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A wormhole might have two new kinds of marginally unstable photon spheres. They could be formed
either by the merger of the photon sphere and throat or by the coincidence of the photon sphere, antiphoton
sphere, and throat. Both of them are unique for an object with throat. We investigate the strong deflection
gravitational lensing near these marginally unstable photon spheres of a static and spherically symmetric
wormbhole. Its deflection angle in the strong deflection limit diverges in a manner of a power law with a
specific exponent, rather than by the well-known logarithmic law for the photon sphere. We analytically
obtain its observables, and apply them to a wormhole in the beyond Horndeski theory.
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I. INTRODUCTION

The detection of gravitational waves [1-6] and the direct
images of the supermassive black holes in the centers of
the galaxy M87 [7-12] and our Galaxy [13—18] suggest the
widespread existence of black holes in the Universe. As the
simplest object predicted by Einstein’s general relativity,
the black holes have been playing a significant role in the
astrophysics, gravitational physics, and cosmology. However,
the singularities and event horizons of the black holes might
trigger the divergence of the curvature of the spacetime
[19,20] and the information loss problem [21-24]. To address
these problems, numerous ideas have been proposed by
constructing a regular and/or horizonless spacetime [25-36].
One of them is a wormhole which could connect different
regions of spacetime by its throat and mimic a black hole with
similar observational signals [37]. Therefore, distinguishing
these two kinds of objects will pave the way for the tests and
understanding of the laws of gravitation.

There are two possible ways to distinguish the wormholes
from the black holes by the gravitational waves and by the
electromagnetic waves. However, the gravitational waves
might only explore the existence of the photon sphere, which
is an unstable photon orbit [38], rather than the event horizon,
and it is difficult to rule out wormholes similar to black holes
[39]. For the ground-based detectors, the event rate of the
echoes, which are the prominent signature in the late-time
waveforms of the gravitational waves emitted by an end
product of a compact binary coalescence and might show the
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distinctive features between the wormholes and black holes
[39-43], is small, and it requires more sophisticated searches
[44]. Thus, we focus on the electromagnetic waves in this
paper. The trajectory of a photon passing through a massive
object might be deflected by its gravitational field, causing the
gravitational lensing [45]. In the scenario of strong deflection
gravitational lensing with its deflection angle much bigger
than 1, a photon could be bent intensively and wind around
the compact object by several times, producing the multiple
relativistic images and a shadow [46—48]. The direct images
of M87* [7-12] and Sgr A* [13-18] by the Event Horizon
Telescope (EHT) indicate the possibility of observing these
effects and its potential of examining the spacetime [49-73]
and testing the gravitational theories [74-78].

To confront the theories of a wormhole with the
observations, it is necessary to model its strong deflection
gravitational lensing with detail. Its analytic description is
built on special circular orbits of the photon, which include
the photon sphere, the antiphoton sphere, and the throat in
the wormhole spacetime [38,63]. The former two are the
unstable and stable orbits of a photon, respectively, and the
last one is the neck of the wormhole. The strong deflection
gravitational lensing near the photon sphere in a static and
spherically symmetric spacetime was analyzed in [48,79],
and its deflection angle diverges logarithmically in the
strong deflection limit u — u,, as [48,79]

a(u) = —a, log (ui - 1) +b,

m

+O[(ul—l)log(ui—l)}, (1)

m m
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where u and u,, are the impact parameter and its critical
value at the photon sphere, respectively, and a, and b, are
strong deflection coefficients. In a similar way, the strong
deflection gravitational lensing near the antiphoton sphere
[66] and the throat [38] were investigated. Their deflection
angles also diverge in a manner of logarithm law similar to
Eq. (1), but with different coefficients which are noted as
a_, b_ [66] and ag,, by, [38], respectively.

The photon sphere and antiphoton sphere might merge
into a marginally unstable photon sphere that could also
trigger the strong deflection gravitational lensing [80]. Its
deflection angle was found to be divergent as a power law
as [80]

a(u) = ar <i - 1>_é bt O(u—u),  (2)

where ar and by are its strong deflection coefficients.

