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We present the new guided moments (GM) formalism for neutrino modeling in astrophysical scenarios
like core-collapse supernovae and neutron star mergers. The truncated moments approximation (M1) and
Monte-Carlo (MC) schemes have been proven to be robust and accurate in solving the Boltzmann equation
for neutrino transport. However, it is well known that each method exhibits specific strengths and
weaknesses in various physical scenarios. The GM formalism effectively solves these problems, providing
a comprehensive scheme capable of accurately capturing the optically thick limit through the exact M1
closure and the optically thin limit through an MC-based approach. In addition, the GM method also
approximates the neutrino distribution function with a reasonable computational cost, which is crucial for
the correct estimation of the different neutrino-fluid interactions. Our work provides a comprehensive
discussion of the formulation and application of the GM method, concluding with a thorough comparison
across several test problems involving the three schemes (M1, MC, GM) under consideration.
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I. INTRODUCTION

The coalescence of neutron stars is an extraordinary
phenomenon in high-energy astrophysics, occurring in
extreme environments marked by strong self-gravity, high
densities, and elevated temperatures. The simultaneous
detection of gravitational waves (GWs) and electromagnetic
(EM) signals from binary neutron stars, exemplified by the
ground-breakingGW170817 event [1,2], shows the potential
of multimessenger astronomy. Numerous detections of GWs
and EMsignals from neutron starmergers are expected in the
coming years (see, for instance, [3]). The observation of such
signals is predicted to have a profound impact on both
astrophysics and fundamental physics. Nevertheless, the
complexity of modeling all of the involved physical inter-
actions constrains our capacity to realistically simulate
these binary mergers and compare them with present
observations. Unraveling the physics embedded in these
signals requires solving, at least approximately, the general-
relativistic radiation magnetohydrodynamic equations: the
Einstein equations for depicting strong gravity, relativistic
magnetohydrodynamics to model magnetized fluids, and the
Boltzmann equation to describe the production and transport
of neutrinos. Obtaining accurate solutions for these equa-
tions, in realistic general astrophysical settings like neutron
star mergers, is an exceedingly challenging task which can
solely be addressed through numerical simulations.
After the merger, a massive neutron star or a black hole,

surrounded by a stronglymagnetized hot and dense accretion
torus, is likely to be formed (see, for instance, [4,5]).

Throughout the coalescence, various regionsmay experience
conditions ranging from the optically thin regime, charac-
terized by freely streaming neutrinos, to the optically thick
regime, where neutrinos are mostly trapped and propagate
through diffusion. Due to their substantial energies and
luminosities, neutrinos are expected to play a fundamental
role in physical processes in the postmerger phase of a
neutron star merger (for an extensive review, see [5]). In
particular, neutrino interactions are expected to induce
changes in matter composition, influencing the conditions
relevant to the r-process nucleosynthesis (e.g., [6–9]).
Neutrinos produced in hot and dense matter regions will
diffuse and eventually decouple from the fluid at lower
densities, being emitted from the systemwhile carrying away
energy. As neutrinos extract energy from the system, they
could give rise to additional matter outflows, manifested as
neutrino-driven winds (e.g., [10–13]).
Accurately capturing all of these phenomena in neutron

star merger simulations requires an accurate and realistic
treatment of neutrino transport in numerical relativity
codes [14]. This task involves the tremendous challenge
of solving the seven-dimensional Boltzmann equation,
which describes the evolution of a distribution function
for each neutrino species. To address this complexity,
several approaches, including direct and approximate
methods, have been explored. Presently, various methods
directly attempt to solve the full Boltzmann equation
in full general relativity, using Monte Carlo (MC)-based
approaches (see, for example, [15–23]), lattice-Boltzmann
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methods [24], expansion of momentum-space distributions
into spherical harmonics (Pn) methods (see, e.g., [25–27]),
discrete-ordinates (Sn) methods (see, e.g., [28–30]), and a
finite-element approach in angle [31]. Direct methods,
although expected to converge to the true solution, often
present challenges in their implementation and computa-
tional cost, making them in most cases impractical for
providing a numerical solution with sufficient accuracy.
A notable example is the handling of the optically thick
regime in the MC-based methods, where resolving the
small neutrino mean free path becomes challenging,
often requiring further simplifications (see, for instance,
[5,16,18,21,32–35]).
On the other hand, approximate methods strike a balance

between accuracy and computational efficiency. Neutrino
leakage schemes (see, for example, [36–43]) are a widely
used approach due to their computational inexpensiveness.
However, the absence of neutrino reabsorption may lead, in
certain scenarios, to crude estimations in the amount and
composition of the ejecta. A more sophisticated approxi-
mation, known as the truncated moment formalism [44,45],
involves the evolution of the lowest moments of the neutrino
distribution function (see, e.g., [46–61]). Typically, only the
first twomoments are evolved, such that it is often referred to
as the M1 scheme. This approach requires an algebraic
closure for computing the higher moments, which is only
known in some limit cases. Additionally, the evolution
system can be simplified significantly by deriving evolu-
tion equations for the energy-integrated moments, trans-
forming the seven-dimensional Boltzmann equation into a
3þ 1 system that resembles the hydrodynamic equations.
Unfortunately, even in this simplified scenario, numerical
and mathematical challenges persist. Specifically, the trun-
cated moment equations may contain potentially stiff source
terms arising from neutrino-matter interactions, causing the
equations to shift from hyperbolic to parabolic type in
optically thick regions. While this issue can be addressed
by employing an implicit-explicit Runge-Kutta (IMEX) time
integrator ([62–65]), achieving a balance between accuracy
and stability remains a critical consideration (formore details
about IMEX schemes within the M1 formalism, we refer to
[56,58]). Additionally, moment-based schemesmay produce
unphysical shocks in regions where radiation beams inter-
sect, leading to solutions that differ from the true solutions of
the Boltzmann equation (see, for instance, the discussion
in [5]).
In this work, we introduce the guided moments (GM)

formalism, inspired in the seminal work presented in [18]
and the moment-guided MC method developed in [66,67].
Our approach exploits the benefits of the approximate
truncated moment formalism, incorporating evolution
equations similar to those in hydrodynamics and ensuring
accuracy in the optically thick regime. Additionally, it
incorporates aspects of the MC method, providing con-
vergence to the exact solution and accuracy in the optically
thin regimes. By exploiting the advantages of each method,

we overcome their individual limitations. In this context,
we combine the M1 and MC approaches to enhance the
overall efficacy of our formalism. The fundamental idea is
to close the M1 evolution equations by computing the
second moment with information from the MC solution,
especially in the optically thin regime where the M1 closure
is not exact. In contrast, an exact analytical closure for the
second moment exists in the optically thick limit, such that
the M1 formalism can provide a more accurate and cost-
effective solution than the one obtained from the MC
scheme, which suffers in this regime. A suitable projection
of the MC distribution function, such that the MC moments
match the evolved M1 ones, is enough to ensure con-
vergence to the exact solution and mitigate the statistical
noise that is so characteristic of the MC-based methods,
among other advantages. The resulting scheme outperforms
both the M1 and MC approaches, providing a compre-
hensive and accurate solution in both regimes.
The remainder of this work is organized as follows. In

Sec. II we provide an overview of the two formalisms
(M1 and MC) that are essential for constructing the GM
formalism. Following that, Sec. III is dedicated to the
presentation and discussion of the complete GM formalism.
In Sec. IV we present several test problems designed to
validate both the validity and accuracy of our formalism.
Finally, we present our conclusions and describe possible
improvements on the GM formalism. Additionally, in
Appendix A we include the additional steps to also
incorporate the neutrino number density in our formalism.
Appendix B describes the tetrad transformation necessary
to set the 4-momentum of the neutrinos in the MC scheme.

