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This research studies the intricate interplay between dark and baryonic matter within hybrid neutron stars
enriched by anisotropic bosonic dark matter halos. Our modeling, guided by the equation of state with a
free parameter, reveals diverse mass-radius correlations for these astronomical objects. A pivotal result is
the influence of dark matter characteristics—whether condensed or dispersed—on the observable attributes
of neutron stars based on their masses. Our investigation into anisotropic models, which offer a notably
authentic representation of dark matter anisotropy, reveals a unique low-density core halo profile,
distinguishing it from alternative approaches. Insights gleaned from galactic clusters have further refined
our understanding of the bosonic dark matter paradigm. Observational constraints derived from the
dynamics of galaxy clusters have been fundamental in defining the dark matter particle mass to lie between
0.05 and 0.5 GeV and the scattering length to range from 0.9 to 3 fm. Using terrestrial Bose-Einstein
condensate experiments, we have narrowed down the properties of bosonic dark matter, especially in the
often overlooked 3 to 30 GeV mass range. Our findings fortify the understanding of dark and baryonic
matter synergies in hybrid neutron stars, establishing a robust foundation for future astrophysical pursuits.
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I. INTRODUCTION

Dark matter, one of the most intriguing and mysterious
phenomena in astrophysics, remains a subject of ongoing
investigation (e.g., [1,2]). This invisible form of matter,
which does not emit, absorb, or reflect electromagnetic
radiation, accounts for roughly 27% of the Universe’s total
mass-energy content (e.g., [3]). The presence of dark matter
has been deduced from its gravitational influence on galaxy
movements, the vast cosmic structures, and the cosmic
microwave background radiation (e.g., [4]).
It is widely accepted that dark matter cannot be composed

of fundamental particles within the Standard Model of
particle physics, and it is more likely that dark matter is
made up of particles that have not yet been discovered.
Various hypothetical particle candidates have been proposed
as potential solutions to the dark matter problem, and these
particles can generally be classified into several categories
based on their mass [5–8]. These categories include fuzzy
dark matter or axionlike particles, axions, sterile neutrinos,
and weakly interacting massive particles (WIMPs).
Our focus in this work is to investigate how the structure

of neutron stars can be affected by dark matter particles
within the WIMPs and axion mass ranges. In particular, we
will be focusing on particles in the 10−2–102 GeV range.
There are several papers in the literature that discuss

the relationship between dark matter and neutron stars.

Some recent examples include [9,10], which focus on
general self-annihilating WIMP models; [11–21], which
focus on specific fermionic dark matter models; [22,23],
which consider Bose-Einstein condensate (BEC) dark
matter; and [24] where both fermionic and BEC models
are studied. These papers explore the possible effects of
dark matter on neutron star properties and the potential for
dark matter detection through observations of neutron stars.
Additionally, there are several reviews that provide a more
comprehensive overview of the field, such as Lattimer [25]
and Del Popolo et al. [26].
Anisotropic matter exhibits different properties or behav-

iors depending on the direction (for a review, see [27,28]).
Such behavior can lead to pressure differences in various
directions within neutron stars or other astronomical objects
(e.g., [29–31]). This characteristic influences how matter
interacts with surrounding objects, affecting their formation,
structure, and evolution, shaping our understanding of dark
matter. For instance, dark matter clouds are expected to
exhibit local anisotropy, similar to any collisionless system
of particles. Researchers have extensively studied these
systems, especially in the context of galaxy dynamics
(e.g., [32–34]).
The theory of anisotropic fluids in general relativity is

well established. Past research has demonstrated that
anisotropic fluids could be geodesic in general relativity
[35]. A comprehensive study of spherically symmetric
dissipative anisotropic fluids has been presented, and exact
static spherically symmetric anisotropic solutions of field*zburasstubbs@tecnico.ulisboa.pt
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equations have been obtained and analyzed by Herrera
et al. [36], Bayin [37], and Herrera et al. [38]. Furthermore,
calculations of anisotropic stars in general relativity and
their mass-radius relations have been conducted Mak and
Harko [39]. A detailed collection of recent articles on this
topic is available on Kumar and Bharti [28].
This study introduces a novel astrophysical object: a

hybrid compact star composed of a neutron star within an
anisotropic dark matter halo. We will investigate the unique
characteristics of these models to gain a deeper under-
standing of their formation. By examining the properties of
dark matter, we propose that anisotropic dark matter may
play a vital role in forming these hybrid compact stars. Our
analysis focuses on a static, spherically symmetric con-
figuration featuring a neutron star enveloped by dark
matter. Analogous to the baryonic matter within the neutron
star, the properties and distribution of the dark matter,
positioned at a specific distance from the star’s center, are
described using the Tolman-Oppenheimer-Volkoff (TOV)
equations.
We assume that the dark matter envelope does not interact

with the neutron star’s baryonic matter within the envelope.
We model how dark matter affects neutron star observations
using the theory of compact stars. We focus on two main
assumptions: first, darkmatter with a nonzero radial pressure
term in the TOVequations, PrχðrÞ ¼ PχðrÞ, and second, an
anisotropic energy-momentum tensor leading to a nonzero
tangential pressure, P⊥χðrÞ. We justify these choices and
describe the dark matter distribution by calculating
ΠχðrÞ ¼ P⊥χðrÞ − PrχðrÞ.
In this study, we concentrate on anisotropic dark matter’s

effects on neutron stars within the dark matter halo,
examining the mass-radius relation. Furthermore, we
assume that the dark matter particles are bosons. We
compare the dark matter density profiles and mass-radius
relations to those with isotropic dark matter and a neutron
star in a vacuum.
In this article, we structure our presentation as follows.