A wormhole might have two new kinds of marginally
unstable photon spheres, both of them are unique for an
object with throat. One is formed by the merger of the
photon sphere and throat. Its deflection angle in the strong
deflection limit of the Damour-Solodukhin wormhole [81]
was calculated in Refs. [82,83], but its general formalism is
still missing. The other one emerges when the photon
sphere, antiphoton sphere, and throat coincide. The strong
deflection gravitational lensing near that is still barely
known in the literature. In this paper, we focus on these two
marginally unstable photon spheres for a static and spheri-
cally symmetric wormhole, and obtain their deflection
angles in the strong deflection limit as

a(u) = a (l - 1) LR O —uy)t, (3)

Uy

where k = 4 and k = 3 are for the former and latter cases,
respectively, and @, and b, are the corresponding coef-
ficients. It shows that these deflection angles also diverge as
the power law rather than logarithm, which is similar to the
case for the merger of the photon sphere and antiphoton
sphere.

This paper is organized as follows. In Sec. II, we
investigate the deflection angle of a photon for the strong
deflection gravitational lensing near the marginally unsta-
ble photon spheres formed either by the merger of the
photon sphere and throat or by the coincidence of the
photon sphere, antiphoton sphere, and throat, respectively,
for a static and spherically symmetric wormhole, and
obtain their observables, such as the radius of the shadow,
the angular separations and magnitude differences between
the relativistic images. We apply our method to a wormhole
in the beyond Horndeski theory in Sec. III and summarize
our results in Sec. IV.

II. DEFLECTION ANGLE OF WORMHOLE
IN STRONG DEFLECTION LIMIT

The metric of a general static and spherically symmetric
Morris-Thorne wormhole spacetime can be written in the
spherical polar coordinates as (G = ¢ = 1) [84]

2

5+ r2(d6? + sin®> 6d¢?),  (4)

r

ds? = —e2®d2 + dr
1

where ®(r) and B(r) are the redshift function and worm-
hole shape function, respectively. The wormhole spacetime
have the following properties:

(1) The throat of wormhole is
(1-% <rr))|,‘h =0, where ry is the radius of the
wormhole throat.

(2) B(r) satisfies the flare-out condition, namely
B/(r th) < 1.

(3) ®(r) must be finite from the throat to spatial infinity.

Without loss of the generality, the metric of the wormhole
can also be written as

determined by

ds? = —A(r)de> + B(r)dr? + C(r)(d#* + sin® d¢?), (5)

where we demand the metric coefficients satisfy the
conditions

limA(r) =1, limB(r) =1, limC(r) = 2. (6)

Comparing the metric Eq. (4) with Eq. (5), we have the
relation for the throat

B(ry)™! = 0. (7)

In the static and spherically symmetric spacetime, a
particle will move in the same plane when its motion is
governed by the geodesic. Choosing the condition
6 = r/2, the Lagrangian for the motion of a photon can
be written as

2L = —A(r)2 + B(r)i? + C(r)¢*, (8)

where an overdot represents a derivative with respect to the
affine parameter. Since the Lagrangian is independent of ¢
and ¢, there are two constants of the motion

oL oL

pt_g_—A(r)i‘z—E, P¢:£:C(r)¢:L’ 9)

where E and L are the energy and angular momentum of
the photon, respectively.

Considering B(ry,) — oo at throat and with the condition
G XX = 0, we can rewrite the equation of motion of the
photon near the wormhole as [38,63]
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",.2 + A_IB_l(Vefsz - EZ) - 0, (10)
where the effective potential is defined as

Varlr) = 50 ()

In the gravitational lensing, a photon coming from a
source may travel to an turning point ry near the central
body and then escape again. The impact parameter of a
light ray is defined as u = L/E, which remains constant
throughout the trajectory of the photon. The turning point is
indicated by iy = 0, and, combining the motion equation,
we have

(12)

where subscript “0” represents evaluation at the turning
point ry. The deflection angle for the photon &(rq) is given
by [85]

a(rg) = I(rg) — =, (13)
where
I(ry) =2 / ]°° T (fr(o?c i (14)
with
R(r,ro) :ﬁ— 1. (15)

When the light ray passes by the vicinity of a wormhole, the
deflection angle & will diverge as r( gradually decreases. It
allows the photon to loop around the wormhole by several
times before reaching the observer and produce the
multiple relativistic images.

