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We investigate the probable existence of dark matter in the interior of neutron stars. Despite the current
state of knowledge, the observational properties of neutron stars have not definitively ruled out the
possibility of dark matter. Our research endeavors to shed light on this intriguing mystery by examining
how certain neutron star properties, including mass, radius, and tidal deformability, might serve as
constraints for the dark matter model. In our investigation, we adopt a two-fluid approach to calculate the
properties of neutron stars. For the nuclear matter equation-of-state (EOS), we employ several realistic EOS
derived from the relativistic mean field model (RMF), each exhibiting varying stiffness and composition. In
parallel, we look into the dark matter EOS, considering fermionic matter with repulsive interaction
described by a relativistic mean field Lagrangian. A reasonable range of parameters is sampled
meticulously. Our study primarily focuses on exploring correlations between the dark matter model
parameters and different neutron star properties using a rich set of EOSs. Interestingly, our results reveal a
promising correlation between the dark matter model parameters and stellar properties, particularly when
we ignore the uncertainties in the nuclear matter EOS. However, when introducing uncertainties in the
nuclear sector, the correlation weakens, suggesting that the task of conclusively constraining any particular
dark matter model might be challenging using global properties alone, such as mass, radius, and tidal
deformability. Notably, we find that dark-matter admixed stars tend to have higher central baryonic density,
potentially allowing for non-nucleonic degrees of freedom or direct Urca processes in stars with lower
masses. There is also a tantalizing hint regarding the detection of stars with the same mass but different
surface temperatures, which may indicate the presence of dark matter. With our robust and extensive
dataset, we delve deeper and demonstrate that even in the presence of dark matter, the semiuniversal
C-Love relation remains intact. This captivating finding adds another layer of complexity to the interplay
between dark matter and neutron star properties.

DOI: 10.1103/PhysRevD.109.043030

I. INTRODUCTION

Neutron stars (NSs), with their compact nature, hold
great fascination in the vast expanse of the cosmos.
Although they are of great significance in astrophysics,
the interiors of neutron stars remain mysterious [1–3].

One of the most intriguing puzzles is the nature of the dense
matter that forms their cores. It is believed that these cores
can reach densities 5-10 times greater than normal nuclear
saturation density. However, the exact composition and
behavior of this extreme matter under such extreme
conditions elude our understanding. To unravel the secrets
concealed within these dense cores, scientists have devoted
considerable effort to studying the equation-of-state (EOS),
which characterizes the interplay among pressure, density,
and temperature within a specific substance [4,5].
The issue of galaxy rotation curves stands out as a

prominent indication that galaxies may not be only com-
posed of ordinary nuclear matter [6]. These rotation curves,
which depict the rotational velocities of stars and gas in
galaxies, exhibit unexpected behavior that cannot be
explained solely by the presence of visible matter. This
suggests the existence of an additional component known
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as dark matter [7,8]. Dark matter, as its name suggests, does
not interact directly with electromagnetic radiation and
remains invisible to traditional telescopes. Its existence can
be inferred indirectly through its gravitational effects on
visible matter. The dense cores within neutron stars can act
as gravitational traps for dark matter particles, potentially
influencing their behavior and properties. The highly dense
matter inside neutron stars [9–11] can enhance the dark
matter capture process inside these objects. Several theo-
retical models propose the presence of dark matter within
neutron star cores, with one possibility being the accumu-
lation of dark matter particles, such as weakly interacting
massive particles (WIMPs), due to gravitational attraction
[12]. Significant accumulation of nonself-annihilating dark
matter inside the compact objects can affect the structure of
these compact objects [10–22]. From a particle physics
point of view so far there are many candidates for dark
matter particles, such as bosonic dark matter, axions, sterile
neutrinos, and different possible WIMPs have been pro-
posed in literature [7,23,24]. Since the nature of particle
dark matter is uncertain, both bosonic and fermionic dark
matter particles have been considered to study its effect on
the neutron star dynamics [17,18,25–27]. Naively for
fermionic dark matter particles modeled by the ideal
Fermi degenerate gas, it is the degeneracy pressure that
allows for a stable neutron star configuration [26]. But for
the bosonic dark matter particle one must include self-
interaction to obtain stable neutron star configurations [17].
Practically neutron star EOS in the presence of dark matter
can be much more complicated.
The advent of multi-messenger observations of compact

astrophysical objects and the discovery of gravitational
waves from neutron star-neutron star mergers by advanced
LIGO and VIRGO collaborations [28,29] have not only
opened new avenues for exploring the EOS of dense matter
but also offer a fresh perspective on the study of dark matter
in compact objects, whether fermionic or bosonic [30,31].
Recent advancements in this field of research have shed
new light on the presence of dark matter inside neutron
stars [19,22,32–37]. Progress in numerical simulations and
theoretical models has provided insights into the behavior
of dark matter within the cores of neutron stars. Recently, a
number of studies have been conducted using statistical
Bayesian methods to constrain the EOS of neutron stars
using astrophysical observations [38–42]. In constraining
the EOS, the correlation has proven useful, with nuclear
matter parameters (NMPs) as its key components [43,44].
Modern studies have documented correlations between
empirical nuclear parameters and neutron star observables
[45–47]. Although some studies have suggested the exist-
ence of dark matter (DM) inside neutron stars [16,48–52],
up to our knowledge most of these studies have not
extensively examined correlations with measurable proper-
ties, including dark matter parameters and neutron star
astrophysical observable.

