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R2-Higgs inflation stands out as one of the best-fit models of Planck data. Using a covariant formalism
for the inflationary dynamics and the production of helical gauge fields, we show that the observed baryon
asymmetry of the Universe (BAU) can be obtained when this model is supplemented by a dimension-six
CP-violating term ∼ðR=Λ2ÞBμνB̃μν in the hypercharge sector. At linear order, values of Λ ≃ 2.5 × 10−5 MP

produce, in the R2-like regime, sufficient helical hypermagnetic fields to create the observed matter-
antimatter asymmetry during the electroweak crossover. However, the Schwinger effect of fermion pair
production can play a critical role in this context, and that scale is significantly lowered when the
backreaction of the fermion fields on the gauge field production is included. In all cases, the helical field
configurations can remain robust against washout after the end of inflation.
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I. INTRODUCTION

Cosmic inflation [1–3] elegantly addresses a plethora of
observations, ranging from the flatness of the Universe,
over resolving the horizon and exotic relics problems, all
the way to seeding the primordial density perturbations
giving rise to the large-scale structure of the Universe
that we see today. In parallel, it can explain the cosmic
microwave background (CMB) anisotropies measured by
experiments such as Planck [4]. While there are several
alternatives to inflation, among these models, Starobinsky
or R2 [1,5–8] inflation, where pure general relativity (GR)
is extended by an additional scalar curvature term R2, is
one of the best-fitting models of current data [4].
In the dual scalar-tensor theory, the presence of the R2

term makes the scalar degree of freedom dynamical, which
can account for cosmic inflation. After the discovery of the
Higgs boson at the Large Hadron Collider (LHC) [9,10],
the theory essentially contains two scalar degrees of
freedom. Indeed, if the Higgs field Φ couples nonmini-
mally to the Ricci scalar R via a term ξHRjΦj2, with ξH as
the nonminimal coupling, the Higgs field itself can induce
inflation [11–17] (for earlier works which employed
similar mechanisms, see Refs. [18–25]). In pure Higgs
inflation, i.e., without the presence of such R2 term, a scale
of unitarity violation emerges [26–29]. This may not pose
a threat to inflationary dynamics, see Ref. [30]. However,
during the preheating stage, longitudinal gauge bosons
with momenta beyond the unitarity cutoff scale are

violently produced [31–33]. The perturbative unitarity is
restored up to the Planck scale due to the presence of R2

term in R2-Higgs inflation [34] (see also, e.g., [35–46]).
Moreover, R2-Higgs inflation (or the Starobinsky-Higgs
inflation), which features both the R2 and RjΦj2 terms, is
also the best-fit model for the Planck data.
Following on from these successes, it is not unreasonable

to correlate the R2-Higgs inflation to the other shortcomings
of the current microscopic theory of interactions, the
Standard Model of particle physics (SM). One such shortfall
is the observed matter-antimatter asymmetry (or the baryon
asymmetry) of the Universe, BAU. The existence of the
BAU is a strong indicator of the presence of interactions
beyond the SM. A range of particle physics experiments,
chiefly at the LHC, are searching for such interactions at the
currently largest available energy scales of OðTeVÞ. If the
fundamental scale of the mechanism behind the BAU is tied
to a higher scale, it might be possible that tell-tale effects at
present or even future colliders could remain absent. In the
SM, the CP-violation from the CKMmatrix is not sufficient
for baryogenesis [47–49]. Further, the electroweak phase
transition in the SM is a continuous crossover [50] rather
than the typically desired strong first-order transition to
drive the departure from thermal equilibrium condition as
part of Sakharov’s criteria [51]. However, even at the
crossover, the out-of-equilibrium condition can be met if
the source and washout decay rates are different and shut off
at different epochs [52,53]. If the inflaton field couples to
the CP-odd hypercharge Chern-Simons density FF̃, with F
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and F̃ denoting the field-stress tensor of a Uð1Þ gauge field
(which mixes with the hypercharge gauge field) and its dual,
respectively, helical hypermagnetic fields can be abundantly
produced at the end of inflation [54–59]. The helical
hypermagnetic fields may then create the observed baryon
asymmetry at the electroweak crossover [53,60–65].
In this article, we investigate baryogenesis in R2-Higgs

inflation from CP-violating dimension-six Chern-Simons
density ∼ðR=Λ2ÞBμνB̃μν, where R is the Ricci scalar and
Bμν is the field stress tensor of Uð1ÞY hypercharge in the
Jordan frame (see also Refs. [66–70] for similar discus-
sions). This term can be considered within the context
extended theories of gravity (or rather, fðR;ϕ; BμÞ gravity),
and it elegantly connects high-scale BAU to inflationary
dynamics without requiring additional fields beyond the
SM. Adopting the covariant formalism due to the nonca-
nonical kinetic terms in R2-Higgs inflation, our linear order
analysis, with Λ ∼ 10−5 MP, demonstrates that the pro-
duced helical hypermagnetic fields are sufficient to account
for the BAU. We take into account effects that could lead to
a washout of the helicity stored in the gauge sector (e.g., the
chiral plasma instability) alongside observational bounds
on a range of associated phenomena that prevent total
freedom of the possible field configurations.
In the presence of strong gauge fields, light fermions

