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Time-delay interferometry (TDI) is a crucial step in the on-ground data processing pipeline of the Laser
Interferometer Space Antenna (LISA), as it reduces otherwise overwhelming laser noise and allows for the
detection of gravitational waves (GWs). This being said, several laser noise couplings have been identified
that limit the performance of TDI. First, on-board processing, which is used to decimate the sampling rate
from tens of MHz down to a few Hz, requires careful design of the antialiasing filters to mitigate folding of
laser noise power into the observation band. Furthermore, the flatness of those filters is important to limit
the effect of the flexing-filtering coupling. Second, the postprocessing delays applied in TDI are subject to
ranging and interpolation errors. All of these effects are partially described in the literature. In this paper, we
present them in a unified framework and give a more complete description of aliased laser noise and the
coupling of interpolation errors. Furthermore, for the first time, we discuss the impact of laser locking on
laser noise residuals in the final TDI output. To verify the validity of the analytic power spectral density
(PSD) models we derive, we run numerical simulations using LISA INSTRUMENT and calculate second-
generation TDI variables with PYTDI. We consider a setup with six independent lasers and with locked
lasers (locking configuration N1-12). We find that laser locking indeed affects the laser noise residuals in
the TDI combinations as it introduces correlations among the six lasers inducing slight modulations of the
PSDs compared to the case of six independent lasers. This implies further studies on laser noise residuals
should consider the various locking configurations to produce accurate results.

DOI: 10.1103/PhysRevD.109.043040

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a space
mission led by the European Space Agency (ESA), expected
to be launched in the 2030s. Its goal is to detect gravitational
waves (GWs) in a frequency band ranging from 10−4 Hz to
1Hz [1].Highprecision interferometricmeasurementswill be
made via the exchange of laser beams among three spacecraft
orbiting the Sun and separated by 2.5 million kilometers, in
order to determine the variations in the distance between free-
falling test masses aboard each spacecraft to picometer
precision. In these measurements, laser noise is the primary

noise source and is 8 orders of magnitude larger than the GW
signals that one hopes to detect. TDI is a data processing
technique that combines the LISAmeasurements to construct
virtual equal-arm two-beam interferometers in order to reduce
the laser noise to levels sufficiently low such that GWs
become detectable [2,3]. In TDI the measurements are time-
shifted bymultiples of theLISA arm lengths and combined in
a specific scheme to achieve laser noise reduction. Second-
generation TDI, which is the current baseline laser noise
reduction strategy for LISA, applies to the case in which the
arm lengths of the LISA constellation evolve slowly and
linearly in time [4,5]. In second generation TDI, laser noise is
strongly suppressed and the residual is fundamentally limited
by the arm length mismatch of the virtual interferometer [6].
There exist other approaches to perform laser noise

suppression. In TDI-∞ [7], the observables that cancel laser
noise are obtained numerically by solving for the null space
of the design matrix, i.e., the way the various noise sources
enter the interferometricmeasurements, for an arbitrary time
dependence of the arm lengths. The likelihood function that
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is used in GW source parameter estimation can then be
written directly in the time domain in terms of the LISA
interferometric measurements without having to reformu-
late the entire problem in terms of algebraically defined TDI
variables. While the study in [7] was limited to an idealized
toy model with a single Michelson interferometer, the
authors of [8] applied TDI-∞ to the full LISA constellation
with time-evolving arms. Computationally, TDI-∞ has the
drawback that it requires the storage and manipulation of
very large matrices.
In [9], starting from the interferometric measurements

and for nonevolving LISA arms, the authors first form a
matrix of integer-delayed measurements, which they
decompose using principal component analysis (PCA) into
high and low variance components. The latter correspond
to the components for which the laser noise is significantly
suppressed. This approach, dubbed “automated principal
component interferometry”, or aPCI, is formulated in both
the time and frequency domains. In [10], the same authors
extend this approach to the case of time-evolving arms.
Note that in [10], aPCI is shown not to perform as well as
second-generation TDI in suppressing laser noise.
While approaches such as TDI-∞ and aPCI offer some

interesting perspectives for a flexible data-driven formu-
lation of TDI, “traditional” TDI can be formulated
analytically. It is therefore tractable, better understood,
and exact analytic transfer functions exist to describe the
instrumental noise residuals present in the TDI variables.
For instance, secondary noises such as test-mass accel-
eration noise and optical metrology system noise are dealt
with in [11], clock noise is studied in [12,13], and tilt-to-
length coupling in [14]. Note also that laser noise coupling
residuals were discussed previously in [15,16]. It is also
worth stressing that a good understanding of the noise
content in the final TDI output is crucial to characterize
the performance of LISA and guide the design of the
instrument and that data analysis and parameter estimation
will require accurate noise models in order to work
reliably, making these studies particularly relevant
for LISA.

In addition to the analytic and numerical studies
available in the literature, there exist several hardware
demonstrators that test various aspects of TDI experimen-
tally. The LISA interferometry test-bed [17], while it could
not reproduce the signal delays in a realistic way, did
demonstrate for the first time that using first generation
TDI both the laser and clock noise could be suppressed by
9 and 4–5 orders of magnitude, respectively. In UFLIS
[18,19], using electronic phase delay units allowing for
time-varying delays of the laser phases, the authors were
able to demonstrate the efficacy of second-generation TDI.
In more recent work [20], the Hexagon experiment
demonstrated that clock synchronization can be achieved
to sufficient accuracy to match the LISA requirements.
Moreover, the authors find residual laser noise after TDI-like
processing due to flexing-filtering, aliasing, and interpola-
tion error. The LISA on table (LOT) experiment [21] (for
recent progress see [22]) is an electro-optical setup aiming
primarily at testing the laser noise suppression performance
of TDI. In [22], the validity of second-generation TDI was
demonstrated for linearly evolving LISA arms. It was also
shown using an analytic model that the residual noise could
be explained by the cascade integrator comb filtering and the
decimation stages that are applied to the data.
In this paper, we study the coupling of laser noise

residuals in standard TDI. We focus on the residual laser
noise due to systematic effects and neglect most other noise
sources. The one exception is noise in the ranging mea-
surements which are used as delays in TDI, and which in
principle couple to laser noise. Following [13], we assume
this noise source will be strongly suppressed to the level of
the highly-precise sideband interferometer readouts, such
that its impact on the laser noise reduction is minor. We still
include it so as to have a more complete description of the
postprocessing delay. We consider the effect of on-board
processing (i.e., filtering and decimation), and the influence
of TDI which uses postprocessing delay operations that are
subject to ranging and interpolation errors, see Fig. 1. We
compute analytic formulas for all laser noise residuals
induced by these processing steps and compare those to

FIG. 1. Flowchart illustrating beam propagation, online and offline processing for the interspacecraft interferometric beatnote phase.
The propagation and postprocessing delay are defined in Sec. II and Sec. III B, respectively. Note that the online and offline processing
of the reference interferometer, not shown here, is needed to compute the final output of this diagram, the TDI variables.
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numerical simulations obtained using LISA INSTRUMENT

and PYTDI. We do so for six independent lasers and also
for locked lasers in the N1-12 locking scheme [23,24].
The laser noise residuals induced by the processing steps

we derive below are already partially described in the
literature. The flexing-filtering effect arising from the
noncommutativity of the filtering and delay operation
was previously discussed in [15]. The impact of ranging
errors, i.e., modulation noise and ranging biases, in TDI
was derived in [13], while a preliminary model for the
aliased laser noise due to decimation and interpolation
errors was derived in [16]. Here, we gather these results in a
unified framework and check them against the most up-to-
date instrumental setups. In addition, we include the effect
of laser locking in our models, an important feature of
LISA that was previously neglected. We show that laser
locking can amplify the laser noise residual in the TDI
combinations, so that future performance studies on laser
noise coupling should consider the influence of the various
locking configurations that are available. Finally, we
correct the preliminary models presented in [16], which
did not show perfect agreement with simulation results.
The paper is organized as follows. In Sec. II, we

introduce the interferometric measurements available in
LISA, the notion of discretely sampled time series and how
filtering and decimation apply to discretized data. In
Sec. III A we discuss the residual laser noise induced by
the noncommutativity of the on-board filtering and deci-
mation operations with the propagation delays. The inter-
polation and ranging residuals, which both arise in TDI,
which is performed on ground, are discussed in Sec. III B.
In Sec. IV, we apply the results of the previous sections to
the case of the second-generation TDI Michelson variables
for six independent lasers and for locked lasers. Additional
details are given in six appendices.