II. BUILDING BLOCKS: TRUNCATED MOMENTS
AND MONTE CARLO

The neutrino radiation transport can be fully described
by the distribution function of neutrinos fνðxa; paÞ in the
seven-dimensional phase space given by the spacetime
coordinates xa ¼ ðt; xiÞ and the neutrino 4-momentum pa

satisfying approximately the null condition papa ¼ 0. This
distribution function allow us to define the number of
neutrinos within a six-dimensional volume of phase space,1

NðtÞ ¼
Z

dx3
dp3

h3
fνðt; xi; pjÞ: ð1Þ

One can also define the neutrino stress-energy tensor

Tabðt; xiÞ ¼
Z

dp3

h3
ffiffiffiffiffiffi−gp

pt p
apbfνðt; xi; pjÞ; ð2Þ

1Notice that the momentum volume dp3

h3
ffiffiffiffi−gp

pt and the spatial
volume dx3

ffiffiffiffiffiffi−gp
pt are invariant under coordinate transformations,

such that the six-dimensional volume in the phase space dx3dp3 is
also invariant.
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where g is the determinant of the spacetime metric gab. This
radiation stress-energy tensor can also be interpreted as
the energy-integrated second moment of the distribution
function fν, as defined in [44,45].2 In addition, in these
works it was shown that any given moment includes the
lower-rank ones, meaning that the (energy-integrated)
zeroth and first moments can be constructed from projec-
tions of this stress-energy tensor.
The distribution function for each neutrino species3

evolves according to the Boltzmann equation

pa

�
∂fν
∂xa

− Γb
acpc ∂fν

∂pb

�
¼

�
∂fν
∂τ

�
coll

; ð3Þ

where the right-hand side includes all collisional processes
(i.e., emission, absorption, and scattering) and Γa

bc are
the Christoffel symbols associated with the spacetime
metric gab.
Therefore, solving the Boltzmann equation requires

the time evolution of a six-dimensional function, a very
demanding computational challenge even with modern
facilities. Here we consider two different approximations
for efficiently solving the Boltzmann equation: the trun-
cated moment formalism (M1), in which only the lowest
moments of the distribution function are evolved, and direct
simulation MC methods that attempt to directly solve the
Boltzmann equation. We first give a short summary of these
formalisms, and continue with a new method that profits
from efficiently combining both of them.
In what follows we use the standard 3þ 1 decomposi-

tion to write the covariant equations explicitly as an
evolution system of partial differential equations. First,
the spacetime metric is decomposed as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð4Þ

where α is the lapse function, βi is the shift vector, γij is
the induced 3-metric on each spatial slice, and γ is its
determinant. Within this decomposition, the normal vector
to the hypersurfaces is just na ¼ ð−α; 0Þ. We also use
the standard definition of the extrinsic curvature Kij as
the Lie derivative of γij along the normal vector na.
Throughout this paper, from now on, we adopt the
units G ¼ c ¼ h ¼ 1.

A. Truncated moment formalism: M1 approach

The truncated moment formalism evolves the lowest
moments of the neutrino distribution function. In particular,
the M1 scheme considers the evolution of the first two
moments of the distribution function, which still depend on
the neutrino energy (i.e., but not on the direction of the
neutrino 4-momentum). While the moment formalism can
theoretically accommodate a discretization in neutrino
energies, this introduces an additional dimension that sig-
nificantly escalates the required computational resources. To
reduce this computational cost and avoid further technical
complexities, it is common to adopt the grey approximation,
where we primarily focus on evolving energy-integrated
moments.4 A more detailed description of the formalism and
our implementation was presented in [58].
Let us define the fields that describe our evolution

equations in terms of the neutrino radiation stress-energy
tensor, which as mentioned before also contains the
lower-order (energy-integrated) moments. The interaction
between neutrinos and matter is usually simplified in the
fluid rest frame. Therefore, a convenient decomposition of
this tensor in terms of the spatial projection of the second
and lower moments is given by

Tab ¼ Juaub þHaub þHbua þQab; ð5Þ

where the energy density J, flux densityHa, and symmetric
pressure tensor Qab of the neutrino radiation are computed
by an observer comoving with the fluid. Notice that, by
construction, both the flux and pressure tensors are
orthogonal to the fluid velocity, i.e., Haua ¼ Qabub ¼ 0.
In order to obtain a well-posed system of partial differ-

ential equations in a conservative form, it is preferable to
decompose the same tensor Tab in the inertial frame,
namely,

Tab ¼ Enanb þ Fanb þ Fbna þ Pab; ð6Þ
where the radiation energy density E (i.e., the energy-
integrated zerothmoment), radiation fluxFa (i.e., the spatial
projection of the energy-integrated first moment), and
symmetric radiation pressure tensor Pab (i.e., the spatial
projection of the energy-integrated second moment) are
now evaluated by normal observers. Note that Fa and Pab

are orthogonal to na by construction, i.e., Fana ¼ 0 ¼
Pabnb ¼ 0.
We can express the fluid-rest-frame quantities

fJ;Ha;Qabg in terms of the Eulerian ones fE;Fa; Pabg

2Roughly speaking, the k-order moment definition includes
the integral of k moments pa1…pak , multiplied by the weighted
distribution function fν=νk−2 and using the invariant integration
volume in momentum space dp3

h3
ffiffiffiffi−gp

pt ¼ νdνdΩ, where ν is the

neutrino energy. The energy-dependent moments are obtained by
integrating only the solid angle dΩ on a unit sphere. When this
integration also includes dν, they are called k-order energy-
integrated moments ([5,44]).

3By “neutrino species” we refer to electron, muon, and
tau neutrinos ðνe; νμ; ντÞ and their respective antineutrinos
ðν̄e; ν̄μ; ν̄τÞ.

4Notice that the neutrino energy spectra is required to compute
the energy-averaged opacities/emissivities. Since this energy
spectra is only known exactly in the optically thick regime, an
“energy” closure is necessary to complete the M1 grey approxi-
mation. The choice of such closure might have a significant
impact on the electron fraction of the ejecta produced in neutron
star mergers.
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by decomposing the fluid 4-velocity as ua ¼ Wðna þ vaÞ,
whereW ¼ −naua is the Lorentz factor and va is the spatial
velocity of the fluid. (The full expressions of these frame
transformations can be found, for instance, in [57,58].)
As usual, the normalization of the 4-velocity uaua ¼ −1
allows us to explicitly compute the Lorentz factor as
W ¼ ð1 − viviÞ−1=2. In particular, we use the relations

J ¼ W2ðE − 2Fava þ PabvavbÞ; ð7Þ

Ha ¼ WðE − FbvbÞhacnc þWhabðFb − vcPbcÞ; ð8Þ

where hab ≡ gab þ uaub is the projection tensor orthogonal
to the 4-velocity of the fluid, habua ¼ 0. Notice that when
the fluid is at rest, vi ¼ 0, the translation between frames is
trivial, i.e., E ¼ J, Fa ¼ Ha, and Pab ¼ Qab.
The conservation of energy and linear momentum

implies that

∇bTab ¼ Sa; ð9Þ

where ∇ is the covariant derivative operator compatible
with the spacetime metric gab and Sa is the term represent-
ing the interaction between the neutrino radiation and the
fluid. This term can be written as

Sa ¼ ðη − κaJÞua − ðκa þ κsÞHa; ð10Þ

where η is the energy-averaged neutrino emissivity and
ðκa; κsÞ are the energy-averaged absorption and scattering
opacities.
The conservation equation (9) in the 3þ 1 decomposi-

tion ([45]) can be written as

∂tð ffiffiffi
γ

p
EÞ þ ∂i½ ffiffiffi

γ
p ðαFi − βiEÞ�

¼ α
ffiffiffi
γ

p ½PijKij − Fið∂iαÞ=α − Sana�; ð11Þ

∂tð
ffiffiffi
γ

p
FiÞ þ ∂j½

ffiffiffi
γ

p ðαPj
i − βjFiÞ�

¼ ffiffiffi
γ

p �
−E∂iαþ Fj∂iβ

j þ α

2
Pkj

∂iγkj þ αSaγia

�
: ð12Þ

This system strongly resembles the hydrodynamical equa-
tions except for the fluid-neutrino interaction term Sa,
which is given in the 3þ 1 decomposition by

Sn ¼ −Sana ¼ W½ðηþ κsJÞ − ðκa þ κsÞðE − FiviÞ�;
Si ¼ Saγia ¼ Wðη − κaJÞvi − ðκa þ κsÞHi: ð13Þ

The evolution equations Eqs. (11) and (12) represent the
M1 formalism. Notice that they are exact, although with
two limitations: (i) there is no closed form due to the
unknown second moment Pij (or, conversely, Qij), and
(ii) the energy-averaged emissivities/opacities ðη; κa; κsÞ
require information about the energy spectra which is not
computed explicitly within the formalism.