We begin with a summary of current research topics on
neutron stars and dark matter in this section. In Sec. II, we
provide an overview of the hybrid model employed in this
study. Subsequently, in Sec. III, we discuss the properties of
the equation of state for neutron stars and anisotropic dark
matter. In Sec. IV, we investigate the properties of dark
matter halos formed around neutron stars. In Sec. V, we
examine constraints on the properties of dark matter
particles. Finally, we summarize our findings and present
our conclusions in Sec. VI.
Here, unless specified otherwise, we utilize natural units,

where the speed of light (c), the Boltzmann constant (kB)
and the reduced Planck constant (ℏ) are set to 1. Through
standard conversion rules, all conventional units can be
expressed in terms of GeV. Themost frequently used units in
this work are 1 centimeter¼5.05×1013GeV−1, 1 gram ¼
5.610 × 1023 GeV, and 1 second ¼ 1.519 × 1024 GeV−1.

II. PROPERTIES OF NEUTRON STARS
AND ANISOTROPIC DARK MATTER

Here we start by briefly summarizing the equations
governing the components of our admixed neutron star.

A. Tolman-Oppenheimer-Volkoff equations

We identify that the action governing our system will
essentially take the form

S ¼ SG þ SM; ð1Þ

for which SG defines the gravitational component, and
hence is given by the usual Einstein-Hilbert action, and SM
encapsulates matter terms associated with a perfect fluid
whose properties are fully determined by its energy density
ρ, its radial pressure Pr, its tangential pressure P⊥, as well
as an equation of state defined such that Fðρ; PrÞ ¼ 0
(e.g., [40]).
From this derivation, by varying with respect to the

metric, we obtain the standard Einstein field equations
without the inclusion of a cosmological constant:

Gμν ¼ Rμν −
1

2
gμνR ¼ 8πTμν: ð2Þ

Here, Newton’s constant G is set equal to unity. The total
stress-energy tensor can be expressed as

Tμ
ν ¼ Diagð−ρ; Pr; P⊥; P⊥Þ: ð3Þ

In the comoving frame, the physical matter content consists
of an anisotropic fluid with energy density ρ, radial pressure
Pr, and tangential pressure P⊥.
We define a general metric tensor as follows:

ds2 ¼ −eνdt2 þ eλdr2 þ r2dΩ2; ð4Þ

where νðrÞ and λðrÞ are the metric potentials, depending
only on the radial coordinate, and dΩ2 ≡ ðdθ2 þ sin2θdϕ2Þ
represents the solid angle element (e.g., [41]). By solving
Einstein’s equations, we find that

eλðrÞ ¼ 1

1 − 2m
r

; ð5Þ

and

ν0ðrÞ ¼ 2mþ 8πr3Pr

r2 − 2mr
: ð6Þ

Moreover, we obtain the hydrostatic equilibrium equation
[42,43], also referred to as the generalized Tolman-
Oppenheimer-Volkoff equation:

dPr

dr
¼ −

ðρþ PrÞðmþ 4πr3PrÞ
rðr − 2mÞ þ 2Π

r
; ð7Þ
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where Π≡ P⊥ − Pr. It is important to note that for an
isotropic substance, we have Π ¼ 0 or P⊥ ¼ Pr. In our
calculations for the baryonic component, we will enforce
this condition, causing the final term to vanish and
providing the hydrostatic equilibrium equation, also known
as the generalized TOV equation.
Within this a natural interpretation of the calculations we

have performed becomes manifest. Recognizing that
hydrostatic forces are described by Fh ¼ − dPr

dr , gravita-

tional forces by Fg ¼ − ðρþPrÞðmþ4πr3PrÞ
rðr−2mÞ , and anisotropic

forces are given by Fa ¼ 2Π
r , then it becomes clear that

Eq. (7) is just the statement that

Fg þ Fh þ Fa ¼ 0: ð8Þ

The total mass, mðrÞ, is computed using the standard
differential equation relating mass and density:

dm
dr

¼ 4πr2ρ: ð9Þ

In accordance with a prevalent approach in the literature, as
seen in the works of Panotopoulos and Lopes [44–46], we
assume that the interaction between dark matter and the
baryonic matter is so weak that it can be reasonably
neglected. Therefore, we consider the fluid to have two
components: a baryonic component (B) representing neu-
tron star matter and a nonbaryonic dark matter (χ) compo-
nent. For instance, we define ρ ¼ ρB þ ρχ , where ρB is the
energy density associated with standard baryonic matter (B)
and ρχ is related to darkmatter (χ). Consequently,we assume
that baryonic matter (B) and dark matter (χ) are coupled
solely through gravity, with their energy-momentum tensors
conserved separately. As a result, the previous system of
Eqs. (7) and (9) is split into two components:

dPri

dr
¼ −

ðρi þ PriÞðmþ 4πr3PrÞ
rðr − 2mÞ þ 2Πi

r
; ð10Þ

where Πi ¼ Pri − P⊥i and Pr ¼ PrB þ Prχ , accompanied
by the additional equation:

dmi

dr
¼ 4πr2ρi: ð11Þ

We see that our model reproduces the TOVequations found
in the literature (e.g., [12,47]), where the effects of anisot-
ropies only appears as an additive term, as one would intuit
from Eq. (8).
In the aforementioned equations, the subscript index

i ¼ B and i ¼ χ denote baryonic matter (B) and dark matter
(χ), respectively. Therefore, ρi, Pri, and P⊥i correspond to
the density and pressure terms of the ith component, where
r represents a purely radial component, and ⊥ a tangential
one. However, in our study, we assume that the baryonic