II. INTERFEROMETRIC MEASUREMENTS

LISA produces two main interferometric measurements
per movable optical subassembly (MOSA) relevant for
laser noise reduction.1 Those are the interspacecraft and
reference interferometers given by

isiijðtÞ ¼ SF
�
DijϕjiðtÞ − ϕijðtÞ

�
; ð1aÞ

rfiijðtÞ ¼ SF
�
ϕikðtÞ − ϕijðtÞ

�
: ð1bÞ

As illustrated in Fig. 1, each measurement represents the
beatnote phase formed by two laser beams, whose phases
are denoted by ϕ and labeled by the index pair ij. Here, we
follow the conventions in [6], where i denotes the hosting
spacecraft and j the spacecraft from which MOSA ij

receives light. The interspacecraft interferometer isiij tracks
the phase difference between the distant laser ϕji that is
propagated to the local MOSA and the local laser ϕij. Beam
propagation is equivalent to applying the delay operatorDij

defined as

DijϕjiðtÞ ¼ ϕjiðt − dijðtÞÞ: ð2Þ

Here, dijðtÞ is the pseudorange, which includes the light
travel time in some chosen global frame and any reference
frame transformation accounting for the fact that the phases
ϕji are defined in their respective reference frame, j. In
order to relate phases on the left and right MOSAs on each
spacecraft,2 the reference interferometer rfiij combines the
local and the adjacent lasers.
It is useful to decompose the total laser phase ϕijðtÞ (here

expressed in units of cycles) or its derivative, the total
frequency νijðtÞ ¼ ϕ̇ijðtÞ, into two variables. As we shall
see below, laser and timing noise residuals due to on-board
processing and TDI will couple differently to the phase
ramp ϕo

ijðtÞ and to any in-band fluctuations ϕϵ
ijðtÞ. We thus

write

ϕijðtÞ ¼ ϕo
ijðtÞ þ ϕϵ

ijðtÞ; ð3Þ

νijðtÞ ¼ νoijðtÞ þ νϵijðtÞ; ð4Þ

where νoijðtÞ ¼ ϕ̇o
ijðtÞ describes any slowly-varying drifts

around the central laser frequency ν0 ¼ 281.6 THz and
νϵijðtÞ ¼ ϕ̇ϵ

ijðtÞ accounts for any rapidly varying random
fluctuations. This in-band part is dominated by laser
frequency noise with an ASD

ffiffiffiffiffi
Sṗ

p ¼ 30 Hz=
ffiffiffiffiffiffi
Hz

p
.

The beatnote phases of the interferometers are read out
using a digital phase locked loop running at 80 MHz.
Multiple decimation stages reduce the sampling rate down
to 4 Hz in order to produce the final data streams
telemetered to ground (see Fig. 1). Each decimation stage
consists of an antialiasing filter, F, and a downsampling
stage, S, which reduces the sampling rate of the data by an
integer factor. In this work, we compare the analytic
models that we derive to the most recent LISA simulation
codes, which run at rates that are much lower than the
80 MHz quoted above, and thus only use a single
decimation stage. This being said, the results obtained
in this paper can easily be generalized to multiple
decimation stages.
We shall express signals in continuous time so as to be

compatible with the recent literature on TDI. However, the
application of finite impulse response (FIR) filters,

1The split interferometry configuration involves a third inter-
ferometer, the test-mass interferometer, which is not relevant for
the purpose of this study.

2Each spacecraft is equipped with two MOSAs. The left-
handed MOSA on spacecraft i refers to the one facing spacecraft
iþ 1, while the right-handed MOSA refers to the one facing
spacecraft i − 1 (indices ranging from 1 to 3 cyclic).
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decimation, and interpolation requires some notion
of discretely sampled time series. We will therefore make
use of the Whittaker-Shannon interpolation formula
[e.g., [25]],

xðtÞ ¼
X∞
n¼−∞

sincðfst − nÞ · xn; ð5Þ

which reconstructs the continuous time signal xðtÞ from
discrete samples xn.
Let us first describe the on-board processing, which

consists of the application of a FIR filter and a decimation
stage. A FIR filter is equivalent to a discrete convolution of
the input time series xn with filter taps hm,

yn ¼
X
m

hm · xn−m: ð6Þ

We use Eq. (5) to represent the output yn in continuous time
and find

yðtÞ ¼ FxðtÞ ¼
Z
R

X
m

hmδðτ −mTsÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
hFðτÞ

xðt − τÞdτ; ð7Þ

where we introduce the integral over the Dirac-delta
distribution δðtÞ to shift the time argument of xðtÞ. It
follows that the application of a FIR filter is equivalent to a
continuous time convolution with the filter kernel hFðτÞ
defined above. Using the usual definition of the one-sided
power spectral density (PSD), the PSD of the filtered
process in Eq. (7) is given by

SyðfÞ ¼ jF̃j2SxðfÞ ¼ jh̃FðfÞj2SxðfÞ ð8Þ

with F̃ ¼ h̃ðfÞ the Fourier transform of hðtÞ, while SxðfÞ is
the PSD of xðtÞ.
Let us now discuss the decimation operator which we use

to reduce the sampling rate by an integer factor M. On a
discrete time grid, the resulting signal is given by

yn ¼ xn·M: ð9Þ

Again, we make use of Eq. (5) to find the corresponding
continuous time representation,

yðtÞ ¼ SxðtÞ ¼
X∞
n¼−∞

sincðfst − nÞ · xn·M: ð10Þ

Here, fs denotes the sampling rate after decimation, and S
symbolizes the action of the decimation operation in
continuous time. The right-hand side of Eq. (10) is exactly
equal to xðtÞ if and only if it has a band limit that is less than
the Nyquist rate after decimation, fn ¼ fs=2. Otherwise
aliasing occurs, which folds power from frequencies above

fn into the band ½0; fn�. This effect becomes apparent when
looking at the corresponding one-sided PSD,

SyðfÞ ¼ jS̃j2SxðfÞ ¼ rect

�
f
fs

�XM−1

n¼0

SðnÞx ðfÞ: ð11Þ

Here, we introduce the shorthand notation jS̃j2 which
represents the action of the decimation operator on the
PSD of xðtÞ. Note that decimation is not a linear operation
and thus jS̃j2 is not a pure multiplicative factor as in Eq. (8).
The rectangular function introduced in Eq. (11) is

defined to be equal to zero for jfj > fn and equal to
one for jfj < fn such that the decimated signal is band-
limited up to the new Nyquist rate. Finally, the nth alias,

SðnÞx ðfÞ, on the right-hand-side of Eq. (11), is given by

SðnÞx ðfÞ ¼
�
Sxðnfn þ fÞ if n is even;

Sxððnþ 1Þfn − fÞ if n is odd:
ð12Þ

Equation (11) and (12) highlight the typical folding into
band of any spectral component that resides at frequencies
higher than the new Nyquist rate (up to the highest
frequency Mfn, which corresponds to the Nyquist rate
before decimation).

III. SECOND-GENERATION MICHELSON
COMBINATIONS

In this section we first explain how the numerical
computation of the second-generation Michelson combi-
nation X2 is implemented. Therefore, we need to introduce
the postprocessing delay operator D which is used to time-
shift the beatnote measurement in TDI. We then discuss
how the two broad classes of residuals, namely the on-
board processing residuals and TDI residuals, that con-
tribute to X2 arise. The detailed calculations for each
residual, and the comparisons between model and simu-
lation are given in appendices B and C.
In order to optimize numerical precision and to save

computational cost, we calculate X2 in several stages using
the following intermediary variables. As shown below, the
variable η is constructed from the interspacecraft and
reference interferometers. This step reduces the number
of lasers from six to three. Then, the variables π, ρ, and σ
are constructed from η by building round trip interfero-
meters of increasing complexity. We have

ηij ¼
(
isiij − D̂ij

rfijk−rfiji
2

if ϵijk ¼ 1;

isiij þ rfiik−rfiij
2

if ϵijk ¼ −1;
ð13aÞ

πij ¼ ηij þ D̂ijηji; ð13bÞ

ρij ¼ πij þ D̂ijiπik; ð13cÞ

σij ¼ ρij þ D̂ijikiρik: ð13dÞ
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Here, D̂ denotes the postprocessing operator that also
considers ranging errors as indicated by the hat.
Figure 2 provides an illustration of the intermediary

variables as they synthesize two-beam interferometers with
a long and a short arm. The long arm is depicted as an arrow
propagating around the LISA constellation. Using the
variable σ we can finally express the second-generation
Michelson combination X2 as

X2 ¼ σ13 − σ12: ð14Þ
The contracted postprocessing delay operators Di1���iN
appearing in Eq. (13) are applied in two steps. First, the
actual nested delay di1���iN ðtÞ is calculated, and then, the
fractional delay filter is applied. The nested delay can be
calculated using the recursive operation3

di1���iN ðtÞ ¼ di1i2ðtÞ þDi1i2di2���iN ðtÞ: ð15Þ

Alternatively, contracted postprocessing delay operators
can be decomposed into atomic delay operations

Di1���iN → Di1i2 � � �DiN−1iN ; ð16Þ
which are applied from right to left to the time series. Note
that the expressions on the left and right of the arrow are not

equivalent and will produce a different overall interpolation
residual in TDI (see Sec. IV). Whether a single contracted
delay operator or its decomposition into atomic delays
performs better depends on the numerical values of the
delays. As a general rule, delaying a time series by a small
fractional delay is favorable, since the interpolation residual
vanishes in the limit of an integer delay.