charged under the gauge group are produced by the
backreaction of gauge fields that source the fermions
equation of motion [71,72]. The corresponding currents
can then, in turn, backreact on the produced gauge fields, a
phenomenon called the Schwinger effect, see e.g. Ref. [73].
The backreaction of fermion currents on the produced
gauge fields acts as a damping force during the explosive
production of helical gauge fields, and many of the
conclusions from the gauge field production should be
revised in the presence of the Schwinger effect. In par-
ticular, it has been shown that, although the amount of
gauge energy density is suppressed, which jeopardizes the
gauge preheating capabilities, there is still a window for the
baryogenesis mechanism, see Ref. [65]. Also, one possible
way out is if there are no light, charged fermion fields when
gauge fields are produced, for instance by the use of a
special Froggatt-Nielsen mechanism such that all fermion
Yukawa couplings stay large at the end of inflation, while
they relax after inflation to the measured values [74].
However, in this paper, we will stay agnostic on the
fermions effect in the plasma and provide the results with
and without the Schwinger effect.
We organize this paper as follows. We start with out-

lining the action and derive the relevant equations of
motion (EoM) for different fields in Sec. II, followed by
the inflationary dynamics in the covariant formalism in
Sec. III. The production of hypermagnetic fields and
subsequent generation of the BAU are discussed, respec-
tively, in Secs. IV and V. We summarize with some

discussion in Sec. VI. Finally, we present some technical
computational details through appendices A–E.

II. THE STAROBINSKY-HIGGS ACTION

In pure GR with a canonically coupled scalar theory,
without the presence of R2, the conformal mode of the
metric is known to have a wrong-sign kinetic term. The
Starobinsky inflation model, which extends pure GR with
an additional scalar curvature term R2, falls within the so-
called general fðRÞ theory of gravity. In its dual scalar-
tensor theory, the presence of the R2 term makes the scalar
degree of freedom dynamical, which can then account for
cosmic inflation. R2-Higgs inflation (or Starobinsky-Higgs
inflation), which features all possible dimension-four terms
i.e., both the R2 and RjΦj2 terms also provide best-fit
models of the Planck data. The model has two dynamical
scalar degrees of freedom, one appearing from the gravity
sector and one entering as part of the Higgs field Φ.
We briefly discuss the action and its transformation

properties in the metric formalism assuming the affine
connection to be the Levi-Civita connection. The action in
the Jordan frame of R2-Higgs inflation, along with a
dimension-six CP-odd term coupling Ricci scalar and
Uð1ÞY gauge boson, is given by

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
fðRJ;Φ; BμÞ

− gμνJ ð∇μΦÞ†∇νΦ − VðΦ;Φ†Þ − 1

4
gμρJ gνσJ BμνBρσ

−
1

4
gμρJ gνσJ Wi

μνWi
ρσ −

X
f

gμνJ f̄eaμγ̃a∇f
νf

�
; ð2:1Þ

and we adopt a mostly-plus convention for the metric
ð−1;þ1;þ1;þ1Þ. From here on, for notational simplicity,
we will remove the sum over fermions

P
f in the fermion

quadratic terms, which will remain implicit. The Bμν and
Wi

μν are field stress tensors of the Uð1ÞY and SUð2ÞL gauge
groups, respectively,Φ is the Higgs field,RJ the Ricci scalar
in the Jordan frame, and MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð8πGÞp ¼ 2.435×
1018 GeV, where G is the Newton’s constant and MP the
reduced Planck mass. We use the convention ϵ0123 ¼ 1
for the Levi-Civita tensor. The covariant derivatives are
defined as

∇μ ¼ Dμ þ ig0
1

2
QYf

Bμ þ ig
1

2
τ ·Wμ; ð2:2aÞ

∇f
μf ¼

�
Df

μ þ ig0
1

2
QYf

Bμ þ ig
1

2
τ ·Wμ

�
f; ð2:2bÞ

with QYf
denoting the Uð1ÞY hypercharge, τ are the Pauli

matrices, and g0 and g are respective gauge couplings. Dμ is
the usual covariant derivative with respect to the space-time
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metric gJμν and Df
μ ≡ ∂μ þ Γμ is the covariant derivative of spinors, with Γμ as the spin affine connection. Here eaμ is the

so-called vierbein and γ̃a is Minkowski space gamma matrices (see Appendix A for details of the formalism and the
definition of Γμ). The corresponding field-stress tensors for the Uð1ÞY and SUð2ÞL gauge fields are