matter is isotropic, meaning that P⊥BðrÞ ¼ PrBðrÞ and, as a
result, ΠBðrÞ ¼ 0. The gravitational mass, m, is the sum of
the masses of both components, that is, mðrÞ ¼ mBðrÞ þ
mχðrÞ. The system of Eq. (10), along with Eq. (11),
represents a generalization of Eqs. (7) and (9).
We determine the radial density profiles of baryonic

matter (B) and dark matter (χ) using Eqs. (10) and (11) by
applying two central and two boundary conditions for the
star. The first set of conditions relates to the central
densities of B and χ, while the second set ensures hydro-
static equilibrium for each matter component at their
respective boundaries, forming spheres with radii RB and
Rχ containing all the B and χ mass components, respec-
tively. Generally, RB ≠ Rχ . Hydrostatic equilibrium is
independently maintained for B and χ by the conditions:

PiðRiÞ ¼ 0: ð12Þ

The χ component cannot be directly observed, so it is
reasonable to identify the neutron star radius R with RB,
i.e., RB ¼ R, where R represents the observed radius of the
neutron star. We choose to define our radius like this so that
our analysis may be compared with observational data, as
the neutron stars will have a visible radius in the usual
sense, with an additional hidden mass. The total gravita-
tional mass and the fraction of χ inside the neutron star are
defined as

MT ¼ MBðRBÞ þMχðRχÞ ð13Þ

and

fχ ¼
MχðRχÞ
MT

: ð14Þ

It is evident that by varying the central densities of baryonic
matter (B) and dark matter (χ), we can obtain different
values of the total gravitational mass MT and neutron star
radius R for a given χ fraction fχ .

III. EQUATIONS OF STATE
AND ANISOTROPIC DARK MATTER

A. Microphysics within neutron stars

In our study of hybrid stars, we aim to accurately depict
the complex physics inside neutron stars at various den-
sities and temperatures. Our chosen microscopic model is
based on a comprehensive framework suitable for the entire
high-energy quantum chromodynamics (QCD) range. The
model covers various temperatures and densities, consid-
ering different levels of isospin and strangeness. Notably,
this model is consistent with known requirements for
compact stars (e.g., [48–50]) and findings from collider
experiments (e.g., [51]), like those based on lattice QCD.
We mainly focus on the requirements of cold, dense stars,
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the behavior of evenly distributed nuclear matter, and the
conditions of high-temperature QCD at very low or no
density. Moreover, this model also clearly explains how
chiral symmetry is restored and how quarks are deconfined,
supporting data from lattice QCD (e.g., [52]), perturbative
QCD (e.g., [53]), and high-energy collider tests.
Addressing all aspects above, we have chosen an equation

of state computed within the framework of the chiral mean
field (CMF) model. This model is grounded in the three-
flavor chiral Lagrangian for hadronic matter expanded to
encompass neutron stars [54,55]. In our study, we utilize a
version of the CMFmodel augmented byMotornenko et al.,
as detailed in their article [56,57]. This enhanced model
encompasses a broad spectrum of QCD degrees of freedom.
The model includes, beyond protons and neutrons, hyperons
and their parity partners, as well as a comprehensive array of
hadronic resonances (encompassing both strange and non-
strange baryons and mesons), as cataloged in the Particle
Data Book (e.g., [58]). Additionally, this model incorporate
the thermal effects of deconfined quarks and gluons as per
the Polyakov-Nambu-Jona-Lasino model [59]. When com-
binedwith electrons, this represents themost comprehensive
range of QCD degrees of freedom for the high-density
equation of state. Furthermore, the model enables the
depiction of nuclear matter in a low-density regime, specifi-
cally for densities below 10−2nsat, which are prevalent in
binary neutron star mergers [60].
This comprehensive approach enables the calculation of

a unique equation of state for nuclear matter valid simulta-
neously in heavy ion collisions and binary neutron star
mergers without the need for additional adjustments that
might arise from using different and potentially inconsis-
tent equations of state for distinct nuclear matter scenarios.
The equation of state version used in our study effec-

tively simulates a crossover transition for deconfinement at
finite and zero density, as indicated by lattice QCD [57,61].
It accurately represents hadrons in medium, nuclei, nuclear
matter, and neutron stars. This model generates a realistic
nuclear ground state with these properties: saturation at
a baryon number density of nsat ¼ 0.15 fm−3, binding
energy per nucleon of E0=B ¼ −15.2 MeV, symmetry
energy of S0 ¼ 31.9 MeV, symmetry energy slope of
L ¼ 57 MeV, and incompressibility of K0 ¼ 267 MeV
(e.g., [56,62]). The model can reproduce neutron stars
heavier than 2M⊙ and stars with sizes within the limits
established by LIGO-Virgo [63] and NICER [64].

B. Neutron star equation of state

The neutron star equation of state (EOS) we use is based
on the CMF model presented in [56]. A crust is simulated
using [65] by finding the intersection of the EOSs and
merging them to determine the surface. This model has been
chosen to describe our baryonicmatter primarily because it is
effective in producing neutron stars with masses and radii
close to those observed by the LIGO/VIRGO collaborations,

such as [63], and by NICER [64]. Before the introduction of
dark matter, the maximum neutron star mass with this model
is 2.15M⊙ with a radius of 12.0 km. This, however, is not the
only choice of EOS that could have been made, as countless
viable models exist in the literature, for example the induced
surface tensionmodel, [66], or indeed other relativistic mean
field approaches, e.g., [67].