1. Closure relations

In general, the second moment Pij depends on not only
the local values of the lower moments ðE;FkÞ at a point, but
also the global geometry of these fields in a neighborhood
of that point. Although approximate closures can be
defined at different limits, there is no single closure
prescription Pij ¼ PijðE; FkÞ that accurately describes all
possible regimes. Instead, the M1 scheme usually employs
an analytic closure that interpolates Pij between two limits:
the optically thick limit (where matter and radiation are in
thermodynamic equilibrium) and the optically thin limit
(where the propagation of radiation, in a transparent
medium, comes from a single point source). Fortunately,
there are explicit expressions for Pij in both limits,
fPthin

ij ; Pthick
ij g, that give the following closure:

PM1
ij ¼ 3χðξÞ − 1

2
Pthin
ij þ 3½1 − χðξÞ�

2
Pthick
ij ¼ dthinPthin

ij þ dthickPthick
ij ; ð14Þ

where χðξÞ∈ ½1
3
; 1� is the variable Eddington factor and

ξ∈ ½0; 1� is the norm of the normalized flux. (For more
details see [68].)
As discussed in [45], there are several relativistic

generalizations for ξ, but the only one that is accurate in
the optically thick limit is

ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
HaHa

J2

r
: ð15Þ

Unfortunately, this choice is computationally expensive since
the calculationof ξ requires a root-findingmethod to transform

the fields from the inertial to the fluid rest frame. A detailed
root-finding routine was used and explained in [58].
We choose the commonly employedMinerbo closure [69],

which is exact in both limits,

χðξÞ ¼ 1

3
þ ξ2

�
6 − 2ξþ 6ξ2

15

�
: ð16Þ

However, notice that there are many other choices
(see [70]) that might also accurately capture these two limits.
In the optically thick limit (or diffusion limit), the

radiation pressure tensor measured by the fluid rest frame
is simply described by Qthick

ab ¼ Jthickhab=3. To obtain the
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pressure tensor Pthick
ij in the inertial frame, we first need to

compute the intermediate quantities, fJthick; Hi
thick; H

n
thickg,

that relate the fluid rest frame with the inertial frame. The
final closure can be written as

Pthick
ij ¼ 4

3
JthickW2vivj þWðHthick

i vj þHthick
j viÞ

þ 1

3
Jthickγij;

Jthick ¼
3

2W2 þ 1
½ð2W2 − 1ÞE − 2W2Fkvk�;

Hi
thick ¼

Fi

W
þ Wvi

2W2 þ 1
½ð4W2 þ 1ÞFkvk − 4W2E�: ð17Þ

In these regions the radiation satisfies Ha ≈ 0 (i.e., ξ ≈ 0

and χ ≈ 1=3), so PM1
ij ≈ Pthick

ij .
In the optically thin limit, we assume that radiation is

streaming at the speed of light in the direction of the
radiation flux, leading to the explicit relation

Pthin
ij ¼ FiFj

FkFk
E: ð18Þ

In these regions, HaHa ≈ J2 (i.e., ξ ≈ 1 and χ ≈ 1), so
PM1
ij ≈ Pthin

ij . Unfortunately, this limit is not unique as it is
determined by the nonlocal geometry of the radiation field.
In general, Pthin

ij will not correctly describe free-streaming
neutrinos produced by multiple sources, since in vacuum
they usually do not propagate in the same direction. For
instance, the trajectory of colliding beams will propagate
unphysically in the direction of their average momentum,
as is very well represented by the well-known double-
beam test (see, e.g., [46,49,56]), which will be discussed in
Sec. IV B. This behavior is responsible for unphysical
radiation shocks and leads, in general, to incorrect results in
some scenarios. (For further details, see [5].) Dealing with
these issues requires going beyond the M1 formalism. In
Sec. IV B, we illustrate how both the MC scheme and our
GM formalism sidestep this problem, allowing both beams
to follow their original paths without interference.

B. Direct simulation Monte Carlo: MC approach

MC methods attempt to sample the distribution function
fðνÞ with a discrete set of neutrino packets describing a
large number of neutrinos that interact with the matter and
propagate through the numerical grid. In an MC simulation,
the ensemble of NT packets at time t, each labeled by the
index k and containing Nk neutrinos located at spatial
coordinates xik with 4-momentum pa

k , serves as an approxi-
mation of the distribution function,5

fν ∼ fðνÞ ¼
XNT

k¼1

Nkδ
3ðxi − xikÞδ3ðpi − pk

i Þ: ð19Þ

Given this sampled distribution function, we can com-
pute the radiation stress-energy tensor averaged in the
neighborhood of the point xi (i.e., for instance, a grid cell
of volume ΔV ¼ Δx3), namely,

T̄abðt; xiÞ ¼
X
k∈ΔV

Nk
pa
kp

b
kffiffiffiffiffiffi−gp ΔVpt

k
; ð20Þ

where the summation only involves neutrino packets
located within the volume ΔV. Notice that the MC pressure
tensor just reduces to

PMC
ij ¼ P̄ij ¼

X
k∈ΔV

Nk

pk
i p

k
jffiffiffiffiffiffi−gp ΔVpt

k
: ð21Þ

In an MC transport scheme, the Boltzmann equation for
fðνÞ can be translated into prescriptions for the creation,
annihilation, scattering, and propagation of the neutrino
packets sampling fðνÞ. These prescriptions are explained in
more detail in the following subsections.

1. Free propagation

In the absence of collisional terms, a direct substitution
of the discrete distribution function (19) into the Boltzmann
equation (3) implies that neutrino packets follow geodesic
equations. Specifically,

dxμ

dλ
¼ pμ;

dpi

dλ
¼ Γμ

iνpμpν; ð22Þ

with the normalization condition

papa ¼ −m2
ν; ð23Þ

where λ is an affine parameter and mν is the neutrino mass.
By using the 3þ 1 decomposition, we rewrite these
equations in the grid frame in a form suitable for time
evolution,

dxi

dt
¼ γij

pj

pt − βi; ð24Þ

dpi

dt
¼ −αð∂iαÞpt þ ð∂iβjÞpj −

1

2pt ð∂iγjkÞpjpk; ð25Þ

pt ¼ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν þ γijpipj

q
: ð26Þ

5It is important to highlight that using lower indices in pi and
upper indices in xi is essential to maintain the relativistic
invariance of this equation.
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Since the neutrino mass is negligible compared to the
energy scale of the system, it is common to assumemν ¼ 0,
which implies that the neutrino 4-momentum pa is null.

2. Emission

Copious amounts of neutrinos are produced in hot and
dense matter. These neutrinos are emitted isotropically in
the fluid frame, a process that involves the creation of new
neutrino packets in the MC formalism.
For a given neutrino species, if η denotes the total

emissivity (i.e., the energy of neutrinos emitted per time
interval Δt and unit volume ΔV), the total energy of the
emitted neutrinos is given by

Eems ¼
ffiffiffiffiffiffi
−g

p
ΔVΔtη; ð27Þ

where the emissivity is assumed to remain constant
throughout a time step. Following [18,21,22], the number
of neutrino packets emitted in the fluid frame within a given
energy bin ½Eb−1; Eb� for a specific value of ηb can be
approximated as

NðbÞ
p ≈

Eems

Epacket
≈

ffiffiffiffiffiffi
−g

p
ΔVΔt

ηb
Epacket

: ð28Þ

Since the total emissivity is the sum of the emissivities in
each energy bin (i.e., η ¼ P

b ηb), the total number of

created packets within a cell is just Np ¼ P
b N

ðbÞ
p . All

packets are initialized with the fluid-rest-frame energy
ν ¼ ðEb−1 þ EbÞ=2 and represent a number of neutri-
nos Nk ¼ Epacket=ν.
In practice, the procedure for packet creation can be

described as follows:
(1) Compute the energy in thermal equilibrium Ethermal

by using the blackbody function for the neutrino
density Bν. In many cases, we can use Kirchhoff’s
law η ¼ Bνκa, that is,

Ethermal ¼ BνΔV ¼ ΔV
η

κa
; ð29Þ

where we recall that κa is the absorption opacity.
(2) Compute the energy of the neutrino packet in terms

of a free parameter Ntr, which sets the number of
packets required to describe the neutrinos in thermal
equilibrium with matter, namely,

Epacket ¼ Ethermal=Ntr: ð30Þ
Notice that the choice of Ntr will influence how
computational resources are distributed on our grid,
i.e., to determine whether more or fewer MC packets
are generated.

(3) Estimate the number of packets that should be
created using the estimate (28). For a single energy
bin and using Kirchhoff’s law, this relation can be
simplified to

Np ¼ Eems

Epacket
≈ ΔtκaNtr: ð31Þ

Once the number of packets has been determined, their
setup proceeds as follows. The packet’s location is ran-
domly drawn from a homogeneous distribution within
the designated cell in the spatial coordinates of the
simulation xi. The emission time of neutrinos is randomly
selected from a uniform distribution in time, and the
emitted neutrinos are subsequently evolved until the end
of the current time step. The new neutrino packets are
emitted isotropically in the fluid rest frame, such that the
neutrino 4-momentum in this frame can be initialized as

pa0
k ¼ νkð1; sin θ cosϕ; sin θ sinϕ; cos θÞ: ð32Þ

We draw cos θ from a uniform distribution in ½−1; 1� and ϕ
from a uniform distribution in ½0; 2π�. In order to convert
the neutrino 4-momentum from the fluid rest frame to the
inertial frame, we use the transformations described in
Appendix B.