A. On-board processing residuals

When computing TDI laser noise residuals, expressions
of the form

½A; B�ϕijðtÞ ¼ ABϕijðtÞ − BAϕijðtÞ ð17Þ

appear, with operators A and B that act on the time series
ϕijðtÞ. We call two operators noncommutative if Eq. (17) is
nonvanishing. As an example, the fundamental limit for
laser noise suppression in TDI can be described by a
commutator of time-dependent delay operators, see e.g. [6].
This is discussed in more detail in Sec. IV.
Let us now outline how laser noise residuals due to

filtering and sampling enter the interspacecraft interfero-
meter via additional commutators.
The basic building block of every TDI combination is the

set of intermediary variables ηij. In the idealized case for
which none of the data processing steps depicted in Fig. 1
are considered (i.e., F ¼ S ¼ 1 and D̂ij ¼ Dij) the variable
ηij simplifies to the difference between a local laser phase
ϕi and a distant laser phase ϕj delayed by the light travel
time between spacecraft i and j. Formally, one has

ηijðtÞ ¼ DijϕjðtÞ − ϕiðtÞ: ð18Þ

Here, we use the convention ϕ1 ¼ ϕ12, ϕ2 ¼ ϕ23 and
ϕ3 ¼ ϕ31. Under these conditions, i.e., with the specific
algebraic form of Eq. (18), the fundamental laser noise limit
is the usual delay commutator [see Eq. (33)].
If we instead insert the interferometric measurements of

Eq. (1) into the definition of ηij given in Eq. (13a), the
resulting expression cannot be recast into the algebraic
form of Eq. (18). This is because of the order in which the
filtering, decimation, and delay operations arise in Eq. (1a).
If one introduces the following commutator into Eq. (1),

½SF;Dij�ϕjiðtÞ ¼ ðSFÞDijϕjiðtÞ −DijðSFÞϕjiðtÞ; ð19Þ

the delay operator Dij switches places with the decimation
stage SF such that Eq. (1a) becomes

isiijðtÞ ¼ DijSFϕjiðtÞ − SFϕijðtÞ þ ½SF;Dij�ϕjiðtÞ: ð20Þ

This expression has the same algebraic form as Eq. (18) if
we make the substitution ϕij → SFϕij, with the exception
that the interspacecraft interferometric measurement now

FIG. 2. Illustration of intermediary variables defined in Eq. (13)
and locking configuration N1-12. The intermediary variables are
depicted as an arrow representing the synthesized photon path of
the long arm. They are incrementally built up from the previously
defined ones such that the last variable σ is represented by
the entire path. Additionally, the chain of locked lasers for
the locking configuration N1-12 is shown (as discussed in
Sec. IV B). The primary laser is highlighted by the gray box.

3The interpolation error arising in this operation might also be
relevant as it contributes to the ranging error. To suppress it below
the modulation noise level we use an appropriate interpolation
orders (order 5 seems sufficient) in our numerical studies.
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also contains the commutator ½SF;Dij�ϕji. This commuta-
tor comes as an additional residual in the final TDI
expressions and enters via the usual TDI transfer function
(this is reminiscent of the way readout noise enters the
measurements, see [11]).
Using common commutator rules we can further split

½SF;Dij�ϕji into a filter-delay commutator (flexing-filtering
coupling) and a decimation-delay commutator

½SF;D�ϕðtÞ ¼ S½F;D�ϕðtÞ þ ½S;D�FϕðtÞ; ð21Þ

and compute explicit analytic expressions for each con-
tribution, see appendices B 1 and B 2.

B. TDI residuals

Theworking principle of TDI is to time-shift the recorded
beatnote phase measurements and linearly combine them in
order to reduce laser noise in the resulting combinations. To
achieve this we require an interpolation method and esti-
mates of the aforementioned time shifts. In the following we
denote a delay operation that is performed on-ground as D̂.
This operator acts on discrete time series and is therefore
only a numerical approximation. Furthermore, time-shifting
is performed with imperfect knowledge of the delay.
Interpolation of the data and the error in ranging produce
a residual with respect to the true propagation delay D. To
distinguish between these effects, we write the residual due
to the imperfections of D̂ as

ðD̂ −DÞϕðtÞ ¼ ðD̂ − D̂ÞϕðtÞ þ ðD̂ −DÞϕðtÞ; ð22Þ

where the first term on the right-hand side represents the
interpolation residual and the second term the residual
stemming from ranging errors. We compute explicit expres-
sions for each of these contributions in appendices C 1 and
C 2, respectively.

IV. RESIDUALS IN THE MICHELSON
COMBINATIONS

Before considering either six independent lasers or the
locking scheme N1-12 in Secs. IVA and IV B, let us first
write down the general expression for the residuals in X2.
To do so, we use the factorization given in Eqs. (13)
and (14) together with the expression of the reference
interferometers in Eq. (1b) and that of the interspacecraft
interferometers in Eq. (20). As the couplings discussed in
Secs. III A and III B apply only to either the beatnote
frequency offsets or the beatnote phase fluctuations, we
split up the interferometers into those contributions. For
brevity, we define aij ¼ ˙isioij and bi ¼ ˙rfioij ¼ − ˙rfioji

4 as in
[13]. The beatnote phase fluctuations are given by

isiϵij ¼ DijSFpji − SFpij þ ½SF;Dij�pji; ð23aÞ

rfiϵij ¼ SFpik − SFpij: ð23bÞ

Here, pij denotes the phase fluctuations of laser ij that
account for the natural phase noise of the laser and
contributions that enter via laser locking (cf. [24] and
Sec. IV B). In the following we write as a short-hand
notation p̄ij ¼ SFpij.
Next, we replace each occurrence of the postprocessing

delay D̂ij by the relation given in Eq. (22). Here, we neglect
all term that are second-order in the residuals (e.g., flexing-
filtering coupling that enters via interpolation errors).
Doing so, we find that X2 breaks down into the following
residuals

X2 ¼ δX½SF;D�
2 þ δXD

2 þ δXD̂
2 þ δX2: ð24Þ

The first three terms on the right-hand side were described
in Secs. III A and III B and the fourth term in Eq. (24) is the
usual delay commutator describing the arm length mis-
match in the virtual interferometer. This is discussed later in
this section.
In the following we discuss each constituent of Eq. (24)

individually. To simplify the expressions we assume equal
arms and denote the multiplicative factor that is common to
most residuals as

C≡ ð1 − D4Þð1 −D2Þ; ð25Þ

jC̃j2 ≡ 16sin2ð2πfdÞsin2ð4πfdÞ: ð26Þ

The square root of jC̃j2 is commonly known as the “TDI
transfer function” (or more precisely its magnitude).
The commutator residuals induced by filtering and

decimation enter in the interspacecraft interferometer
[cf., Eq. (20)] and are thus only propagated through
TDI. This is consistent with [15], and they read

δX½SF;D�
2 ¼ C

	½SF;D13�p31 þ D½SF;D31�p13

− ½SF;D12�p21 −D½SF;D21�p12



: ð27Þ

The interpolation residual depends on the factorization
scheme used to compute the TDI variables. Using the
factorization from Eq. (13) with “contracted delays,” we
obtain

δXD
2 ¼ CD

�
Δ12p̄21 −DΔ31p̄13 − Δ13p̄31

þ DðΔ13 þ Δ31 − Δ12 þ Δ121 − Δ131Þp̄12

�
: ð28Þ

If one instead performs the interpolationwith “atomic delays”
(i.e., turning D̂i1���iN into D̂i1i2 � � � D̂iN−1iN ), one obtains

4This relation holds for ij ¼ 12, 23, 31 as adjacent reference
interferometers track the same beatnote up to a sign.
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δXD
2 ¼ CD

	
Δ12p̄21 þDΔ21p̄12 −DΔ31p̄13 − Δ13p̄31



:

ð29Þ

In the expressions above, Δij denotes the effect of imperfect
interpolation when time-shifting by the arm ij. This is
discussed in more detail in Appendix C 1.
To compute the TDI residual induced by the ranging

error we need a description of the ranging measurement and
any additional processing employed to reduce this ranging
error. An in-depth study of all ranging observables and how
to best combine them is given in [26]. In our analysis we
consider the onboard ranging methods that are realized
by two additional modulations on the laser beams: the
pseudo-random noise (PRN) modulation (absolute ranging)
and the clock sidebands. The range estimate described in
Appendix D, which is mostly adopted from [13], combines
both measurements. The estimate, denoted d̂ij, inherits a
bias Bij from the PRN measurements and a stochastic term
from the sideband measurements. The resulting deviation
from the true range dij, the ranging error, reads5

rijðtÞ ¼ Bij −DijMjðtÞ þMiðtÞ; ð30Þ

where Mi denotes the modulation noise on the left-handed
MOSA on satellite i. The resulting residual δXD̂

2 can be
decomposed into the component originating from the
ranging bias δXB

2 and the modulation noise δXM
2 . These

two contributions are consistent with [13] and read

δXB
2 ¼ C

	
D2B31

˙̄p13 þDB13
˙̄p31

−D2B21
˙̄p12 − DB12

˙̄p21



; ð31aÞ

δXM
2 ¼ C

	ða13 − a12 þ ð1 −D2Þb1ÞM1

− Da21M2 þDa31M3



; ð31bÞ

where ˙̄pij is the time derivative of the filtered and
decimated laser phase fluctuations. Note that we also
present the subdominant coupling of the stochastic in-band
ranging error to laser frequency noise in Appendix F.
Let us also give the expression for the fourth contribution

in Eq. (24) corresponding to the usual TDI delay commu-
tator that fundamentally limits laser noise reduction. Due to
the flexing of the LISA constellation the round-trip times of
any synthesized two-beam interferometer are not exactly
identical. Hence, laser noise in the two beams does not
cancel but enters into the TDI combination with a prefactor
proportional to the arm lengthmismatchΔd. For the second-
generation Michelson variable X2, the residual reads

