeneous mode in a particular
corotating frame [94,95].
In this paper, we introduce a generic two-moment linear

stability analysis for arbitrary wave numbers, that is able to
predict successfully the presence and main characteristics
of the growth phase of FFI in a variety of situations. After
demonstrating that it works in several test problems, we
apply our method to a snapshot of a NSM simulation [6,7],
in order to perform a systematic and time-efficient pre-
diction of the existence of FFI in various regions post-
merger. We then compare our LSA predictions with
numerical simulations of the neutrino evolution using both
a moment method which follows closely the assumptions
of our LSA (FLASH [93,96]) and with a particle-in-cell
multiangle code (Emu [97]).
Our paper is organized as follows. In Sec. II, we

introduce the quantum kinetic equations adapted to the
study of FFI along with their moment formulation (see also
Appendix A). The linear stability analysis is presented in
Sec. III. We apply this moment LSA to a test case and
compare it to numerical calculations of the full QKEs in
Sec. IV before focusing on the NSM simulation in Sec. V.
In Sec. VI we give conclusions and discuss how we may
refine the current LSA for future applications. Technical
details, regarding the self-consistency of our results, are
gathered in Appendix B, and for completeness, we assess
the regions where collisions might play a role through
collisional instabilities in Appendix C.
Throughout this paper, we work in natural units

where ℏ ¼ c ¼ 1.

II. QUANTUM KINETIC EQUATIONS

In astrophysical and cosmological environments,
neutrino transport which takes into account flavor mixing
uses the formalism of quantum kinetic equations (QKEs)
[98–101]. These equations describe the evolution of the one-
body reduced density matrices ϱðt;x;pÞ and ϱ̄ðt;x;pÞ for
neutrinos and antineutrinos. They are, in general,
2nf × 2nf Hermitian matrices for nf flavors and 2 chiral
states. In this work, with the typical energies being far larger
than the neutrino masses, we only consider left-handed
neutrinos and right-handed antineutrinos and neglect spin
coherence terms [102]. The density matrices are thus
nf × nf matrices, whose diagonal entries correspond to
the classical distribution functions, while the complex off-
diagonal components account for flavor coherence.
We will only consider two-flavor mixing, between the

electronic (anti)neutrino state and the “heavy lepton” flavor
state x, so that the density matrices read
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ϱðt;x;pÞ¼
�
ϱee ϱex

ϱxe ϱxx

�
; ϱ̄ðt;x;pÞ¼

�
ϱ̄ee ϱ̄ex

ϱ̄xe ϱ̄xx

�
: ð1Þ

The QKE for ϱ is usually written:

i

�
∂ϱab
∂t

þ ẋ · ∇ϱab
�

¼ ½H; ϱ�ab þ iCab; ð2Þ

with Cab the collision term and where a dot denotes a
time derivative. H is the Hamiltonian-like operator which
generally describes the kinetic energy (vacuum oscilla-
tions), matter and self-interaction mean-fields. Fast flavor
oscillations, which are the focus of this paper, are driven by
the self-interaction Hamiltonian:

HννðpÞ ¼
ffiffiffi
2

p
GF

ð2πÞ3
Z

dqð1 − cos ϑÞ½ϱðt;x;qÞ − ϱ̄�ðt;x;qÞ�;

ð3Þ

with ϑ the angle between p and q. There is a similar
equation for ϱ̄, with the Hamiltonian H̄νν ¼ −H�

νν.
The typical timescale of fast flavor instabilities is given

by Δt−1 ∼
ffiffiffi
2

p
GFnν (with nν the neutrino density), which

can be much shorter than the vacuum oscillation timescale
or the inverse collision rate. Because of this, we consider a
simplified QKE where only the self-interaction mean-field
is kept on the right-hand side. This means we do not capture
a multitude of other flavor transformation phenomena,
although we briefly discuss collisional instabilities in
Appendix C and plan to address them in more detail in
future work. From now on we simplify the system of
equations by considering monoenergetic (anti)neutrinos
with common energy p, although this approximation
should be relaxed in the future (see, e.g., [103]).
Under these assumptions, the QKEs for ϱ and ϱ̄ read:

i

�
∂ϱab
∂t

þ ẋ ·∇ϱab

�
¼ ½Hνν; ϱ�ab; ð4Þ

i

�
∂ϱ̄ab
∂t

þ ẋ · ∇ϱ̄ab
�

¼ −½H�
νν; ϱ̄�ab: ð5Þ

A. Moment equations

The first angular moments of the neutrino distribution
are the number density, number flux, and pressure tensor1:

Nabðt;xÞ≡
Z

dp
p2

ð2πÞ3
Z

dΩϱabðt;x;pÞ; ð6aÞ

Fi
abðt;xÞ≡

Z
dp

p2

ð2πÞ3
Z

dΩ
pi

p
ϱabðt;x;pÞ; ð6bÞ

Pij
abðt;xÞ≡

Z
dp

p2

ð2πÞ3
Z

dΩ
pipj

p2
ϱabðt;x;pÞ: ð6cÞ

For the mono-energetic system we consider, the integral
over the momentum magnitude becomes Δp × p2=ð2πÞ3,
with Δp the width of the single energy bin of the system.
Integrating the QKE (4) over the solid angle of p,

multiplied by 1 or pj=p, leads to the first two “moment
QKEs” (a derivation using a covariant formalism is proposed
in the Appendix A). They read, using Einstein’s summation
convention:

i

�
∂N
∂t

þ ∂Fj

∂xj

�
¼

ffiffiffi
2

p
GF½N − N̄�; N�

−
ffiffiffi
2

p
GF½ðF − F̄�Þj; Fj�; ð7aÞ

i

�
∂Fi

∂t
þ ∂Pij

∂xj

�
¼

ffiffiffi
2

p
GF½N − N̄�; Fi�

−
ffiffiffi
2

p
GF½ðF − F̄�Þj; Pij�: ð7bÞ

The same equations for antineutrino moments are

i

�
∂N̄
∂t

þ ∂F̄j

∂xj

�
¼ −

ffiffiffi
2

p
GF½N� − N̄; N̄�

þ
ffiffiffi
2

p
GF½ðF� − F̄Þj; F̄j�; ð8aÞ

i

�
∂F̄i

∂t
þ ∂P̄ij

∂xj

�
¼ −

ffiffiffi
2

p
GF½N� − N̄; F̄i�

þ
ffiffiffi
2

p
GF½ðF� − F̄Þj; P̄ij�: ð8bÞ

As Eqs. (7b) and (8b) depend on the pressure tensor,
a truncated two-moment method requires an appropriate
closure, i.e., an expression PijðN;FÞ that is the topic of the
next section.

B. Closure

We restrict ourselves to analytic closures for simplicity,
although more sophisticated treatments of closures have
been used for classical radiation transport (e.g., variable
Eddington tensor methods [104–106]). An analytic closure
for the truncated moment method specifies the pressure as a
function of the number density and flux moments. Various
choices are available in the literature (see e.g., [107]), and
we focus here on the options considered in this work and
implemented in FLASH.

1Some references define these moments per unit solid angle [in
which case the expressions (6) must be divided by 4π], as in [88].
We chose the same convention as [93,96], in order to make
equations more readable. Note also that we are using the term
“pressure” for the second moment even though our definition of
this moment does not have the actual units of a pressure (a better
name may be “number pressure”).
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1. Classical closure

In classical transport, the pressure is usually expressed
as an interpolation between the optically thin and thick
limits as

Pij ¼ 3χ − 1

2
Pij
thin þ

3ð1 − χÞ
2

Pij
thick; ð9Þ

where the Eddington factor χ is generally in the range
1=3 ≤ χ ≤ 1 [107]. The lower limit χ ¼ 1=3 places the
pressure in optically thick conditions, and conversely the
upper limit χ ¼ 1 corresponds to optically thin conditions.
The pressure for these limits reads

Pij
thick ¼

N
3
δij; ð10Þ

Pij
thin ¼ N

FiFj

jFj2 : ð11Þ

There are several suggestions of analytic closures in the
literature, which are generally expressed as χðf̂Þ, where
f̂ ¼ jFj=N is the flux factor. We use here, for consistency
with the choice made in the simulation [6,7] that we shall
consider later in this paper, the classical maximum entropy
or “Minerbo” closure [107–110], for which the function
χðf̂Þ is given to 2% accuracy by the approximate poly-
nomial expression:

χðf̂Þ ¼ 1

3
þ 2f̂2

15
ð3 − f̂ þ 3f̂2Þ: ð12Þ

2. Quantum closure

Generalizing to quantum kinetics, the neutrino angular
moments are flavor matrices, which makes the closure for
the off-diagonal entries a priori non-obvious. Indeed, we
cannot interpret for instance Nex as the number density of a
given neutrino species, notably because Nex is not con-
strained to be a positive real number. A detailed study of a
proper “quantum” closure is beyond the scope of this work,
but it remains a challenge to be addressed in the future to
design successful and computationally efficient moment
calculations [111]. In this work, we focus on the simplest
generalization of the classical case, hence building a
“semiclassical” closure.
The optically thick limit of the pressure tensor is

straightforward to generalize from (10) and can be
expressed by simply elevating the number density to a
complex matrix:

Pij
ab;thick ¼

Nab

3
δij: ð13Þ

Even though this relation is well-motivated for the flavor
diagonal components (a ¼ b), there is a priori no reason
for it to be also true when a ≠ b (for instance, the complex
flavor off-diagonal elements of P and N could have
different phases). The only constraint that must be satisfied
for the flavor both on- and off-diagonal components of P is
the geometrical relation:

Pij
abδij ¼ Pxx

ab þ Pyy
ab þ Pzz

ab ¼ Nab: ð14Þ

Nevertheless, the positive results that have been obtained
with the prescription (13) (see [93] and Secs. IV and V)
warrant using it as a starting point.
Proposing a relationship between N and P in the

optically thin (free streaming) limit is more challenging,
made even more so when we consider cases where the
different flavors (and flavor mixtures) can have fluxes
in different directions. One possibility is to define a free
streaming limit separately for each component of the flavor
matrix. This “component-wise” (CW) version of the free
streaming limit would read as:

ðCWÞPij
ab;thin ¼ Nab

Fi
abF

j
ab

Fk
abF

l
abδkl

¼ Nab
Fi
abF

j
ab

jFabj2
: ð15Þ

The component-wise version allows different flavors to
propagate in different directions, but under a change of
(flavor) basis, the tensor Pij

ab does not undergo the same
unitary transformation as Nab or Fab.
Another option is to use a single representative flux

direction for all the flavor components. That is, we “flavor-
trace” (FT) the flux part:

ðFTÞPij
ab;thin ¼ Nab

ðFi
cdΔcdÞðFj

efΔefÞ
ðFk

cdΔcdÞðFl
efΔefÞδkl

¼ Nab
TrðFiÞTrðFjÞ

jTrðFÞj2 ; ð16Þ

where we used different notations for the Kronecker delta
in space (δij) and in flavor space (Δab). This version of the
free streaming limit has a straightforward interpretation, but
does not allow different flavors to have different pressure
tensor shapes; they are all tied to the flavor-averaged
propagation direction although each component still sat-
isfies Eq. (14) individually.
Once we have decided how to define the free streaming

limit, we elevate the interpolant χ to a flavor matrix X so
that the pressure tensor is found by interpolating between
its two limits as:

Pij
ab ¼

3Xab − 1

2
Pij
ab;thin þ

3ð1 − XabÞ
2

Pij
ab;thick: ð17Þ
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As with the pressure in the free streaming limit, we have to
decide how to define X. One option would be to evaluate
the closure separately for each component as

ðCWÞXab ¼ χ

�jFabj
Nab

�
: ð18Þ

This is, once again, not independent of the choice of
(flavor) basis. A second option would be to choose flavor-
traced quantities as

ðFTÞXab ¼ χ

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFi

cdΔcdÞðFj
efΔefÞδij

q
NcdΔcd

1
CA

¼ χ

�jTrðFÞj
TrðNÞ

�
; ð19Þ

such that all the components of the matrix ðFTÞX are equal.
This nevertheless prevents different flavors from being in
different states of free-streaming.
From this brief discussion the reader may now appreciate

that the issue of what constitutes a “quantum closure” is
fraught with peril. It is not our intention to explore this issue
further in this paper. Our choice for the quantum closure is
to adopt the definitions ðCWÞPab;thin and ðFTÞXab, a choice we
can justify by our experience that it works well in the
numerical implementation of the moment calculation
FLASH [93]. But given the possibility of other choices,
we shall discuss the robustness of our results with regard to
choosing different options for the closure (see Sec. VA 3).