The motivation behind this study is to explore potential
correlations between the dark matter sector and the global
properties of neutron stars while taking into account the
inherent uncertainties in the EOS within the baryonic
sector. It is crucial to consider the uncertainties associated
with the EOS in the baryonic sector, as they can affect our
understanding of the overall behavior of neutron stars.
Using the well-known Kendall rank correlation studies

we look into the relationship between the dark matter sector
and neutron star properties. We seek to uncover any
connections or influences that may exist, providing valu-
able insights into both the properties of dark matter and the
behavior of these enigmatic cosmic objects. Furthermore,
we aim to explore new avenues to constrain the dark matter
sector by investigating its effects on neutron star cooling,
which is a key observable, or by examining the viability of
direct Urca processes.
The paper has the following organization. In Sec. II, we

introduce the basic formalism of the equation-of-state for
nuclear matter and dark matter, as well as the two-fluid
formalism of the Tolman-Oppenheimer-Volkoff equation
and the Kendall rank correlation coefficient. In Sec. III, we
present and discuss the results of the current study. Finally,
in Sec. IV, we provide concluding remarks.

II. METHODOLOGY

A. Nuclear matter EOS

Our study considers the relativistic mean field (RMF)
description [53] of the nuclear matter EOS: a mean-field
theory approach that includes nonlinear meson terms, both
self-interactions and mixed terms.

L ¼ LN þ LM þ LNL ð1Þ

with

LN ¼ Ψ̄½γμði∂μ − gωωμ − gϱt · ϱμÞ − ðm − gσσÞ�Ψ

LM ¼ 1
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In this context, the field Ψ represents a Dirac spinor that
describes the nucleon doublet (consisting of neutron and
proton) with a bare mass m. The couplings of the nucleons
to the meson fields σ, ω, and ϱ are denoted by gσ, gω, and gϱ
respectively, with corresponding masses mσ, mω, and mϱ.
The parameters b, c, ξ, and Λω, which determine the
strength of the nonlinear terms, are determined alongside
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the couplings gi (where i ¼ σ, ω, ϱ) by imposing a set of
constraints.
We chose four samples from the EOS generated in [53],

which we designate as EOS1, EOS2, EOS3, and EOS4.
They have been constrained to several nuclear matter
properties, in particular, the saturation density, binding
energy, incompressibility, symmetry energy at saturation,
and the pure neutron matter pressure calculated with chiral
effective field theory. It was also imposed that the pure
neutron matter pressure must be an increasing function of
the baryonic density and stars with at least 2.0M⊙ must be
described. The parameters of all these four models are
presented in Table I. Figure 1 displays these four EOS,
along with their corresponding neutron stars (NS) proper-
ties. The graph depicts the pressure, denoted as P, as a
function of baryon density ρB in the left plot. The middle
plot showcases the NS mass, denoted asM, as a function of
radius R. Additionally, the right plot illustrates the relation
between the NS mass (M) and the square of the speed of
sound (c2s) for the four nuclear matter EOSs. The EOS1 is
the stiffest and EOS3 is the softest one. The nuclear
saturation properties along with star properties can be
accessed from Table II. It can be seen from the table that
the NS maximum mass of these four EOSs ranges from
2.10 to 2.74M⊙. The radius and tidal deformability for a
1.4M⊙ NS are in the range of 12.55–13.78 km and 462–
844, respectively.

B. Dark matter EOS

Similar to the Lagrangian of the nuclear model, one can
apply the knowledge from the nuclear mean field approach
to describe the Lagrangian for the fermionic dark matter
sector. We consider the simplest dark matter Lagrangian
with a single fermionic component (χD) and we assume that
a dark vector meson Vμ

D that couples to the conserved DM
current through gvdχ̄DγμχDV

μ
D. The dark matter model

Lagrangian and the corresponding EOS in the mean field
approximation is expressed as [48,49]

Lχ ¼ χ̄D½γμði∂μ − gvdV
μ
DÞ −mχ �χD

−
1

4
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D þ 1

2
m2
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D ð2Þ

εχ ¼
1

π2

Z
kD

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ
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2
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1

3π2

Z
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k2 þm2
χ

q þ 1

2
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Here cω ≡ gvd
mvd

and mχ is the bare mass of fermionic dark
matter. These two parameters along with the dark matter
Fermi momenta determine the dark matter EOS. The dark
matter Fermi momenta determines the accumulated dark

FIG. 1. (left plot) The pressure P as a function of baryon density ρB, (middle plot) the NS massM as a function of radius R, and (right
plot) NS mass M as a function of the square of the speed of sound c2s for nuclear matter EOS: EOS1, EOS2, EOS3, and EOS4,
respectively.

TABLE I. Parameters of the employed nuclear matter EOS: EOS1, EOS2, EOS3, and EOS4. The B and C are b × 103, and c × 103

respectively [53].

EOS gσ gω gρ B C ξ Λω

EOS1 10.411847 13.219028 11.180337 2.541001 −3.586261 0.000845 0.027999
EOS2 11.150279 14.420375 13.806001 2.036239 −1.635468 0.018019 0.037600
EOS3 8.695491 10.431351 9.821776 3.975509 −2.615425 0.006394 0.039323
EOS4 9.608190 11.957725 12.191950 3.117923 −4.098400 0.000255 0.058744
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matter density/mass fraction inside neutron stars. The
properties of dark matter admixed neutron stars depend
on the dark matter EOS along with dark matter mass
fraction. Procedure to determine the dark matter EOS has
been discussed in subsequent sections.