3. Absorption and elastic scattering

The interaction of neutrinos with matter might lead to the
absorption of the neutrinos, increasing the energy of the
fluid, or to a scattering where the energy is conserved but
the propagation direction changes. In the MC formalism,
the absorption process involves the destruction of neutrino
packets, whereas scattering involves a change in the
4-momentum of the neutrinos.
To evolve a neutrino packet over a time interval Δtp,

we first determine whether the packet is free streaming or if
it undergoes absorption or scattering by the fluid. The
probabilities of absorption and scattering can be computed
from the infinitesimal optical depth along a geodesic given
by dτ ¼ κνdλ ¼ ðκν=ptÞdt, where dλ represents the incre-
ment in the affine parameter (pa ¼ dxa=dλ). The time
intervals before the first absorption/scattering are then
given by a Poisson distribution (see, e.g., [34]),

Δta ¼ −κ−1a
pt

ν
ln ra; Δts ¼ −κ−1s

pt

ν
ln rs; ð33Þ

with rs and ra drawn from a uniform distribution in ðδ; 1�,
where δ is a very small number.
We then identify the smallest among the three time

intervals (Δtp;Δta;Δts). IfΔtp is the smallest, the packet is
propagated by Δtp following the geodesic equations with-
out interacting with the fluid. If Δta is the smallest, the
packet is propagated by Δta and subsequently absorbed,
leading to its removal from the simulation. Last, ifΔts is the
smallest, the packet is propagated by Δts and then scattered
by the fluid. Following scattering events, we begin a new
time step with Δtp → Δtp − Δts.
Scattering is performed in the fluid rest frame. As we

only consider isotropic elastic scattering, we simply redraw
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the 4-momentum pa0
k (at constant fluid-rest-frame energy

νk) from the same isotropic distribution as during the packet
creation [i.e., see Eq. (32)].

III. GUIDED MOMENTS FORMALISM

Our goal is to combine the M1 andMC formalisms into a
single one, capitalizing on the strengths of each while
mitigating their respective weaknesses. On the one hand,
the MC formalism is well known for its remarkable
simplicity, since the neutrino interactions can be modeled
either by solving ordinary differential equations or relying
on simple stochastic processes. Moreover, the error does
not scale with the dimensionality of the problem, allowing
to achieve in high-dimensional problems (i.e., like the
Boltzmann equation) a fairly well resolved solution with a
reasonable amount of resources. However, the MC formal-
ism also has two main drawbacks:
(1) An inherent large statistical error that decays slowly

with the total number of packets, OðN−1=2
T Þ.

(2) A high computational cost for evolving optically
thick regions, where many packets are constantly
created and reabsorbed.

On the other hand, the M1 formalism (with the grey
approximation) stands out for its distinct advantage in
evolving equations similar to those found in hydro-
dynamics, which can be solved accurately with high-order
finite-difference/-volume numerical methods. However,
this approach comes with two significant challenges:
(1) The closure for the second moment is known exactly

only in two scenarios: when neutrinos are in thermal
equilibrium with the fluid in optically thick regimes,
or when there is a single radiation source in the
optically thin limit. Beyond these limits, the closure
is merely approximated.

(2) Within the grey approximation, emissivities and
opacities are averaged over neutrino energies using
the Fermi-Dirac distribution function, that is, assum-
ing neutrinos are in local thermal equilibrium with
the fluid. This estimate is accurate only in optically
thick regimes, but it deviates significantly from the
true solution in other regimes.

One could combine the strengths of each formalism and
avoid their weaknesses by solving them simultaneously.
The MC formalism provides the evolution of the neutrino
distribution function, which could be employed to compute
the closure relation for the second moment as well as
the emissivities/opacities in the M1 formalism. The M1
formalism provides an accurate solution that can be used
to reduce the statistical error in the MC solution without
significantly increasing the cost of the simulation. In
addition, it might also solve the other main issue in MC
simulations: the high cost of evolving optically thick
regions. We can simply rely on the M1 formalism in
optically thick regions, where it is very accurate, and

evolve more MC packets only below a certain optical
depth. Finally, and most importantly, as the MC evolution
asymptotes to the exact solution of the Boltzmann equation,
and since the M1 evolution can take information6 from MC
solutions, the algorithm for M1 converges to a true solution
of the Boltzmann equation for an infinite spatial grid
resolution and infinite number of neutrino packets.
Actually, the combination of M1 and MC formalisms

was already attempted in [18], where all of these issues
were discussed in detail. However, it was also stated that it
was not clear if the coupled MC-M1 system was numeri-
cally stable, and whether any additional work might be
required to guarantee that the coupled MC-M1 equations
are well behaved for realistic astrophysical simulations. We
believe that the MC-M1 problems that were observed in
that work were due to an imbalance in the information flow.
The M1 equations received information from the MC
solution (i.e., by using the discrete distribution function)
to compute the closure relation and the energy-averaged
emissivities/opacities within the grey approximation.
However, there was no feedback from the M1 solutions
into the MC equations, not even in the optically thick
regions where the former solutions should be fairly
accurate. Therefore, it seems natural to think that the
missing crucial step consists of passing this information
from the M1 solutions to the MC distribution function.
Inspired by the moment-guided MC approach ([66,67]),

an advanced numerical method from applied mathematics
to combine the kinetic and Euler equations, we have
designed a way to project the MC distribution function
such that its lowest moments match exactly to the ones
evolved by the M1 equations. Our GM formalism shares
some features with the original method, although the
application to the relativistic neutrino transport problem
also presents many differences. The remainder of this
section is devoted to describing the basics of our method
and explaining how it can be applied specifically for this
particular problem of neutrino transport.

A. Basics of the method

Our goal is to solve the Boltzmann equation with an MC
formalism and the truncated moments formalism simulta-
neously by using any type of finite-difference or finite-
volume scheme. We assume that an exact second moment
Pij can be written as the pressure tensor calculated with the
M1 closure relation PM1

ij plus a correction term that can
only be evaluated by using the distribution function of the
neutrinos. By including this correction, both the M1 and
MC formalisms should provide the same results in terms of
macroscopic quantities (i.e., the lowest moments), except
for numerical errors. It is natural to assume that the set of

6In this context, we mean all of the missing information about
higher moments and the neutrino energy spectra, which would
otherwise be approximated using analytical prescriptions.
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moments J a obtained from the truncated moments for-
malism represents in general a better statistical estimate
than the moments J̄ a calculated from the MCmethod [they
will be defined explicitly in Eqs. (37) and (38) below],
since the resolution of the truncated moment equations
does not involve any stochastic process.
Let us assume that at time tn the lowest moments

constructed with the sampled MC distribution function
fnðνÞ are consistent with those evolved by the M1 formalism

(i.e., J̄ n
a ¼ J n

a). Thus, we can summarize the method to
evolve the solution from tn to tnþ1 in the following way:
(1) Solve the Boltzmann equation with an MC scheme

to obtain an approximated solution f�ðνÞ at tnþ1,
which is used for calculating the first set of mo-
ments J̄ �

a.
(2) Solve the M1 equations with a finite-volume/

-difference scheme, using the distribution function
fnðνÞ to calculate the correction term appearing in the
closure for the exact second moment. The evolved
M1 fields allow to reconstruct the second set of
moments J nþ1

a at tnþ1.
(3) Match the lowest MC moments to the lowest M1

ones through a transformation T of the sample
values, fnþ1

ðνÞ ¼ Tðf�ðνÞÞ, such that J̄ nþ1
a ¼ J nþ1

a .
(4) Restart the computation at the next time step.

The piece that was missing in previous works was Step 3.
We will focus on that transformation after giving some
details on the application of this abstract scheme to the
specifics of the neutrino transport problem.

B. Guided moments for neutrino transport

The first step of the GM formalism consists of just
performing a standard evolution using the MC method,
which can also be applied directly to our problem. At the
second step, the M1 equations are evolved by using the
exact Pij, which necessarily must include corrections from
the sampled distribution function. There is not a unique
way to incorporate these corrections, leading to several
possible choices. The exact closure that is more similar to
the one presented in the original work [66,67] would be

Pij ¼ Pthick
ij þ

Z
dp3

h3
ffiffiffiffiffiffi−gp

pt pipjðfν − feqν Þ; ð34Þ

where feqν is the Fermi-Dirac distribution function for
neutrinos in thermodynamic equilibrium with the fluid.
Note that to obtain this exact closure we have used

Pthick
ij ¼

Z
dp3

h3
ffiffiffiffiffiffi−gp

pt pipjf
eq
ν ; ð35Þ

although for the evolution one would use the expression
given by Eq. (17). Therefore, one would solve Pthick

ij using

either a finite difference or finite volume scheme and the
deviations from the equilibrium state with the sampled
distribution function. Another exact closure might be
obtained by using information only from the MC formal-
ism, that is, Pij ¼ PMC

ij . However, this choice would not
mitigate the issues related to the MC scheme.
Although in realistic applications one of the previous

options might be more suitable, for simplicity we chose a
final pressure tensor PGM

ij given by the following straight-
forward combination7:

PGM
ij ¼ hðξÞPMC

ij þ ½1 − hðξÞ�PM1
ij ; ð36Þ

where hðξÞ is a smooth function of the normalized flux that
vanishes in the optically thick limit [i.e., hðξ → 0Þ ¼ 0] and
goes to unity in optically thin media [i.e., hðξ → 1Þ ¼ 1].
This splitting allows us to not only accurately recover the
optically thick regime with the M1 formalism, but also
introduce corrections by using the MC distribution function
as the neutrinos move away from that regime.
The third step of our method involves the matching of

moments. It is useful to define them as a four-dimensional
covector J a (i.e., equivalent to the first moment; see,
[44,45]), constructed by projecting the stress-energy tensor
with the normal to the hypersurfaces, that is,

