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The decay or annihilation of dark matter particles may produce a steady flux of very-high-energy gamma
rays detectable above the diffuse background. Nearby clusters of galaxies provide excellent targets to
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search for the signatures of particle dark matter interactions. In particular, the Virgo cluster spans several
degrees across the sky and can be efficiently probed with a wide field-of-view instrument. The High
Altitude Water Cherenkov (HAWC) observatory, due to its wide field of view and sensitivity to gamma
rays at an energy scale of 300 GeV–100 TeV is well-suited for this search. Using 2141 days of data, we
search for γ-ray emission from the Virgo cluster, assuming well-motivated dark matter substructure
models. Our results provide some of the strongest constraints on the decay lifetime of dark matter for
masses above 10 TeV.

DOI: 10.1103/PhysRevD.109.043034

I. INTRODUCTION

Galaxy clusters—massive (>1013M⊙) gravitationally
bound conglomerates of galaxies within a few Mpc of
each other—are among the most important probes of large-
scale structure in the Universe. The kinematics of galaxy
clusters have historically constituted an important piece
of evidence for the existence of dark matter (DM) [1]. The
particle nature of DM, however, remains elusive. Among
the predictions of various theories of physics beyond the
Standard Model, weakly interacting massive particles
(WIMPs) are the leading candidates for particle DM.
The aforementioned particles may be indirectly detected
in astrophysical surveys via the electromagnetic or neutrino
signatures of WIMP self-interactions [2]. These particles
may annihilate or decay in regions of high DM density, and
produce gamma rays, either directly or through the decay of
intermediate standard model particles.
As described in Sec. III B in detail, the signal due to

DM from a given region of interest is a function (among
other factors) of the DM density in the region. For DM
annihilation, the signal is proportional to the square of the
DM density (since two particles are required for annihila-
tion). On the other hand, for DM decay, the signal is
proportional to the DM density as a single particle can
decay. In this work, we focus on DM decay for which large
extended regions in the sky, such as galaxy clusters, are
particularly good targets. In searches for annihilation, there
is no significant advantage from large spatial extensions;
pointlike sources such as dwarf galaxies are better suited
due to the aforementioned dependency on DM density-
squared (see Refs. [3–7] for HAWC searches for annihilat-
ing dark matter from various targets). For WIMP masses
above 1 TeV, both γ-ray and neutrino telescopes have
performed searches, scanning nearby galaxies and clusters
and yielding important constraints on the decay lifetime
of DM [6,8–14].
The Virgo cluster is the closest galaxy cluster consisting

of more than 1200 known galaxies and spanning a diameter
of approximately 12° on the sky [15]. One of the most
notable objects near the center of the cluster is the super-
massive black hole in the galaxy M87. This active galactic
nucleus has been known to emit TeV gamma rays via
accretion [16–19]. The large apparent size of the galaxy
cluster, with multiple embedded point sources within,

makes it difficult to search for γ-ray emission via
Imaging Air Cherenkov Telescopes due to their small
fields of view. The HAWC observatory’s wide field of
view makes it well-suited to probe extended objects for
γ-ray signatures of DM. In this work, we perform an
analysis to search for gamma rays produced by the decay of
DM through several bosonic, leptonic, and quark channels
in the TeV–PeV mass range. Heavy DM particles beyond
the GeV scale are well motivated in several theories;
see Ref. [20] and references therein for examples.
This paper is structured as follows. In Sec. II, we review

the HAWC detector and data set used in this work.
We describe the analysis details in Sec. III, which include
the spectrum of M87 and the DM models used in the
search. In Sec. IV, we present our results in the form of
lower limits on the decay lifetime of DM for various
channels and conclude.

II. HAWC DATA

The HAWC observatory is an array of 300 water-
Cherenkov detectors (WCDs), covering an area of
22; 000 m2, at an altitude of 4.1 km above sea level in
the state of Puebla, Mexico. Recently, HAWC has been
upgraded to include an additional 345 outrigger tanks,
though data from the outriggers are not included in this
analysis. Each WCD consists of a 4.5 m high tank filled
200,000 litres of purified water instrumented with four
photomultiplier tubes. HAWC detects the secondary air
showers of charged particles produced by gamma rays and
cosmic rays interacting with the earth’s atmosphere. The
spatial and temporal distribution of charge registered by the
array during an event is used to reconstruct the direction,
energy and primary particle type initiating the shower. The
observatory is sensitive to gamma rays of energies between
300 GeV to more than 100 TeV, achieving a hadronic
background suppression of more than 99% at the highest
energies. HAWC can monitor the sky continuously with an
instantaneous field of view of 2 sr, making it particularly
useful for detecting extended regions of emission that
subtend several degrees on the sky. More details of the
detector hardware and event reconstruction algorithms can
be found in Refs. [21,22].
We use 2141 days of “Pass 5” data, as introduced in

[23,24], collected between March 2015 and January 2021.
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The energies of the γ-ray events in the data are recon-
structed using a retrained neural network first described
in Ref. [25].