III. LINEAR STABILITY ANALYSIS

Now that we have defined the quantum moments, how
they evolve, and the closure, we seek to determine whether
a fast flavor instability can take place for a given set of
classical moments, i.e., if we were to place the values for
the classical moments on the flavor-diagonal parts of
quantum number densities and fluxes, whether neutrinos
would undergo flavor transformation. We can answer this
question by performing a linear stability analysis of the
system of equations (7a)–(8b). To do so, we take purely
flavor diagonal reference matrices N0 ¼ diagðNee; NxxÞ
and Fi

0 ¼ diagðFi
ee; Fi

xxÞ, and perturb them with sinusoidal
off-diagonal terms. We only use off-diagonal perturbations
because the instability is described by the exponential
growth of the off-diagonal components until they reach the
same order of magnitude as the diagonal ones, which
corresponds to the saturation of the instability. Note that in
an actual physical system, these perturbations are seeded
by the vacuum term in the QKEs. However, given the
large difference of scales between the vacuum and self-
interaction parts of the Hamiltonian, it is sufficient here to
take ad hoc perturbations and neglect the vacuum term

altogether. We also verified in numerical simulations that
the linear phase of the instability is equivalent in both types
of perturbations.
The perturbed density and fluxes thus read2:

N ¼
�

Nee Aexe−iðΩt−k·xÞ

Axee−iðΩt−k·xÞ Nxx

�
; ð20Þ

Fj ¼
�

Fj
ee Bj

exe−iðΩt−k·xÞ

Bj
xee−iðΩt−k·xÞ Fj

xx

�
; ð21Þ

with similar expressions for antineutrinos. The perturba-
tions of the pressure tensor are obtained consistently from
the choice of closure, as we now show. Our goal is to obtain
the relation ΩðkÞ and, more precisely, to look for modes
where ImðΩÞ > 0. To that end, we linearize the QKEs at
first order in fAex;Bex; Āxe; B̄xeg (identical equations can
be obtained with the variables fAxe;Bxe; Āex; B̄exg, but this
provides completely redundant information).

A. Derivation of linear stability equations

For convenience, we introduce some auxiliary quantities
reflecting the ELN-XLN moments that appear in the self-
interaction Hamiltonian:

Δ
ð−Þ

N ≡ ffiffiffi
2

p
GFðN

ð−Þ
ee − N

ð−Þ
xxÞ;

Δ
ð−Þ

F ≡ ffiffiffi
2

p
GFð F

ð−Þ
ee − F

ð−Þ
xxÞ: ð22Þ

They allow us to define the “primed” frequency Ω0 and
wave vector k0:

Ω0 ≡Ω − ðΔN − Δ̄NÞ;
k0 ≡ k − ðΔF − Δ̄FÞ: ð23Þ

These shifted quantities label a mode in the corotating
frame in flavor space, which takes out the overall rotation
of the flavor isospins due to the net ELN-XLN current (see,
e.g., [94,112]).
The first equations of the moment hierarchies, Eqs. (7a)

and (8a), are then linearized as:

Ω0Aex − k0 ·Bex ¼ −ΔNðAex − ĀxeÞ þ ΔF · ðBex − B̄xeÞ;
ð24Þ

Ω0Āxe − k0 · B̄xe ¼ −Δ̄NðAex − ĀxeÞ þ Δ̄F · ðBex − B̄xeÞ:
ð25Þ

2In practice, perturbations must be Hermitian, which is
ensured by adding the appropriate complex conjugates to the
off-diagonal components, e.g., Nex ¼ Aex exp½−iðΩt − k · xÞ�þ
A�
xe exp½þiðΩ�t − k · xÞ�. We do not write them here for brevity,

since linear stability analysis handles separately the different
exponential terms.
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To linearize Eqs. (7b) and (8b) we need to invoke the
closure, discussed in Sec. II B. We write the results in the
following form:

Ω0Bi
ex − Πij

exk0jAex ¼ −Δi
FðAex − ĀxeÞ þ Δij

PðBj
ex − B̄j

xeÞ;
ð26Þ

Ω0B̄i
xe − Π̄ij

xek0jĀxe ¼ −Δ̄i
FðAex − ĀxeÞ þ Δ̄ij

P ðBj
ex − B̄j

xeÞ:
ð27Þ

The expressions of Πij and Δij
P are closure-dependent.

Namely,

Δij
P ≡ ffiffiffi

2
p

GFðPij
ee − Pij

xxÞ
¼

ffiffiffi
2

p
GFðΠij

eeNee − Πij
xxNxxÞ: ð28Þ

The “pressure shape” matrix Πij is parametrized from
Eq. (17) as:

Πij
ab ¼

3Xab − 1

2
wij
ab þ

3ð1 − XabÞ
2

δij

3
; ð29Þ

such that Pij
ab ¼ Πij

abNab. The optically thick limit (δij=3) is
directly obtained from (13), while the matrix wij

ab depends
on the choice made for the free streaming limit Pij

ab;thin.

For the choice ðCWÞPij
ab;thin [Eq. (15)], it reads:

ðCWÞwij
aa ¼ Fi

aaF
j
aa

jFaaj2
and ðCWÞwij

ex ¼ Bi
exB

j
ex

jBexj2
: ð30Þ

Indeed, the ex component of the pressure tensor is then

ðCWÞPij
ex;thin ¼ Aex

Bi
exB

j
ex

jBexj2
e−iðΩt−k·xÞ þ � � � ; ð31Þ

where the other terms are subdominant for an unstable
mode (ImðΩÞ > 0). This term appears directly on the left-
hand side of the QKE (7b) and thus on the left-hand side
of (26).
For the choice ðFTÞPab;thin [Eq. (16)], it reads:

ðFTÞwij
ab ¼

ðFi
ee þ Fi

xxÞðFj
ee þ Fj

xxÞ
jFee þ Fxxj2

∀ fa; bg: ð32Þ

All expressions are similar for antineutrinos. In the first
case, there is an ambiguity regarding the definition of
ðCWÞwij

ex, since it makes Eq. (26) nonlinear in the perturba-
tions. We thus set the value of the off-diagonal component
wij
ex to (32) whether the diagonals are assumed to be set by

the (FT) or (CW) conditions.

B. Stability matrix

We compile the set of equations (24)–(27) into a matrix
form:

ðSk0 þ Ω0IÞ ·Q ¼ 0; ð33Þ

where Q ¼ ðAex; Bx
ex; B

y
ex; Bz

ex; Āxe; B̄x
xe; B̄

y
xe; B̄z

xeÞT is the
vector of perturbation amplitudes, and I is the 8 × 8 identity
matrix. For completeness, we give the full expression of
Sk0 , that we call the “stability matrix,” separated between a
k0-independent part and a k0-dependent one:

Sk0 ¼
�
Δ̃ −Δ̃
˜̄Δ − ˜̄Δ

�
þ Σk0 ; ð34Þ

where

Δ̃≡

0
BBB@

ΔN −ΔT
F

ΔF −½ΔP�

1
CCCA; ð35Þ

with an analogous expression for ˜̄Δ, and

Σk0 ≡

0
BBBBBBBBBBBBB@

0 k0T 0 0T

½Πex� · k0 ½0� 0 ½0�

0 0T 0 k0T

0 ½0� ½Π̄xe� · k0 ½0�

1
CCCCCCCCCCCCCA
: ð36Þ

For clarity, we write 3 × 3matrices with brackets (½� � ��) and
4 × 4 matrices with a tilde (f� � �).
Non-zero solutions of the system of equations (33) are

obtained by numerically solving:

det ðSk0 þΩ0IÞ ¼ 0: ð37Þ
In other words, the solutions Ω0ðk0Þ are the negative of the
eigenvalues of Sk0 . Should ImðΩ0Þ > 0, and equivalently
ImðΩÞ > 0 [since the constant shift between Ω and Ω0, see
Eq. (23), is purely real], the associated mode would be
unstable and exponentially growing at the rate ImðΩÞ. For a
given k—and correspondingly k0 given by Eq. (23)—there
are eight eigenvalues of Sk0 , of which the eigenmode with
the largest value of ImðΩÞ will dominate. We scan for all
values of k, such that the overall fastest growing mode is:

ImðΩÞmax ≡max
k

fIm½ΩðkÞ�g; ð38Þ

corresponding to a wave vector kmax.
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Consistency check: When using the LSA described
above we find that in some cases, “spurious” solutions
appear, generally at large values of k. Such modes are not
related to a problem of angular discretization (see [56]) due
to the inherent angular-integrated nature of the moment
method. However, it appears that these modes generally
correspond to eigenvectors that show strong directional
structure beyond what can be adequately described by only
two moments. We present in Appendix B a simplified
multiangle LSA which allows us to estimate the angular
distribution of the unstable mode eigenvectors based on the
moment LSA results. If this angular distribution is not
smooth enough, a truncated two-moment method with a
(necessarily) imperfect closure is not expected to accurately
describe the situation. We thus conservatively discard such
modes based on this multiangle LSA “consistency check”
by applying a cutoff on the derivative of the multiangle
eigenvector angular distribution [see Eq. (B19)]. This
procedure is supported by our results: for the physical
conditions studied in [93] and discussed in Sec. VA 3, we
find this type of spurious modes at large k, but the fastest
growing mode we obtain by eliminating those modes
agrees with numerical results. More generally, no such
spurious modes are observed in the fully nonlinear calcu-
lations, whether they are carried out with moments
(FLASH) or particle-in-cell multiangle (Emu) methods.
Nevertheless, some unstable modes might be missed by
the LSA given the approximate nature of this test (see also
the discussion on ELN crossings in Sec. V B).