δX2 ¼ ½D13121;D12131�SFϕ12 ð32Þ

≃ − ΔdX2
D131212131

d
dt
ðSFϕ12Þ: ð33Þ

In the second line we use the property that a delay
commutator acts like a derivative, as already described
in [4,6,13,27]. The arm length mismatch in a second-
generation Michelson interferometer is given by

ΔdX2
ðtÞ ¼ d131212131ðtÞ − d121313121ðtÞ: ð34Þ

Equation (33) can be further split up into a deterministic out-
of-band drift and an in-band component by plugging in
Eq. (4) in the above expression. For the deterministic part,
we recover6

δXo
2 ¼ −ΔdX2

D131212131ν
o
12; ð35Þ

where the travel time difference can be efficiently computed
from the time delays dij as described in Appendix E.
Additionally, a model for the absolute laser frequency νo12
must be provided to subtract the trend. The stochastic in-
band component of the delay commutator is characterized
by its PSD

SδX2
ðfÞ ¼ ðΔdX2

Þ2ð2πfÞ2jS̃j2jF̃j2SpðfÞ: ð36Þ

For this derivationwe have assumed thatΔdX2
is constant. In

reality, the amplitude of residual laser noise is modulated
due to orbital dynamics governing the motion of the three
spacecraft. We expand the travel time differenceΔdX2

up to
second order in velocity ḋiji and up to first order in
acceleration d̈iji to derive a good approximation ofΔdX2

[6],

ΔdX2
¼ ðd131ḋ121 − d121ḋ131Þðḋ121 þ ḋ131Þ
− ðd131d̈121 − d121d̈131Þðd121 þ d131Þ; ð37Þ

which is of the order 10−12 s [13].
In previous studies [e.g., [11]], it was demonstrated that

laser locking does not affect the coupling of path-length
noises in TDI combinations. At first this seems counter-
intuitive as locked lasers generate echoes of any path-length
noise imprinted on the reference beam. However, those
echoes are canceled out in TDI since any in-band compo-
nent in all six laser phases is, by construction, strongly
suppressed by the algorithm.
The couplings described above introduce residual laser

phase in the TDI combinations. Thus, laser noise and path-
length noises imprinted on the laser will enter the

5In the notation of Appendix C 2, where the PSD of the
ranging residual commutator is derived, Bij is written as a generic
bias, ro, while the combination −DijMjðtÞ þMiðtÞ is written as a
generic stochastic term, rϵðtÞ.

6Because the phase ramp produced by the THz central laser
frequency is unaffected by filtering and decimation we can drop
both F and S assuming an acausal filter implementation with
vanishing group delay (cf. [15]).
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combination. However, the effect of the latter is subdomi-
nant, because laser noise dominates the residuals. The
impact of locking is thus only relevant for laser noise. In
the following sections we first describe the residuals
assuming six independent lasers, i.e., when each laser is
locked to an individual cavity; then, we derive the same
residuals assuming the standard locking configuration
N1-127 introduced in [23].

A. Six independent lasers

In the first step let us consider six lasers stabilized to their
individual cavities. This is a theoretical setup,which cannot be
used in practice, but worth studying for pedagogical reasons.
Using Eq. (B2) and the upper bound given in Eq. (B6), it

is easy to compute the PSD of Eq. (27) corresponding to the
coupling of the filter-delay and decimation-delay commu-
tator. It reads

SS½F;D�δX2
ðfÞ ¼ 4jC̃j2jS̃j2

�
¯̇d2




 1

2π

dh̃FðfÞ
df





2SṗðfÞ
�
; ð38aÞ

S½S;D�FδX2
ðfÞ ≤ 16jC̃j2 ·

X∞
n¼1

ðjF̃j2SpÞðnÞðfÞ; ð38bÞ

where

¯̇d2 ¼ ḋ212 þ ḋ221 þ ḋ213 þ ḋ231
4

: ð39Þ

Next, we investigate the PSD of the interpolation residual
contribution. For six independent lasers we choose to use
atomic delays over contracted delays because it results in
much simpler couplings. Furthermore, we assume the worst-
case interpolation error in order to derive an upper bound on
its contribution. We use Eqs. (C4) and (29) and find

SDδX2
ðfÞ ≤ 4jC̃j2jΔ̃j2jS̃j2jF̃j2SpðfÞ: ð40Þ

Here, Δ̃ (without indices) represents the worst case inter-
polation error coupling.
Finally, using Eqs. (C8) and (31), the contribution from

the ranging error yields a PSD equal to [13]

SD̂δX2
ðfÞ ¼ jC̃j2�4B̄2ð2πfÞ2jS̃j2jF̃j2SpðfÞ þ AM

X2
ðfÞSMðfÞ

�
;

ð41Þ
with an effective squared bias B̄2 and a modulating function
AM
X2
ðfÞ defined as

B̄2 ¼ B2
12 þ B2

21 þ B2
13 þ B2

31

4
; ð42Þ

AM
X2
ðfÞ ¼ ða12 − a13Þ2 þ a221 þ a231

− 4b1ða12 − a13 − b1Þsin2ð2πfdÞ: ð43Þ

B. Locked lasers

The baseline design of LISA foresees locked lasers to
ensure that all beatnote frequencies fall into the sensitive
bandwidth of the photoreceivers on-board the space-
craft (5 MHz to 25 MHz). To achieve this the primary laser
is stabilized using a cavity that serves as a frequency
reference. The five remaining lasers are frequency offset
locked in succession to the primary following a locking
topology. Laser locking of one laser is achieved by
adjusting the frequency of this laser source so that the
beatnote frequency of the locking interferometer follows a
predetermined time-varying offset frequency oijðtÞ. The so-
called locking conditions for the interspacecraft and refer-
ence locking interferometer are given by

˙isiij ¼ Ḋijνji − νij ¼ oijðtÞ; ð44aÞ
˙rfiij ¼ νik − νij ¼ oijðtÞ; ð44bÞ

where νji and νik, respectively, denote the frequencies of
the reference lasers and νij is the frequency of the laser that
is controlled. As in [24], we assume the laser lock to be
perfect with infinite gain, such that the locked beatnotes
follow the programmed offset frequencies oijðtÞ exactly. As
the later only have out-of-band components, any locked
laser is simply “echoing” the incoming phase noise of the
reference laser. Therefore, laser noise becomes correlated
among the six lasers.
In this section, we take as an example the N1-12 locking

configuration as depicted in Fig. 2. Here, N1 specifies the
locking topology and 12 the index of the primary laser (see
[23,24] for an overview of the locking topologies). For this
particular locking configuration the in-band phase noise of
the six lasers is given by

p12 ¼ p; p23 ¼ D21p; p31 ¼ D31p;

p13 ¼ p; p32 ¼ D31p; p21 ¼ D21p:
ð45Þ

For better readability we drop the index on p ¼ p12

denoting the in-band phase fluctuations of the primary
laser. We proceed by inserting the expressions of Eq. (45)
into the general expressions for laser noise related residuals
listed in Sec. IV. To simplify the expressions we make use
of the commutator rule

½SF;Dij�Djk ¼ ½SF;Dijk� −Dij½SF;Djk�: ð46Þ

We note that the following results are very particular to the
choice of locking configuration. Moreover, results for X2,
Y2 and Z2 no longer exhibit rotational symmetry in the

7Note that in this work, we shall use the locking configuration
naming convention introduced in [24].
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indices as it is broken by laser locking; this is easily verified
from Eq. (45).
As an example, we derive the laser noise residuals for the

second-generation Michelson X2 variable. In general, we
find that expressions simplify. This is due to the fact that the
locking configuration N1-12 inherently generates round-
trip measurements required to build X2.

8 For Y2 and Z2 we
find more complicated expressions involving more terms.
However, the TDI transfer function remains and additional
factors only modulate the residual slightly. Those are
caused by cross-spectral densities among correlated laser
noise residuals.
For the ½SF;D� commutator we recover

δX½SF;D�
2 ¼ C

�½SF;D121� − ½SF;D131�
�
p: ð47Þ

We split it up further [as in Eq. (21)] into contributions from
the filter-delay commutator and sample-delay commutator,
respectively. The PSD of the flexing-filtering coupling is
given by Eq. (38) with an effective squared delay derivative
equal to

¯̇d2 ¼ ðḋ121 − ḋ131Þ2
4

: ð48Þ

For the sample-delay commutator, the upper bound given in
Eq. (38b) is still valid. Furthermore, we note that both
residuals vanish nontrivially if the round-trip delays d121
and d131 become equal (for the flexing-filtering coupling,
their derivatives must also be equal).
To simplify the coupling of the interpolation error for

locked lasers we use contracted delays [see Eq. (28)]. We
obtain

δXD
2 ¼ CD2ðΔ131 − Δ121ÞSFp: ð49Þ

Again, the upper bound given in Eq. (40) still holds and the
residual vanishes for equal round-trip times d121 and d131.
Finally, we discuss the residual caused by ranging errors.