In order to calculate the deflection angle in the strong
deflection limit, we use a variable z defined as [79]

z=1-2, (16)

r

so that the integral function I(ry) in Eq. (14) can be
rewritten as

um=£%@mm (17)

where

f(ZJ’O)Ii,

o) G(z,ro):R%(l -2 (18)

In a wormhole spacetime, as ry — ry, B(ry) — co. We

redefine a B(r) = 1/B(r) so that B(ry) = 0 at the throat
[38]. Thus, G(z, o) in Eq. (18) can be expressed as

G(z.19) = Vegr(z,70)C(1 = 2)*, (19)

where V5 is a modified effective potential of the photon as

Verr(2. 70) = R(z, 1) B(r). (20)

Expanding G(z, r) near z = 0, we can obtain

G(z.1r) = 6z +n2? + v +x* + O0), (21)

where

o= 61\72&(0, ro), (22)
2 (i)

n=">_miV(0.ro), (23)
i=1
3. )

7y = 1V5H0. ro). (24)
i=1
¢ (i)

k=Y KkiV(0. o), (25)
i=1

and their expressions can be found in the Appendix.

The analytic description of the strong deflection gravi-
tational lensing was built on the special circular orbits of
the photon [38,48,66,80]. These circular orbits include the
following:

(1) The photon sphere [48]. It is an unstable circular

orbit for a photon at r = r,,, > ry, with a finite B(r),
which satisfies

E2

Veff(’”m):ﬁv Vi (rm) =0, Vi(rm) <0. (26)

For ry — r, we have

Om = 6|r0:rm =0, (27)

},.2 C2 _
- ;Amm By Vi (rm),  (28)

M = Ny, =

where the subscript “m” indicates the quantities

evaluated at r,, so that the leading term of f(z, ) is

z7! and the integral I(ry) diverges logarithmi-

cally [48].
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(2) The antiphoton sphere [66]. It is a stable circular
orbit at r = r, > ry,, which satisfies [66]

2

E
Veff(ra) =

i V/eff(ra) =0,

Vie(r,) >0. (29)
For ry — rg, we have [66]

O = 01y, = 0. (30)

rranﬁl_
A Bmvgff(rm)’ (31)

Mm = ’/I|r0:rc =

where r, is defined to meet A(r.)/C(r.) = Apn/Ch,
and the variable z defined in Eq. (16) should be
modified as z = 1 — r,,/r [66]. Then, the leading
term of f(z,ry) is as z7!, and its integral diverges
logarithmically [66].

(3) The one merged by the photon and antiphoton
spheres [80]. It is a marginally unstable photon
sphere at r,, = r, = rp, [80]. For a wormhole, the
radius r,,, satisfies the following relations:

B(rima)

———>0, 32
Veff(rma) ( )
Véff(ov rma) = V/eff(rma) =0, (33)
ngf(ov rma) = ngf(rma) =0, (34)

B ( rma) "

Vi (0, ring) = TV ()

(rma) > 0. (35)

The strong deflection gravitational lensing of the
light rays near the marginally unstable photon sphere
has been studied [80]. It was found that [80]

Oma = Glr():rma =0,

Mma = ’7|r0:rm:1 =0,
AC
0Ama

Yma = 7/|r0=rm.‘l = Bmavlelt/'t'<rma)7 (36)
where the subscript “ma” denotes the evaluation at
Fma» S0 that the leading term of f(z, ry) is 772, and its
integral I(ry) diverges as 272 [80]. )

(4) The throat of a wormhole [38]. Due to B(ry,) = 0 at
the throat, we can have [38]

:0’

r2 C2 _
= _%Bihvleff(rth)v (37)
th

Oth = Glr():r.h

M = ’7|r0:r(h

where the subscript “th” represents the evaluation at
- The leading term of f(z,ry) is z7!, and its
integral I(ry) also diverges logarithmically [38].
In addition, a wormhole might have two new kinds of
marginally unstable photon spheres which could be formed
either by the merger of the photon sphere and throat or by
the coincidence of the photon sphere, antiphoton sphere,
and throat. The strong deflection gravitational lensing near
these orbits is still barely known, and we will investigate in
detail these special cases in the following parts.

A. Merger of the photon sphere and throat

When the photon sphere and throat merger into one at
Fm = F'th = Fmih» WE can have

B(rmm) =0, Vig(rmm) =0, Vi(rmm) <0, (38)

which are equivalent to

Véff(o’ rmth> =0, ngf(o’ rmth) =0, Vg;f(ov rmth) > 0.

(39)

It indicates that such a merger forms a marginally unstable
photon sphere.