IV. TEST CASE

In order to illustrate how we use the moment linear
stability and how it compares to actual calculations,
we consider in this section a simple test case with the
parameters quoted in Table I. It physically represents two
extended beams of electron neutrinos and antineutrinos on
average propagating in opposite directions �z, and was
dubbed in [96,97] the “Fiducial” test case.
LSA prediction: The wave vector of the fastest growing

mode is parallel to z, which is not surprising given the
azimuthal symmetry around z in this example. We show in

Fig. 1 the maximum growth rate for each value
of k ¼ ð0; 0; kzÞ, and we identify the overall fastest
growing mode:

kmax≃3.82 cm−1 ; ImðΩÞmax≃7.04×1010 s−1: ð39Þ

This test case being one-dimensional and satisfying many
symmetries (see values in Table I), it can be solved
analytically.3 With the notations of Sec. III, we get

k0maxffiffiffi
2

p
GFNee

¼ 28

51
and

ImðΩÞmaxffiffiffi
2

p
GFNee

¼ 62

9
ffiffiffiffiffi
85

p ;

in perfect numerical agreement with Eq. (39).
Comparison with QKE simulations: We compare this

LSA prediction with two simulations: a particle-in-cell
multiangle calculation, Emu [97], and a moment calcula-
tion, FLASH [93,96]. Emu simulates a large number of
computational particles moving in many individual direc-
tions. Each of these particles is described by a position,
momentum, and a flavor density matrix, which are evolved
by solving directly Eqs. (4) and (5) using a particle-in-cell
method with second-order shape functions and a global
fourth-order time integration scheme. The initial flavor
diagonal components of the density matrices are attributed
to individual particles such that the angular moments
Naa, N̄aa, Faa, and F̄aa are reproduced, with the angular
distribution consistent with the classical closure (12) for

TABLE I. Parameters for the Fiducial test case. The electron
(anti)neutrino densities are of the typical order of magnitude of
neutron star merger values, which ensures the appropriate scaling
of the fast flavor instability growth rate.

Moment Value

Nee 4.89 × 1032 cm−3

N̄ee 4.89 × 1032 cm−3

Nxx ¼ N̄xx 0

Fee=Nee ð0; 0; 1=3Þ
F̄ee=N̄ee ð0; 0;−1=3Þ
Fxx ¼ F̄xx (0,0, 0)

FIG. 1. Instability growth rate for different wave numbers in the
Fiducial test case. The coordinates of the overall maximum are
given in Eq. (39).

3Note that the fastest growing mode characteristics for the
Fiducial test in [97] were calculated assuming a distribution linear
in the cosine of the angle from the z axis instead of a maximum
entropy distribution, so while the results here are similar, they do
not match exactly.
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ν
ð−Þ

e and ν
ð−Þ

x [see Eq. (41)]. FLASH is a moment code,
which solves Eqs. (7a)–(8b) using the closure relation
outlined in Sec. II B, choosing specifically the options (15)
and (19). However, FLASH evolves separately the real and
imaginary parts of Nex and Fex, considered as two neutrino
“species,” for which Eq. (15) is separately evaluated. This
leads to inevitable differences with the LSA prediction.
The flavor diagonal components of N, N̄, F, and F̄ are
initially provided, similarly to the LSA. An initial random
perturbation to the flavor off-diagonal components of the
quantities respectively evolved in Emu (particle density
matrices) and FLASH (moments) seeds the fast flavor
instability. For the simulations presented in this work,
the domain size is L ¼ 8 cm with 128 grid points in each
space dimension, and the Emu simulations use 378 particles
per cell. Additional details on the implementation can be
found in [96,97].
Results are shown in Fig. 2. We find a very good

agreement between the prediction and both numerical
results [96]:

kFLASHmax ≃ 3.9ð4Þ cm−1 ; ImðΩÞFLASHmax ≃ 7.1 × 1010 s−1;
kEmumax ≃ 3.1ð4Þ cm−1 ; ImðΩÞEmumax ≃ 6.3 × 1010 s−1:

ð40Þ

It should be noted that although the initial conditions for
Emu follow the angular distribution assumed by the
Minerbo closure, the evolution thereafter is independent
of that assumption. It is, therefore, reasonable that the
results differ slightly from the analytic stability analysis

that requires the Minerbo closure be followed at all times.
As mentioned before, FLASH does assume a Minerbo
closure throughout, but its implementation is slightly
different from the assumptions made in the linear stability
analysis (see [96] for details). An improved treatment of the
closure in FLASH would be required for us to study strict
convergence to the analytic result.
The initial conditions involve neutrino densities that are

typical of a NSM-like environment. Both Emu and FLASH
simulations, in agreement with the LSA prediction, show
that the growing mode has a characteristic wavelength on
the scale of millimeters (right panel of Fig. 2) and a growth
phase that lasts for about ∼0.1 ns (left two panels of Fig. 2).
We also find good agreement with the “90-Degree” and

“Two Thirds” test cases considered in [96]. The growth rate
predicted by LSA is 15% larger than the Emu value and 7%
smaller than the FLASH value in the 90-Degree case, and is
30% larger than the Emu value and 20% smaller than the
FLASH value in the Two Thirds case.

V. FAST FLAVOR INSTABILITIES ACROSS
A POSTMERGER REMNANT

We now turn to the application of moment linear stability
analysis in a neutron star merger environment. Full hydro-
dynamics simulations including an accurate treatment of
neutrino flavor oscillations are out of reach for now, but a
moment treatment of neutrino transport has an interesting
potential in terms of reducing the computation time at the
cost of an approximate closure relation. We thus want to
assess whether moment methods would accurately describe
the phenomenon of fast flavor conversion, a possibility

FIG. 2. Numerical solution of three-dimensional neutrino flavor transformation in the Fiducial test case, for particle-in-cell (Emu) and
moment (FLASH) codes, adapted from [96]. For comparison purposes, the time origin on the left and middle plots is taken at the
saturation time tsat (for which Nex is maximal), which occurs at different times in the Emu and FLASH simulations. Left: evolution of the
normalized electron neutrino density averaged over the simulation box, which shows fast flavor conversion. Middle: evolution of
the domain-averaged off-diagonal component of N, showing the exponential growth of the unstable mode. The brown line shows an
exponential growth at the rate given by the linear stability analysis prediction (39). Right: magnitude of the spatial Fourier transform of
the off-diagonal component (Ñex) against wave number k, taken 0.1 ns before saturation. The dash-dotted line is the linear stability
analysis prediction for kmax.
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evidenced in numerical simulations by Refs. [93,96]. To
this end, we perform a linear stability analysis on the results
of the classical general relativistic two-moment radiation
hydrodynamics simulation of the merger of two 1.2M⊙
neutron stars from Refs. [6,7]. This simulation provides the
first two moments of the neutrino distributions throughout
the NSM remnant, assuming equal numbers of heavy
lepton flavor neutrinos and antineutrinos. In other words,
our starting point is the set of classical moments fNee; N̄ee;
Nxx ¼ N̄xx;Fee; F̄ee;Fxx ¼ F̄xxg for each point on a three-
dimensional grid (201 × 201 × 101 points) corresponding
to physical dimensions (136 km × 136 km × 68 km) from
a snapshot taken 5 ms after the merger.
Note that we distinguish between global spatial coor-

dinates in the NSM simulation ðX; Y; ZÞ, and local coor-
dinates which are defined differently at each point ðx; y; zÞ.
The local coordinates are chosen such that the lepton
number flux vector Fee − F̄ee is aligned with z.4 In
addition, x denotes the heavy lepton flavor.

A. Results from linear stability analysis

At a given location in a NSM, we can generally search
for instabilities associated with any wave vector k and find
the overall fastest growing mode. We show the result for a
slice taken across the disk (Y ¼ 0 km) in Fig. 3. The
growth rate (typically a few 1010 s−1) is shown in the top
panel, and we assess the direction of kmax in the bottom
panel. Given our choice of local coordinates, kmax;z is the
component along the ELN flux direction.
In addition, we show on the top panel the location of the

“neutrinospheres” for each species of neutrinos (νe, ν̄e,
and νx). More precisely, as the optical depth is not available
in the simulation data (and not well defined in the complex
3D geometry of a merger remnant), we use a proxy for
the transition between trapped and optically free regions
by considering the flux factor threshold f̂ ¼ 0.2, which
roughly corresponds to an optical depth τ ∼ 2=3 [7]. These
contours reveal the very aspherical structure of the decou-
pling regions, corresponding to the neutron star core and
the overdense tidal arms. The complex structure within the
accretion torus and the relativistic orbital velocities justify
performing our analysis of the detailed neutrino distribu-
tions produced by multidimensional relativistic radiation
transport. The orbital velocities, in particular, cause
radiation emitted from the accretion torus to be beamed
preferentially along the surface of the torus, causing the
radiation in the polar regions to differ significantly from
models of neutrino emission for stationary fluid.
The white regions in Fig. 3 show locations where the

FFI is not present. Among the unstable locations, we can
distinguish two regions: in most of the slice, kmaxkz (dark

blue in the bottom panel), while notably in the polar regions
the transverse component seems to be more important
(light blue).
As a matter of fact, the modes which are not aligned with

z (see bottom panel of Fig. 3) are particularly dependent
on the consistency check introduced at the end of Sec. III,
and furthermore they correspond to regions where we do
not expect an FFI to occur based on the ELN crossing test
(see Sec. V B). For these reasons, we expect our method to
provide positive results when modes are found along the
ELN flux direction, to which we will restrict in the
remainder of this paper.
When applying this moment LSA more generally to every

point of the NSM simulation, we find—in agreement with
previous studies—that fast flavor instabilities are ubiquitous
in such environments [113]; as depicted in the 3D volume
rendering of the instability growth rate on Fig. 4.

1. Instability timescale

We can identify on Fig. 4 different unstable regions
with generally higher growth rates as we get closer to the
neutron star merger remnant. To visualize these results
more quantitatively, we plot on Fig. 5 the quantity
ImðΩÞmax for different vertical slices (see caption) and

FIG. 3. Predicted characteristics of the FFI fastest growing
mode on the slice fY ¼ 0 kmg of the NSM simulation, obtained
from moment LSA. Top: instability growth rate. Contours of
equal flux factor f̂ ¼ 0.2 are represented for νe (solid green line),
ν̄e (dashed red line) and νx (dash-dotted blue line). Bottom:
normalized vertical component of kmax, showing the predomi-
nance of modes aligned with the ELN flux direction. Regions
with kmax∦z are not expected to be unstable (see Sec. V B), and
are thus expected to be false LSA positives.

4As a consequence, the local ðx; y; zÞ coordinates in different
points of the NSM simulation are not related.
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on Fig. 6 for an equatorial slice (Z ¼ 0 km). Typical values
of the growth rate range from 1010 s−1 to 1011 s−1,
corresponding to very short timescales ∼0.01–0.1 ns.
As can be seen on Figs. 4–6, we observe a characteristic

structure of FFI in a neutron star merger: one can identify
a correlation between the unstable regions and the tidal
arms of the postmerger remnant. To illustrate this fact,
we represent on Fig. 6 the neutrinosphere proxies (surfaces
of f̂ ¼ 0.2 flux factor) in the same fashion as Fig. 3 (top
panel). These surfaces surround overdense tidal arms in the
postmerger accretion disk. In addition, a small region of
instability is found on the polar surface of the remnant,
a region of particular interest since a majority of neutrinos
are emitted from this surface. Nevertheless, a detailed study

of this region would require us to take into account neutrino
collisions, as shown for instance by the possibility of
collisional instabilities evidenced in Appendix C.

2. Unstable mode wavelength

In the following, we will only show results for the same
slice as the left panel of Fig. 5 (Y ¼ 0 km), but the various
conclusions remain general.
The typical inverse length scale associated with the most

unstable mode is given by kmax, which is shown on Fig. 7.
Throughout the simulation, kmax is a few cm−1, which
highlights the very small spatial scale associated to FFI
compared to a typical neutron star merger simulation
resolution. A comparison of the maps of Figs. 5 (left
panel) and 7 shows a positive correlation between kmax and
ImðΩÞmax. That is, the larger the wave number, the larger
the growth rate.
Zero mode: Some earlier studies focused solely on the

so-called “zero mode” [79,94,95], defined by k0 ¼ k −ffiffiffi
2

p
GFðFee − Fxx − F̄ee þ F̄xxÞ ¼ 0 [see also Eq. (23)].