C. Two fluid formalism

We have employed a two-fluid Tolman-Oppenheimer-
Volkoff (TOV) formalism to analyze the structure of
neutron stars with a mixture of dark matter, referred to
as dark matter admixed neutron stars (DANSs) [48]. Dark
matter and baryonic matter are treated separately within this
framework and interact solely through gravitational inter-
action. Consequently, each fluid follows its conservation of
energy-momentum tensor.
To describe the combined effects of the two fluids, we

introduce the total pressure PðrÞ and total energy εðrÞ,
which can be expressed as the sum of the respective
contributions from baryonic matter and dark matter:

PðrÞ ¼ PBðrÞ þ PχðrÞ ð5Þ

εðrÞ ¼ εBðrÞ þ εχðrÞ ð6Þ

Here, the subscripts “B” and “χ” represent the baryonic
and dark matter components, respectively. The TOV
equations governing the behavior of this two-fluid system
are given by [35,48]:

dPB

dr
¼ −ðPB þ εBÞ

4πr3ðPB þ PχÞ þMðrÞ
rðr − 2MðrÞÞ ð7Þ

dPχ

dr
¼ −ðPχ þ εχÞ

4πr3ðPB þ PχÞ þMðrÞ
rðr − 2MðrÞÞ ð8Þ

dMðrÞ
dr

¼ 4πðεB þ εχÞr2 ð9Þ

When investigating the influence of admixed dark matter,
it proves useful to define a dark matter mass fractionFχ [35]:

Fχ ¼
MχðRχÞ
MðRÞ ð10Þ

Here,MχðRχÞ ¼ 4π
R Rχ

0 r2εχðrÞdr represents the total accu-
mulated dark matter gravitational mass within Rχ , where the
dark matter pressure reaches zero. Based on this DM mass
fraction, it is possible to determine how much gravitational
mass the DANS contributes to the star’s total mass.
Besides mass and radius, neutron stars’ tidal deform-

ability plays a crucial role in their structural characteristics.
The tidal gravitational field generated by their companion
causes the two neutron stars in a binary neutron star system
to undergo quadrupole deformations during the final stages
of inspiration. As a result of the tidal forces exerted by the
partner star of a neutron star, the magnitude of the
deformation that occurs is described as tidal deformability,
which quantifies the extent to which it distorts under those
forces.
The dimensionless tidal deformability is defined as

Λ ¼ 2=3 k2C−5 ð11Þ

where C ð≡M=RÞ and k2 are known as the compactness
and Love number of the deformed star. k2 for the two-fluid
system can be obtained by solving the differential equation
for radial perturbation,

r
dyðrÞ
dr

þ yðrÞ2 þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð12Þ

TABLE II. Nuclear saturation properties—(i) For symmetric nuclear matter–energy per nucleon ε0, incompressibility coefficient K0,
and skewness Q0; and (ii) For symmetry energy–symmetry energy at saturation Jsym;0, its slope Lsym;0; and (iii) neutron star properties–
maximum mass Mmax, radius Rmax, radius R1.4 for 1.4M⊙ and R2.08 for 2.08M⊙ neutron stars, tidal deformability Λ1.4 for 1.4 solar mass
neutron stars, the square of speed-of-sound c2s at the center of maximum mass neutron stars, the neutron star mass at which the direct
Urca process occurs MdUrca, and the direct Urca density ρB;x for x∈ ½1.4; 1.6; 1.8� solar mass neutron stars.

NMP NS

ρ0 ε0 K0 Q0 Jsym;0 Lsym;0 Mmax Rmax R1.4 R2.08 Λ1.4 c2s MdUrca ρdUrca ρB;1.4 ρB;1.6 ρB;1.8

EOS (fm−3) (MeV) (M⊙) (km) [...] (c2) (M⊙) (fm−3)

EOS1 0.155 −16.08 177 −74 33 64 2.74 13.03 13.78 14.04 844 0.713 2.06 0.366 0.298 0.316 0.336
EOS2 0.154 −15.72 190 614 32 60 2.20 12.16 13.36 13.00 709 0.414 1.83 0.443 0.344 0.382 0.432
EOS3 0.157 −16.24 260−400 32 57 2.10 11.08 12.55 11.53 462 0.543 2.07 0.829 0.432 0.491 0.570
EOS4 0.156 −16.12 216−339 29 42 2.56 12.13 12.95 13.14 638 0.767 2.55 0.747 0.345 0.370 0.399
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FðrÞ ¼ r − 4πr3ððεBðrÞ þ εχðrÞÞ − ðPBðrÞ þ PχðrÞÞ
r − 2MðrÞ

QðrÞ ¼
4πrð5ðεBðrÞ þ εχðrÞÞ þ 9ðPBðrÞ þ PχðrÞÞ þ εBðrÞþPBðrÞ

∂PBðrÞ=∂εBðrÞ þ
εχðrÞþPχðrÞ
∂PχðrÞ=∂εχðrÞ −

6
4πr2Þ

r − 2MðrÞ

− 4

�
MðrÞ þ 4πr3ðPBðrÞ þ PχðrÞÞ

r2ð1 − 2MðrÞ=rÞ
�
2

; ð13Þ

together with the two-fluid TOV equation with proper
boundary conditions [48,54].