JM1
a ¼ J a ≡ −Tabnb ¼ Ena þ Fa: ð37Þ

Clearly, this is a convenient way to deal with the zeroth and
(projected) first moment ðE;FiÞ within a four-dimensional
moment. We denote this quantity as JM1

a when it is
calculated using the evolved moments from the M1
formalism.
We want to match these moments with the equivalent

quantities J̄ a computed from the MC discrete distribution,
namely,

JMC
a ¼ J̄ a ≡ −T̄abnb ¼

X
k∈ΔV

Nk
pk
affiffiffi

γ
p ΔV

: ð38Þ

Using the expression for null neutrino momentum
pk
a ¼ ϵkðna þ lkaÞ, with nalka ¼ 0, the MC moments can

be written as

J̄ a ¼
X
k∈ΔV

Nkϵkffiffiffi
γ

p ΔV
ðna þ lkaÞ; ð39Þ

where ϵk ¼ −pk
ana is just the neutrino energy measured in

the inertial frame. If we project J̄ a along and perpendicular
to the normal na, we find that

7Following [18], we reduce the statistical error in the MC
pressure tensor by modifying it as PMC

ij → ðPMC
ij =ĒÞE.
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Ē ¼
X
k∈ΔV

Nkϵkffiffiffi
γ

p ΔV
; F̄a ¼

X
k∈ΔV

Nkϵklkaffiffiffi
γ

p ΔV
; ð40Þ

such that the relation J̄ a ¼ Ēna þ F̄a is recovered, equiv-
alent to that of the M1 moments.
Weare interested in transforming theneutrino4-momentum

pa
k into another 4-momentum p̃a

k ¼ Λa
bp

b
k such that

JM1
a ¼

X
k∈ΔV

Nk
p̃k
affiffiffi

γ
p ΔV

: ð41Þ

We canmodifypa
k to p̃

a
k without changing its norm by using a

Lorentz boost transformation that converts JMC
a into JM1

a .
Although this would correspond directly to the original
moment-guided approach, we find in our tests that a better
option is to choose as a target a combinationof theM1andMC
moments, namely,

J GM
a ¼ hðξÞJMC

a þ ½1 − hðξÞ�JM1
a : ð42Þ

The motivation for this choice is to exactly recover the M1
moments in the optically thick limit, while the MC moment
remains unchanged in the optically thin limit, providing a
better physicalmodel in this regime.An explicit expression for
this Lorentz transformation, which sends JMC

a → J GM
a , is

given in Sec. III C.
At this point, it is interesting to discuss the different

limits of the GM formalism, which strongly depends on the
profile of the function hðξÞ. A suitable choice could be
the logistic function (see Fig. 1), a smooth approximation to
the step function with two parameters to set the location of
the transition ξ0 and its steepness k, that is,

hðξÞ ¼ 1

1þ e−2kðξ−ξ0Þ
: ð43Þ

When ξ → 0, the pressure tensor is dominated by that in
the optically thick limit (i.e., PGM

ij → PM1
ij → Pthick

ij ), while
the projection (explicitly defined in the next subsection)
brings the moments of the MC to match exactly the ones
of the M1 (i.e., JMC

a → J GM
a and J GM

a → JM1
a ). In the

opposite limit ξ → 1, the pressure tensor is dominated by
the MC one (i.e., PGM

ij → PMC
ij ) since in optically thin

regimes the M1 solution is only valid for isolated distant
sources. In this limit, only the MC solution converges to the
exact solution. This is consistent with the projection on
the moments, reducing to just the identity in this limit
(i.e., JMC

a → J GM
a and J GM

a → JMC
a ).

C. Matching the moments: Lorentz boost link

We can modify pa
k to p̃a

k without changing its norm by
using a Lorentz boost transformation that sends J̄ a ¼ JMC

a

into J a ¼ J GM
a . Since Lorentz transformations (defined as

Λa
bg

bcΛd
c ¼ gad) preserve vector norms, and JMC

a is in
general timelike and future directed, for the desired trans-
formation to exist, J GM

a has to be timelike and future
directed as well. The explanation about why these vectors
satisfy such properties can be found at the end of this
subsection.
The Lorentz transformations connecting a given initial

vector to a final one are referred to as Lorentz boost links.
Several transformations addressing this problem can be
found in the literature (see, for example, [71,72]). We chose
the simplest option that fits our scheme, that is,

Λa
b ¼ δab − δΛa

b;

where

δΛa
b ¼

1

−1þ J̄ dJ d

J J̄

�
J̄ a

J̄
þ J a

J

��
J̄ b

J̄
þ J b

J

�
þ 2J aJ̄ b

J J̄
;

where J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J dJ d

p
and J̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J̄ dJ̄ d

p
are the norms

of the respective moments.
We notice that this transformation is always well defined

since, as we mentioned before, J̄ d and J d are timelike and

future directed. Therefore, −1 ≤ J̄ dJ d

J J̄
< 0, indicating that

the denominators in the definition of δΛa
b never go to zero.

This Lorentz boost link connects the two 4-vectors as
follows:

J̄ a

J̄
Λb
a ¼

J b

J
: ð44Þ

We notice that substituting Eq. (38) into this last expression
gives

FIG. 1. Comparison between hðξÞ, χðξÞ (Minerbo closure), and
dthin. The logistic function has the following parameter set in our
tests: a transition at ξ0 ¼ 1=3 with a steepness k ¼ 12, such that
the optically thick regime is fully recovered for ξ ≤ 0.1, whereas
for ξ ≥ 0.5 the MC pressure tensor fully dominates the solution.
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J b ¼
X
k∈ΔV

Nkffiffiffi
γ

p ΔV

�
J
J̄

pk
aΛb

a

�
; ð45Þ

which leads to the desired result

J b ¼
X
k∈ΔV

Nk
p̃k
bffiffiffi

γ
p ΔV

with p̃k
b ≡ J

J̄
pk

aΛb
a: ð46Þ

The neutrino 4-momentum p̃k
b remains timelike (or

null when mν ¼ 0) due to the fact that the Lorentz
transformation Λa

b preserves the norm of pk
a. In simpler

terms, we have applied a boost/rotation to the neutrino
4-momentum of all of the packets within a given cell,
ensuring that the MC moments (Ē; F̄i) precisely match the
corresponding GM moments in that specific cell.
Returning to the discussion of the norms of JMC

a and
J GM

a , let us assume a tiny nonzero neutrino mass mν ¼ δ,
although it is negligible compared with the other scales in
the problem. As indicated by Eq. (38), the direct conse-
quence is that the 4-moment JMC

a constitutes then a
positive linear combination of future-directed timelike
vectors. Consequently, JMC

a must also be timelike and
future directed. To ensure the timelike and future-directed
nature of JM1

a , we impose a consistency condition FiFi ≤
ð1 − δÞE2 (see [73]). Finally, considering that J GM

a [see
Eq. (42)] is a positive linear combination of JM1

a and JMC
a ,

we can conclude that it is also timelike and future directed.

IV. NUMERICAL TESTS

In this section we perform several stringent tests to
validate our method and assess its accuracy. The numerical
scheme employed for solving the M1 formalism was
presented in detail in [58]. In summary, the evolution
equations are evolved in time by using an IMEX time
integrator, fourth-order accurate for the explicit part and
second order for the stiff terms. The spatial discretization is
based on a high-resolution shock capturing (HRSC)
scheme with finite-volume reconstruction, designed to
be asymptotically preserving in the diffusion equation
limit [57]. The numerical scheme employed to solve the
MC formalism has been elaborated upon throughout the
manuscript, and it is predominantly inspired by the ones
presented in [18,21,22].
In the following we present the results of four distinct

numerical solutions: M1 represents the uncoupled (i.e.,
standalone) truncated moment approach, MC denotes the
uncoupled MC method, GM1 represents M1 solutions
using the GM formalism, and GMC designates MC
solutions using the GM formalism. These four relevant
solutions are subjected to thorough comparative analysis in
the following numerical tests.