For the strong deflection gravitational lensing near this
marginally unstable orbit, i.e., 7y — rr_;th’ we can obtain the
coefficients in the expansion of G(z, ry) as

Omth = 6|r0=r,mh = 0’ (40)

Nmth = 0|r0=rm[h =0, (41)
Fonth 7

Ymth = y|r0:rmlh = %B;mhcmthDgnh’ (42)

where the subscript “mth” denotes the evaluation at r,,

ol A
Dipy = 2 2o, (43)
mth mth

and the following relation has been used

Vi (Pmt) Vgt (Fmn) = =D (44)
Therefore, we can have

G(Z’ rmth) = }'mlhz3 + O(Z4)’ (45)

so that the leading term of f(z, rp) is 272, and its integral
I(ry) would diverge as z7=.

It suggests that the integral I(ry) can be separated into
two parts of a divergent part Ip(ry) and a regular part
Ix(rg), namely I(ry) =Ip(rg)+ Ig(rg). The divergent
integral Ip(ry) is defined as

043032-4
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|
(o) = [ Folzro)tz, (46)
with
2r
fp(z.ro) = 02 3 (47)
Voz+nt+vyz
and the regular part I (ry) is defined by
1
o) = [ Fate e (48)
with
fr(z.r0) = f(z,10) = fp(z, ro)- (49)

For the strong deflection limit, as r, — 7", , we can obtain

mth®

2rmth

fD(Zv rmth) = 3
V Vmth<

(50)
and its integral as

p(ro) = / lfD<z,ro>dz,

4’rmth 4'rmth

\/r_F o) o

Meanwhile, the impact parameter can be expanded as

Go
Ao

1
~ | 1+ § Dl = r?] + 000 = . (52

The divergent part /,(ry) can be written in terms of the
impact parameter u as

3 1
Ip(rg) = 0% () A
Y mth Umth Y mth
1
+(9<L— 1)“, (53)
Umth

while the regular integral /(rq) can be expanded as

In(ro) = / ' f (e ran)de + O(rg = ra) (54)

In the strong deflection limit ry — r, or u — u . its
deflection angle is

a(u) = Gy (ﬁ - 1) 4 B Ol = s (55)
where
Ay = 4(Brgthcg1thD:1/1th)_l’ (56)
Do = _amth\/Z(Dgnh) o Ig(Fn) — 7, (57)
and
o L(1-= Z)z BC(ApnC — AC)
- (g ke oz (58)

As a check of our results, we apply this method to the
Damour-Solodukhin wormhole, whose metric reads [81]

2M

A =1-"1, (59)
B(r) = [1 Mt r) (lrﬂz)r, (60)
C(r) =r?, (61)

with M and y being positive parameters. The radii of
the photon sphere and throat are r, =3M and ry =
2M(1 + 4?). When the parameter y = . = V/2/2, the
photon sphere and throat merge into a marginally unstable
photon sphere at ry, = 3M [82,83]. Substituting the
metric and 7, into Egs. (56)—(58), we have

-DS 25[rmth(rmth - 2)]%

abs = I = 2037 = 2.5558, (62
T () )
bPS = —2.1083, (63)

which are consistent with the results of Refs. [82,83],
although our expression of b, is slightly different from
the one in Refs. [82,83] that is specified for the Damour-
Solodukhin wormhole.

B. Coincidence of the photon sphere,
antiphoton sphere, and throat

There is a another type of marginally unstable photon
sphere where the photon sphere, antiphoton sphere, and
throat coincide, i.e., 1y, = 1y = r'y = Fpa- We can have

B(rmat) = 0’ V/eff(rmat) = 0’ (64)
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ngf(rmat) =0, Vgéf(rmat) <0, (65)

which are equivalent to

Véff(o’ rmat) =0, V/e/ff(o’ rmat) =0, (66)

V0 ) =0, V(0. rng) > 0. (67)

As ry — r},, combining Egs. (64) and (22), we can
obtain

Omat — 6| =0, Mmat = ’7|r =Fmat 0,
0 mat

70="mat

Ymat = y|r0=rmm =0,

4
T'mat o "
Kmat = K|r0:rmal = 6 CmathatDmatv (68)
with
C/// A
/o T mat mat
D mat — - (69)

’
Cmat A mat

where “mat” indicates evaluation at r = ry, and the
following relation has been used

Vgéf(rmat)vgf}(rmat) = _Dilqat' (70)
Therefore, G(z, ry) becomes
G(2, Fmm) = KmatZ4 + O(ZS)v (71)

so that the leading term of f(z,ry) is z72 and its integral
I(rp) would diverge as z7!.