D. Sampling

To compute the structure of neutron stars (NS), we have
utilized four distinct nucleonic equation-of-states (EOSs)
and a diverse range of dark matter EOSs constructed
through the relativistic mean field (RMF) formalism, as
detailed in Secs. II A and II B respectively. We have
sampled a total of 50,000 dark matter parameter combi-
nations, namely cω, mχ , and Fχ from uniform distributions
within the ranges specified in Table III. In Fig. 2 we
represent EOS for normal matter and dark matter compo-
nents. There were 50K dark matter EOSs solved individu-
ally for each nucleonic EOS, resulting in a total of 200,000
mass-radius (M-R) calculations. To determine the dark
matter EOS here we consider the dark matter with a mass
range 0.5 GeV ≤ mχ ≤ 4.5 GeV [24], dark matter self-
interaction measure in the range, 0.1 fm ≤ cω ≤ 5 fm [49],
and dark matter mass fraction in the range 0 ≤ Fχ ≤ 25%

[55]. Note that the dark matter mass fraction crucially
depends on the dark matter capture rate inside neutron stars.
Depending upon the generic modeling of the nucleon-dark
matter interaction inside the high-density region of neutron
stars, the dark matter capture rate can be of the order of
1025 GeV=sec for dark matter mass near 1 GeV [56]. Such
an estimate of the capture of dark matter particles in the
interior of neutron stars over its lifetime (∼1017 seconds)
indicates that it may be difficult for a neutron star to
accumulate a significant fraction of dark matter. Instead,
some other mechanism, such as the production of dark
matter in the star during supernovae (SN) [57], may be
necessary for a neutron star to have a large dark matter
fraction. Conversion of the neutrons into dark matter
particles might also allow a significant fraction of the

nuclear matter to be converted into dark matter particles
inside neutron stars. Non-standard conversion of neutrons
into scalar dark matter particles has been explored in the
context of dark matter admixed neutron stars in Ref. [17]
and references therein. The dark matter capture rate can
crucially depend on the Pauli blocking factor in the
degenerate nuclear matter, multiple scattering among dark
matter particles and nucleons, neutron star internal struc-
ture, momentum dependent form factors of hadrons, etc
[58–60]. Note that apart from the degenerate neutrons,
protons, electrons, and muons are also present in the beta-
equilibrated nuclear matter. The interaction between the
leptonic sector and the dark matter sector can also account
for the dark matter capture within neutron stars [58].
Furthermore, the capture of dark matter particles by neutron
stars can be enhanced in a close binary system. This
amplification stems from the energy loss of dark matter
particles resulting from their gravitational interaction with
moving companions (gravitational slingshot) [61]. This
effect is maximum when the velocities of the companions
are comparable to the asymptotic velocity of dark matter
particles [61].

FIG. 2. The shaded blue domain represents the sampled dark
matter EOS, i.e., the pressure (Pχ) as a function of density (ρχ).
The colored dashed lines depict the nuclear matter EOS, i.e., the
variation of baryonic matter pressure (PB) with baryon number
density (ρB).

TABLE III. The prior set for dark matter model parameters.

mχ GeV cω fm Fχ %

Min Max Min Max Min Max

0.5 4.5 0.1 5 0 25
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III. RESULTS AND DISCUSSION

We aim to investigate whether NS observational proper-
ties such as mass, radius, and tidal deformability, can
uniquely constrain the dark matter model parameters. To
explore this, we have employed a two-fluid scenario to
calculate neutron star properties Sec. II C. For the nuclear
matter, we utilize four realistic EOS, namely EOS1, EOS2,
EOS3, and EOS4 (see Sec. II A for details). In the dark
matter sector, a total of 50K dark matter EOSs were
sampled within the reasonable prior range (see Table III,
Sec. II B and Sec. II D for details). These large combina-
tions of nuclear matter and dark matter EOS give rise to
200K mass-radius curves by solving the two-fluid TOV
equations. All of these mass-radius relations are not practi-
cally relevant as we use the filter that NS must have a mass
greater than 1.9M⊙, set by the pulsars PSR J0348þ 0432

and PSR J0740þ 6620 within ∼3σ. We also consider that
the dark matter admixed neutron stars only produce non-
halo configurations, which means the dark matter admixed
radius is smaller than the luminous radius. Following the
application of this filter, the remaining values of samples
for EOS1, EOS2, EOS3, and EOS4 are 25K, 14K, 10K, and
20K, respectively. The median values, along with the lower
and upper bounds of the 90% confidence intervals (CI), for
various neutron star properties for these sets are listed in
Table IV. These properties include the maximum mass of
neutron stars (Mmax), the total radius (Rt;x) for values of x in

the range of [1.2, 1.4, 1.6, 1.8, 2.0], the dimensionless tidal
deformability (Λx) for x in the range of [1.4, 1.6, 1.8], the
fraction of dark matter energy density over nuclear matter
(fd;x), and the nuclear matter baryon density (ρB;x) for x in
the range of [1.4, 1.6, 2.0].
To study the relation between dark matter parameters and

various neutron star properties, we employ the Kendall rank
correlation coefficient analysis. The Kendall rank correla-
tion can be considered a nonparametric test that allows us to
quantify the strength of dependence between two variables.
Unlike Pearson correlation, it accounts for nonlinearity in
the correlation, making it suitable for analyzing relation-
ships that may not follow a linear pattern [62]. Our strategy
involves first selecting a fixed nuclear EOS and then
assessing the correlation coefficients using the chosen
set of dark matter EOS. In this way, we can explore the
uncertainty only in the dark matter sector. Lastly, we
explore the combined effects of all four combinations of
nuclear equations and the entire set of dark matter equation-
of-states. This approach helps us to comprehend the impact
of uncertainty in the nuclear EOS on these correlations. In
Fig. 3 we plot the Kendall rank correlation coefficients,
where we consider the nuclear EOS1 and the entire set of
filtered dark matter equation-of-state sets, i.e., with NS
having a maximummass above 1.9M⊙ and NS having to be
nonhalo (as mentioned earlier). As portrayed in Figs. 3,
and 4 includes the complete dataset with all four nuclear
EOSs employed. Please note that in this context, the