It was shown in [46] that restricting the analysis to this
mode (called there the “k0 test”) captures some of the
unstable regions of large-scale simulations. With our
analysis method, we can verify how representative this
mode is in our simulation: the growth rate obtained from
restricting the moment LSA to k0 ¼ 0 is shown in Fig. 8
(top panel). This indeed confirms that some instability
regions are missed, although the bulk of the unstable
regions is found with a growth rate that is smaller than,
but comparable to, the value when k0 ¼ k0

max ≠ 0.
Homogeneous mode: Another particular mode of fre-

quent interest is the homogeneous fast flavor instability,
which corresponds to k ¼ 0. Homogeneous instabilities,
like bipolar oscillations, were notably studied as part of
“slow” collective oscillations (see, e.g., [33,114]), but are
not expected to be particularly representative in the FFI
case. Indeed, we also show in Fig. 8 (bottom panel) the
results from linear stability analysis, restricted to k ¼ 0.
Many unstable regions are missed, and in the few regions

FIG. 5. Instability growth rate from moment linear stability analysis, for various slices of the NSM simulation. Left: slice across the
equatorial plane at Y ¼ 0 km. Middle: off-center slice across the equatorial plane, at Y ≃ 40 km. Right: centered slice orthogonal to the
first one, at X ¼ 0 km. We identify the three points studied in [96] and discussed in Sec. VA 3.

FIG. 4. Volume rendering of the fast flavor instability growth
rate in the NSM simulation from [6,7], taken 5 ms post merger.
Three colored contours are centered respectively around the
growth rate values 7 × 109 s−1, 2 × 1010 s−1, and 7 × 1010 s−1.
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where an instability is still encountered, the growth rate is
significantly smaller than the overall one, once again
showing that even in those regions, a mode with k ≠ 0
would actually be the dominant one. It should nevertheless
be noted that the domain considered remains quite close to
the postmerger remnant, and including the vacuum term
could notably change the results in outer regions, in
particular triggering instabilities at k ¼ 0.

3. Comparison to numerical simulations

Three points from the neutron star merger simulation
studied here have been used as initial conditions for a full

three-dimensional quantum kinetic simulation of neutrinos
in FLASH and Emu calculations [96], similarly to the test
case of Sec. IV. They are identified, following the nomen-
clature from [96], as “NSM 1, 2, 3” on Fig. 5. The
predictions of moment LSA and the numerical results
from FLASH and Emu are gathered in Table II.

FIG. 8. Fast flavor instability growth rate for the NSM slice
fY ¼ 0 kmg, obtained from moment LSA restricted to the “zero
mode” k ¼ ffiffiffi

2
p

GFðFee − Fxx − F̄ee þ F̄xxÞ (Top), or to the
homogeneous mode k ¼ 0 (Bottom), to be compared with the
left panel of Fig. 5.

FIG. 6. Instability growth rate obtained from moment linear
stability analysis in the equatorial plane of the NSM simulation
snapshot (Z ¼ 0 km). Regions of FFI follow the spiral density
wave structure of the nascent accretion disk, as indicated by the
f̂ ¼ 0.2 flux factor contours, which are represented for νe (solid
green line), ν̄e (dashed red line), and νx (dash-dotted blue line).

FIG. 7. Wave number corresponding to the fastest growing
mode, across the same polar slice as the left panel of Fig. 5. These
values show that the typical lengthscale associated with FFI in a
classical neutron star merger simulation is on the scale of
centimeters.

TABLE II. Linear stability analysis and simulation results for
the three points considered in [96] and identified on Fig. 5, with k
restricted to the lepton number flux direction. Here, no unstable
mode is found for the NSM 2 point. The uncertainty on kmax from
numerical simulations comes from the limited resolution of the
Discrete Fourier Transform with a box size L ¼ 8 cm.

LSA FLASH Emu

“NSM 1” ðX ≃ 20 km; Y ¼ 0 km; Z ≃ 20 kmÞ
ImðΩÞmaxð1010 s−1Þ 7.25 8.1 5.6
kmaxðcm−1Þ 5.68 6.4(4) 4.8(4)

“NSM 2” ðX ¼ 0 km; Y ¼ 0 km; Z ≃ 15 kmÞ
ImðΩÞmaxð1010 s−1Þ 5.2 1.1
kmaxðcm−1Þ 6.1(4) 3.8(4)

“NSM 3” ðX ≃ 48 km; Y ¼ 0 km; Z ¼ 0 kmÞ
ImðΩÞmaxð1010 s−1Þ 2.5 10.7 4.2
kmaxðcm−1Þ 6.6 13.0(5) 6.5(5)
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The first point, located at ðX ≃ 25 km; Y ¼ 0 km;
Z ≃ 20 kmÞ, was also studied in [93]. The linear stability
analysis results for the growth rate and the wave number
of the most unstable mode fall between the FLASH
and Emu ones, and future improvements of the moment
method might better the agreement between the two
techniques. We represent the linear stability analysis
results obtained by sweeping kz values along with the
numerical results from Emu and FLASH calculations in
Fig. 9. Linear stability analysis can only provide infor-
mation on the initial exponential growth phase, where
similar conclusions to those from the Fiducial test case
(see Fig. 2) can be drawn. The differences between the
FLASH and Emu simulations are more significant than in
the previous test case, as could be expected given a
problem with significantly fewer symmetries (see [93,96]
for initial condition parameters corresponding to those in
Table I). Note that when restricting the study to the “zero
mode” (see Fig. 8), the instability growth rate is smaller
(ImðΩÞmax;k0¼0 ≃ 5.62 × 1010 s−1). This value can be read
on the left panel of Fig. 9 (dotted green line), the zero
mode corresponding here to k0 ≃ 3.0 cm−1. We clearly
see in this case that, although unstable, the zero mode is
not the most unstable mode.
The other two points show more disagreement between

the FLASH and Emu calculations and with the moment
LSA. The NSM 2 point corresponds to a very shallow
ELN crossing (see [96]), for which we find that our
analysis does not provide very good results; we come back
to this in the next section. In the NSM 3 case, the depth of
the ELN crossing is also much smaller than for the NSM 1
point. The length scale of the instability is well captured
by the moment LSA, while the growth rate is slightly

smaller than Emu and a factor of a few smaller than
FLASH. While this provides a reasonable estimate for
situations where predictions good to a factor of a few are
all that is required—which will often be the case given the
disparate timescales in neutron star merger simulations—
more general applicability of the moment LSA method
will require improving its performance in distributions
with shallow crossings.
Although the closure itself is a significant limitation to the

accuracy of moment methods, our particular choices regard-
ing how to construct a quantum pressure tensor do not seem
to have a significant impact on the results. Specifically,
choosing different options between Eqs. (15) and (16)
or (18) and (19) does not alter significantly our results:
switching between the four possible combinations shifts kmax
by less than 0.4% (resp. 0.4%) and ImðΩÞmax by less than
1.5% (resp. 3%) for the NSM 1 (resp. NSM 3) point. None of
these choices change the negative determination of insta-
bility for the NSM 2 point. This may be a consequence of the
fact that throughout the simulation snapshot we have used,
most of the neutrinos are close to the optically thick limit.
The classically computed Eddington factor is lower than
0.50 for 99% (νe), 96% (νx), and 97% (ν̄e) of the simulation
points in our chosen NSM snapshot. This is consistent with
the small impact from the different possibilities we are
considering for the thin part of the pressure tensor. But while
our results appear to be robust, we are reminded that a more
accurate “quantum” closure cannot be straightforwardly
obtained from a classical one.

B. Electron lepton number crossings

The phenomenon of fast flavor instability is known to be
related to the presence of ELN crossings (or more precisely,

FIG. 9. Comparison of linear stability analysis predictions and three-dimensional numerical solutions of neutrino flavor trans-
formation (adapted from [93]) for the NSM 1 point. Left: instability growth rate obtained by linear stability analysis for different modes,
similarly to Fig. 1. The values corresponding to the zero mode are represented in dotted green lines. Middle: evolution of the domain-
averaged magnitude of the off-diagonal component of N in Emu and FLASH. Right: Fourier transform of the off-diagonal component
against wavenumber k, taken 0.1 ns before saturation. Plotting conventions are the same as in Fig. 2. The dash-dotted brown line is the
linear stability analysis prediction (see Table II).
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ELN-XLN crossings, see e.g., [46,82,115]). Of course, in
our situation the initial XLN is always zero since the
original NSM simulation groups all heavy lepton neutrinos
and antineutrinos together. Therefore, we seek to compare
our results to the existence of ELN crossings in the classical
neutrino distributions. Intrinsically, a truncated-moment
description of the neutrino fluid hides the underlying
angular distribution, and only yields information about
the distribution properly averaged to give the number and
flux densities.
Various studies have focused on different ways to assess

the presence of ELN(-XLN) crossings using angular
reconstruction methods [46,52,116,117], and more recently
machine learning procedures [118,119]. We restrict here to
the method consistent with the classical simulation that we
used to obtain the moments, assuming the same classical
maximum entropy moment closure we chose for the
stability analysis and that is used to set the initial conditions
in Emu [46,117].
Imposing a maximum entropy (ME) closure amounts to

assuming that the underlying neutrino angular distribution
maximizes the angular entropy under the constraints of
given number density and fluxes. This leads, for the
Minerbo closure, to the functional form [109]

fME
ν ðx;Ω; tÞ ¼ N

4π

Z
sinhðZÞ e

Z cos θ; ð41Þ

where cos θ ¼ Ω · F=jFj is the azimuthal angle with respect
to the net number flux. We dropped flavor indices here,
implying that this distribution applies to each species
separately. The parameter Z satisfies the equation

f̂ ¼ cothðZÞ − 1

Z
; ð42Þ

with f̂ the flux factor. ELN crossings can thus be estimated
whenever there is a solution of the equation fME

νe ðx;Ω; tÞ ¼
fME
ν̄e ðx;Ω; tÞ, i.e., an angle θ such that

Nee
Ze

sinhðZeÞ
eZe cosðθ−θeÞ ¼ N̄ee

Z̄e

sinhðZ̄eÞ
eZ̄e cosðθ−θ̄eÞ; ð43Þ

where θe and θ̄e are the respective directions of Fee and F̄ee,
taken with respect to a reference direction in the plane
ðFee; F̄eeÞ (see [46,96]). The points for which Eq. (43) has a
solution are depicted on Fig. 10, where we compare these
a priori unstable regions to the ones found with our
moment LSA. Reassuringly, there is generally a good
agreement between the two. Although we do not represent
it here, the agreement is similarly good across the full three-
dimensional NSM simulation.
There are nevertheless some missing regions that can

have several origins. We find generally that the moment
LSA provides particularly reliable results for deep ELN

crossings, but in regions with very shallow crossings our
analysis might miss the instability. However, these regions
are at the boundaries between instability and stability,
meaning that a propagating neutrino will encounter the
FFI at nearly the same place as our current LSA prediction.
This should mitigate the overall impact on large-scale
simulations of this misalignment of the instability boun-
dary. In addition, our approximate self-consistency pro-
cedure (outlined in Appendix B) can discard some physical
modes, though a detailed study of these individual points
would circumvent this problem, but at a significant computa-
tional cost. Although moment LSA rather under-predicts
instability, we find a small number of locations where modes
predicted to be unstable by LSA exist but where there is
typically an ELN distribution that nearly kisses but does not
cross zero. Such disagreements are not unexpected, given the
necessary choices that go into the treatment of the pressure
tensor and the fact that the current moment LSA method
struggles in regions of shallow crossings.
Importantly, the use of flavor-traced quantities in our

semiclassical closure limits the scope of the comparison
with classically determined crossings, which allow differ-
ent flavors to have completely independent distributions.
In particular, the distributions compared in (43) correctly

describe the ν
ð−Þ

e number densities and fluxes, but not
the pressure [since we use the flavor-traced Eddington
factor (19), at least for the off-diagonal components,
see after Eq. (32)]. Linear stability analysis nevertheless
provides an efficient framework to test and compare
various closure prescriptions beyond the semiclassical
expressions (13)–(17), which we leave for future work.