C. Dark matter equation of state

Here, we introduce a relatively simple bosonic dark
matter model, with an effective Lagrangian of the form

L ¼ −
1

2
∂μϕ∂

μϕ −
1

2
m2

χϕ
2 − λϕ4; ð15Þ

where λ relates to the scattering length, lχ , by λ ¼ 4πlχ
mχ

A coherent wave function for the condensate can then be
produced by considering the following ansatz,

ψ ¼ ϕeimχ t; ð16Þ

from which the Lagrangian becomes

L ¼ −
1

2
gμν∂μψ�

∂
νψ −

m2
χ

2
jψ j2 − λjψ j4: ð17Þ

By considering that the object rotates sufficiently slowly that
the rotational motion of the condensate may be neglected,
then we receive the following equations of motion,

i
∂ψ

∂t
¼ −

1

2mχ
∇2ψ þmχVψ þ 4πlχ

m2
χ
jψ j2ψ ; ð18Þ

∇2V ¼ 4πGjψ j2 ð19Þ
known generally as the Gross-Pitaevskii-Poisson equations,
where V is the gravitational potential. Following the method-
ology in Böhmer and Harko [68], one sees that for an
interaction term of the form found in Eq. (17), and by
identifying that jψ j2 ∼ ρ, the dynamics of the condensate
reduce to that of a poltropewith the following equation of state:

Prχ ¼ Aχρ
2
χ ; ð20Þ

where

Aχ ¼
λ

2m2
χ
¼ 2πlχ

m3
χ
¼ 1.25 × 105

�
lχ

1 fm

��
1 GeV
mχ

�
3

; ð21Þ

for whichmχ represents the mass of a dark matter particle, and
lχ denotes its scattering length. Throughout this work, includ-
ing all tables, figures, and the main text, the units for Aχ are
presented in the centimetre-gram-second system unless speci-
fied otherwise: g−1 cm5 s−2. In this case, the dark matter
condensate’s equation of state is given by PðρÞ, as provided
by Eq. (20). From this equation of state, it follows that
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Prχ ∝ ρ2χ . A general polytropic equation of state can bewritten

as P ∝ ρ1þ1=n
χ , where n ¼ 1 is the polytropic index. For the

timebeingweonly concern ourselveswith the particular values
of Aχ and the impact that this will have on neutron star
structure.
Later we will consider the implications of this on the

possible range of masses that dark matter may take on
these regimes. More detailed information about this equa-
tion of state in the context of dark matter may be found in
Li et al. [69], Harko and Lobo [70], Panotopoulos and
Lopes [44], and Crăciun and Harko [71].

D. Anisotropic dark matter

Anisotropy in stars can originate from various sources.
For instance, boson stars are inherently anisotropic astro-
nomical objects [72], and the energy-momentum tensors
of both electromagnetic and fermionic fields are intrinsi-
cally anisotropic [73]. Local anisotropy could arise from
the presence of viscosity (e.g., [74]) or from a two-fluid
mixture (e.g., [37,75,76]). In this context, several authors
have recently developed stellar models incorporating aniso-
tropic matter [47,77,78].
This study aims to investigate the consequences of

introducing anisotropy into a dark matter model. As men-
tioned earlier, the motivation for including such an effect
can be attributed to the bosonic nature of dark matter
particles, which inherently exhibit anisotropy.
Aviable approach to incorporating anisotropy in the dark

matter model has been explored by Horvat et al. [79] and
others [80,81]. In this approach, the anisotropy function
ΠχðrÞ is defined as

Πχ ¼ P⊥χ − Prχ ¼
αχμχ
2

: ð22Þ

Here, αχ denotes a dimensionless constant characterizing
the strength of the anisotropy, while μχ defines the relation-
ship between system anisotropies and their local properties.
We explore two different models for μχðrÞ:
(1) In the first model, commonly adopted in many

articles, we assume that Πχ is directly proportional
to Pχr, resulting in the following equation:

μχðrÞ ¼ Pχr: ð23Þ

(2) In amore recent description found in the literature, the
anisotropy is also proportional to the total enclosed
massmðrÞ inside a sphere of radius r. Thus, we have

μχðrÞ ¼
2mðrÞ

r
Pχr: ð24Þ

Here, mðrÞ represents the combined mass, including
both dark matter and baryonic matter, within a sphere
of radius r. The choice of Eq. (24) for the aniso-
tropy factor has several appealing features. First, the

compactness μχ scales approximately as r2, while
mðrÞ scales roughly as r3 as r approaches zero. This
leads to a vanishing anisotropy at the center, guaran-
teeing the regularity of the right-hand side of Eq. (10)
when i ¼ χ. Second, the anisotropy factor becomes
significant only for highly relativistic configurations
where μχ ∼Oð1Þ. This is consistent with the con-
sensus that fluid anisotropy increases at higher matter
densities.

The realization of both models may be seen in Fig. 1,
where we consider the size of the anisotropy relative to the
total radial pressure Pr. For Eq. (23) we see that the relative

anisotropy, 2Πχ

Pr
, increases smoothly until it reaches the edge

of the neutron star, after which the anisotropy is equivalent
to the total radial pressure, as there is no baryonic pressure
outside of the neutron star.
In the regime governed by Eq. (24), the relative

anisotropy increases at a lower rate, and once outside of
the neutron star it instead now slowly declines until it
reaches the edge of the dark matter halo.
One can see that despite both objects having identical

initial conditions the latter model produces halos of smaller
extent.