TABLE IV. Summary of neutron star properties and their corresponding values obtained from filtered two-fluid solutions with EOS1,
EOS2, EOS3, and EOS4. The table presents the median values, along with the lower and upper bounds of the 90% confidence intervals
(CI), for various neutron star properties. These properties include the maximum mass of neutron stars (Mmax), the total radius (Rt;x) for
values of x in the range of [1.2, 1.4, 1.6, 1.8, 2.0], the dimensionless tidal deformability (Λx) for x in the range of [1.4, 1.6, 1.8], the
fraction of dark matter energy density over nuclear matter (fd;x), and the nuclear matter baryon density (ρB;x) for x in the range of [1.4,
1.6, 2.0]. The values are based on comprehensive analyses using EOS1, EOS2, EOS3, and EOS4 as the equation-of-state models for
neutron stars.

EOS1 EOS 2 EOS 3 EOS 4

90% CI 90% CI 90% CI 90% CI

NS Units Median Min Max Median Min Max Median Min Max Median Min Max

Mmax M⊙ 2.454 2.067 2.710 2.107 2.067 2.710 2.051 2.067 2.710 2.351 2.067 2.710
Rt;2.0 13.16 11.77 13.87 12.68 11.77 13.87 11.50 11.77 13.87 12.50 11.77 13.87
Rt;1.8 13.16 12.00 13.81 13.00 12.00 13.81 12.04 12.00 13.81 12.56 12.00 13.81
Rt;1.6 km 13.11 12.04 13.73 13.13 12.04 13.73 12.27 12.04 13.73 12.54 12.04 13.73
Rt;1.4 13.02 12.01 13.63 13.17 12.01 13.63 12.40 12.01 13.63 12.48 12.01 13.63
Rt;1.2 12.92 11.94 13.53 13.18 11.94 13.53 12.48 11.94 13.53 12.40 11.94 13.53
Λ1.8 ... 18 7 29 16 7 29 9 7 29 13 7 29
Λ1.6 36 17 57 36 17 57 23 17 57 28 17 57
Λ1.4 76 39 114 82 39 114 58 39 114 62 39 114
fd;2.0 0.47 0.14 0.68 0.27 0.14 0.68 0.20 0.14 0.68 0.40 0.14 0.68
fd;1.6 0.43 0.12 0.65 0.26 0.12 0.65 0.19 0.12 0.65 0.37 0.12 0.65
fd;1.4 0.41 0.11 0.63 0.24 0.11 0.63 0.18 0.11 0.63 0.34 0.11 0.63
ρB;2.0 fm−3 0.408 0.350 0.576 0.589 0.350 0.576 0.788 0.350 0.576 0.489 0.350 0.576
ρB;1.6 0.339 0.303 0.394 0.399 0.303 0.394 0.500 0.303 0.394 0.395 0.303 0.394
ρB;1.4 0.314 0.283 0.354 0.352 0.283 0.354 0.435 0.283 0.354 0.361 0.283 0.354
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subscript “t” denotes the total radius of the neutron star,
while the subscript dm represents the radius specifically
associated with the admixed dark matter.
The following comments are in order:
(i) We have observed in Fig. 3 a strong negative

correlation ∼0.9 between the dark matter mass
fraction, Fχ , and the maximum gravitational mass
of a neutron star (NS). Additionally, there is a
notable correlation ∼0.9 between Fχ and the radius
as well as the tidal deformability of NS at masses of
1.4, 1.6, and 2.0M⊙ respectively. However in Fig. 4,
when incorporating uncertainty in the nuclear sector
and considering all four nuclear matter equation-of-
states (EOSs) alongside the sampled dark matter

EOSs, the previously mentioned correlation dis-
appears.

(ii) Furthermore, our findings have revealed a notable
positive correlation between Fχ and the central
baryonic density ρB (at different NS masses 1.4,
1.6, and 2.0M⊙) for EOS1. However, once again
when we account for the uncertainties associated
with nuclear matter, as can be seen in Fig. 4, those
correlations disappear.

(iii) Nonetheless, the correlations between radii, tidal
deformability, mass, and central baryon density
persist even when considering uncertainties in the
nuclear sector, i.e., including the entire dark matter
admixed set for all nuclear EOS. It is worth noting

FIG. 3. With only one nuclear EOS, namely EOS1, we compute the Kendall rank correlation coefficients linking various dark matter
parameters to neutron star properties, and with the entire set of dark matter EOS sets after applying the filter (see text).
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that there is a robust and strong correlation between
the central baryon density and the star radius even
when dark matter is not considered [53,63]. How-
ever, this correlation is found to break in the case of
modified gravity [64]. This interestingly allows us to
distinguish between the effects of modified gravity
and dark matter in neutron stars (NS).