VI. SUMMARY AND CONCLUSIONS

One path toward a better assessment and future inclusion
of neutrino flavor oscillations in simulations of binary
neutron star mergers is to selectively use quantummoments
built from the first few classical angular moments often

FIG. 10. On top of the growth rate (cf. Fig. 5, left panel), the
blue regions indicate where an ELN crossing is determined
from Eq. (43).

NEUTRINO FAST FLAVOR OSCILLATIONS WITH MOMENTS: … PHYS. REV. D 109, 043046 (2024)

043046-13



used in such simulations. To understand where and when
quantum transport will be necessary, we developed a
moment-based linear stability analysis (LSA) method
and assessed its efficacy using several metrics. We first
made a comparison between our LSA predictions and both
dynamical moment (FLASH) and particle-in-cell (Emu)
results on a straightforward test case and found good
agreement. We then compared results from our moment-
based LSA to simulations of flavor transformation in
regions extracted from a postmerger general relativistic
radiation-hydrodynamics simulation [6,7].
We confirmed the ubiquity of FFI in NSM simulations

by taking a snapshot and applying our LSA to all points. As
our method allows us to consider perturbations with any
wave vector oriented in any direction, we found that in
regions where the FFI should occur, the fastest growing
mode is characterized by a wave vector aligned with the
direction of the electron lepton number flux (Fee − F̄ee),
with values ranging typically up to a few cm−1. We also
evaluated the effectiveness of the so-called “zero mode”
approximation and found that while it under-estimates the
growth rate, it reasonably approximates the spatial regions
of instability and often correctly determines the order of
magnitude of the instability growth rate. For the simulation
region that we worked with, the FFI amplification timescale
was generally of order ∼0.1 ns. We also tested our results
against regions of ELN angular crossings and found broad
consistency, although the edges of the instability regions
where the crossings are shallow are not always in precise
alignment. We speculate that this could lead to slightly
different outcomes in a fully dynamical simulation that
would include feedback between flavor transformation and
angular crossings.
Our method can be straightforwardly extended to capture

additional physics. By including vacuum and matter terms
in the Hamiltonian we can study slow modes and by
including collisions, phenomena such as collisional insta-
bilities can be studied. The method can also be extended to
multienergy neutrinos allowing for the study of spectral
swaps, splits and the consequences of energy-changing
collision terms.
In this work we have restricted ourselves to semi-

classical closures which are minimal extensions of the
maximum entropy closure. While this produced broad
agreement in all of our tests, there are subtle details that
need improvement. For example, for our choice(s) of
closure, there was some ambiguity in how to define the
angular distributions with which to determine regions with
angular crossings. In general, there are many such unre-
solved issues with the closure prescriptions, and in future
work, we plan to use our moment LSA method for a more
thorough study of closure relationships with an eye toward
their inclusion in dynamical simulations. Moment LSA,
with its intrinsic computational efficiency, is a particularly
attractive tool to begin such a study.

In summary, the overarching goal is to eventually
include flavor transformation in situ when performing
large-scale simulations of not only merging neutron stars
but also core-collapse supernovae and black hole neutron
star mergers. In the short run, since the quasi-steady state
reached after fast flavor conversions is not fully understood
(see e.g., [120–122] for dedicated studies), phenomeno-
logical prescriptions can be used to assess the sensitivity to
such neutrino flavor conversions in NSM or CCSN
simulations [78–81]. Eventually flavor transformation must
be incorporated into the simulations via the inclusion of
methods that dynamically evolve the neutrinos, e.g., those
of [93,97]. At present these methods are beyond the reach
of computational capabilities and it is necessary to locate a
path forward. One possibility is to selectively use quantum
approaches only where needed but if this approach is to
work, we must be able to identify the appropriate zones in
the simulation. The method that we have outlined in this
paper is a feasible method to identify such zones. We can
now predict FFI in a computationally efficient way by
direct use of angular moments of the neutrino field. Our
method could be extended to predict other types of
instabilities and is also a useful tool for eventually
identifying a best-practice quantum closure, a critical
problem that must be addressed before quantum kinetic
moment methods can be widely adopted.
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APPENDIX A: MOMENT FORMALISM

Following [89,90], we rewrite the QKEs for the first
angular moments of the (anti)neutrino density matrix.
To that end, we write the neutrino four-momentum as
pα ¼ εðuα þ lαÞ, where lα is a unit normal four-vector
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(lαlα ¼ 1) orthogonal to the dimensionless fluid
four-velocity uα. We will always ignore the neutrino rest
mass by setting the energy equal to the 3-momentum
magnitude p. In the comoving frame (which will be our
frame of reference), we have uα ¼ ð1; 0Þ and lα ¼ ð0;ΩÞ,
such that ε ¼ p0 is the neutrino energy in this frame. The
coordinates are xμ ¼ ðt;xÞ.
We assume that we can work with the Minkowski metric

in the comoving frame, with metric signature ð−;þ;þ;þÞ.
We then define the first angular moments [90]:

N abðxμÞ≡
Z

dε
ε2

ð2πÞ3
Z

dΩϱabðε;Ω; xμÞ;

F α
abðxμÞ≡

Z
dε

ε2

ð2πÞ3
Z

dΩlαϱabðε;Ω; xμÞ;

Pαβ
abðxμÞ≡

Z
dε

ε2

ð2πÞ3
Z

dΩlαlβϱabðε;Ω; xμÞ: ðA1Þ

These definitions relate to Eq. (6) since, in the comoving
frame,

N ¼N; F α¼ð0;FÞ and Pαβ¼
�

0 0

0T Pij

�
: ðA2Þ

It is readily possible to generalize these expressions to a
fully covariant formalism, cf. [89].
The general moments of the distribution function

are then

Mα1���αkðxμÞ≡
Z

dε
ε2

ð2πÞ3
Z

dΩϱðε;Ω; xμÞ

× ðuα1 þ lα1Þ � � � ðuαk þ lαkÞ: ðA3Þ

Thus, the rank-1 and rank-2 moments read

Mα
ab ¼ N abuα þ F α

ab ¼ ðNab;FabÞ; ðA4Þ

Mαβ
ab ¼ N abuαuβ þ F α

abu
β þ F β

abu
α þ Pαβ

ab

¼
�
Nab Fab

FT
ab Pij

ab

�
: ðA5Þ

Note that all previous expressions are defined accordingly
for antineutrinos.
In Minkowski spacetime, the moment QKEs are

written [89]

∂αMαβ ¼ Sβ; ðA6Þ

with Sβ the source term, which reads for the refractive part

Sβ
ab ¼ −i

Z
dε

ε2

ð2πÞ3
Z

dΩ
pβ

ε
½H; ϱ�ab: ðA7Þ

It is straightforward to show that the self-interaction
Hamiltonian (3) can be written

Hνν ¼ −
ffiffiffi
2

p
GF

pα

ε
ðMα − M̄�

αÞ: ðA8Þ

Therefore the QKE (A6) becomes:

∂αMαβ ¼ −i½Hα;Mαβ�; ðA9Þ

with Hα ¼ −
ffiffiffi
2

p
GFðMα − M̄�

αÞ. Components β ¼ 0 and
β ¼ j of Eq. (A9) give respectively Eqs. (7a) and (7b).

APPENDIX B: MULTIANGLE LINEAR
STABILITY ANALYSIS

In order to determine whether the predictions from
moment linear stability analysis are self-consistent, we
use a simplified multiangle analysis to assess how well
moments should be able to capture the predicted instability.
Namely, from the eigenvector ðAex; Bi

ex; Āxe; B̄i
xeÞT cor-

responding to the fastest growing mode, we can deduce
the associated angular distribution of eigenvectors in a
multiangle analysis. If this distribution is very narrow in
angular space, one cannot expect a two-moment method to
accurately describe such a mode, thus failing the self-
consistency test.
As this procedure is solely used as an additional

consistency check, we restrict the analysis to distributions
of neutrinos that maintain azimuthal symmetry. For sim-
plicity, we assume this symmetry is around the z-axis,
which generally corresponds to the direction of the fastest
growing mode kmax (when kmax∦z as in Fig. 3, the
azimuthal symmetry is taken around kmax). The polar
angles θn are discretized, and we write μn ≡ cos θn. The
self-interaction Hamiltonian (3) for a momentum p point-
ing in the direction θn can be written:

Hνν;n ¼
ffiffiffi
2

p
GF

X
m

ð1 − μnμmÞ½Nm − N̄�
m�; ðB1Þ

where Nm is the number density of neutrinos in directional
bin m such that

P
m Nm ¼ N. That is,

Nab;mðt;xÞ ¼ ΔΩm

Z
dp

p2

ð2πÞ3 ϱabðt;x;pmÞ; ðB2Þ

with pm of magnitude p in the directionΩm. Note that, with
the assumption of azimuthal symmetry, ΔΩm ¼ 2πΔμm.
The QKEs in direction μn then read:

ið∂t þ vn ·∇ÞNn ¼ ½Hνν;n; Nn�;
ið∂t þ vn ·∇ÞN̄n ¼ −½H�

νν;n; N̄n�; ðB3Þ
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with vn ¼ pn=p the velocity (of norm 1 in natural units),
pointing in the direction θn. We linearly perturb the density
matrices similarly to (20), such that:

δNn ¼
�

0 aex;n
axe;n 0

�
e−iðΩt−k·xÞ þ H:c:; ðB4Þ

and likewise for δN̄n. Therefore, the self-interaction
Hamiltonian is also perturbed at first order by:

δHνν;n ¼
ffiffiffi
2

p
GF

X
m

ð1 − μnμmÞ½δNm − δN̄�
m�: ðB5Þ

The linearized QKEs (B3) read

ið∂t þ vn · ∇ÞδNn ¼ ½Hð0Þ
νν;n; δNn� þ ½δHνν;n; N

ð0Þ
n �; ðB6Þ

ið∂t þ vn · ∇ÞδN̄n ¼ −½Hð0Þ�
νν;n; δN̄n� − ½δH�

νν;n; N̄
ð0Þ
n �: ðB7Þ

Collecting the terms proportional to e−iðΩt−k·xÞ, we get:

ðΩ − μnkzÞaex;n ¼
ffiffiffi
2

p
GF

X
m

ð1 − μnμmÞ½Nee;m − Nxx;m − N̄ee;m þ N̄xx;m� × aex;n

−
ffiffiffi
2

p
GF

X
m

ð1 − μnμmÞ½aex;m − āxe;m� × ðNee;n − Nxx;nÞ; ðB8Þ

ðΩ − μnkzÞāxe;n ¼
ffiffiffi
2

p
GF

X
m

ð1 − μnμmÞ½Nee;m − Nxx;m − N̄ee;m þ N̄xx;m� × āxe;n

−
ffiffiffi
2

p
GF

X
m

ð1 − μnμmÞ½aex;m − āxe;m� × ðN̄ee;n − N̄xx;nÞ; ðB9Þ

that is

ðΩ − μnkzÞaex;n ¼
ffiffiffi
2

p
GFðNee − Nxx − N̄ee þ N̄xxÞaex;n − μn

ffiffiffi
2

p
GFðFz

ee − Fz
xx − F̄z

ee þ F̄z
xxÞaex;n

−
ffiffiffi
2

p
GFðNee;n − Nxx;nÞ½ðAex − ĀxeÞ − μnðBz

ex − B̄z
xeÞ�; ðB10Þ

and likewise for antineutrinos.