IV. MODELING DARK MATTER ADMIXED
NEUTRON STARS

A. Hybrid neutron star simulations

In the computation of these hybrid stars, which consist
of a neutron star and a dark matter halo, we have made

FIG. 1. The relative anisotropy of the system 2Πχ

Pr
ðrÞ [where Πχ

is given by Eq. (22)] as a function of radius for αχ ¼ 1, Aχ ¼ 107,
and for an object of total mass M ∼ 1.5M⊙. ΠχðrÞ is computed
from the center of the neutron star to the total radius Rχ of the halo
for the two forms of anistotropy considered in Eqs. (23) and (24).
The dashed line indicates the very edge of the neutron star,

located at approximately 13.0 km, with 2Πχ

Pr
ðrÞ peaking for both

models at around 12.6 km.
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several numerical adjustments to ensure the accuracy and
reliability of our results. Specifically, we highlight the
following considerations:
(1) The equation of state for a neutron star exhibits a

hard edge, meaning that numerical tables do not
smoothly approach zero pressure or density. There-
fore, determining the edge of the object accurately
from a numerical perspective is crucial, as selecting
a region where pressure or density is zero lies
outside the scope of an equation of state interpolated
from pressure-density data.
As such, the surface of the neutron star is

determined as the radius at which the increase in
mass due to baryonic components produced by
increasing the radius by one meter is less than a
certain threshold.

(2) We must similarly be careful in considering the
properties and size of the dark matter halo. The
equation of state is smooth all the way to zero
pressure and density, and as such we consider the
dark matter halo ending at a radius Rχ where
PrχðRχÞ ¼ 0.
Depending on the value of Aχ , the dark matter

halo has the capacity to become extremely large,
meaning that we may be concerned with its inter-
action with other astrophysical objects. The maxi-
mum extent of a BEC halo of this kind will
essentially be its Lane-Emden radius, as governed
by the Lane-Emden equations for a polytropic fluid
which may be seen in [71] in a similar context.
From this we see that the Lane-Emden radius is

described by

RLE ¼
ffiffiffiffiffiffiffiffi
πAχ

2

r
; ð25Þ

which for Aχ ¼ 1010 would produce a radius of
around 4800 km, and therefore the domains probed
in this article should be free from any of the
aforementioned concerns.

For each parameter used, we simulate a set of 30 hybrid
neutron stars with masses ranging from 0.4 to 2.4M⊙.
These simulations are specified by defining separate central
pressures and densities for both the dark and baryonic
matter. Subsequently, numerical integration is performed
outward to a specified radius, chosen to ensure that the full
extent of the dark matter halo is completely encompassed.
All models produced have a dark matter fraction of 5%

of the neutron star mass, and this parameter will be kept
fixed across all simulations so that relevant differences
produced by other properties may be effectively identified.
We choose this fiducial value as it is in line with quantities
seen in the wider literature, e.g., [12], as well as that
the effects and differences between models are felt to be
sufficiently visible for this choice.

B. Properties of the dark matter halo

In this study, we explore the behavior and properties of
dark matter halos described by a variety of choices of Aχ ,
and effected by several levels of anisotropy as dictated by
αχ . We will therefore be able to see the effects of different
choices of dark matter equation of state properties, the
effects of introducing anisotropy, as well as how significant
the manifestation of an anisotropy is in each regime.

1. The equation of state parameter Aχ

We now begin by discussing the effect of varying Aχ , the
constant controlling our polytropic equation of state,
Eq. (20). As one may see in Eq. (21), these choices will
also be indicative of the range of masses that these models
will represent, depending on the choice of scattering length
that is made.
The nuances of these Aχ values, before factoring in

anisotropy, are illustrated in Fig. 2 and enumerated in
Table I. The table delineates mass-radius data for hybrid
compact objects embedded with isotropic BEC dark matter.
The data span a range of Aχ from 4 × 106 to 109, with all
observations adhering to the αχ ¼ 0 stipulation. For com-
pleteness we include the smallest and largest radii simu-
lated, denoted Rmin and Rmax, respectively. It is worth
noting the smallest dark radius belongs to the smallest
baryonic radius neutron star, and the largest dark radius to
the largest baryonic radius object.

FIG. 2. Results of hybrid neutron star simulations for all
choices of Aχ before the inclusion of anisotropy, αχ ¼ 0. Included
also is the contour data pertaining to neutron star mass and radii
as measured by NICER and LIGO. For PSR J0740þ 6620, a
68% credibility region is highlighted in maroon, and 95%
credibility region in turquoise [82,83]. For PSR J0030þ 0451,
the purple region indicates 68% credibility and the fuchsia region
95% [64]. For GW170817, the upper gray region and lower green
region indicate the major and minor component, respectively, of
the event [84].
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When juxtaposing the data from Table I with Fig. 2, two
distinct behaviors in the mass-radius relations of these
hybrid objects emerge based on the type of dark matter:
(i) objects with denser dark matter (indicated by smaller Aχ)
appear more compact at lower masses and resemble
characteristics of nondark matter objects at higher masses;
and (ii) on the other hand, with more diffuse dark matter
(larger Aχ), neutron stars at lower masses are akin to those
without dark matter, but display notably larger masses at
reduced radii as their masses increase.
Delving deeper into Table I, we note that when