A. Diffusion in a moving medium test

Diffusion in a moving medium is a challenging test
(considered also in [57–60]) that encapsulates most of the
essential elements of the M1 implementation. The test
consists of a pulse of radiation energy density, character-
ized by a Gaussian profile, propagating within a moving
medium that is dominated by scattering dynamics (i.e., a
high value of the scattering opacity κs). The complete
dynamics can be accurately captured only with the correct
treatment of stiff source terms.
The initial conditions at t ¼ 0 are specified as follows:

EðxÞ ¼ e−9x
2

, vxðxÞ ¼ 0.5, κsðxÞ ¼ 103, and κaðxÞ ¼
ηðxÞ ¼ 0. The radiation fluxes Fi are initialized under
the assumption that the radiation is fully trapped (i.e.,
Ha ¼ 0). Using the relations between frames, this con-
dition translates into

J ¼ 3E
4W2 − 1

; Fi ¼
4

3
JW2vi: ð47Þ

In order to check the convergence of the numerical
solutions, we consider three different spatial resolutions,
corresponding to Δx ¼ ð0.01; 0.02; 0.04Þ. For the evolu-
tion of the distribution function, we consider different fixed
total numbers of packets NT ¼ ð0.5; 1; 2; 4Þ × 104.
Figure 2 illustrates the radiation energy density profile at

time t ¼ 4, reconstructed from the MC solution, for various
total numbers of packets NT ¼ ð1; 2; 4Þ × 104. The semi-
analytic solution is also plotted for comparison purposes. A
large number of packets has been employed to demonstrate
that, as expected, with “infinite” resolution (i.e., NT → ∞),
the MC formalism converges to the true solution. However,
the number of packets required for an accurate MC solution

FIG. 2. Diffusion in a moving medium test. The profile of the
energy density, reconstructed from the MC numerical solution,
is displayed at time t ¼ 4 for different total numbers of packets
NT by keeping the spatial resolution Δx ¼ 0.02 fixed. As NT
increases, the numerical solution tends to the semianalytic
(reference) one.
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in high-scattering regions is unfeasible in realistic scenarios
of neutron star mergers.
This limitation is addressed by the GM scheme. In Fig. 3,

the numerical solutions of GM1 and GMC are plotted for
different spatial resolutions Δx ¼ ð0.01, 0.02, 0.04), keep-
ing NT ¼ 2 × 104 fixed. As the entire domain of this test is
optically thick, we expect an almost exact matching of the
lowest moments from M1 to MC with our choice of the
function hðξÞ [see Eq. (43) and Fig. 1]. Consequently, GM1
and GMC are anticipated to precisely follow the M1
behavior. (For a comparison between the M1 solution
and the semianalytic solution, we refer to [58].) Indeed,
as shown in Fig. 3, both GM1 and GMC perfectly match
the M1 solution, approaching the semianalytic one as
the resolution increases. It is worth noting that, in such
optically thick regimes, the MC method tends to be
computationally slow and usually provides a poor solution.
Therefore, by choosing hðξÞ as specified, we can ensure
that our GM method remains as accurate and efficient as
M1 in this regime.
These results are confirmed in Fig. 4, where the radiation

energy density of the two GM numerical solutions is
displayed by varying the total number of packets NT ¼
ð1; 2; 4Þ × 104 but keeping the spatial resolutionΔx ¼ 0.02
fixed. As anticipated, both GM solutions remain
unchanged, overlapping almost exactly with the semian-
alytical one. Consequently, within the GM scheme, increas-
ing the number of packets is not necessary to enhance the
numerical solution in optically thick regions.
A more quantitative analysis of the observed results can

be obtained by performing suitable convergence tests of the
error, which can be defined as the (norm of the) difference
between the numerical and semianalytical solutions. Two
types of convergence can be examined: varying the total
numbers of packets while keeping the grid resolution fixed,
or varying the grid resolution while keeping the total

number of packets fixed. The latter is represented in
Fig. 5 for a fixed number of total packets NT ¼ 2 × 104.
In this case, we find the expected second order of con-
vergence of the M1 scheme, as reported in [58]. As
mentioned earlier, both the GM1 and GMC solutions
closely follow the M1 solution. There exists a very small
difference in the error between GM1 and GMC, originated
by a few cells that contain no packets and where the
matching of the moments could not be performed. The
convergence for a fixed grid resolution Δx ¼ 0.02 is
displayed in Fig. 6. Here, we find the anticipated MC
convergence of N−1=2

T . However, the errors for both GM1
and GMC are much smaller and exhibit no improvement
when increasing the total number of packets. This lack of
improvement is attributed to the accuracy dominance of M1
over MC in the numerical solution for this test.

FIG. 3. Diffusion in a moving medium test. Comparison
between the numerical solutions of GM1 and GMC and the
semianalytic solution for several grid resolutions Δx with a
number of packets NT ¼ 2 × 104 fixed. As Δx decreases, the
numerical solution tends to the semianalytic (reference) one.

FIG. 4. Diffusion in a moving medium test. Comparison
between the numerical solutions of GM1 and GMC and the
semianalytic solution for various values of the total number of
packets NT with a grid resolution Δx ¼ 0.02 fixed. The observed
perfect matching shows that the GM solutions do not depend on
the total number of packets in optically thick regimes.

FIG. 5. Diffusion in a moving medium test. Convergence of the
GM1 and GMC solutions to the reference solution for a fixed
number of total packets NT ¼ 2 × 104 by varying the grid
resolution. We find an approximate second-order convergence
(dashed black line) for both the GM1 and GMC solutions.
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B. Double beam test

This benchmark highlights the spectacular failure of the
M1 formalism in optically thin regions when multiple
sources are present (see, e.g., [47,49,56]). In this two-
dimensional test, two radiation beams are injected into the
domain. If we consider the radiation to be neutrinos, one
would expect the beams to follow straight paths, crossing
without interaction. However, the M1 scheme, treating
radiation as a fluid, encounters challenges in this scenario
since the closure is local and can only capture the physical
behavior for a single source. On the other hand, the MC
approach has no difficulties to find the correct physical
solution.
In particular, we set the following initial conditions. We

inject two beams of neutrinos from the left boundaries of
the domain ðx; yÞ∈ ½−2; 2� × ½−4.5; 4.5� with an angle of
60° between them. In this test, we consider only a relatively
high-resolution case, with a fixed spatial grid resolution
Δx ¼ 0.01 and total number of packets NT ¼ 5 × 106. The
simulation is performed with the four schemes (M1, MC,
GMC, GM1) until the final time t ¼ 0.5, capturing the
moment at which the beams have already intersected and
continue along their trajectory.
The solutions of the energy density at this final time are

presented in Fig. 7. As already mentioned, when two
(or more) beams are present, the closure for the second
moment in the M1 formalism lacks sufficient informa-
tion, causing the two beams to merge into a single one
propagating along the average of the original directions.
Notice that, although the distribution function contains all
of the information about possible directions of propagation,
the M1 formalism retains only a single averaged direction:
momenta in opposite directions cancel each other out,
resulting in a loss of information regarding the original

momentum distribution [56]. In principle, the lost infor-
mation could potentially be recovered by employing higher
moments. In clear contrast, in the MC scheme the two
beams intersect seamlessly without losing energy density or
modifying their trajectories. A similar outcome, though not
as pristine, is observed for the GMC and GM1 numerical
solutions. This outcome highlights a significant advantage
of our GM formalism, which demonstrates an accurate
handling of the solution in optically thin regions.

C. Radiating and absorbing sphere test

A more challenging problem, which includes both the
optically thick and thin regimes, is given by a homo-
geneous radiating and absorbing sphere. This test, whose
analytical solution is known, has been widely discussed in
astrophysical literature (see, e.g., [56–60,74–79]) since it
can be interpreted as a highly simplified model for an
isolated, radiating neutron star.
The main configuration involves a static [i.e.,

viðxÞ ¼ 0], spherically symmetric, homogeneous sphere
of radius R with a constant energy density. In this idealized

FIG. 6. Diffusion in a moving medium test. Convergence of
the GM1 and GMC solutions to the reference solution for a fixed
grid resolutionΔx ¼ 0.02 by varying the number of total packets.
We find the expected N−1=2

T convergence for the MC solution
(dashed black line), but no dependence on NT for either the GM1
or GMC solution.

FIG. 7. Double beam test. Numerical solutions for the M1, MC,
GMC, and GM1 schemes are presented at the final time t ¼ 0.5,
using Δx ¼ 0.01 and NT ¼ 5 × 106 fixed. The behavior of M1
reveals a breakdown in the optically thin limit when multiple
sources are present. In contrast, the MC, GMC, and GM1
solutions preserve the initial directions of the beams, enabling
them to cross without interacting.
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case, the only neutrino-matter interaction process allowed
is the isotropic thermal absorption and emission,

κaðx; y; zÞ ¼ ηðx; y; zÞ ¼
�
10 for r ≤ R;

0 for r > R;

κsðx; y; zÞ ¼ 0; ð48Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and we have chosen R ¼ 0.5.