Similarly, the integral I(ry) can be separated into two
parts of a divergent part I (rq) and a regular part I(rg).

For the strong deflection limit, as ry — rf,, we know that

Fp(2 o) = 2
s> fmat) — 7 ’
V KmatZ

so the divergent integral I, (ry) can be written as

(72)

Ip(ro) :AlfD(Z»”o)dZ»

2rmat <r0 >_1 <I"0 >
= Zmat -1) +o(—=>-1). (73
vV Kmat \"mat T'mth

With the expansion of the impact parameter

1
U = Unpgyt |:1 + ED%at(FO - rmat)3:| + O<r0 - rmat)4? (74)

the divergent part I, (ry) takes the form as

1 1
TP}
23373 a0

ARy w =
\/’Kat (Dmat)‘ (”mal 1>
+(9( - —1)3, (75)

Umat

Ip(ro) =

while the regular part /z(ry) can be expanded as

In(ro) = A ' f (e raa)dz + O(ro = rt). (76)

Thus, in the strong deflection limit ry — r, or
u — ug,, its deflection angle is

&(M) = C_lmat (ML - l) B + Emat + O(u - umat)%’ (77)
mat

where
233
i = e (D), (78)
mat -~ mat
I;mat = IR(rmat) -7, (79)
and
I ( ) /l|: 2rmat ACmal
Fmat) = =
T Jo (1= 2)% | BC(AuC — ACry)
2 6 1
— | =——(D" Y2 —|dz. 80
T'mat B;natcmat( mdt) Zz:| : ( )

C. Observables

Having the deflection angle for these two marginally
unstable photon spheres, we are able to obtain their
observables. We consider a light ray which comes from
a source S with the impact parameter u, takes a turn near the
gravitational lens L, and escapes to a distant observer O,
and the source and observer are faraway from the gravi-
tational object. In the strong deflection gravitational lens-
ing, the photons might round the object several times before
arriving the observer and form the relativistic images [48].
Under the thin lens approximation, the lens equation is
given by [47]

D
ﬁze—D—(L)ZAan, (81)

where D; g and Dgg are the distances between the lens and
source and between the source and observer, respectively,
is the angular separation between the source and lens,
0 is the angular separation between the lens and images,
A& = a(0) — 2zn is the offset of the deflection angle after
subtracting all the n loops by the photon.

043032-6
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For n > 1, we define
a(6%) = 2zn. (82)

Expanding the deflection angle &(60) near 6 = 69, we have

A

da
+_

a(6) = o) + 5,

O-60%)+00-6) (83)
0=0,

Using the relation between impact parameter and the
angular position of image u = @Dq;, where Dq; is the
distance between the observer and lens, the deflection
angles (55) and (77) can be written in an unified form as

a(0) = a (gi - 1)_% by Ou—uy)t,  (84)

o0
where

u
0, = —— 85
DoL (85)

is the angular position of the relativistic image formed at the
photon sphere. For the marginally unstable photon sphere
merged by the photon sphere and throat, we have k = 4 so
that @, = @,,g, and b, = b,,; and for the coincidence of
the photon sphere, antiphoton sphere, and throat, we have
k = 3 so that @3 = G, and by = b,,,. Based on Eq. (84),
we can have

da C_Zk 9(,,) _%
- =——= (21 , 86
deo 0=0) keoo <Hoo ) ( )
and after combining Eqgs. (82) and (84), we can obtain
=14+ (—2 o (87)
" 2nn — by <

Substituting Eqgs. (82), (86), and (87) into Eq. (83), the
offset of the deflection angle can be found as

- (271'1’[ - Bk)lJrk

24(0,) kO ak

(0 = 0,). (88)

Using this expression and the lens equation (81), we can
obtain the angular position of the relativistic images as

kakDosOs (B — 09)

0,(8) =69 + = , 89
D=0t bsem sy
and the corresponding magnification is [86]
0,do kakDos60%J
= Inn) aosVs k(n) ) (90)
p dp Dysp

where

C_lﬁ + (277.']1 — Z_Jk)k
(27m _ l;k)ZkH :

Ji(n) = o1

Assuming only the outmost relativistic image can be
resolved from the packed others on the photon sphere, we
can define two additional observables, i.e., the angular
separation s and the magnitude difference Am between the
outmost relativistic image and the rest as [48]

5 k
s:91—9m2< il >9w (92)

271'—5](

and

Hi
Am = 2.510g10< .
Do M

:2.51og10[ Ji1) ]

=7 () 93)

III. APPLICATION

We will apply our method introduced in the Sec. II to the
wormbhole in the beyond Horndeski theory [87].