Figure 5 displays the corner plot featuring the dark matter
parameters cω, mχ , and Fχ corresponding to EOS1, EOS2,
EOS3, and EOS4 after applying the filtration process. A
corner plot is a visualization used to explore the multivariate
distribution of parameters in a dataset. It allows us to observe
the relationships and correlations between different variables
simultaneously, providing valuable insights into the under-
lying data structure. When considering a fixed nuclear EOS

and only varying the dark matter EOS within the two-fluid
formalism, there exists a direct correlation between the
fraction of dark matter Fχ and Mmax, as depicted in
Fig. 3. Consequently, the maximum mass constraints of
1.9M⊙ depend on the softness or stiffness of the EOS for
each individual nuclear matter EOS. Each nuclear matter
EOS is capable of sustaining a different percentage of dark
matterFχ. For example, the softest EOS3 can sustain only up
to≈10% of darkmatter. whereasEOS1,EOS2 andEOS4can
sustain ≈24%, 14% and 22% of dark matter respectively.
Therefore, depending on the stiffness of the employed EOS,
we can observe variations in the percentage of dark matter
fraction Fχ ranging from 0% to 25%.
In Fig. 6, we demonstrate the outcomes of mass-radius

calculations obtained through a collection of EOSs

FIG. 4. Same as Fig. 3 but with the data where all four nuclear EOS are employed.
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ensemble. The upper panels illustrate the results for EOS1
and EOS2, whereas the lower panels correspond to EOS3
and EOS4, respectively. The vertical color bar, which
ranges from 0% to 25%, visually illustrates the spread
of dark matter mass fractions. It provides insight into the
resulting variations in the mass-radius curve influenced by
the parameter Fχ. Interestingly, when the percentage of Fχ

increases, it noticeably leads to a decrease in the maximum
mass of neutron stars. The dashed lines present in each plot
correspond to the properties of neutron stars computed
exclusively based on the nuclear EOS, without taking into
account the influence of dark matter. To assess the validity

of our findings, we compare them with recent observational
constraints, represented by skin lines. These constraints
encompass the binary components of GW170817 [65],
along with their corresponding 90% and 50% credible
intervals (CI). Furthermore, we illustrate the 1σ (68%) CI
for the two-dimensional posterior distribution in the mass
radii domain obtained from NICER x-ray data for the
millisecond pulsars PSRJ0030þ 0451 (cyan and yellow)
and PSRJ0740þ 6620 (violet). The horizontal (radius) and
vertical (mass) error bars reflect the 1σ credible interval
derived from the 1-dimensional marginalized posterior
distribution of the same NICER data. From this figure,

FIG. 5. The distribution of dark matter parameters, i.e., cω, mχ (in MeV units), and Fχ for the prior set mentioned in Table III after
applying the filter that NS must have a mass greater than 1.9M⊙.
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one may observe that as the percentage of the dark matter
component increases, both the mass and radius decrease for
different neutron star mass sequences. It is worth noting
that the current observational constraints on mass and
radius, whether from NICER or GW observations, are
not able to precisely determine the dark matter fraction Fχ .
Therefore, using the robust investigation presented in this
Fig. 6, we suggest that the dark matter fraction can be as
high as 25% when 1.9M⊙ NS maximum mass constraint is
imposed.
Figure 7 illustrates the relation between the dimension-

less tidal deformability (Λ) and the mass of neutron stars
(NS) for different nuclear equation-of-states (EOSs) in
separate panels. The dashed lines represent the properties of
NS computed solely using the nuclear EOS in a single fluid
TOV calculation, excluding the presence of dark matter.
The color bar on the side indicates the dark matter mass
fraction (Fχ), with the color tone varying from yellow to
blue, representing DM mass fractions ranging from 0% to
25%. From the figure, it is clear that the inclusion of dark
matter leads to a decrease in tidal deformability for all
masses, the same as obtained in the previous figure for the
radius. As can be seen from the figure, dimensionless tidal
deformability of different NS masses was negatively
correlated with dark matter mass fraction Fχ . The inclusion
of observational constraints from GW170817 is repre-
sented by the blue bars, depicting the tidal deformability
at 1.36M⊙, Λ1.36 < 720, [65]. The inclusion of dark matter
could potentially lead to a reduction in the higher tidal

deformability attributed to the stiff nuclear EOS. This
similarity holds even for bosonic dark matter when employ-
ing a two-fluid approach, as demonstrated in previous studies
Refs. [17,35,54,70]. The same behavior was obtained with a
fermionic dark matter model based on RMF description
incorporating short-range correlations within a single fluid
approach [71], and with the linear sigma-omega fermionic
dark matter model together with a two-fluid approach [48].
Figure 8 illustrates the representation of Λ1 and Λ2, the

dimensionless tidal deformability parameters obtained with

FIG. 7. The graphical representation illustrates the relationship
between tidal deformability (Λ) and the mass (M⊙) of neutron
stars (NS). Meanwhile, the dashed lines depicted in each plot
correspond to the computed properties of neutron stars solely
based on the nuclear EOS in single fluid TOV, incorporating the
observational constraint (blue bars) depict the tidal deformability
at 1.36M⊙ [65]. Additionally, the color gradient on the side
denotes the proportional dark matter mass fraction Fχ , encom-
passing values from 0% to 25%.

FIG. 6. The domain of neutron star (NS) mass-radius using a
two-fluid scenario, considering our entire set of dark matter EOSs
in conjunction with different nuclear EOSs. The vertical color bar
with the panel depicts the dark matter mass fraction Fχ from 0 to
25%. The dashed lines on each plot correspond to NS properties
computed using only nuclear EOS in single fluid TOV, without
dark matter. We compare the M-R domains with current obser-
vational constraints. The gray region depicts the constraints from
the binary components of GW170817 [65], along with their 90%
and 50% credible intervals(CI). The 1σð68%Þ CI for the 2D
posterior distribution in the mass-radii domain for millisecond
pulsar PSRJ0030þ 0451 (cyan and yellow) [66,67] as well as
PSRJ0740þ 6620 (violate) [68,69] from the NICER x-ray data
are also shown.