Aχ ¼ 4 × 106, it records the smallest radius across all
parameters and also the least maximum mass. As the value
of Aχ escalates, there is a noticeable surge in the dark matter
halo radius, with the most larger dark radii observed at
Aχ ¼ 109. Meanwhile, the baryonic radius seems to stabi-
lize for values of Aχ > 108, showcasing a range of radii
akin to a conventional neutron star. The masses of all the
examined neutron stars peak between 11.5 and 12 km. Both
Aχ ¼ 108 and 109 possess strikingly similar maximum
masses, notably around 5% more than Aχ ¼ 0.
In Fig. 3, we further explore this analysis, where we

showcase the density-baryonic radius relationship of five
compact objects of similar mass but distinct compositions.
For Aχ ¼ 4 × 106 and 107, the object is more compact than
a standard neutron star, evidenced by a denser inner core
and reduced radius. Objects with Aχ ¼ 108 and 109 have
radii that align more with conventional neutron stars,
leading to the speculation that heavier dark matter might
cause the baryonic matter to be more compact compared to
a neutron star. Meanwhile, larger-radius, lighter dark matter
seems to expand the baryonic radius beyond its typical
dimensions.
However Fig. 3 does not tell the full story. Each hybrid

object has a baryonic mass approximately equal to 1.98M⊙,
as opposed to its total combined mass of 2.083M⊙, a value
that for a standard neutron star generally equates to a radius
of 12.81 km. This suggests that in all objects mixed with
dark matter, the baryonic matter is more densely packed.

For greater values of Aχ , the baryonic radius is in close
proximity to a nonhybrid object of comparable baryonic
mass. It suggests that lighter dark matter has a more limited
impact on the baryonic structure of the neutron star and
mainly contributes to the overall dark mass, and in essence
a 1.98M⊙ neutron star appears to have a dark matter cloud
superimposed on top of it.

2. Variations in anisotropy models

We now proceed to examine the influence of introducing
anisotropy into our dark matter. Furthermore, we contrast
the disparities between the anisotropy models described by
Eqs. (23) and (24) and observe their behaviors for each
dark matter variant under consideration. In Fig. 4, the
mass-radius relations corresponding to all Aχ values are

TABLE I. Mass-radius data for hybrid compact objects con-
taining isotropic BEC dark matter for various values of Aχ , for
which αχ ¼ 0. Within we observe the maximum mass seen in
Fig. 2, the associated baryonic radius, as well as the range of
baryonic and dark radii observed’.

Aχ Mmax RBðMmaxÞ Rmin
B Rmax

B Rmin
χ Rmax

χ

cm5

gs2 M⊙ km km km km km

0 2.15 12.0 10.9 14.5
4 × 106 2.11 11.7 10.6 14.3 12.5 17.8
107 2.17 11.8 10.7 14.4 20.2 26.9
108 2.25 11.9 10.9 14.5 77.4 84.2
109 2.26 12.0 10.9 14.5 262.1 268.2

FIG. 3. The figure shows the energy density-radius curves for
the baryonic matter present in neutron stars with a mass of
2.083M⊙ for different values of Aχ . For diminished Aχ values, the
baryonic radius is notably smaller than in cases devoid of dark
matter, revealing pronounced differences in radii. In contrast, for
augmented Aχ values, the baryonic radii increase and converge.
The lower panel provides a detailed view of the density-radius
profiles near the neutron star’s radius.
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presented: both in the absence of anisotropy and when
anisotropies are governed by Eqs. (23) and (24), with
αχ ¼ 1. It is evident that the mass-radius curves generated
by Eq. (24) (represented by dashed lines) possess higher
masses for a specific radius than those from Eq. (23). This
distinction becomes most pronounced when considering
lower values of Aχ .
The contrast between models with and without

anisotropy diminishes with increasing Aχ values, to the
extent that all three curves become virtually indistinguish-
able at Aχ ¼ 109. Recalling prior discussions, this trend can
likely be attributed to the need for a decreased central
pressure to form a dark matter halo constituting 5% of the
aggregate mass for elevated Aχ values. Consequently, the
radial contribution to pressure within the neutron star from
dark matter is substantially overshadowed by that of the
baryonic matter. This renders the TOV equations largely
unresponsive to the anisotropies inherent in the dark matter.

For Aχ ¼ 109, the curve closely parallels the one devoid of
dark matter, with each mass incrementally increased by
roughly 5%. This implies that, in this scenario, the dark
matter primarily serves to augment the object’s mass
without significantly influencing the baryonic radius. As
a result, the anisotropic nature of the matter exerts negli-
gible influence the mass-radius relation.

C. Impact of anisotropy on halo structure

We delve into the influence of anisotropies on the
structural characteristics of the dark matter halo and
investigate the resultant shifts in mass-radius curves as
αχ transitions from 0 to 1. Figure 5 illustrates the reper-
cussions of each anisotropy model on the halo’s structure
for Aχ ¼ 107 and Aχ ¼ 109. The impact of the former can

FIG. 4. Plots containing mass-radius relations for all choices
of Aχ and μχ , where we also have αχ ¼ 1. Solid lines indicate
curves without anisotropy, dotted lines indicate the presence of
anisotropy governed by Eq. (23), and dashed lines an anisotropy
governed by Eq. (24).