A. Metric

The metric of a traversable wormhole in the beyond
Horndeski theories is given by [87]

A(r) = h, (94)
r -1
B(r) = {1 - - ME)] W, (95)
C(r) =r?, (96)
where
r 8nZm.
h—1+2—11?<1— 1Jr"’r3 ) (97)

n. is the coupling parameter and A is a positive dimension-
less constant. At the throat of the wormhole, we have [87]

h(rw) = (1-2)% (98)
The existence of the throat requires the dimensionless

constant A € (0, 1) [87]. By solving Eq. (98), we obtain the
radius of the throat as [87]

m?2 — &

z :

m. +

(99)

T'th =

043032-7
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with
E=22-2)€(0,1). (100)
A positive ry, demands [87]
N < E3m. € (m., +o0). (101)

Using the condition Eqs. (26) and (29), we obtain the
radii of its photon and antiphoton spheres as

1 4+/3
Fo = 2+/3sin {76[ + 3 arccos <\9/’;72>} m.,  (102)

1 4
ra = 2v/3sin E — 7 arccos (T\/g%)} m., (103)

where the dimensionless coupling constant is

=, 104
n=o (104)
The existence of photon sphere and antiphoton sphere
demands the coupling constant satisfies

33
O0<p<—=n..
_”1_2 Ne

(105)
The corresponding ranges of the radius of the photon
sphere and antiphoton sphere are

rm € [V3m., 3m.], (106)

r. €10, V3m.]. (107)

When the photon sphere and throat merge into a margin-
ally unstable photon sphere at r,, = ry, = rmm, With the
help of Egs. (100)—(102) and (105), we can find

3
Aoy € 1—\/?_,1—3\/6\/5—9> (108)
and
014 — 363 + 5412 — 361+ 8
_ 109
MTmth \/ /13(/1 _ 2)3 ( )

For some specific 4,4, and #,,,4,, We can obtain the radius of
the marginally unstable photon sphere r,. In addition,
there is another marginally unstable photon sphere of the
wormhole in the beyond Horndeski theory where the
photon sphere, antiphoton sphere, and throat coincide at

Faat = V/3m. for npy = e and Ay = 1 —1/6y/3 =9/3.

0.10

M.=1.02m,

‘ "mth

0.07

Veff

0.04

0.01
0.10

0.07

Veff

0.04

0.01

r/m,

FIG. 1. The effective potential of a photon near the marginally
unstable photon sphere formed either by the merger of the photon
sphere and throat (top) or by the coincidence of the photon
sphere, antiphoton sphere, and throat (bottom).

The effective potential of a photon near these two margin-
ally unstable photon spheres are shown in Fig. 1.

B. Observables for the marginally unstable photon
sphere at r,;,

Assuming the supermassive black hole Sgr A* in the
Galactic Center is a wormhole in the beyond Horndeski
theory and using the method introduced in Sec. II A, we can
calculate the deflection angle and its coefficients a, and
by for the strong deflection gravitational lensing near
the marginally unstable photon sphere when the photon
sphere and throat merge, where the mass of the wormhole
and the distance between the lens and observer are
m. = 4.26 x 10°M, Do = 8.25 kpc [88]. Its observables
in the strong deflection limit can be obtained by using
Egs. (85), (92), and (93) in Sec. II C. Figure 2 shows the
angular radius of shadow 6, the angular separation s and
magnitude difference Am between the outmost relativistic
image and the rest. The angular radius of the shadow
decreases with dimensionless constant A down to 22.5 pas.
It deviates from the one of the Schwarzschild black hole
more than 4 pas, which might be detectable by EHT’s
observation on the shadow of Sgr A* [13]. With the
increasing of the dimensionless parameter A, the angular
separation s could grow to 263 nas and drop after that. It is
too small to detect for current technology. The magnitude
difference Am decreases with A, whose minimum could
reach —2.1 mag and maximum deviation with the
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Schwarzschild black hole approaches —9 mag. However,
due to the unresloved relativistic images, it is impossible to
detect this observable now.