The contribution coming from modulation noise in
Eq. (31b) stays unchanged as the laser noise component
of the beatnote is not involved. The contribution of the
ranging biases in each arm, see Eq. (31a), is given by

δXB
2 ¼ CD2ðB12 þ B21 − B13 − B31ÞSFp: ð50Þ

Therefore, the PSDof ranging error contributions is expressed
as Eq. (41) with an effective squared bias equal to

B̄2 ¼ ðB12 þ B21 − B13 − B31Þ2
4

: ð51Þ

We remind that these cancellations appear only in the
Michelson combination X centered on the spacecraft of the

primary laser, while Y and Z gain more complicated
couplings which do not show the same cancellations.

C. Comparison with numerical simulations

We now compare the theoretical models described above
to simulated LISA data, obtained using LISA INSTRUMENT

[24,28] to generate the measurements and PYTDI [29]
to calculate the second-generation Michelson variables. In
order to compare, one-by-one, the couplings described
above to the simulated data, we run three different sets of
simulations that single out the effects of (i) onboard
processing, (ii) interpolation errors and (iii) ranging errors
individually. As a reference we also run a simulation, where
all noises are disabled, which serves as an indicator of the
numerical limit due to rounding errors in the floating-point
variables that we use to represent the physical quantities in
the simulation.
To put the resulting residuals in context we compare

them to the one picometer reference curve, which repre-
sents the coupling of a GW strain with an equivalent
displacement amplitude of 1 pm=

ffiffiffiffiffiffi
Hz

p
on all six links with

relaxation at low frequencies, and is commonly used as a
benchmark in LISA. Converted to frequency units and
propagated through TDI it reads

SrefẊ2
ðfÞ¼4jC̃j2ð2πfÞ2

�
1þ

�
2MHz

f

�
4
��

1 pm=
ffiffiffiffiffiffi
Hz

p

1064 nm

�2

:

ð52Þ

Here, the factor 4 accounts for the fact that there is a total of
four links involved in the computation of the Michelson
variables. The relaxation below 2 mHz mimics the shape of
the LISA noise budget. Overall, the reference curve above
is about a factor 10 below the total optical metrology noise
allocation in LISA.
Let us now describe the nominal setup of the simulator

and the processing performed on the measurements. All
simulations span approximately 3 days in duration with the
LISA constellation following realistic heliocentric orbits
provided by ESA. The beatnote frequencies9 of the inter-
spacecraft and the reference interferometers, which range
between 5 MHz to 25 MHz, are simulated at a sampling
rate of 16 Hz by LISA INSTRUMENT. They are formed by

8For example, the interspacecraft measurements isi12 ∼ π12
and isi13 ∼ π13.

9Units of frequency are used to circumvent numerical issues
specific to phase units. A beatnote frequency of several MHz
results in a rapidly increasing phase ramp. This would require a
large number of significant digits to deal with its dynamic range
(∼1014 cycles after 1 yr at a required precision of at least μ cycles
which results in 20 significant digits). On the other hand, its
derivative, the beatnote frequency, stays roughly constant and a
double precision float (approximately 16 significant digits) is
sufficient to represent it. Here, the picometer reference curve with
a knee at 2 mHz corresponds to a precision of approximately
20 nHz which gives 15 orders of magnitude when considering a
20 MHz beatnote frequency.
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pairwise interference of the six lasers which are assumed to
be stabilized to their individual cavity. Thus, we assume
independent laser frequency noises with an ASD equal to
30 Hz=

ffiffiffiffiffiffi
Hz

p
.10 Finally, the beatnote frequencies are deci-

mated down to 4 Hz using the default antialiasing filter of
the simulator. In addition to the carrier-to-carrier beatnotes,
sideband beatnotes that precisely track the delay derivatives
and PRN measurements (absolute ranging) are also avail-
able. The nominal setup excludes any errors in the sideband
beatnotes and absolute ranging measurements.
Prior to any processing, all measurements are promoted

from a 64-bit to an 80-bit floating-point variable. This
makes sure that no additional numerical noise is introduced
downstream. In the first processing step we extract the
high-precision ranging information from the sidebands (see
Appendix D). Then, the second-generation Michelson
variable X2 is calculated using the factorization expression

in Eq. (13). Here, we nominally use Lagrange interpolation
with N ¼ 62 coefficients to suppress the interpolation
residual in-band. To convert the expressions to frequency

units, all delay operators D̂ij are replaced by
˙̂Dij, which are

defined analogously to Eq. (B7) [6]. In the last processing
step, we subtract any out-of-band drifts from the Michelson
combinations to reduce the effect of spectral leakage at DC.
This is achieved by computing the differential Doppler
shift, as explained in Appendix E, and inserting it into the
time derivative of Eq. (35). To compare the numerical
results with the models we use the Welch method from the
SciPy package [30] to estimate the numerical ASDs of the
detrended Michelson variables. To match the analytic
models at high frequencies with the numerical ASDs we
had to relax the equal-arms assumption and use the models
for six unequal but constant arms.
In a first simulation, we focus on the effects of onboard

processing. As discussed previously the data rate on board
the spacecraft has to be reduced from tens of megahertz
down to a few hertz. This will be performed in several
stages and the choice of intermediate sampling rates and the
exact design of the antialiasing filters is still under study.
The LISA simulators currently only model the final

FIG. 3. ASDs of the residuals from onboard processing for the second-generation Michelson variable Ẋ2 using the antialiasing filter
design that is optimized to reduce the number of coefficients to save computational cost (see Appendix A). The dashed blue and red lines
correspond to the theoretical predictions for the different TDI residuals. The solid lines are the numerical estimates resulting from the
noise-free simulation (gray) and the simulation containing laser noise (blue). For reference we also show the picometer reference curve
(dashed black). It is multiplied by the transfer function of the filter to account for the significant pass-band drop of the optimized filter
design (see Fig. 6). The black vertical line at 10−1 Hz divides the x-axis into logarithmically and linearly scaled.

10In reality, we expect laser noise to increase toward lower
frequencies. In this manuscript, we assume that it is a white noise
to easily study the shape of various residuals. However, the
residual transfer functions derived here hold for any laser noise
spectrum.
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decimation stage going from 16 Hz down to 4 Hz. The
default implementation of the filter in LISA INSTRUMENT is
quite conservative (see Fig. 6) and consequently suppresses
the effect of aliasing and flexing-filtering coupling well
below the numerical noise floor. With such a filter, one is
thus unable to compare the analytic model describing
aliasing and flexing-filtering to the results of the simula-
tion. For this reason, we employ a filter design that uses a
reduced number of coefficients (five-fold compared to the
default implementation, for more details see Appendix A).
This filter design reduces computational cost but amplifies
the coupling of the aliasing and flexing-filtering effect. In
Fig. 3 the numerical ASD (solid blue) of the residual in the
Michelson variable Ẋ2 is compared to the analytical models
for both effects. We observe that for our particular choice of
orbits the flexing-filtering effect (dashed red) is subdomi-
nant and the entire residual is well explained by the aliasing
effect (dashed blue). At low frequencies (10−4 Hz to
10−3 Hz) the simulated data approaches the numerical
noise floor given by the light gray curve that is calculated
from the noise free simulation. We confirm that the residual

FIG. 4. ASDs of residual laser noise in second-generation
Michelson variable Ẋ2 due to interpolation errors using Lagrange
interpolation with N ¼ 42. The numerical ASD using “atomic”
delay operators to perform TDI (solid blue) is compared against
the model (dashed blue) and the picometer reference curve
(dashed black). The vertical dashed gray line indicates the high
frequency edge of the LISA band.

FIG. 5. ASDs of the laser and timing noise residuals caused by ranging errors for the second-generation Michelson variable Ẋ2. The
blue dashed and dotted lines correspond to the theoretical predictions for the ranging bias and the modulation noise coupling,
respectively. Solid lines are numerical estimates resulting from the noise free simulation (gray) and the simulation containing laser noise,
modulation noise and ranging biases (blue). For reference we plot the picometer reference curve in dashed black. Here, the attenuation
by the transfer function of the filter can be neglected as we use the default filter design of LISA INSTRUMENTwhich is extremely flat in
the LISA band. The black vertical line at 10−1 Hz divides the x-axis into logarithmically and linearly scaled.
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caused by onboard processing remains below the one
picometer reference curve (dashed black).
In the second simulation, we use the default filter design

of LISA INSTRUMENT. It strongly suppresses the commu-
tator residuals such that it becomes possible to compare the
interpolation residual to the corresponding theoretical
model. To perform TDI we choose Lagrange interpolation
with a reduced number of coefficients N ¼ 42 and consider
“atomic” delays instead of their contracted equivalent [see
Eq. (16)]. Figure 4 shows the numerical result in solid blue
and the model for the interpolation residual in dashed blue.
We observe that the model explains the data well up to the
numerical noise floor (light gray) and that the interpolation
residual drops off quickly from the LISA band edge at 1 Hz
toward lower frequencies. Furthermore, we confirm that
N ¼ 42 is sufficient to stay below the one picometer
reference curve (dashed black) in the LISA band.
Finally, in the third simulation, we introduce modulation

noise and ranging biases of the order of 30 ns (a factor 10
higher than in [13] in order to enhance the size of the
coupling) so as to produce the couplings related to ranging
errors. The ASD of the modulation noise on left-handed
MOSAs is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SMðfÞ

p
¼ 8.3 × 10−15 s=

ffiffiffiffiffiffi
Hz

p �
f
Hz

�
−2=3

; ð53Þ

while on the right-handed MOSAs it is a factor of 10
larger [31].As already presented in [12,13],we can obtain an
estimate of the pseudo-range d̂ij that is free of the modu-
lation errors of the right-handed MOSAs. To perform TDI
we use the nominal number of interpolation coefficients

N ¼ 62 and use the ranges that are contaminated by the
ranging error. We present the resulting ASDs in Fig. 5. At
low frequencies the numerical residual (solid blue) is
explained by the coupling to modulation noise (dotted blue)
which exceeds the one picometer reference curve at frequen-
cies below 3 × 10−2 Hz, highlighting that this is a significant
contribution to the overall LISA noise budget. At high
frequencies the effect of ranging biases (dashed blue)
becomes significant but stays below the reference curve
for the chosen numerical values of the biases.
Repeating the same set of simulation runs for locked

lasers, we find that they also agree with the analytic
models for the laser noise coupling residuals discussed
in Sec. IV B. In addition, the plots we obtain differ only
very slightly from the ones where six independent lasers
were used. For this reason, we choose not to include them
in the paper.