These equations can be rewritten, using the quantities Ω0
and k0 introduced in Eq. (23),

Ω0aex;n ¼ μnk0zaex;n −
ffiffiffi
2

p
GFðNee;n − Nxx;nÞ

× ½ðAex − ĀxeÞ − μnðBz
ex − B̄z

xeÞ�; ðB11Þ

Ω0āxe;n ¼ μnk0zāxe;n −
ffiffiffi
2

p
GFðN̄ee;n − N̄xx;nÞ

× ½ðAex − ĀxeÞ − μnðBz
ex − B̄z

xeÞ�: ðB12Þ

If we sum (B11) and (B12) over n, we logically find back
the moment Eqs. (24) and (25) (with k0 ¼ k0zuz because of
the azimuthal symmetry around z assumption). In order to
use this formalism to “check” the moment LSA results, we
express the multiangle eigenvector elements as a function
of the moment eigenvector elements:

aex;n
Nee;n − Nxx;n

¼ −
ffiffiffi
2

p
GF

Aex − Āxe − μnðBz
ex − B̄z

xeÞ
Ω0 − μnk0z

;

ðB13Þ

āxe;n
N̄ee;n − N̄xx;n

¼ −
ffiffiffi
2

p
GF

Aex − Āxe − μnðBz
ex − B̄z

xeÞ
Ω0 − μnk0z

:

ðB14Þ

In a multiangle LSA, we do not introduce the moments
(Aex; Bz

ex;…) but write the matrix equation involving
only the perturbations faex;n; āxe;ng and look for unstable
modes. Note that, if we sum (B13) and (B14) over n, we
can rewrite these two equations in the matrix form:

�
I0 þ 1 −I1
−I1 I2 − 1

��
Aex − Āxe

Bz
ex − B̄z

xe

�
¼ 0; ðB15Þ

where

Il ≡
ffiffiffi
2

p
GF

X
n

ðNee;n − Nxx;nÞ − ðN̄ee;n − N̄xx;nÞ
Ω0 − μnk0z

μln:

ðB16Þ
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Setting the determinant to zero then gives the equation
usually solved to get the dispersion relation in azimuthal
symmetry (e.g., [54,123]):

ðI0 þ 1ÞðI2 − 1Þ − I21 ¼ 0: ðB17Þ

In an ideal moment analysis, should the closure reflect
perfectly all the truncated higher-order moments, the results
should agree with the multiangle LSA. Here, we solely
use the previous equations as a consistency check of our
moment LSA results: given the moment eigenvectors
fAex; Āxe; Bz

ex; B̄z
xeg, Eqs. (B13) and (B14) provide a

relationship between μn and aex;n, i.e., more generally
the function aexðθÞ, which represents the distribution
in angular space of the unstable part of the density matrix.

The diagonal coefficients N
ð−Þ

aa;n are given by the angular
distribution associated to the Minerbo closure (41), but
azimuthally averaged so that θn is the polar angle with
respect to the direction of k0

max. More precisely, the Minerbo
closure angular distribution is axially symmetric around the
direction of the species’ flux, but in this simplified multi-
angle analysis we instead assume such a symmetry around
the direction of k0. We thus need to define the “effective”
distribution in direction θ with respect to k0:

ϱ̂ðθÞ ¼ 1

2π

Z
2π

0

dφfME
ν ðcosðΩθ;φ;FÞÞ; ðB18Þ

where the vector Ωθ;φ is defined by its spherical coordinates
ðθ;φÞ around k0. This effectively azimuthally symmetric
distribution around k0 is such that 2πϱ̂ðθÞ is the total
number of neutrinos having a momentum making an angle
θ with k0. We compute Eq. (B18) numerically using the
Python function quad for each value of θn.
It is illusory to expect our two-moment method to

accurately describe a situation where the distribution
aexðθÞ is narrowly peaked around a given direction, as
any small angular features would only be captured by
higher-order moments, or equivalently by a “perfect”
closure. Therefore, should the results from moment LSA
correspond to such an ill-suited distribution aexðθÞ, we
should conservatively discard the associated mode. In
concrete terms, if aexðθÞ is forward-peaked, there exists
a range of θ where aex sharply drops off, i.e., a range of θ
where jdaex=dμj is large (with μ ¼ cos θ). We thus impose
a cutoff δ on the derivative of jaexðμÞj. That is, if the
multiangle LSA for a given value of k0 gives a distribution
commensurate with the criterion

1

maxμfjaexðμÞjg
���� djaexjdμ

���� > δ; ðB19Þ

we reject that particular mode as inconsistent with the
moment LSA. The smaller the value of δ, the more

conservative we are in selecting reasonable unstable modes.
Of course, by setting an arbitrary cutoff we can miss some
physical modes, but we carried out some tests to determine
an optimum value for δ. Throughout this paper, we have
taken δ ¼ 4. As an example, we show in Fig. 11 the results
for the same slice as Fig. 3, with a too large value of δ
(which does not exclude some “fictitious”modes) and a too
small value (which largely underestimates the occurrence
of FFI).

APPENDIX C: COLLISIONAL INSTABILITIES

Fast flavor instabilities are not the only flavor conversion
channel that can take place in an environment such as a
neutron star merger. In particular, the possibility of colli-
sional instabilities that are associated with an asymmetry
between the neutrino and antineutrino interaction rates
was first evidenced in [68] and subsequently studied in,
e.g., [69–77]. These works confirmed that collisional
instabilities may appear in the neutrino decoupling regions
of supernovae and mergers. In this appendix, we use the
simple criterion given in [68] to assess the possibility of
collisional instabilities in our NSM simulation. A detailed
study of the role of collisions in this system is beyond the
scope of this work, but might be warranted in the future
given the possible interplay between fast flavor and colli-
sional instabilities [70,73]. We solely aim here at giving
an indication on the potential regions of interest for

FIG. 11. Fast flavor instability growth rate for the NSM slice
fY ¼ 0 kmg, for a 3D search in k space, varying the cutoff of
the consistency test. The large value (δ ¼ 20) overestimates the
possibility of FFI, notably in the polar regions (cf. Fig. 10 where
the regions with an ELN crossing are represented), while the low
value (δ ¼ 1.5) rejects too many points.
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collision-induced flavor instabilities and where our results
should therefore be taken more cautiously.
In a relaxation-time (or “damping”) approximation,

collisions are described by a total rate Γ for neutrinos
and Γ̄ for antineutrinos (which can be separated in
absorption/emission and scattering processes). Namely,
these rates are the averages of the rates for individual
species, that is Γ ¼ ðΓνe þ ΓνxÞ=2 and likewise for Γ̄. For
distributions that are purely flavor-diagonal (which is our
starting point from the NSM simulation), the collisional
instability criterion given in Ref. [68] reads

jðΓ − Γ̄ÞðNee þ N̄ee − 2NxxÞj ≳ jðΓþ Γ̄ÞðNee − N̄eeÞj;
ðC1Þ

where we assumed that Nxx ¼ N̄xx, consistent with the
NSM simulation we look at. The growth rate of the
collisional instability is then [see Eq. (14) in [68]]:

ImðΩÞcoll ≃�Γ − Γ̄
2

����Nee þ N̄ee − 2Nxx

Nee − N̄ee

���� − Γþ Γ̄
2

: ðC2Þ

Note that these expressions assume homogeneity and
isotropy, and can therefore only give an indication of
where collisional instabilities could take place in an
actual NSM.
We compute the collision rates from the neutrino

interaction library NuLib,5 using the temperature, matter
density, average neutrino energy and electron fraction from
the simulation snapshot [6,7] and assuming the SFHo
equation of state [124]. The instability growth rate, at
any point where the criterion (C1) is verified, is shown on
Fig. 12 for the slice fY ¼ 0 kmg and on Fig. 13 in a volume
rendering across the simulation.
As can be seen by comparing the instability regions with

the f̂ ¼ 0.2 flux factor contours drawn on Fig. 12, the
regions of collisional instability are rather well delimited by
the boundary between optically thick and optically-thin
regions. This is a posteriori consistent with the assumption
of isotropy that goes into Eqs. (C1) and (C2), although
going beyond this limiting assumption will be unavoidable
in the future.
We estimate that collisional instabilities could take place

in vast regions of the postmerger simulation, but should be
hidden by FFI which are orders of magnitude faster, except
in regions which are stable to FFI but appear to host a collisional instability. In particular, including the collision

term in the QKEs in those regions will be a necessary
improvement to confidently evaluate the possible flavor
transformation mechanisms.

FIG. 12. Collisional instability growth rate [Eq. (C2)], on the
same slice as the left panel of Fig. 5. It is generally several orders
of magnitude smaller than the FFI growth rate. For reference, the
f̂ ¼ 0.2 flux factor contours, which indicate the “neutrino-
spheres,” are represented for νe (solid purple line), ν̄e (dashed
red line), and νx (dash-dotted blue line).

FIG. 13. Volume rendering of the collisional instability growth
rate across the NSM simulation, predicted using Eq. (C2). Three
colored contours are centered respectively around the growth rate
values 103 s−1, 105 s−1, and 107 s−1.

5NuLib is available at http://www.nulib.org.

JULIEN FROUSTEY et al. PHYS. REV. D 109, 043046 (2024)

043046-18

http://www.nulib.org
http://www.nulib.org
http://www.nulib.org


[1] Z. B. Etienne, Y. T. Liu, V. Paschalidis, and S. L. Shapiro,
Phys. Rev. D 85, 064029 (2012).

[2] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T.
Wada, Phys. Rev. D 90, 041502 (2014).

[3] S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K.
Kyutoku, and M. Shibata, Astrophys. J. Lett. 789, L39
(2014).

[4] D. Neilsen, S. L. Liebling, M. Anderson, L. Lehner, E.
O’Connor, and C. Palenzuela, Phys. Rev. D 89, 104029
(2014).

[5] A. Perego, R. Cabezón, and R. Käppeli, Astrophys. J.
Suppl. Ser. 223, 22 (2016).

[6] F. Foucart, R. Haas, M. D. Duez, E. O’Connor, C. D. Ott,
L. Roberts, L. E. Kidder, J. Lippuner, H. P. Pfeiffer, and
M. A. Scheel, Phys. Rev. D 93, 044019 (2016).

[7] F. Foucart, E. O’Connor, L. Roberts, L. E. Kidder, H. P.
Pfeiffer, and M. A. Scheel, Phys. Rev. D 94, 123016
(2016).

[8] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, and K.
Taniguchi, Phys. Rev. D 93, 124046 (2016).

[9] R. Ardevol-Pulpillo, H. T. Janka, O. Just, and A. Bauswein,
Mon. Not. R. Astron. Soc. 485, 4754 (2019).

[10] D. Gizzi, E. O’Connor, S. Rosswog, A. Perego, R.
Cabezón, and L. Nativi, Mon. Not. R. Astron. Soc. 490,
4211 (2019).

[11] F. Foucart, M. D. Duez, F. Hebert, L. E. Kidder, P. Kovarik,
H. P. Pfeiffer, and M. A. Scheel, Astrophys. J. 920, 82
(2021).

[12] D. Radice, S. Bernuzzi, A. Perego, and R. Haas, Mon. Not.
R. Astron. Soc. 512, 1499 (2022).