FIG. 8. The graphical representation of Λ1, and Λ2 with a
fraction of dark matter Fχ from 0 to 25%, where Λ1, and Λ2 are
the dimensionless tidal deformability parameters of the binary
neutron star merger from the GW170817 event, using the
observed chirp mass of Mchirp ¼ 1.186M⊙. The green and gray
solid (dashed) lines represent the 90% (50%) CI from the
marginalized posterior for the tidal deformabilities of the two
binary components of GW170817 using a parametrized EOS,
with (green) and without (gray) a maximum mass of 1.97M⊙
requirement.
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nuclear matter EOS: EOS1, EOS2, EOS3, and EOS4 for
the binary neutron star merger event GW170817. For this
calculation, we have fixed the chirp mass (Mchirp) 1.186M⊙
which is observed in the GW170817 event. In the plot, for
the comparison we have included the constraints in the gray
solid (dashed) line corresponding to the 90% (50%)
confidence interval (CI) obtained from the marginalized
posterior, which represents the tidal deformability of the
two binary components of neutron star merger event
GW170817. Furthermore, the green solid (dashed) lines
depict the 90% (50%) CI derived from the marginalized
posterior, indicating the tidal deformability of the two
binary components of GW170817 based on an equation-of-
state which is parametrized with a requirement that the
maximummass of at least 1.97M⊙. Here it can be seen that,
for EOS1 in the absence of any dark matter component lies
outside the boundary of observational constraints, but in the
presence of dark matter as Fχ increases this comes inside
the boundaries which results that the stiff nuclear EOS with
admixed dark matter, comes inside the boundaries defined
by the constraints on tidal deformability. As it is discussed
in Fig. 5 EOS2 and EOS3 can only sustain up to ≈14% and
10% of dark matter respectively, if the 1.9M⊙ constraint is
imposed. As a consequence, the acceptable Λ1 − Λ2

domain is quite small, whereas for EOS1 and EOS4 the
domain is wider because these EOS can sustain, respec-
tively, 24% and 22% of dark matter.
In Fig. 9, we investigate the effect of DM on the NS

central density. The main effect is the compression
of matter inside a star which results in a decrease of the
NS radius as the fraction of DM increases and the

gravitation mass is kept constant. We consider all four
equation-of-states (EOSs) to examine how dark matter
affects this compression. The plot shows the scaled central
density ρB=ρ1F−TOVB of stars where ρ1F−TOVB represents the
central baryon density in the absence of dark matter (single
fluid TOV) for masses 1.4, 1.6, and 1.8M⊙ as a function of
the percentage of dark matter Fχ. The solid line in each
panel represents 68% confidence interval whereas dashed
and dotted lines represent 95% and 99% CI, respectively.
From the figure, it is evident that, for each EOS, as the
percentage of dark matter (Fχ) increases, the central density
for masses ranging from 1.4 to 1.8M⊙ increases in all cases.
In Fig. 10, we plot the density profile of 1.4M⊙ NS with
different fractions of DM. The presence of DM increases
the gravitational interaction at the star center. As a
consequence, mass is pushed to the center, the central
baryonic density increases, and the radius of the star
decreases. This is an interesting result because it indicates
that due to the presence of DM, processes that are otherwise
not favorable are now allowed, e.g., the onset of hyperons
or of the nucleonic direct Urca, etc. may open in smaller
mass stars with the DM presence. The increase in central
baryon density due to the compression of matter may also
give rise to quark hadron phase transition inside the core of
dark matter admixed neutron stars. Model calculations
indicate that onset densities for hadron-quark pasta phases
and pure quark matter phase can be of the order of
0.4–0.7 fm−3 [72]. These results also imply that the
accumulation of dark matter inside neutron stars can trigger
the QCD phase transition. This is a novel but model-
dependent result and it needs further detailed studies.
In the following, we discuss how the presence of dark

matter leads to a decrease in the mass of the star where
nucleonic direct Urca processes start to occur, which we
designate as MdUrca. In Fig. 11, the scaled Urca mass
MdUrca=M1F−TOV

dUrca is plotted as a function of the fraction of

FIG. 9. The central baryonic density ρB/ρ1F−TOV
B where

ρ1F−TOV
B represents the central baryon density in the absence

of dark matter (single fluid TOV) as a function of dark matter
mass fraction Fχ for NS masses equal to 1.4M⊙ (blue), 1.6M⊙
(orange), 1.8M⊙ (green). The top panels are for EOS1 and EOS2,
whereas the bottom panels are for EOS3 and EOS4. The solid line
in each panel represents 68% confidence interval whereas dashed
and dotted lines represent 95% and 99%, respectively.