III. ANALYSIS

In this section, we first describe the observation of the
Virgo cluster region in HAWC data, including the significant
point source emission fromM87.We then describe the binned
maximum likelihood method that is used to search for
emission compatible with a DM hypothesis after accounting
for the signal contamination from the direction of M87.

A. Region of interest

To detect point sources in the sky, we project the HAWC
data on a healpix grid of NSIDE 1024, and compare the
events in each pixel to the isotropic background as
described in Ref. [26]. The background is estimated using
the method of direct integration, which effectively con-
volves the all-sky rate with the detector acceptance in
2 hour periods [27]. Figure 1 shows a 10° by 10° map of
HAWC data spanning the Virgo cluster, centered at the
coordinates (RA ¼ 186.63°, Dec ¼ 12.72°). The Virgo
Cluster spans about 12° on the sky and consists of multiple
galaxy groups or subclusters. Two of these subclusters,
Virgo A and Virgo B, are centered on the galaxies M87
and M49, respectively [28]. The other subcluster is

centered around M86, an elliptical galaxy [29]. The
subclusters A and B dominate the Virgo cluster mass [29].
A ∼ 5σ excess at the position of M87 is observed in HAWC
data (Fig. 1). No significant emission is observed at the
location of M49.

1. M87

We determine the energy spectrum that best describes
the HAWC observation of M87 by fitting the data to an
attenuated power law. The spectral energy distribution
dN=dE can be parametrized as

dN
dE

¼ A

�
E
E0

�
−γ
expð−τeblÞ; ð1Þ

where A is the flux normalization, E0 is the reference
energy fixed at 1 TeV, γ is the spectral index. The factor
expð−τeblÞ is the survival probability of gamma rays as they
propagate over intergalactic distances and interact with
the extragalactic background light (EBL). τebl is the optical
depth of the intervening medium through which the
photons propagate. We use the model from Ref. [30] to
describe τebl. We note that considering the low redshift of
the target, the impact of EBL attenuation is small and only
significant for the γ-ray signal above ∼20 TeV. At 1 TeV,
the survival probability, expð−τeblÞ, has a value of ∼0.96.
At 100 TeV, it decreases to ∼0.001.
We use the same likelihood maximization framework as

used in previous HAWC publications [25,31]. The best-fit
values of the parameters and their 1σ errors that describe
the spectrum of M87 are given in Table I. The test statistic,
given by the negative ratio of the best-fit likelihood, and the
background-only likelihood is 35. The flux at 1 TeV is
consistent with measurements by VERITAS and H.E.S.S.,
within experimental uncertainties [16–18]. A detailed
HAWC publication on the time-dependent and multiwa-
velength emission of M87 is in preparation. For this
analysis, we treat it as a steady foreground source in our
region of interest.

B. Spatial and spectral model of dark matter

The flux of gamma rays from decaying DM in an
astrophysical object is given by

dϕ
dE

¼ 1

4πτMχ

dN
dE

D expð−τeblÞ; ð2Þ

FIG. 1. The point-source significance map around the Virgo
cluster region using 2141 days of HAWC data with Pass 5
reconstruction and the methods used in Ref. [26]. The positions
of the two main subclusters used in this analysis are labeled as
M87 and M49.

TABLE I. The best-fit spectral normalization and index for
the fit to Eq. (1) for M87, with E0 fixed at 1 TeV. The reported
uncertainties are statistical.

A × 10−13 (TeV−1 cm−2 s−1) γ

3.8� 1.8 2.2� 0.2
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where τ is the decay lifetime of DM, Mχ is the DM mass,
dN=dE is the γ-ray spectrum per DM decay, and D is
known as the D factor encoding the spatial distribution of
DM in the target of interest. It is defined as the integral of
the DM density ρDM along the line-of-sight (l.o.s.) and over
the solid angle ΔΩ,

D ¼
Z
ΔΩ

Z
l:o:s:

dΩ ds ρDMðs;ΩÞ: ð3Þ

We consider decaying DM producing final-state photons
via five different channels: bb̄, ττ̄, WþW−, μþμ−, and tt̄.
We consider DM masses between 1 TeV and 1 PeV. For
each channel, we obtain the γ-ray spectrum for decays from
the publicly available HDM repository [20], incorporating
the electroweak corrections. For each channel, we assume a
100% branching ratio, i.e. the DM particle only decays to a
given lepton, quark, or boson channel.
The D factor at a given position in the region of interest

depends on the assumed DM halo properties. The DM halo
for galaxies consists of a smoothly distributed main halo
as well as an additional substructure, that is attributed to
the gravitationally clumped overdensities in the main halo.
We construct a spatial template for the Virgo cluster as a
combination of the DM templates for M87 and M49 using
the software package CLUMPY [32].