FIG. 5. The energy density-radius curves for dark matter
admixed neutron stars with and without anisotropy. For Aχ ¼
107 (upper) we consider 1.50M⊙ objects, and for Aχ ¼ 109

(lower) 1.54M⊙ objects. The anisotropies are governed by
Eqs. (23) (dashed) and (24) (dotted) where αχ ¼ 1, as well as
including αχ ¼ 0 (dot dash) as a reference. Baryonic matter is
indicated by a colored line, and the black line of the respective
line style indicates the associated dark matter curve.
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be discerned in the upper panel of Fig. 5. The halo with
the smallest size arises in the absence of anisotropy, while
the dynamics governed by the Eq. (23) mould the largest
halo. Notably, the behavior steered by the anisotropies of
Eq. (23) deviates notably from the patterns seen in Eq. (24)
and the nonanisotropic case near r ¼ 0. Even though
anisotropies are often modeled in this manner (as found
in the literature), the resultant attributes at the core of the
star might be deemed unrealistic, differentiating it from the
alternative model [Eq. (24)] presented in this analysis.
All dark matter halos have uniform masses; therefore,

halos governed by anisotropies directly proportional to
pressure inevitably exhibit larger sizes to offset their less
dense cores. For anisotropies governed by Eq. (24), the
changes are more subtle. Within the neutron star, the dark
matter distribution exhibits a slightly reduced density
compared to its isotropic counterpart but spans an addi-
tional few hundred meters in radius. This pattern persists in
the lower panel of Fig. 5, with the disparities between the
two models amplifying. Remarkably, while Eq. (24) engen-
ders a halo only marginally larger than the isotropic case,
Eq. (23) continues to feature its hallmark low-density core.
Moreover, the halo influenced by Eq. (23) now stretches
several tens of kilometers further than the other two
scenarios.

V. CONSTRAINTS ON THE PROPERTIES
OF DARK MATTER PARTICLES

In light of our investigation into these bosonic dark
matter models, we will now discuss potential constraints on
the dark matter properties in the context of astrophysical
observations. While this study primarily focuses on a
hybrid dark matter-neutron star model considering only
gravitational interactions, we also explore dark matter
models wherein the self-interaction of dark matter and
its interaction with baryons are so negligible that they can
be approximated as noninteractive at a first approximation.
As our dark matter EOS is fully specified by a choice of

Aχ , we have been free to simulate hybrid neutron stars
without the need to concern ourselves with more specific
properties of the dark matter particles. With a known value
of Aχ , Eq. (21) can be used to fully specify the particle mass
if its scattering length is known, and vice versa. As such we
will now consider possible constraints that may be set on
our system based on both astrophysical data, and terrestrial
experiments on BEC gases.

A. Galactic cluster constraints on sub-GeV bosonic
dark matter particle masses

In this study, we refine our bosonic dark matter model
using contemporary astronomical observations. Notably,
collision data from galaxy clusters, such as the Bullet
Cluster (1E 0657-56, [85]) and the Baby Bullet
(MACSJ0025-12, [86]), provide essential insights into

the properties of dark matter. Further observations of
galaxy cluster collisions, notably MACS J0025.4-1222
[86], reveal mismatches between the centers of visible
matter and gravitational mass. Clowe et al. [87] determined
that the observed absence of dark matter deceleration offers
a constraint on its self-interaction strength. Specifically,
this can be expressed in terms of the self-interaction cross
section for long-range forces (e.g., [4]). This observational
data provides constraints on boson dark matter particles,
represented by the scattering cross section σχ . This cross
section is directly related to the scattering length according
to σχ ¼ 4πl2χ .
Under the ΛCDM cosmological model, based on galaxy

merger observations, σm should not exceed a critical value
σbcm : σm ≤ σbcm . Studies, such as Crăciun and Harko [71] and
Thompson et al. [88], cite the Bullet Cluster and Baby
Bullet as evidence for this upper limit on the ratio σm.
Randall et al. [89] found that σbcm ¼ 1.25 cm2=g denoting
the maximal value consistent with these findings, we can
deduce constraints on the dark matter particle mass and
scattering length for each of our dark matter proposed
model, ensuring their coherence with this astronomical
observation.
We initiate our analysis with the ratio:

σm ¼ σχ
mχ

¼ 4πl2χ
mχ

: ð26Þ

We can derive constraints on mχ and lχ . Utilizing
σbcm ¼ 1.25 cm2=g:

�
mχ

1 GeV

�
¼ 0.0565

�
lχ

1 fm

�
2

: ð27Þ

Here, we aim to find parameters to our the validity of our
model. Considering that observational constraints predomi-
nantly hinge on the scattering properties of galactic dark
matter, and in alignment with this study’s objectives, we
rewrite Eq. (21) in terms of the mass of the dark matter
particle:

Aχ ¼
ffiffiffiffiffiffiffiffiffi
πσbcc

p
m5=2

χ

: ð28Þ

By setting this and considering σm ¼ σbcm , we can deduce
the parameters associated with the dark matter’s mass and
scattering length. Table II presents the properties of dark
matter, with each row detailing the associated values of the
polytropic constant Aχ , scattering length lχ , and mass mχ

for a given dark matter configuration corresponding to
σbcm ¼ 1.25 cm2=g. Using the algorithm based on Aχ , we
determine mχ and lχ with Eqs. (27) and (28). The results
indicate that, within the scope of Aχ addressed in this study,
mχ ranges from 0.05 to 0.5 GeV, while lχ lies between 0.9
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and 3 fm. These constraints are particularly intriguing
because this mass range of bosonic dark matter has not
been extensively discussed in the literature. In fact, much of
the literature (e.g., [71]) primarily emphasizes lightweight
BEC dark matter species with significantly smaller masses,
associated with dark matter halos spanning kilo-parsec radii.

B. Experimental constraints on sub-GeV bosonic
dark matter particle masses

ABEC typically forms when the temperature of a system
drops beneath the critical temperature, represented as

Tc ¼
2π

mχ

�
nχ

ζð3=2Þ
�

2=3
; ð29Þ

where nχ ¼ ρχ
mχ

and ζð3=2Þ is the Riemann zeta function.