Our three-dimensional computational Cartesian domain
is a cube of dimensions ½−2; 2�3, discretized with different
spatial grid resolution resolutions Δx ¼ ð0.03; 0.06; 0.12Þ.
In this specific scenario, characterized by a nonzero
emissivity, the simulation cost of the MC scheme is
governed by the free parameter Ntr, related to the neutrino
packets generated in a grid cell [see Eq. (30)]. In this test,
we explore various values of Ntr ¼ ð20; 40; 80Þ.
Figure 8 displays the radiation energy density in the

equatorial plane of the four considered schemes (MC, M1,
GMC, GM1) at time t ¼ 5, when the solution has reached a
steady state. These results, obtained using Δx ¼ 0.03 and
Ntr ¼ 80, are consistent with our theoretical expectations.
All methods produce qualitatively similar solutions, with
MC and GMC showing oscillations throughout the domain
due to statistical noise (i.e., which would diminish with a

greater number of packets), while M1 and GM1 exhibit
much smoother profiles. In particular, GMC effectively
accurately resolves the interior of the sphere, where we
observe a full matching from the M1 solution onto the MC
one, as expected in optically thick regions. In the exterior of
the sphere, some oscillations appear due to the stochastic
nature of the MC method, which is dominant in the
optically thin region. The GM1 solution matches M1 in
the interior of the sphere, and it smoother than GMC in the
exterior. This positive outcome confirms that the GM
approach retains the advantages of evolving a truncated
moment scheme while incorporating new features that
allow to also accurately handle the optically thin limit.
In order to quantitatively assess the accuracy of our

methods, the radial profile of the energy density is
compared with the analytical (reference) solution. The
MC solution is presented in Fig. 9 for various numbers
of packets corresponding to Ntr ¼ ð20; 40; 80Þ, while
keeping the spatial resolution Δx ¼ 0.03 fixed. The inher-
ent statistical noise of the MC is evident for all points in the
domain, yet the solution progressively converges to the
analytic one as the number of packets is increased. This test
highlights one of the limitations of the MC scheme, namely,
its lower convergence rate. On the other hand, the solution
of the M1 formalism displays a second-order convergence

FIG. 8. Radiating and absorbing sphere test. The energy density, computed with the MC, M1, GMC, and GM1 schemes using
Δx ¼ 0.03 and Ntr ¼ 80, is displayed at the equatorial plane at time t ¼ 5, when the solution has reached a steady state.
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when appropriate numerical schemes are employed (we
refer to [58] for details).
We now turn to the results of our GM formalism. In

Fig. 10, we compare the numerical solutions of GM1 and
GMC with the analytic solution for different spatial
resolutions Δx ¼ ð0.03; 0.06; 0.12Þ, while keeping the
number of total packets approximately constant, setting
Ntr ¼ 40. Given the optically thick regime found in the
star’s interior, the GMC solution exhibits no statistical
noise in this region, unlike the outer region where oscil-
lations are present. Interestingly, these oscillations are
mostly suppressed in the GM1 solution. The average nature
of the truncated moments formalism and the HRSC
schemes employed for the evolution of the moments are

probably the cause of this suppression. Finally, notice that
the GM1 solution converges to the analytical one as the grid
spacing decreases. However, the GMC solution only
converges clearly in the interior of the sphere. Outside,
there remains a statistical noise that does not depend on the
grid resolution. In Fig. 11, we compare the numerical
solutions of GM1 and GMC with the analytic solution
for different choices of the number of packets Ntr ¼
ð20; 40; 80Þ keeping the spatial resolutionΔx ¼ 0.03 fixed.
As expected, the statistical noise outside the sphere
decreases as the number of packets increases.
Convergence tests are performed by varying the number

of total packets while keeping the spatial resolution fixed
and vice versa. The results of the former analysis are
presented in Fig. 12, where the error in the numerical

FIG. 9. Radiating and absorbing sphere test. Comparison
between the MC numerical and exact solutions for various values
of the number of packets Ntr with a fixed spatial resolution
Δx ¼ 0.03. The statistical noise of the numerical solution
decreases as the number of packets increases.

FIG. 10. Radiating and absorbing sphere test. Comparison
between the numerical solutions of GM1 and GMC and the
analytic solution for various grid resolutions with a fixed number
of packets Ntr ¼ 40. The GM1 clearly converges to the exact
solution. However, in the case of GMC, while there is clearly
convergence in the interior of the star, the presence of statistical
noise remains fairly consistent over all grid resolutions.

FIG. 11. Radiating and absorbing sphere test. Comparison
between the numerical solutions of GM1 and GMC and the
analytic one for various values of the number of packets while
keeping a fixed grid resolution Δx ¼ 0.03. As in Fig. 9, the
statistical noise decreases for both numerical solutions as the
number of packets increases.

FIG. 12. Radiating and absorbing sphere test. Convergence of
the MC, GM1, and GMC solutions for a fixed grid resolution
Δx ¼ 0.03 by varying the number of packets. We find the
expected N−1=2

T convergence (dashed black line) of the MC
method except for the GM1 solution, which already presents a
very small error.
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solution is displayed as a function of the total number of
packets for a fixed spatial resolution Δx ¼ 0.03. Notably,
the GM1 solution exhibits minimal improvement with
increasing number of packets, given the dominance of
the M1 solution in the interior, which already has negligible

error, and the smoothness of the solution in the exterior. On
the other hand, both GMC and MC demonstrate an
approximate 1=2 convergence, attributed to the suppression
of statistical noise in the exterior of the star as the total
number of packets increases. The convergence of the
solutions as a function of the spatial grid resolution while
keeping a fixed number of packets Ntr ¼ 40 is displayed
in Fig. 13. Here, the GM1 solution shows a first-order
convergence, while the MC and GMC solutions display
only marginal improvement. This moderate improvement is
mainly due to the projection of the M1 solution inside the
star, while the solution in the exterior is still dominated by
statistical noise which only decreases by increasing the
number of packets. This result confirms that the GM
formalism only converges to the exact solution for an
infinite grid resolution and infinite number of packets.

D. Radiating and absorbing torus test

In our last three-dimensional problem we simulate a
scenario reminiscent of the one discussed in Sec. IV B,
but without so many symmetries. The astrophysical moti-
vation behind this configuration is to reproduce a simple
model of the remnant resulting from a neutron star merger.
Instead of an absorbing and radiating sphere, the geometry of

FIG. 13. Radiating and absorbing sphere test. Convergence of
the MC, GM1, and GMC solutions for a fixed number of packets
Ntr ¼ 40 while varying the grid resolutions. We find an approxi-
mate first-order convergence (dashed black line) for GM1 but
only a moderate improvement for the MC or GMC solutions,
which only converge as the number of packets increases.

FIG. 14. Radiating and absorbing torus test. The energy density, computed with the MC, M1, GMC, and GM1 schemes using
Δx ¼ 0.03 and Ntr ¼ 40, is displayed at the meridional plane at time t ¼ 5, when the solution has reached a steady state.
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the system is better approximated by a torus, which can be
described by the following parametric equations in Cartesian
coordinates:

xðu; vÞ ¼ ðRþ r cos vÞ cosu;
yðu; vÞ ¼ ðRþ r cos vÞ sinu;
zðu; vÞ ¼ r sin v:

The coordinate position on the torus is determined by the
parameters ðu; vÞ∈ ½0; 2πÞ, while the major and minor
radii ðR; rÞ define the type of torus. For our specific
configuration, we chose a self-intersecting spindle torus
(i.e., r > R) with r ¼ 0.5 and R ¼ 0.45. Inside the torus,
we again set a high emissivity and absorption opacity
η ¼ κa ¼ 10, such that neutrinos in this region are in
equilibrium with the fluid, representing the optically thick
regime. Outside the torus, both the emissivity and
absorption opacity are set to zero η ¼ κa ¼ 0, modeling
an optically thin medium. As the simulation begins,
neutrinos emitted from the interior propagate to the
exterior. Due to the geometry of the self-intersecting
spindle torus, beams will collide along the symmetry
axis (i.e., along the z ¼ 0 axis), resembling the collision
of multiple beams of radiation. The simulation is per-
formed in a three-dimensional Cartesian cubic domain
with dimensions ½−3; 3�3, employing a fixed spatial
resolution Δx ¼ 0.03 and number of packets Ntr ¼ 40.
In Fig. 14 we present the final time t ¼ 5, when the

system has reached a steady state, for the four schemes
considered (MC, M1, GMC, GM1). The plot displays a
two-dimensional slice along the meridional direction (i.e.,
the y ¼ 0 plane). Similar to the previous test (Sec. IV C),
the MC solution appears less smooth due to its intrinsic
statistical noise. The crucial distinction between the exact
methods and M1 becomes evident when looking along the
z axis. In M1, a shock forms where beams collide,
representing the previously discussed failure of this
approach in the optically thin limit. On the other hand,
in the cases of MC, GM1, and GMC, the solutions do not
have a large-energy-density region along this axis caused
by the artificial collision of radiation. Crucially, our GM
formalism, particularly the GM1 solution, exhibits a
solution with smoothness comparable to that of M1, but
without the presence of shocks. This result confirms and
validates the accuracy of the GM method in both the
optically thick and thin regimes.