Each generated template encompasses a region of
interest with radius 7° and the combined M87-M49
template covers 10° in right ascension and 12° in declina-
tion. To generate these templates, we define the parameters
for the underlying DM distribution by referring to the
main halo and substructure properties inferred by the
velocity profiles of the stars in the galaxies and N-body
simulations [33]. For the distribution of DM in the main
halo and subhalos we use the generalized Navarro-Frenk-
White (NFW) profile [34], with the values of free
parameters fixed following Ref. [35] (Table II).
Another important input is the subhalo concentration
which is usually parametrized as a function of mass
over-density within a fixed radius of the halo center [36],
by fitting data from cosmological simulations. In this
work, we adopt the characterization in Ref. [37] that takes
into account the spatial dependence of subhalos in field
halos. Other characteristic properties of M87 and M49
used in the simulations are listed in Table II. The
simulated D-factor distributions for the two subclusters
are shown in Fig. 2. We note that compared to DM
annihilation, the decay limits are relatively insensitive to
underlying assumptions about the exact DM profile. The
D factor is primarily determined by the mass of the
underlying main halo as shown in the case of other
extended objects analyzed with HAWC [6].
The two D-factor templates for the two subclusters

are added together and analyzed as a single extended
source. The expected number of events in a given pixel
comprising the DM template and the point source M87
is obtained by convolving the expected flux [Eq. (2)]
with the response of the HAWC detector at the given
coordinates, for a fixed DM mass and decay lifetime.
The expectation can then be compared to the null
hypothesis which consists of events due to the
isotropic background and any diffuse extragalactic
emission.

TABLE II. The various properties of M87 and M49 used in the
construction of D factors. Columns 2–6 list the distance, redshift,
virial radius, scale density and scale radius, respectively.

Object
Distance
(Mpc) z Rvir (kpc)

ρs
(M⊙=kpc3) rs (kpc)

M87 17.2 0.00428 1700 6.96 × 105 403.8
M49 17.1 0.00327 880 1.41 × 106 157.7

FIG. 2. The spatial templates or D factors used in this work for the two subclusters. Left: M87. Right: M49.
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FIG. 3. 95% confidence level lower limit constraints on the time of DM decay via bb̄, ττ̄, μþμ−, WþW− and tt̄. The HAWC results
from the Virgo cluster and sensitivity (expected limits) are shown in the black solid and dotted lines, respectively. The shaded
bands indicate the central 68% and 95% expected limits. For comparison, results are also shown from IceCube [10], Fermi-LAT [8],
LHAASO [13] and MAGIC [9] Collaborations.
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IV. RESULTS AND CONCLUSION

No significant emission (beyond M87) is observed from
the assumed DM morphology. The highest TS value for a fit
to the DM hypothesis is 5.2 (< 2σ), for 1 PeV dark matter
decay to μμ̄. We, therefore, place lower limits at 95% CL on
the decay lifetime τ for every combination of DM mass and
channel. Figure 3 shows the resulting constraints on τ as a
function of DM mass for all channels considered in this
work. We also compute the sensitivity of the analysis by
repeating the search on background-only regions in the same
declination range as the Virgo cluster in 200 trials per mass-
channel combination. In each trial, the background is
poisson-fluctuated to produce a simulated dataset. Upper
limits are obtained on the decay lifetime of DM following
the method outlined above, and the median upper limit from
these trials is considered to be the sensitivity of the analysis.
The strongest constraints are obtained for DM decay to bb̄
due to the soft spectrum of the channel, with much of the
signal coming from multi-TeV energy photons within
HAWC’s sensitivity range. At the highest masses, the limits
(and sensitivity) worsen. Different EBLmodels differ in their
predictionof the abosrption at a given energy.Wenote that the
Franchescini model used in this work is a conservative choice
[30] when it comes to the effect on the constraints. Using a
model such as in Ref. [38] would improve the limits up to a
factor ∼10. We also compare our results to limits obtained
by IceCube [10], Fermi-LAT [8], LHAASO [13] and the
MAGIC Collaborations [9] using nearby galaxies/clusters.
As seen in the figures, HAWC limits are the strongest for
theWþW− channel for masses between 1 TeVand 200 TeV.
For bb̄ and ττ̄, HAWC constraints are the strongest above
∼5 TeV to 100 TeV. HAWC continues to take data, and with
the addition of outrigger tanks, will be able to extend its
sensitivity to multi-PeV DM masses in the future.
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