This critical temperature, Tc, is characterized by the
thermal de Broglie wavelength equating to the mean
interparticle distance, facilitating the synchronization and
overlap of individual particle wave functions (e.g., [90]).
A coherent state emerges when particle density is suffi-
ciently high or the temperature is adequately low
(e.g., [91]). Given the properties of BEC dark matter, its
interactions with the observable universe are predominantly
gravitational. Hence, we hypothesized that the temperature
of the condensate will experience negligible alterations
upon accretion onto a neutron star. Consequently, we
assume that the dark matter temperature stays below the
critical temperature Tc.
BEC is a well-established phenomenon in terrestrial

experiments (e.g., [91]). Therefore, the idea that similar
condensation could occur elsewhere in the Universe is not
implausible (e.g., [71,90,92]). Specifically, if the temperature
of a boson gas falls below its critical temperature, BEC can
manifest at some point in the Universe’s cosmic history.
Indeed, terrestrial experiments with cold gases have already
verified the presence of this unique state ofmatter for bosonic
particles in ultracold, low-density conditions [93,94].
Now, we turn our focus to the scattering lengths observed

in terrestrial BEC gas experiments, as documented in
[94,95]. For instance, experimentally measured scattering
lengths are typically 2.75 nm for 23Na [96] and 5.77 nm for

87Rb [97]. The use of constraints set by considering
ordinary matter provides a counterpoint to those set by
astronomical observations. As the precise nature of dark
matter is not yet understood, it is valuable for us to consider
the implications of bosonic dark matter with properties
more similar to condensates encountered terrestrially.
If there exists a zoo of dark matter particles, much like

with the standard model, then it can be justifiable to explore
the possibility that the accumulated dark matter is distinct
from that make up galactic halos. For our calculations, we
adopt a benchmark scattering length, lexχ ¼ 106 fm, which
aligns well with contemporary laboratory findings. Aligned
with the objectives of this study, we recast Eq. (21) to be
articulated in terms of the dark matter particle’s mass:

Aχ ¼
2πlexχ
m3

χ
¼ 1.25 × 1011

�
1 GeV
mχ

�
3

; ð30Þ

taking into consideration our predefined value for lexχ .
Using this formula, we can determine the dark matter’s
mass parameters. Table III lists these values, showing the
corresponding polytropic constant Aχ and mass mχ .

VI. SUMMARY AND CONCLUSION

In this study, we examined the intricacies surrounding
the properties of dark matter particles using experimental
data and astrophysical observations, with a special empha-
sis on the hybrid dark matter-neutron star model.
We initiated our analysis by modelling a hybrid neutron

star embedded within an anisotropic bosonic dark matter
halo without predefined constraints on the dark matter
particles’ mass range or scattering length. Varying the
equation of state parameter Aχ, we derived distinct mass-
radius correlations for these hybrid constructs. Notably,
for our fiducial dark matter model, the parameter Aχ needs
to lie between 4 × 106 and 109 g−1 cm5 s−2 to profoundly
influence the empirically observed mass-radius relationship
of the neutron star. It became evident that the dark matter’s
nature, whether condensed or dispersed, has a significant
bearing on the characteristics of neutron stars corre-
lated with their masses. Introducing anisotropies further
diversified the mass-radius trajectories. Among the models

TABLE II. Properties of dark matter corresponding to
σbcm ¼ 1.25 cm2=g, tabulated against various values of the
polytropic constant Aχ .

Aχ lχ mχ

cm5

gs2 fm GeV

4 × 106 2.79 0.442
107 2.33 0.306
108 1.47 0.122
109 0.93 0.0485

TABLE III. Properties of dark matter corresponding to
lexχ ¼ 106 fm, tabulated against various values of the polytropic
constant Aχ .

Aχ mχ

cm5

gs2 GeV

4 × 106 31.5
107 23.2
108 10.8
109 5.0
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assessed, Eq. (24) emerged as an authentic representation
of anisotropy. This model is distinct in its generation of
halos with a unique low-density core profile, distinguishing
it from alternative model forecasts. These anisotropic
nuances influence the dark matter halo’s intrinsic proper-
ties, especially in size, density gradient, and the neutron
star’s baryonic component.
Galactic clusters, specifically the Bullet Cluster, have

been instrumental in refining our bosonic dark matter
model. From this analysis, we have inferred a relationship
for bosonic dark matter particles, characterized by the
scattering cross-section σχ , with the scattering length
described as σχ ¼ 4πl2χ . This insight sharpens our under-
standing of the parametermχ, which we have now restricted
between 0.05 to 0.5 GeVand lχ in the range of 0.9 to 3 fm.
Grounded in terrestrial BEC experiments and using a
benchmark scattering length lχ ≈ 1 nm, we delineated
the constraints on dark matter properties. With a fiducial
scattering length set at lχ ¼ 106 fm, our model suggests
dark matter particle masses to fall between 3 and 30 GeV.
Notably, the dark matter particle mass range identified

in the preceding subsections, specifically between 102 to
10−3 GeV, presents notable challenges for direct dark

matter detection experiments [98]. Specifically, in the mass
range from 10−3 to 0.5 GeV, current detectors face technical
limitations exacerbated by an anticipated substantial neu-
trino background [99].
In conclusion, our study illuminates the intricate relation-

ship between dark and baryonic matter in hybrid neutron
stars. The variability in outcomes, influenced by different
equations of state and anisotropic models, underscores
the imperative for more detailed investigations. Given the
insightswe have gleaned fromgalactic clusters and terrestrial
BEC experiments, this work is a relevant reference point,
guiding subsequent research into the enigmatic realm of dark
matter and its astronomical manifestations.
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