V. CONCLUSIONS

Accurately modeling the intricate physical scenarios
within neutron star mergers, especially during the post-
merger phase, demands sophisticated numerical simula-
tions. Neutrinos, being crucial contributors to the dynamics
and thermodynamics of these events, require a specialized
treatment. Here we have introduced a novel approach, the

GM formalism, to achieve an accurate and efficient full-
neutrino transport treatment in complex environments
like neutron star mergers and core-collapse supernovae.
This formalism efficiently combines the advantages of the
M1 scheme and MC-based methods, providing a robust
solution that addresses the strengths and weaknesses of
each method.
One of the key concepts in the GM formalism is to

compute the closure of the M1 evolution equations (i.e.,
the second moment) by using information from the
MC solution. In the optically thick limit, this closure is
analytical and already provides a very accurate and efficient
solution. In the same regime, however, the MC scheme has
an opposite behavior and faces two challenges: the con-
tinuous emission and absorption of neutrino packets and
the always present statistical noise associated with stochas-
tic processes. To mitigate these issues, in our GM scheme
we use information from the M1 solution to modify the
neutrino distribution function such that the MC lowest
moments match those evolved by theM1 formalism. On the
other hand, the M1 closure in the optically thin limit is not
known for multiple sources, so here our GM formalism
takes advantage of the cost effectiveness of the MC scheme
to compute the exact closure in this regime.
These previous points and the deep discussion included

in this paper allow us to say that the GM formalism not only
accurately captures the optically thick limit through the
exact M1 closure, but also effectively resolves the optically
thin limit, which is a known challenge for the M1 approach
but accurately handled by MC methods. The resulting
scheme outperforms both the M1 and MC approaches,
providing a comprehensive and accurate solution in both
regimes. Although we have focused on the pressure tensor
closure, our method likely also improves the energy
closure. Studying this issue is beyond the scope of this
paper, but it will be thoroughly discussed in future work
involving astrophysical scenarios.
The detailed exposition of the GM formalism, its

formulation, and implementation, along with a thorough
comparison with M1 and MC methods across various test
problems, demonstrates the efficacy of the proposed
approach. The computational cost of evolving the MC
solution in optically thick regions can be substantial in real
simulations. This issue can be mitigated within the GM
scheme by effectively limiting the emissivities and opac-
ities only in the MC scheme for these regions, thereby
reducing the overall computational cost. As there is a
complete matching of the lowest moments of M1 and those
of MC, there should not be any degradation of the accuracy
in the GM solution.
Another potential improvement is related to modifying

the matching function hðξÞ [see Eq. (43) and Fig. 1], which
determines the regime in which we will match the lowest
moments calculated with the M1 solution with those
obtained from the MC scheme. While the presented test
problems show promising behavior, fine-tuning might be
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necessary in more realistic simulations and will probably
require a more careful exploration.

ACKNOWLEDGMENTS

We thankFedericoCarrasco, LorenzoPareschi, andDavid
Radice for suggestions and clarifications on the subjects of
this work. M. R. I. is grateful for the hospitality and stimu-
lating discussions during his visit at Stony Brook’s Physics
and Astronomy Department and at the Institute for
Gravitation and the Cosmos (Penn State University). C. P.
acknowledges the hospitality at the Institute for Pure &
Applied Mathematics through the Long Program
“Mathematical and Computational Challenges in the Era
of Gravitational Wave Astronomy,” where this project was
initiated. M. R. I. thanks the financial support of grant
PRE2020-094166 funded by the Ministerio de Ciencia e
Innovación/Agencia Estatal de Investigación (MCIN/AEI/
PID2019–110301GB-I00) and by “FSE invierte en tu
futuro.” This work was supported by the grants PID2022-
138963NB-I00 and PID2019–110301GB-I00 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A
way of making Europe.”

APPENDIX A: MATCHING THE NEUTRINO
NUMBER DENSITY

Recent extensions of the M1 formalism (see, e.g.,
[53,57,58]) also evolve the number density of neutrinos.
Notice that, without evolving the number density, the M1
formalism with the grey approximation does not accurately
conserve the lepton number [53]. Although this issue might
not be so dramatic in the GM approach, where there is a
better estimate of the neutrino energy spectrum, it might
still be problematic. To this aim, for each neutrino species
one can introduce a neutrino number currentNa following a
conservation equation,

∇aNa ¼ ffiffiffiffiffiffi
−g

p
C ¼ ffiffiffiffiffiffi

−g
p ðη0 − κ0anÞ; ðA1Þ

where n ¼ −Naua is the neutrino density in the fluid frame
and ðκ0a; η0Þ are the neutrino number absorption and
emission coefficients, which also need to be computed
from the fluid state and the information in the equation-of-
state tables.
Assuming that the neutrino number density and the

radiation flux are aligned, this equation can bewritten in the
3þ 1 decomposition as

∂tð
ffiffiffi
γ

p
NÞ þ ∂k

� ffiffiffi
γ

p �
−Wβk þ αWvk þ α

Hk

J

�
N
Γ

�

¼ α
ffiffiffi
γ

p �
η0 − κ0a

N
Γ

�
; ðA2Þ

where N ¼ −naNa ¼ nΓ is the neutrino density in the
inertial frame and

Γ ¼ W −
1

J
Hana ¼ W

�
E − Fava

J

�
: ðA3Þ

Within this new equation, one can dynamically estimate the
average energy of the neutrinos ϵν, since in the fluid frame
the relation J ≈ nhϵνi is approximately satisfied.
In the GM formalism we are matching the lowest

moments, but it might also be desirable to match the
neutrino number density if it is also being evolved in M1.
It is straightforward to show that, in the discrete

packet distribution, the neutrino number density and the
lowest moments, measured in the grid frame, can just be
computed as

N̄ ¼
X
k∈ΔV

Nkffiffiffi
γ

p ΔV
; J̄ a ¼

X
k∈ΔV

Nk
pk
affiffiffi

γ
p ΔV

: ðA4Þ

The first step is to match the neutrino number density
N̄ to N, a task that requires a modification of the
weights Nk. This can be achieved by performing the simple
renormalization

Ñk ≡ N
N̄
Nk → N ¼

X
k∈ΔV

Ñkffiffiffi
γ

p ΔV
; ðA5Þ

which implies that the projection of the stress-energy tensor
now needs to be computed as

J̄ a ¼
X
k∈ΔV

Ñk
pk
affiffiffi

γ
p ΔV

: ðA6Þ

Basically, the interpretation of this new relation for the
moments is that changing the number of neutrinos in a cell
automatically changes the energy and flux densities in
that cell.
The rest of the procedure for matching moments remains

the same, such that the final result

J b ¼
X
k∈ΔV

Ñk
p̃k
bffiffiffi

γ
p ΔV

ðA7Þ

now involves two transformations: changingNk → Ñk (i.e.,
modifying the weights such that the densities of neutrinos
are equal) and pk

b → p̃k
b (i.e., modifying the neutrino

4-momentum such that the lowest moments match).

APPENDIX B: TETRAD

Two special observers play an important role in the
description of our neutrino transport algorithm: inertial
observers, whose timeline is tangent to na, and comoving
observers, whose timeline is tangent to ua.
Our numerical grid is discretized in the spatial coor-

dinates xi. We refer to the coordinates ðt; xiÞ as the inertial
or grid frame, where the line element is
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ds2 ¼ gabdxadxb: ðB1Þ

We also define the coordinates of the fluid rest frame
ðt0; xi0 Þ, which are defined at a point such that

ds2 ¼ ηa0b0dxa
0
dxb

0
; ðB2Þ

where ηa0b0 is the Minkowski metric and ðt0Þa ¼ ua. We
construct these local coordinates from an orthonormal

tetrad eðc
0Þ

a , with

êaðt0Þ ¼ ua; ðB3Þ

gabêðc
0Þ

a êðd
0Þ

b ¼ ηc
0d0 : ðB4Þ

The three other components of the tetrad are obtained by
applying the Gram-Schmidt algorithm to the three vectors
Va
ðiÞ ¼ δai (i ¼ 1; 2; 3). The orthonormal tetrad êaðc0Þ and the

corresponding 1-forms êðc
0Þ

a are precomputed and stored
for each grid cell at each time step, and can be used to
easily perform transformations from the fluid rest frame

coordinates to grid coordinates (and vice versa) by simple
matrix-vector multiplication.
In order to convert the4-momentumfrom the lab frame (S)

to the fluid rest frameor comoving frame (S0),weneed to find
a basis that relates pc and pc0 . This will be necessary when
initializing the packets (set random moments), after scatter-
ing (redrawmomentum), andwhen packets are emitted (new
initialization). In these simulations, the momentum is drawn
from a spherical uniform distribution, i.e.,

pc0 ¼ νð1; sin θ cosϕ; sin θ sinϕ; cos θÞ: ðB5Þ

We draw cosðθÞ from a uniform distribution in ½−1; 1� and ϕ
from a uniform distribution in ½0; 2π�. The 4-momentum of
neutrinos in grid coordinates can then be computed using the
transformation

pt ¼ êtðc0Þp
c0 ; ðB6Þ

pi ¼ giaêaðc0Þp
c0 ¼ δc0d0 ê

ðc0Þ
i pd0 : ðB7Þ
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