C. Observables for the marginally unstable photon
sphere at r,,,

For the marginally unstable photon sphere at r,,, by
using the method introduced in Sec. II B, we can calculate
the coefficients as

O = (21375 + 2337 — 2i35)A x 2,766, (110)

26 1

25 1

9, (Has)

24 | ]

23 .
(a)

450 | ® ]

Am (mag)
w
o

0.0 1

©
3.0

04 045 05 055 06
A

FIG. 2. Assuming Sgr A* is a wormhole in the beyond
Horndeski theory, it shows the angular radius of shadow 6,
the angular separation s, and the magnitude difference Am
between the outmost relativistic image and the rest for the strong
deflection gravitational lensing near the marginally unstable
photon sphere that is merged by the photon sphere and throat
(line) or coincided by the photon sphere, antiphoton sphere, and
throat (circle). The black dash lines represent the corresponding
observables of the Schwarzschild black hole.

b & —4.345, (111)
where
1/7, = 5 3\ 1 s
AZE 8\/2_7\/§+2\/§\/§+8\/§+5 (\/5—1)6.

(112)

Taking Sgr A* as an example, the angular radius of
shadow 6, the angular separation s and magnitude differ-
ence Am between the outmost relativistic image and the
packed ones are shown in Fig. 2. We find that the radius of
the shadow formed by this marginally unstable photon
sphere as 0, = 22.5 pas, which also deviates from the
one of the Schwarzschild black hole more than 4 pas. The
angular separation s = 397.3 nas and magnitude differ-
ence Am = 1.58 mag, and their deviation from those
of the Schwarzschild black hole &s =364 nas and
0Am = —5.24 mag, respectively. However, because of
the limited resolution, it is impossible to detect these
two observables currently.

IV. CONCLUSIONS

A static, spherically symmetric wormhole might have
two new kinds of marginally unstable photon spheres,
which could be formed either by the merger of the photon
sphere and throat or by the coincidence of the photon
sphere, antiphoton sphere, and throat. We investigate the
strong deflection gravitational lensing near these margin-
ally unstable photon spheres and find that their deflection
angles diverge in a manner of a power law with a specific
exponent, rather than by the well-known logarithmic law
for the photon sphere. We obtain the analytic expressions of
the observables.

Applying our method to the wormhole in the beyond
Horndeski theory and taking Sgr A* as the lens, we obtain
the observables in strong deflection limit near these two
marginally unstable photon spheres. Our results indicate
that the angular radius of the shadow of the wormhole in the
beyond Horndeski theory can be measured now, and its
deviation from the one of the Schwarzschild black hole
might be detected by EHT.
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APPENDIX: COEFFICIENTS
IN THE EXPANSION OF G(z. ry)

In the expansion of the function G(z, ry) near z = 0, Ve and other parameters are

Vi (0, 19) = =Vige(ro)B(ro) Vgt (o), (A1)
ngf(o’ ”0) = —[ngf(ro)B(ro) + 2V/eff(r0>B/(V0)]V;ﬁl°(ro) + 2Véff2(ro)B(V0)V&%(ro)v (A2)
Vi (0, m0) = =[Vii(ro)B(ro) + 3V (ro) B (rg) + 3V (ro) B" (r0)] Vgt (ro)
+6V{cff(r0)[veff(r0) (ro) + V{cff(rO)BI(rO)]V f%( 0) = 6V{cff (rO)B(rO)ng%(rO), (A3)
Vi (0. 7o) = =V (r0) B(ro) + VI (ro) B (rg) + 6V2ig (ro)B" (ro) + 4Vige(r0) B (ro) V(7o)
+ [8V e (ro)Vige (ro) B(ro) + 24V (ro) Vig(ro) B' (ro) 4 12V/*(ro)B" (ro)
+ 6V B(ro) Vi (ro) = 12V (ro) BV (ro) B(ro) + 2V (ro)B'(r0)]V i (ro)
+ 24V * (ro) B(ro) Vgt (ro), (A4)
o) = r()Co, (AS) 1
ki = —rgCo + 15C, — 5 3c" o (A1)
n = r(2)C6 - 3}’0C0, (A6) 0 2 0 6 0 0
_l 2 (A7) 1 1 1
12 =5 "%0 k2 = 575C0 = 570Co + 7 70C0, (A12)
1
71 = 3}’0C0 2r0C’ 57’0 0° (Ag) 1 1
K3 = __rOCO + - (A13)
1 6 60
Yy = —rOCO + - 3 r8C6, (A9)
1
1 40 Al4
73 = ¢ roCo- (A10) 4= 0o (Al4)
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