V. CONCLUSION

In this paper, we have presented a comprehensive study
of residual laser noise in the TDI variables for LISA. We
have identified two categories of couplings. First, on-board
processing steps, namely filtering and decimation, give rise
to additive noise in the interspacecraft interferometers due
to noncommutation with the delay operation. Second, the
postprocessing delays employed to calculate TDI combi-
nations only partially mitigate laser noise. This is because
this offline computation relies on an interpolation method,
which induces interpolation errors, and because the offline
delays used for TDI include ranging errors. For both
categories of laser noise couplings, we provide analytical
models for the residuals in the second-generation TDI
combination X2; we validate those models using numerical
simulations.
In the existing literature, the flexing-filtering effect [15]

and the coupling of ranging errors [13] for six independent
lasers are already described and preliminary models of laser
noise residuals due to aliasing and interpolation errors are
presented in [16]. In this study, we remedy the short-
comings of the latter two and also present all laser noise
couplings in a consistent framework. Furthermore, we
investigate the impact of laser locking by discussing the
case of locked lasers. Finally, because we perform TDI in
total frequency units, we explain the deterministic trend
that is present in second-generation TDI combinations:
differential Doppler shifts in the round-trip paths of the
synthesized beams produce a beatnote of a few mHz. This
trend depends solely on the out-of-band delays due to
orbital dynamics and the THz frequency of the laser
involved. It can therefore be computed and removed by
appropriately modeling the orbits and the THz frequency
evolution. This detrending step is a reversible (the trend can
always be added in again) part of preprocessing. It occurs
before parameter estimation and reduces spectral leakage in

FIG. 6. Magnitude of transfer functions (solid lines) and their
frequency derivatives (dashed lines) for the default implementa-
tion of the antialiasing filter in LISA INSTRUMENT (red) and the
optimized design (blue). The gray and white frequency bands
indicate indicate the orientation of the subbands after folding
where gray bands are mirrored before they are added to the new
band (0 Hz to 2 Hz) and white bands are not.
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PSD estimates, a feature which is relevant for the
present study.
Contrary to unsuppressed noises [11] (e.g., path length

noises), the coupling of laser noise residuals is dependent
on the underlying locking configuration. This can be
explained by the fact that locked lasers follow the primary
laser with configuration-specific time lags, which introduce
correlations among all lasers. In order to connect with the
existing literature, we first derive analytical models for six
independent lasers. Then, we repeat the calculation for
locked lasers, more specifically the configuration N1-12. In
this configuration, spacecraft 2 and 3 act as transponders,
directly sending light back to spacecraft 1. This means the
interspacecraft interferometer beatnotes recorded on
spacecraft 1 already represent the signal combinations
η12 þD12η21 and η13 þ D13η31 for laser noise, simplifying
the expression for the Michelson X2 variable. However, this
simplification does not apply to Y2 and Z2. In general,
because of the additional correlations, analytic models
become more complicated for locked lasers. Furthermore,
we find that the worst case scenario (i.e., the one that
maximizes the size of the laser noise residuals) can be
larger for locked lasers than for six independent lasers. This
suggests that future investigations should account for all
possible locking configurations.
The level of additional noise due to on-board processing

(filtering and decimation) is strongly dependent on the
design of the antialiasing filter. In this study, we propose an
improved FIR filter design that reduces the number of filter
taps by a factor of five compared to the default (more
conservative) implementation in LISA INSTRUMENT. This
relaxes the computational requirements of the onboard
filter implementation and we show that the resulting
residual due to the flexing-filtering effect and aliasing still
respects the picometer reference curve in the LISA band. In
theory, the flexing-filtering coupling can be mitigated by
flattening the response of the antialiasing filter on ground
by compensating for its pass-band droop. The appropriate
design of compensation filters is the subject of on-going
efforts in the LISA community. Indeed, any aliased noise
due to insufficient attenuation in the stop-band cannot be
reduced in postprocessing and has to be taken care of
before decimation.
Laser noise residuals stemming from postprocessing

delays depend on the interpolation method and the ability
to make precise ranging measurements. In this paper, we
extensively rely on Lagrange interpolation, which has a
maximal flat response at DC. “Windowed sinc” kernels [32]
or numerically optimized kernels provide alternative
interpolation options. These are currently under study.
Interpolation kernels of shorter length have smaller compu-
tational cost and result in less truncation at the boundaries
(where the interpolation kernel does not completely overlap
with the data). This problem becomes more critical in the
presence of gaps. In this paper, we studied the impact of

contracting processing delays, i.e., combining nested delays
first to form a single delay operation. We find that the best
delay contraction strategy depends on the locking configu-
ration and the particular numerical values of the delays.
As mentioned in the previous paragraph, the determi-

nation of accurate and precise intersatellite ranges is crucial
for reducing laser noise in TDI. We show that a ranging bias
of a few meters is sufficient to suppress laser noise below
the picometer reference curve. Furthermore, the current
estimate for the in-band component of the ranging error is
modulation noise and exceeds the reference curve at low
frequencies. This highlights that modulation noise is a more
significant contribution in the overall LISA noise budget.
The results presented in this paper should be independent

of the time reference frames the measurements are defined
in. Therefore, the general findings should still be valid for
measurements sampled according to realistic clocks that are
processed using “Time-delay interferometry without clock
synchronization” presented in [13]. Additionally to flexing
arms due to orbital dynamics, clock drifts of the order of
10−7 become relevant for the flexing-filtering effect.
Furthermore, extra care must be taken when extracting
the delay estimates from the sideband measurements since
measured pseudo-ranges have an in-band component. Here,
equivalent filtering must be applied to the sideband
beatnotes such that they are compatible with the clock
noise contributions in the carrier beatnotes. Any difference
in the filters’ transfer function will produce additional
ranging noise in the delay estimates.
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APPENDIX A: ANTIALIASING FILTER DESIGN

The main objective of the antialiasing filter is to prevent
power folding during decimation. In the numerical simu-
lations performed in this work, we simulate the physics at
16 Hz and decimate to 4 Hz. As the LISA band only
reaches up to 1 Hz we allow for aliasing between 1 Hz and
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2 Hz, the Nyquist frequency after decimation. To save
computational cost we aim to use a minimum number of
filter coefficients. We optimize the filter design by adopting
the Parks-McClellan algorithm [33,34] to account for the
fact that the picometer reference curve has a f1 shape in
amplitude. The resulting transfer function and its derivative
which is of relevance for the flexing-filtering coupling
(see Appendix B 1) are plotted in Fig. 6. As described
above the attenuation of the filter in the stop-band is relaxed
between 2 Hz and 3 Hz, and 5 Hz and 7 Hz as those bands
reside at 1 Hz to 2 HZ after folding. The final filter design
that respects the picometer reference curve for aliasing
discussed in Sec. IV and Appendix B has a total of 29
coefficients which represents a reduction by a factor of five
compared to the default implementation of the LISA
simulators which use 145 coefficients.

APPENDIX B: DERIVATION OF ON-BOARD
PROCESSING RESIDUALS

1. Flexing-filtering coupling

Let us derive the contribution coming from the commu-
tator ½F;D�, first described in [15] and dubbed “flexing-
filtering coupling.”We assume that the delay dðtÞ is slowly
varying over the filter length and that its first derivative ḋðtÞ
is small. We use Eq. (7), and expand ½F;D�ϕðtÞ at leading
order in ḋðtÞ to find

½F;D�ϕðtÞ ≃ ḋðtÞDGνðtÞ: ðB1Þ

whereG is a filter operator defined similarly to F in Eq. (7)
with hGðτÞ ¼ τ · hFðτÞ.
Because of the orbital dynamics of the LISA constella-

tion, ḋðtÞwill vary on timescales of several months and, as a
result, so will the level of the laser noise residual introduced
by the flexing-filtering coupling. However, over sufficiently
short observation times we can assume ḋ to be constant. In
such a case the PSD of Eq. (B1) reads

S½F;D�δϕ ðfÞ ¼ ḋ2




 1

2π

dh̃FðfÞ
df





2SνðfÞ: ðB2Þ

For longer observation times, one can use the maximum
value of ḋ as given by current predictions for the orbital
dynamics of LISA in order to derive an upper bound for
this PSD.