FIG. 10. The baryon density ρB plotted against the NS radius Rt
for a 1.4M⊙ NS. The plot includes four panels, each representing
a different nuclear EOS, along with a generic dark matter EOS.
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dark matter, whereM1F−TOV
dUrca represents the Urca mass with

single fluid TOV, obtained for the four nuclear matter
EOSs. A strong correlation between the dark matter
fraction and the Urca mass for each individual case is
observed. Notice that the decrease in the MdUrca can be
large for stiff EOSs. This is because stiff EOSs can allow a
large dark matter fraction inside the neutron stars.
In a previous study conducted by Malik et al., [73], it

was argued that the Urca mass exhibits a robust correlation
with nuclear symmetry energy. The presence of dark matter
may, however, affect our perception of the central baryonic
density, resulting in a wrong estimation of the proton
density, in particular, a larger proton fraction, and, therefore
larger nuclear symmetry energy. To gain a comprehensive
understanding of these phenomena, further investigations
are required in the future.
There has been a large interest in the finding of universal

relations that involve several NS properties and are inde-
pendent of the NS mass, see for instance [74–77]. Although
universal relations for neutron stars are inherently insensi-
tive to the EOS and, therefore, cannot be utilized to
differentiate between different EOS models, they hold
the potential to serve as powerful tools for inferring the
properties of neutron stars in connection with other
measurements. Besides, if a particular NS composition
breaks the universal relation, this feature may be considered
a smoking gun to identify that special composition. We
may, therefore, question whether DM will break some of
the known universal relations. In the following, we will
analyze the universal relation C − Λ proposed in [77], and
discussed in [74]. The C-Love relationships are depicted in
Fig. 12. We begin by fitting the data related to EOS to a
simple curve represented by the equation:

C ¼
X2
k¼0

akðlnΛÞk: ð14Þ

By performing this fitting process, we obtain the fol-
lowing values for the coefficients: a0 ¼ 0.36054566, a1 ¼
−0.0375908, and a2 ¼ 0.00086283. In the lower panel of
Fig. 12, the absolute difference from the fits is displayed. The
absolute difference is approximately equal to 1%, and
furthermore, it decreases to about 0.5% for higher values
of Λ. We have also compared our results with Figure 4 in
Ref. [74], where they used a0 ¼ 0.3617, a1 ¼ −0.03548,
and a2 ¼ 0.0006194 for the constrained EOS. This con-
strained EOS shows an absolute difference of less than 1%,
while the unconstrainedEOS is around1%.We conclude that
DM does not break the universal relation C − Λ.

IV. CONCLUSIONS

In conclusion, this study has shed light on the connection
between dark matter and neutron star properties, while
considering the uncertainties in the equation-of-state within
the baryonic sector. Dark matter was considered to be
formed by fermionic particles with a mass of the order of a
few GeVs that interact with a dark vector meson. By
employing a two-fluid scenario and sampling 50,000 dark
matter EOSs, we analyzed the structure of dark matter
admixed neutron stars. It was considered that dark matter is
confined within the visible radius of neutron stars, i.e., only
no-halo configurations were studied. We have imposed the

FIG. 11. The ratio MdUrca/M1F−TOV
dUrca where where M1F−TOV

dUrca
represents the Urca mass in the absence of dark matter (single
fluid TOV) as a function of dark matter mass fraction Fχ . The top
panels are for EOS1 and EOS2, whereas the bottom panel
represents results for EOS3 and EOS4. The solid line in each
panel represents 68% confidence interval whereas dashed and
dotted lines represent 95% and 99% CI, respectively. FIG. 12. C-Love universal relation for all EOS. The red line is

fitted with Eq. (14) In the lower panel the residuals for the fitting
are calculated. Furthermore, we conduct a comparison with the
findings presented in Ref. [74] for the scenario of single fluid
TOV without dark matter (highlighted in pink-red).
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dark-matter admixed star should have a maximum mass
above 1.9M⊙, a value within 3σ the PSR J0348þ 0432
mass, 2.01� 0.04M⊙. The results revealed interesting
correlations between dark matter parameters and various
neutron star properties, consistent with results discussed in
the literature: the larger the fraction of dark matter the
smaller the maximum mass and the smaller the NS radius
and tidal deformability [17]. In fact, the dark matter mass
fraction within a neutron star was found to have a strong
negative correlation with its maximum gravitational mass
if a single nuclear model was considered. However, it was
shown that this correlation disappears when accounting
for the uncertainties associated with nuclear matter EOS.
The maximum mass constraints of dark-matter admixed
neutron stars depend on the softness or stiffness of the
nuclear matter EOS employed, with some equation-of-
states being able to sustain a significant fraction of dark
matter, and still describing approximately two solar
mass stars.
The inclusion of dark matter led to a decrease in the

radius and the tidal deformability for all masses, indicating
the influence of dark matter on the structural characteristics
of neutron stars. Through the analysis of various observa-
tional constraints and data, it was demonstrated the
potential of dark matter to affect the compression and
central energy density of baryonic matter inside neutron
stars. The presence of dark matter originates a nuclear
matter compression that translates itself into a larger central
baryonic density, a smaller radius, and a smaller crust
thickness. The increase of the central baryonic density has
important consequences on the neutron star properties: it
favors the onset of non-nucleonic degrees of freedom inside
less massive stars and may affect the onset of direct Urca
processes, affecting the neutron star cooling. In particular,
our study has highlighted the impact of dark matter on the
cooling process and nuclear symmetry energy of baryonic
matter. The detection of stars with similar masses but
different surface temperatures could indicate that the cooler
ones can be dark-matter admixed stars. Additionally, the

study explored universal relations, known as the C-Love
relationships [74,77], which provide insights into neutron
star properties that are not easily measurable. We have
verified that within 1% the C-Love universal relation was
not broken by the presence of dark matter, confirming the
results of [55].
Overall, this research contributes to our understanding of

the complex interplay between dark matter and neutron star
properties. By uncovering these connections, we are mov-
ing closer to unraveling the mysteries concealed within
neutron stars.
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