[13] W. Cook, B. Daszuta, J. Fields, P. Hammond, S. Albanesi,
F. Zappa, S. Bernuzzi, and D. Radice, arXiv:2311.04989.

[14] M. C. Volpe, arXiv:2301.11814.
[15] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[16] S. P. Mikheev and A. Y. Smirnov, Nuovo Cimento C 9, 17

(1986).
[17] R. C. Schirato and G. M. Fuller, arXiv:astro-ph/0205390.
[18] G. L. Fogli, E. Lisi, D. Montanino, and A. Mirizzi, Phys.

Rev. D 68, 033005 (2003).
[19] S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. D

74, 053010 (2006).
[20] J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys.

Rev. D 77, 045023 (2008).
[21] F. N. Loreti, Y. Z. Qian, G. M. Fuller, and A. B. Balantekin,

Phys. Rev. D 52, 6664 (1995).
[22] J. P. Kneller and C. Volpe, Phys. Rev. D 82, 123004 (2010).
[23] E. Borriello, S. Chakraborty, H.-T. Janka, E. Lisi, and A.

Mirizzi, J. Cosmol. Astropart. Phys. 11 (2014) 030.
[24] K. M. Patton, J. P. Kneller, and G. C. McLaughlin, Phys.

Rev. D 91, 025001 (2015).
[25] Y. Yang and J. P. Kneller, J. Phys. G 45, 045201 (2018).
[26] A. Malkus, J. P. Kneller, G. C. McLaughlin, and R.

Surman, Phys. Rev. D 86, 085015 (2012).
[27] A. Malkus, G. C. McLaughlin, and R. Surman, Phys. Rev.

D 93, 045021 (2016).
[28] D. Väänänen and G. C. McLaughlin, Phys. Rev. D 93,

105044 (2016).
[29] M.-R. Wu, H. Duan, and Y.-Z. Qian, Phys. Lett. B 752, 89

(2016).

[30] Y.-L. Zhu, A. Perego, and G. C. McLaughlin, Phys. Rev. D
94, 105006 (2016).

[31] S. Shalgar, J. Cosmol. Astropart. Phys. 02 (2018) 010.
[32] A. Vlasenko and G. C. McLaughlin, Phys. Rev. D 97,

083011 (2018).
[33] H. Duan, G. M. Fuller, and Y.-Z. Qian, Annu. Rev. Nucl.

Part. Sci. 60, 569 (2010).
[34] J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin, Phys.

Rev. Lett. 103, 071101 (2009).
[35] S. Galais, J. Kneller, and C. Volpe, J. Phys. G 39, 035201

(2012).
[36] I. Tamborra and S. Shalgar, Annu. Rev. Nucl. Part. Sci. 71,

165 (2021).
[37] F. Capozzi and N. Saviano, Universe 8, 94 (2022).
[38] S. Richers and M. Sen, Fast flavor transformations, in

Handbook of Nuclear Physics, edited by I. Tanihata, H.
Toki, and T. Kajino (Springer Nature, Singapore, 2022),
pp. 1–17.

[39] R. F. Sawyer, Phys. Rev. D 72, 045003 (2005).
[40] R. F. Sawyer, Phys. Rev. D 79, 105003 (2009).
[41] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C.

Volpe, Phys. Rev. D 100, 043004 (2019).
[42] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C.

Volpe, Phys. Rev. D 101, 043016 (2020).
[43] H. Nagakura, T. Morinaga, C. Kato, and S. Yamada,

Astrophys. J. 886, 139 (2019).
[44] M. Delfan Azari, S. Yamada, T. Morinaga, H. Nagakura,

S. Furusawa, A. Harada, H. Okawa, W. Iwakami, and K.
Sumiyoshi, Phys. Rev. D 101, 023018 (2020).

[45] A. Harada and H. Nagakura, Astrophys. J. 924, 109
(2022).

[46] S. Richers, Phys. Rev. D 106, 083005 (2022).
[47] T. Morinaga, H. Nagakura, C. Kato, and S. Yamada, Phys.

Rev. Res. 2, 012046 (2020).
[48] S. Abbar, F. Capozzi, R. Glas, H. T. Janka, and I.

Tamborra, Phys. Rev. D 103, 063033 (2021).
[49] F. Capozzi, S. Abbar, R. Bollig, and H. T. Janka, Phys.

Rev. D 103, 063013 (2021).
[50] H. Nagakura, L. Johns, A. Burrows, and G. M. Fuller,

Phys. Rev. D 104, 083025 (2021).
[51] H. Nagakura and L. Johns, Phys. Rev. D 103, 123025

(2021).
[52] H. Nagakura and L. Johns, Phys. Rev. D 104, 063014

(2021).
[53] I. Izaguirre, G. Raffelt, and I. Tamborra, Phys. Rev. Lett.

118, 021101 (2017).
[54] B. Dasgupta, A. Mirizzi, and M. Sen, J. Cosmol. Astropart.

Phys. 02 (2017) 019.
[55] F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone, and A.

Mirizzi, Phys. Rev. D 96, 043016 (2017).
[56] T. Morinaga and S. Yamada, Phys. Rev. D 97, 023024

(2018).
[57] M. Delfan Azari, S. Yamada, T. Morinaga, W. Iwakami, H.

Okawa, H. Nagakura, and K. Sumiyoshi, Phys. Rev. D 99,
103011 (2019).

[58] S. Abbar and F. Capozzi, J. Cosmol. Astropart. Phys. 03
(2022) 051.

[59] I. Padilla-Gay, I. Tamborra, and G. G. Raffelt, Phys. Rev.
Lett. 128, 121102 (2022).

NEUTRINO FAST FLAVOR OSCILLATIONS WITH MOMENTS: … PHYS. REV. D 109, 043046 (2024)

043046-19

https://doi.org/10.1103/PhysRevD.85.064029
https://doi.org/10.1103/PhysRevD.90.041502
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1103/PhysRevD.89.104029
https://doi.org/10.1103/PhysRevD.89.104029
https://doi.org/10.3847/0067-0049/223/2/22
https://doi.org/10.3847/0067-0049/223/2/22
https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.94.123016
https://doi.org/10.1103/PhysRevD.94.123016
https://doi.org/10.1103/PhysRevD.93.124046
https://doi.org/10.1093/mnras/stz613
https://doi.org/10.1093/mnras/stz2911
https://doi.org/10.1093/mnras/stz2911
https://doi.org/10.3847/1538-4357/ac1737
https://doi.org/10.3847/1538-4357/ac1737
https://doi.org/10.1093/mnras/stac589
https://doi.org/10.1093/mnras/stac589
https://arXiv.org/abs/2311.04989
https://arXiv.org/abs/2301.11814
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1007/BF02508049
https://doi.org/10.1007/BF02508049
https://arXiv.org/abs/astro-ph/0205390
https://doi.org/10.1103/PhysRevD.68.033005
https://doi.org/10.1103/PhysRevD.68.033005
https://doi.org/10.1103/PhysRevD.74.053010
https://doi.org/10.1103/PhysRevD.74.053010
https://doi.org/10.1103/PhysRevD.77.045023
https://doi.org/10.1103/PhysRevD.77.045023
https://doi.org/10.1103/PhysRevD.52.6664
https://doi.org/10.1103/PhysRevD.82.123004
https://doi.org/10.1088/1475-7516/2014/11/030
https://doi.org/10.1103/PhysRevD.91.025001
https://doi.org/10.1103/PhysRevD.91.025001
https://doi.org/10.1088/1361-6471/aab0c4
https://doi.org/10.1103/PhysRevD.86.085015
https://doi.org/10.1103/PhysRevD.93.045021
https://doi.org/10.1103/PhysRevD.93.045021
https://doi.org/10.1103/PhysRevD.93.105044
https://doi.org/10.1103/PhysRevD.93.105044
https://doi.org/10.1016/j.physletb.2015.11.027
https://doi.org/10.1016/j.physletb.2015.11.027
https://doi.org/10.1103/PhysRevD.94.105006
https://doi.org/10.1103/PhysRevD.94.105006
https://doi.org/10.1088/1475-7516/2018/02/010
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1103/PhysRevLett.103.071101
https://doi.org/10.1103/PhysRevLett.103.071101
https://doi.org/10.1088/0954-3899/39/3/035201
https://doi.org/10.1088/0954-3899/39/3/035201
https://doi.org/10.1146/annurev-nucl-102920-050505
https://doi.org/10.1146/annurev-nucl-102920-050505
https://doi.org/10.3390/universe8020094
https://doi.org/10.1103/PhysRevD.72.045003
https://doi.org/10.1103/PhysRevD.79.105003
https://doi.org/10.1103/PhysRevD.100.043004
https://doi.org/10.1103/PhysRevD.101.043016
https://doi.org/10.3847/1538-4357/ab4cf2
https://doi.org/10.1103/PhysRevD.101.023018
https://doi.org/10.3847/1538-4357/ac38a0
https://doi.org/10.3847/1538-4357/ac38a0
https://doi.org/10.1103/PhysRevD.106.083005
https://doi.org/10.1103/PhysRevResearch.2.012046
https://doi.org/10.1103/PhysRevResearch.2.012046
https://doi.org/10.1103/PhysRevD.103.063033
https://doi.org/10.1103/PhysRevD.103.063013
https://doi.org/10.1103/PhysRevD.103.063013
https://doi.org/10.1103/PhysRevD.104.083025
https://doi.org/10.1103/PhysRevD.103.123025
https://doi.org/10.1103/PhysRevD.103.123025
https://doi.org/10.1103/PhysRevD.104.063014
https://doi.org/10.1103/PhysRevD.104.063014
https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1103/PhysRevD.96.043016
https://doi.org/10.1103/PhysRevD.97.023024
https://doi.org/10.1103/PhysRevD.97.023024
https://doi.org/10.1103/PhysRevD.99.103011
https://doi.org/10.1103/PhysRevD.99.103011
https://doi.org/10.1088/1475-7516/2022/03/051
https://doi.org/10.1088/1475-7516/2022/03/051
https://doi.org/10.1103/PhysRevLett.128.121102
https://doi.org/10.1103/PhysRevLett.128.121102


[60] S. Richers, H. Duan, M.-R. Wu, S. Bhattacharyya, M.
Zaizen, M. George, C.-Y. Lin, and Z. Xiong, Phys. Rev. D
106, 043011 (2022).

[61] D. F. G. Fiorillo and G. G. Raffelt, Phys. Rev. D 107,
043024 (2023).

[62] D. F. G. Fiorillo and G. G. Raffelt, Phys. Rev. D 107,
123024 (2023).

[63] S. Shalgar and I. Tamborra, Phys. Rev. D 103, 063002
(2021).

[64] J. D. Martin, J. Carlson, V. Cirigliano, and H. Duan, Phys.
Rev. D 103, 063001 (2021).

[65] G. Sigl, Phys. Rev. D 105, 043005 (2022).
[66] H. Sasaki and T. Takiwaki, Prog. Theor. Exp. Phys. 2022,

073E01 (2022).
[67] R. S. L. Hansen, S. Shalgar, and I. Tamborra, Phys. Rev. D

105, 123003 (2022).
[68] L. Johns, Phys. Rev. Lett. 130, 191001 (2023).
[69] I. Padilla-Gay, I. Tamborra, and G. G. Raffelt, Phys. Rev. D

106, 103031 (2022).
[70] L. Johns and Z. Xiong, Phys. Rev. D 106, 103029 (2022).
[71] Y.-C. Lin and H. Duan, Phys. Rev. D 107, 083034 (2023).
[72] Z. Xiong, M.-R. Wu, G. Martinez-Pinedo, T. Fischer, M.