2. Decimation-delay commutator

The second commutator appearing in Eq. (21) is the
commutator of the decimation and delay operations,

½S;D�ϕðtÞ ¼ SDϕðtÞ − DSϕðtÞ: ðB3Þ

Those operations do not commute due to the nonlinear
nature of the decimation process. The PSD of this

expression can be derived using the definition in
Eq. (10). The different aliases that are folded in band
are modulated by a sine-squared factor. We obtain

S½S;D�δϕ ðfÞ ¼ 4 ·
XM−1

n¼1

cnðdÞ · SðnÞϕ ðfÞ; ðB4Þ

where the modulating factor cn is given by

cnðdÞ ¼
(
sin2

�
πfsd n

2

�
for n even;

sin2
�
πfsd

nþ1
2

�
for n odd:

ðB5Þ

In the special case where the delay d becomes an integer
multiple of the sampling time Ts ¼ 1=fs decimation and
delay operations commute and the residual becomes zero.
For a time-varying delay, this particular residual is non-
stationary because its power is modulated as d evolves in
time. To account for this, we later consider only the upper
bound obtained for cn ¼ 1 for all n,

S½S;D�δϕ ðfÞ ≤ 4 ·
X∞
n¼1

SðnÞϕ ðfÞ: ðB6Þ

This bound is independent of the delay, and corresponds
to the case of full anticorrelation between SDϕðtÞ and
DSϕðtÞ in Eq. (B3).

3. Comparison with numerical simulations

The numerical simulations that are used in this work to
validate the analytic models are performed in units of
frequency in order to preserve numerical precision. As
shown in [6], any delay operation on frequency data can be
represented by the usual shift of the argument and a
multiplicative Doppler factor,

ḊνðtÞ ¼ ð1 − ḋðtÞÞ · νðt − dðtÞÞ: ðB7Þ

We can then easily rewrite the commutator given in Eq. (21)
in terms of frequency data by replacing every occurrence of
the delay operator D by its Doppler equivalent. It reads

½SF; Ḋ�νðtÞ ¼ SFḊνðtÞ − ḊSFνðtÞ: ðB8Þ

Here, we need to account for the Doppler factor to cancel
laser noise to first order. However, we find that it only has a
negligible impact on the laser noise residual, and we can
write for the PSDs

SS½F;Ḋ�δν ðfÞ ≃ jS̃j2
�
ð2πfÞ2ḋ2





 1

2π

dh̃FðfÞ
df





2SνðfÞ
�
; ðB9aÞ

S½S;Ḋ�Fδν ðfÞ ≃ 4
X∞
n¼1

cnðdÞðjF̃j2SνÞðnÞðfÞ: ðB9bÞ
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We note that for the full commutator in Eq. (21), we need
to apply S to the flexing-filtering contribution and account
for the fact that laser noise is filtered prior to passing it
through the decimation-delay commutator. In our numeri-
cal implementation, the effect of decimating the flexing-
filtering residual was negligible compared to the in-band
contribution. Nevertheless, we include it for completeness
as it strongly depends on the filter design.
In order to test the validity of the theoretical model given

by Eq. (B9), we compare it to numerical simulations
that generate time series corresponding to Eq. (B8).
We consider white laser frequency noise in νðtÞ with an
ASD of 30 Hz=

ffiffiffiffiffiffi
Hz

p
and neglect the central laser frequency

of 2.816 × 1014 Hz (its coupling to the commutator is
vanishing). The simulation is performed at a sampling rate
of 16 Hz and is then decimated down to 4 Hz. Antialiasing
is performed using an FIR designed according to
Appendix A. The delay operator is modeled by numerical
interpolation of the data using Lagrange polynomials
(cf. Sec. III B).
In Fig. 7 we compare the simulated data against the

analytical model presented in Eq. (B9). The numerical
result is entirely explained by aliasing as the flexing-
filtering remains subdominant across the band.

APPENDIX C: DERIVATION OF TDI RESIDUALS

1. Interpolation residual

We follow [32] and implement the postprocessing delay
operation in TDI as an interpolation with a fractional delay
filter. Lagrange interpolation has demonstrated its suitabil-
ity in this context, and we thus use it as the baseline in this
work. In general, we can model postprocessing delays as

FIR filters. For convenience, we split the delay into an
integer shift j and a fractional shift ϵ ranging from 0 to 1.
The latter defines the coefficients of the interpolation kernel
knðϵÞ with −N=2 ≤ n ≤ N=2 − 1, which is convolved with
the discrete data samples ϕn,

ðDϕÞn ¼
XN=2−1

m¼−N=2

kmðϵÞ · ϕn−j−m: ðC1Þ

Before the convolution of Eq. (C1) is performed, the data
samples are shifted by the integer shift j. The above
formula holds for interpolation kernels of even length N.
For odd N, a similar expression can be derived. Using
Eq. (7), we find

hDðτÞ ¼
XN=2−1

m¼−N=2

kmðϵÞ · δðτ − ðjþmÞTsÞ: ðC2Þ

We define the additional phase residual caused by the
interpolation error as

δϕDðtÞ ¼ ðD −DÞϕðtÞ ¼ DðD−1D − 1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Δ

ϕðtÞ ðC3Þ

and use Eq. (8) to derive the residual in terms of PSD. We
find

SDδϕðfÞ ¼ jh̃DðfÞe2πifd − 1j2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jΔ̃j2

SϕðfÞ: ðC4Þ

In general, the interpolation kernel kmðϵÞ has to be adjusted
for every sample n to account for time-dependent time
shifts. Therefore, the flexing arms of LISA will produce a
nonstationary interpolation residual as the fractional
delay ϵ scans through different values. At ϵ ¼ 0 and
ϵ ¼ 1, the delay is a pure integer shift and the residual
vanishes. Assuming that the worst case is obtained for
ϵ ¼ 0.5,11 we can derive an upper bound for the residual
induced by interpolation.
As suggested in [32], and already mentioned at the

beginning of this section, a suitable interpolation method is
Lagrange interpolation, and we use in this work. The
interpolation kernel km is derived from fitting a Lagrange
polynomial through a set of neighboring samples. This
method is known for producing a maximally flat frequency
response at DC and is therefore well suited for LISA data
processing, as it performs well over the entire LISA band
(10−4 to 1 Hz) when using high interpolation orders.12

FIG. 7. Commutator residuals from filtering and decimation.
We compare the numerically simulated data (solid blue) against
analytic models (dashed lines). In dashed blue we show the model
for the coupling of the decimation-delay commutator (aliasing)
and in dashed red the flexing-filtering effect. For reference we
also plot the picometer reference curve in dashed black including
the transfer function of the filter.

11A rigorous proof is needed to validate this assumption which
was only found to be true empirically, in our work, and
specifically for Lagrange interpolation.

12Assuming a sampling rate of 4 Hz, typical filter lengths used
for postprocessing delays in TDI are in the range 32 to 66.
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Alternative interpolation kernels are under study that use
less coefficients and optimize their performance over the
entire band (and not only at DC).

2. Ranging residual

Any estimate of the delay d̂ðtÞ differs from the true delay
dðtÞ by a ranging error rðtÞ. We define the corresponding
delay operator as

D̂ϕðtÞ ¼ ϕðt − dðtÞ − rðtÞÞ ≃ DϕðtÞ − rðtÞDϕ̇ðtÞ; ðC5Þ

where we have assumed rðtÞ to be small and performed a
series expansion to first order. The ranging residual is then
given by

δϕD̂ðtÞ ¼ ðD̂ −DÞϕðtÞ ¼ −rðtÞDνðtÞ ðC6Þ

with νðtÞ ¼ ϕ̇ðtÞ. Similarly to laser phase or frequency,
cf. Eq. (4), we decompose the ranging error rðtÞ into an out-
of-band component roðtÞ and an in-band component rϵðtÞ.
Here, roðtÞ absorbs ranging biases that are of the order of
3 ns [13] and might be slowly drifting. The in-band
component rϵðtÞ has a root-mean-squared value of
∼100 fs [assuming the PSD in Eq. (53)]. Therefore,
rϵðtÞ ≪ roðtÞ and we find as the prominent in-band
contributions the coupling of laser noise to the ranging
bias and the coupling of ranging noise to the MHz beatnote
frequency13

rðtÞDνðtÞ ≃ roðtÞDνϵðtÞ þ rϵðtÞDνoðtÞ: ðC7Þ

For completeness, in Appendix F we present the coupling
of the stochastic in-band ranging error to laser frequency
noise.
To simplify the calculations we assume the out-of-band

components of the ranging error and the beatnote frequency
to be constant. We can readily write down the PSD of
Eq. (C6) as

SD̂δϕðfÞ ¼ ðroÞ2SνðfÞ þ ðνoÞ2SrðfÞ: ðC8Þ

3. Comparison with numerical simulations

Once again, we check the validity of our analytic model
using simulations performed in units of frequency. Using
Eq. (B7), we write down the expression corresponding to
the left-hand-side of Eq. (22) for frequency data as

δνD̂ðtÞ ¼ ð1 − ˙̂dðtÞÞ · D̂νðtÞ − ð1 − ḋðtÞÞ · DνðtÞ: ðC9Þ

In order to simulate time series data corresponding to
Eq. (C9), we first generate a generic beatnote frequency
with a constant offset of 10 MHz and a white laser
frequency noise component with an ASD of 30 Hz=

ffiffiffiffiffiffi
Hz

p
at a sampling frequency of 4 Hz. Both the postprocessing
delay D̂ and the propagation delay D are implemented as
fractional delay filters. To simulate the latter, we use a very
high interpolation order (N ¼ 502), such that the interpo-
lation error becomes negligible in comparison to that of the
postprocessing delay. The ranging error present in the
postprocessing delay is modeled by a bias B ¼ 10−8 s, and
ranging noise14 with an ASD of 10−15 s=

ffiffiffiffiffiffi
Hz

p ðHzf Þ. The
nominal value of the delay is taken to be equal to
d ¼ 8.125 s. This yields the worst case interpolation error,
with a fractional part ϵ ¼ 0.5.
In Fig. 8 we compare the PSD of the numerical time

series corresponding to Eq. (C9) with the analytic expres-
sions for each of the two components of Eqs. (C4) and (C8)
reexpressed for frequency data, i.e.,

SDδνðfÞ ¼ jΔ̃j2SνðfÞ; ðC10aÞ

SD̂δνðfÞ ¼ ð2πfÞ2 · SD̂δϕðfÞ: ðC10bÞ

The interpolation residual (dashed teal) is strongly
dependent on the length N of the interpolation kernel.