George, C.-Y. Lin, and L. Johns, Phys. Rev. D 107, 083016
(2023).

[73] Z. Xiong, L. Johns, M.-R. Wu, and H. Duan, Phys. Rev. D
108, 083002 (2023).

[74] J. Liu, M. Zaizen, and S. Yamada, Phys. Rev. D 107,
123011 (2023).

[75] J. Liu, R. Akaho, A. Ito, H. Nagakura, M. Zaizen, and S.
Yamada, Phys. Rev. D 108, 123024 (2023).

[76] R. Akaho, J. Liu, H. Nagakura, M. Zaizen, and S. Yamada,
Phys. Rev. D 109, 023012 (2024).

[77] D. F. G. Fiorillo, I. Padilla-Gay, and G. G. Raffelt, arXiv:
2312.07612.

[78] O. Just, S. Abbar, M.-R. Wu, I. Tamborra, H.-T. Janka, and
F. Capozzi, Phys. Rev. D 105, 083024 (2022).

[79] X. Li and D.M. Siegel, Phys. Rev. Lett. 126, 251101
(2021).

[80] J. Ehring, S. Abbar, H.-T. Janka, G. Raffelt, and I.
Tamborra, Phys. Rev. D 107, 103034 (2023).

[81] J. Ehring, S. Abbar, H.-T. Janka, G. Raffelt, and I.
Tamborra, Phys. Rev. Lett. 131, 061401 (2023).

[82] H. Nagakura and M. Zaizen, Phys. Rev. Lett. 129, 261101
(2022).

[83] H. Nagakura and M. Zaizen, Phys. Rev. D 107, 063033
(2023).

[84] H. Nagakura, Phys. Rev. Lett. 130, 211401 (2023).
[85] H. Nagakura, Phys. Rev. D 108, 103014 (2023).
[86] P. Strack and A. Burrows, Phys. Rev. D 71, 093004 (2005).
[87] Y. Zhang and A. Burrows, Phys. Rev. D 88, 105009

(2013).
[88] M. Myers, T. Cooper, M. Warren, J. Kneller, G.

McLaughlin, S. Richers, E. Grohs, and C. Frohlich, Phys.
Rev. D 105, 123036 (2022).

[89] M. Shibata, K. Kiuchi, Y.-i. Sekiguchi, and Y. Suwa, Prog.
Theor. Phys. 125, 1255 (2011).

[90] S. A. Richers, G. C. McLaughlin, J. P. Kneller, and A.
Vlasenko, Phys. Rev. D 99, 123014 (2019).

[91] W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341
(1979).

[92] K. S. Thorne, Mon. Not. R. Astron. Soc. 194, 439 (1981).
[93] E. Grohs, S. Richers, S. M. Couch, F. Foucart, J. P. Kneller,

and G. C. McLaughlin, Phys. Lett. B 846, 138210 (2023).
[94] B. Dasgupta, A. Mirizzi, and M. Sen, Phys. Rev. D 98,

103001 (2018).
[95] R. Glas, H. T. Janka, F. Capozzi, M. Sen, B. Dasgupta, A.

Mirizzi, and G. Sigl, Phys. Rev. D 101, 063001 (2020).
[96] E. Grohs, S. Richers, S. M. Couch, F. Foucart, J. Froustey,

J. Kneller, and G. McLaughlin, arXiv:2309.00972.
[97] S. Richers, D. E. Willcox, N. M. Ford, and A. Myers, Phys.

Rev. D 103, 083013 (2021).
[98] G. Sigl and G. Raffelt, Nucl. Phys. B406, 423 (1993).
[99] A. Vlasenko, G. M. Fuller, and V. Cirigliano, Phys. Rev. D

89, 105004 (2014).
[100] D. N. Blaschke and V. Cirigliano, Phys. Rev. D 94, 033009

(2016).
[101] J. Froustey, C. Pitrou, and M. C. Volpe, J. Cosmol.

Astropart. Phys. 12 (2020) 015.
[102] V. Cirigliano, G. M. Fuller, and A. Vlasenko, Phys. Lett. B

747, 27 (2015).
[103] S. Shalgar and I. Tamborra, J. Cosmol. Astropart. Phys. 01

(2021) 014.
[104] I. Hubeny and A. Burrows, Astrophys. J. 659, 1458 (2007).
[105] B. Muller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J.

Suppl. Ser. 189, 104 (2010).
[106] Y.-F. Jiang, J. M. Stone, and S. W. Davis, Astrophys. J.

Suppl. Ser. 199, 14 (2012).
[107] L. M. Murchikova, E. Abdikamalov, and T. Urbatsch,

Mon. Not. R. Astron. Soc. 469, 1725 (2017).
[108] G. N. Minerbo, J. Quant. Spectrosc. Radiat. Transfer 20,

541 (1978).
[109] J. Cernohorsky and S. A. Bludman, Astrophys. J. 433, 250

(1994).
[110] J. M. Smit, L. J. van den Horn, and S. A. Bludman, Astron.

Astrophys. 356, 559 (2000).
[111] J. Kneller et al. (to be published).
[112] H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D 74,

123004 (2006).
[113] M.-R.Wu and I. Tamborra, Phys. Rev. D 95, 103007 (2017).
[114] A. Banerjee, A. Dighe, and G. Raffelt, Phys. Rev. D 84,

053013 (2011).
[115] T. Morinaga, Phys. Rev. D 105, L101301 (2022).
[116] S. Abbar, J. Cosmol. Astropart. Phys. 05 (2020) 027.
[117] L. Johns and H. Nagakura, Phys. Rev. D 103, 123012

(2021).
[118] S. Abbar, Phys. Rev. D 107, 103006 (2023).
[119] S.Abbar andH.Nagakura, Phys.Rev.D109, 023033 (2024).
[120] M. Zaizen and H. Nagakura, Phys. Rev. D 107, 123021

(2023).
[121] Z. Xiong, M.-R. Wu, S. Abbar, S. Bhattacharyya, M.

George, and C.-Y. Lin, Phys. Rev. D 108, 063003 (2023).
[122] S. Abbar, M.-R. Wu, and Z. Xiong, arXiv:2311.15656.
[123] L. Johns, H. Nagakura, G. M. Fuller, and A. Burrows,

Phys. Rev. D 101, 043009 (2020).
[124] A. W. Steiner, M. Hempel, and T. Fischer, Astrophys. J.

774, 17 (2013).

JULIEN FROUSTEY et al. PHYS. REV. D 109, 043046 (2024)

043046-20

https://doi.org/10.1103/PhysRevD.106.043011
https://doi.org/10.1103/PhysRevD.106.043011
https://doi.org/10.1103/PhysRevD.107.043024
https://doi.org/10.1103/PhysRevD.107.043024
https://doi.org/10.1103/PhysRevD.107.123024
https://doi.org/10.1103/PhysRevD.107.123024
https://doi.org/10.1103/PhysRevD.103.063002
https://doi.org/10.1103/PhysRevD.103.063002
https://doi.org/10.1103/PhysRevD.103.063001
https://doi.org/10.1103/PhysRevD.103.063001
https://doi.org/10.1103/PhysRevD.105.043005
https://doi.org/10.1093/ptep/ptac082
https://doi.org/10.1093/ptep/ptac082
https://doi.org/10.1103/PhysRevD.105.123003
https://doi.org/10.1103/PhysRevD.105.123003
https://doi.org/10.1103/PhysRevLett.130.191001
https://doi.org/10.1103/PhysRevD.106.103031
https://doi.org/10.1103/PhysRevD.106.103031
https://doi.org/10.1103/PhysRevD.106.103029
https://doi.org/10.1103/PhysRevD.107.083034
https://doi.org/10.1103/PhysRevD.107.083016
https://doi.org/10.1103/PhysRevD.107.083016
https://doi.org/10.1103/PhysRevD.108.083002
https://doi.org/10.1103/PhysRevD.108.083002
https://doi.org/10.1103/PhysRevD.107.123011
https://doi.org/10.1103/PhysRevD.107.123011
https://doi.org/10.1103/PhysRevD.108.123024
https://doi.org/10.1103/PhysRevD.109.023012
https://arXiv.org/abs/2312.07612
https://arXiv.org/abs/2312.07612
https://doi.org/10.1103/PhysRevD.105.083024
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevD.107.103034
https://doi.org/10.1103/PhysRevLett.131.061401
https://doi.org/10.1103/PhysRevLett.129.261101
https://doi.org/10.1103/PhysRevLett.129.261101
https://doi.org/10.1103/PhysRevD.107.063033
https://doi.org/10.1103/PhysRevD.107.063033
https://doi.org/10.1103/PhysRevLett.130.211401
https://doi.org/10.1103/PhysRevD.108.103014
https://doi.org/10.1103/PhysRevD.71.093004
https://doi.org/10.1103/PhysRevD.88.105009
https://doi.org/10.1103/PhysRevD.88.105009
https://doi.org/10.1103/PhysRevD.105.123036
https://doi.org/10.1103/PhysRevD.105.123036
https://doi.org/10.1143/PTP.125.1255
https://doi.org/10.1143/PTP.125.1255
https://doi.org/10.1103/PhysRevD.99.123014
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1093/mnras/194.2.439
https://doi.org/10.1016/j.physletb.2023.138210
https://doi.org/10.1103/PhysRevD.98.103001
https://doi.org/10.1103/PhysRevD.98.103001
https://doi.org/10.1103/PhysRevD.101.063001
https://arXiv.org/abs/2309.00972
https://doi.org/10.1103/PhysRevD.103.083013
https://doi.org/10.1103/PhysRevD.103.083013
https://doi.org/10.1016/0550-3213(93)90175-O
https://doi.org/10.1103/PhysRevD.89.105004
https://doi.org/10.1103/PhysRevD.89.105004
https://doi.org/10.1103/PhysRevD.94.033009
https://doi.org/10.1103/PhysRevD.94.033009
https://doi.org/10.1088/1475-7516/2020/12/015
https://doi.org/10.1088/1475-7516/2020/12/015
https://doi.org/10.1016/j.physletb.2015.04.066
https://doi.org/10.1016/j.physletb.2015.04.066
https://doi.org/10.1088/1475-7516/2021/01/014
https://doi.org/10.1088/1475-7516/2021/01/014
https://doi.org/10.1086/512179
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.1088/0067-0049/199/1/14
https://doi.org/10.1088/0067-0049/199/1/14
https://doi.org/10.1093/mnras/stx986
https://doi.org/10.1016/0022-4073(78)90024-9
https://doi.org/10.1016/0022-4073(78)90024-9
https://doi.org/10.1086/174640
https://doi.org/10.1086/174640
https://doi.org/10.1103/PhysRevD.74.123004
https://doi.org/10.1103/PhysRevD.74.123004
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevD.84.053013
https://doi.org/10.1103/PhysRevD.84.053013
https://doi.org/10.1103/PhysRevD.105.L101301
https://doi.org/10.1088/1475-7516/2020/05/027
https://doi.org/10.1103/PhysRevD.103.123012
https://doi.org/10.1103/PhysRevD.103.123012
https://doi.org/10.1103/PhysRevD.107.103006
https://doi.org/10.1103/PhysRevD.109.023033
https://doi.org/10.1103/PhysRevD.107.123021
https://doi.org/10.1103/PhysRevD.107.123021
https://doi.org/10.1103/PhysRevD.108.063003
https://arXiv.org/abs/2311.15656
https://doi.org/10.1103/PhysRevD.101.043009
https://doi.org/10.1088/0004-637X/774/1/17
https://doi.org/10.1088/0004-637X/774/1/17