FIG. 8. Processing residuals in application of the fractional
delay filter containing ranging errors. We compare the numeri-
cally simulated data (solid blue) against the analytical models for
the ranging residual caused by ranging noise (dashed-dotted blue)
and a constant bias (dashed blue). Additionally, we plot models
for the interpolation residual (dashed red) for different interpo-
lation kernel lengths N ¼ 14; 42 alongside the picometer
reference curve in dashed black for reference.

13In the notation of Eq. (30), ro corresponds to Bij while rϵðtÞ
corresponds to the combination −DijMjðtÞ þMiðtÞ.

14We choose a red tilt for ranging noise to be easily distin-
guishable from coupling of the ranging bias to laser frequency
noise. The level is comparable with realistic models of modu-
lation noise discussed in Sec. III.
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For this reason, we show the interpolation residual obtained
for N ¼ 14, and 42. The postprocessing delay used in the
numerical implementation is performed with an inter-
polation order N ¼ 42. As shown in the figure, the model
of Eq. (C10) agrees with the data over all frequencies.

APPENDIX D: RANGING PROCESSING

The ranging processing discussed in this section is
mostly adopted from [13] and we introduce only minor
changes to the algorithm. The main differences are that we
write it down in units of phase and reformulate the
suppression of modulation noise contributions originating
from right-handed optical benches. Additionally, we
assume that the sideband phases are read out using a
feed-forward scheme. This measure avoids tracking the
carrier phase redundantly and also accounts for the differ-
ence in modulation frequencies on each MOSA. Therefore,
the sideband phases of the interspacecraft and reference
interferometer read

isisbij ¼ Dijϕ
m
ji − ϕm

ij − ðνmji − νmijÞt; ðD1aÞ

rfisbij ¼ ϕm
ik − ϕm

ij − ðνmik − νmijÞt; ðD1bÞ

where the phase of the modulation is given by

ϕm
ijðtÞ ¼ νmij · ðtþMijðtÞÞ: ðD2Þ

Here, MijðtÞ accounts for timing jitter due to modulation
noise. Inserting this definition into Eq. (D1) yields

isisbij ¼ −νmjidij þ Dijν
m
jiMji − νmijMij; ðD3aÞ

rfisbij ¼ νmikMik − νmijMij; ðD3bÞ

which has a similar algebraic structure to the carrier phases
[cf. Eq. (1)] where the product νmijMij takes the place of the
laser phase ϕij. We now use the definition of the interme-
diary variable ηij for the sidebands15 [see Eq. (13a)] to
cancel modulation noise contributions stemming from
right-handed MOSAs,

ηsbij ¼ −νmjidij þ Dijν
m
jkMj − νmijMi: ðD4Þ

Here, we use the shorthand notationM1 ¼ M12,M2 ¼ M23

and M3 ¼ M31.
Finally, the variables ηsbij have to be scaled by the

respective modulation frequency and multiplied by −1 in
order to yield a low noise estimate of the delay

d̂ij ¼ −
ηsbij
νmji

¼ dij −Dij

νmjk
νmji

Mj þ
νmij
νmji

Mi: ðD5Þ

Assuming that modulation frequencies only differ by a
fraction of a percent we can approximate the above
expression by setting the ratios of frequencies to 1. Doing
so, we recover the stochastic component in Eq. (30).
In practice, we process data in frequency units. Hence,

the above procedure is rewritten in frequency by taking a
global time derivative. By doing so, Eq. (D5) yields an
accurate measurement of the delay derivative ˙̂dij, which
then needs to be integrated to recover the delay itself,
required for TDI. The integration constant is derived from
the PRN ranging measurement [13] and is the origin of the
appearance of the bias Bij in Eq. (30).

APPENDIX E: DIFFERENTIAL DOPPLER SHIFT

As explained in Sec. III, any TDI combination repre-
senting a virtual two-beam interferometer does not cancel
the laser phase perfectly for flexing arms but is limited by a
residual given by the delay commutator. The origin of this
residual is the travel time difference Δd between the two
virtual beams. The deterministic component of this residual
can be calculated and subtracted from the TDI observable
[see Eq. (35)]. Here, we present an efficient scheme to
calculate Δd. First we recognize that the delay dij can be
written as

dijðtÞ ¼ t − Dijt; ðE1Þ

which has the same algebraic structure as ηij up to a sign.
Here, the time argument t takes the place of the laser phase
ϕi and ϕj [cf. Eqs. (1) and (13)]. Using ηij ¼ dij as inputs
to TDI yields the travel time difference Δd as

X ¼ −½DA;DB�t ¼ dAB − dBA ¼ Δd; ðE2Þ

where AB and BA denote the paths of the counter-
propagating beams of an arbitrary TDI combination X
representing a two-beam interferometer.
As processing is performed in frequency units in this

paper we are more interested in the derivative of Δd. To
avoid numerical problems we thus operate on the delay
derivatives ḋij directly and form Δḋ ¼ Ẋ following the
procedure explained in [6].

APPENDIX F: COUPLING OF RANGING NOISE
TO LASER NOISE

In Sec. III B, we neglect the coupling of the stochastic
component of the ranging error to laser noise as it appears
to be much weaker compared with the coupling to the MHz
beatnote frequency. However, for the sake of completeness
and as it becomes relevant in processing pipelines where

15The postprocessing delays required to calculate ηsbij have
much more relaxed error requirements than is the case for laser
noise cancellation. We can therefore use the delay estimates from
the PRN.
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one removes the phase ramp operates on the fluctuations
directly we present the coupling mechanism below.
To suppress all other laser noise couplings in the final

TDI combination we consider a setup where we have
already removed the phase ramp from the interferometric
measurements such that they only track the differential
phase noise pij of the six lasers,

isiijðtÞ ¼ DijpjiðtÞ − pijðtÞ; ðF1aÞ

rfiijðtÞ ¼ pikðtÞ − pijðtÞ: ðF1bÞ

For simplicity we omit the antialiasing filtering and
decimation that was considered in Eq. (1).
Next, we insert Eq. (F1) into Eq. (13a) where the

postprocessing delay D̂ is used and only accounts for a
stochastic ranging error rðtÞ. We can express ηij for the left
and right-handed MOSAs as

ηij ¼ D̂ijpj − pi − ðD̂ij − DijÞpji: ðF2Þ

Here, we use the short-hand notation p1 ¼ p12, p2 ¼ p23

and p3 ¼ p31. We recognize that the last term in Eq. (F2) is
already a laser noise residual and we neglect higher order
couplings in the following. Then, we use the intermediary
variables, πij, ρij and σij defined in Eqs. (13) and (14) to
find the total laser noise residual in the second-generation
Michelson combination X2. It consists of the residual in
Eq. (F2) that is propagated through TDI as well as the
commutator of postprocessing delay operators

½D̂13121;D̂12131�¼ ½D13121;D12131�þðD̂131212131−D131212131Þ
−ðD̂121313121−D121313121Þ ðF3Þ

applied to p1. Here, we split the commutator into the
“usual” delay commutator and two additional terms that
produce further laser noise residuals. For equal arms, the
full residual in X2 reads

δXD̂
2 ¼ C

	
Dðr31Dṗ13Þ þ ðr13Dṗ31Þ

−Dðr21Dṗ12Þ − ðr12Dṗ21Þg
þCfr12 þDr21 − r13 − Dr31



· D8ṗ1; ðF4Þ

where we have used Eq. (C6) and have approximated
nested ranging noise as

rijikikiji ≃ riji þ D2riki þ D4riki þD6riji; ðF5aÞ

riji ≃ rij þ Drji: ðF5bÞ

Finally, we compute the PSD of Eq. (F4) by assuming that
all laser and ranging noise terms are uncorrelated and have
identical noise properties. We find

SD̂δX2
ðfÞ ¼ 4jC̃j2ðSrðf0Þ � Sṗðf0ÞÞðfÞ

þ 4ðjC̃j2Srðf0Þ � Sṗðf0ÞÞðfÞ; ðF6Þ

where we have neglected any cross terms between the
first two lines and the last line in Eq. (F4). The � sign
denotes convolution (in frequency domain) which stems
from the time domain products of ranging and laser noise
contributions.
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