Bμν ¼ DμBν −DνBμ; Wi
μν ¼ DμWi

ν −DνWi
μ − g

X3
j;k¼1

ϵijkW
j
μWk

ν: ð2:3Þ

The Higgs potential VðΦ;Φ†Þ and fðRJ;Φ; BμÞ are given as1

VðΦ;Φ†Þ ¼ λjΦj4; ð2:4aÞ

fðRJ;Φ; BμÞ ¼ RJ þ
ξR
2M2

P
R2
J þ

2ξH
M2

P
jΦj2RJ −

2

Λ2M2
P

ϵμνρσffiffiffiffiffiffiffiffi−gJ
p BμνBρσRJ: ð2:4bÞ

The Higgs field has hypercharge þ1 and is decomposed in the standard way (we will comment on our gauge choice
further below)

Φ ¼ 1ffiffiffi
2

p
�
0

h

�
: ð2:5Þ

With this choice, Eq. (2.1) becomes

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
fðRJ; h; BμÞ −

1

2
gμνJ ðDμhÞDνh − VðhÞ

−
1

4
gμνJ g2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p −
1

8
gμνJ h2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ

−
1

4
gμρJ gνσJ BμνBρσ −

1

4
gμρJ gνσJ Wi

μνWi
ρσ − gμνJ f̄eaμγ̃a∇f

νf

�
; ð2:6Þ

with

VðhÞ ¼ λ

4
h4; fðRJ; h; BμÞ ¼ RJ þ

ξR
2M2

P
R2
J þ

ξH
M2

P
h2RJ −

2

Λ2M2
P

ϵμνρσffiffiffiffiffiffiffiffi−gJ
p BμνBρσRJ: ð2:7Þ

The dynamics of the scalar degrees of freedom are easily captured once we move from the Jordan frame to the Einstein frame
via a Weyl transformation. We first introduce an auxiliary field Ψ and rewrite the action in Eq. (2.6) as

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2

�
fðΨ; h; BμÞ þ

∂fðΨ; h; BμÞ
∂Ψ

ðRJ −ΨÞ
�
−
1

2
gμνJ ðDμhÞðDνhÞ − VðhÞ

−
1

4
gμνJ g2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p −
1

8
gμνJ h2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ

−
1

4
gμρJ gνσJ BμνBρσ −

1

4
gμρJ gνσJ Wi

μνWi
ρσ − gμνJ f̄eaμγ̃a∇f

νf

�
: ð2:8Þ

The variation with respect to Ψ gives the constraint Ψ ¼ RJ as long as ∂2fðΨ; h; BμÞ=∂Ψ2 ≠ 0. We now define a physical
degree of freedom Θ as

1For large configuration values of the Higgs field we can consistently neglect the mass term of the Higgs potential, which triggers
electroweak symmetry breaking.
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Θ ¼ ∂fðΨ; h; BμÞ
∂Ψ

ð2:9Þ

such that the action Eq. (2.8) can be cast into

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
ΘRJ −UðΘ; h; BμÞ −

1

2
gμνJ ðDμhÞðDνhÞ − VðhÞ − 1

4
gμρJ gνσJ BμνBρσ

−
1

4
gμνJ g2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p −
1

8
gμνJ h2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ

−
1

4
gμρJ gνσJ Wi

μνWi
ρσ − gμνJ f̄eaμγ̃a∇f

νf

�
; ð2:10Þ

with the definition

UðΘ; h; BμÞ ¼
M2

P

2
½ΨðΘÞΘ − fðΨðΘÞ; h; BμÞ�

¼ M4
P

4ξR

�
1 − Θþ ξH

M2
P
h2 −

2

Λ2M2
P

ϵμνρσffiffiffiffiffiffiffiffi−gJ
p BμνBρσ

�
2

: ð2:11Þ

To formulate the action in the Einstein frame, we perform the metric redefinition (Weyl transformation)

gJμν ¼
1

Θ
gEμν; gμνJ ¼ ΘgμνE ; and

ffiffiffiffiffiffiffiffi
−gJ

p ¼ 1

Θ2

ffiffiffiffiffiffiffiffi
−gE

p
: ð2:12Þ

Under this transformation, the Ricci scalar transforms as

RJ ¼ Θ
�
RE þ 3□EΘ −

3

2
gμνE DμðlnΘÞDνðlnΘÞ

�
; ð2:13Þ

with □E ¼ gμνE DμDν. Ignoring the surface term, the action of Eq. (2.8) now becomes

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
RE −

3M2
P

4
gμνE DμðlnΘÞDνðlnΘÞ −

1

2Θ
gμνE ðDμhÞðDνhÞ − VE

−
1

4
gμρE gνσE BμνBρσ −

1

4Θ
gμνE g2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p

−
1

8Θ
gμνE h2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ −

1

4
gμρE gνσE Wi

μνWi
ρσ −

1

Θ
gμνE f̄eaμγ̃a∇f

νf

�
; ð2:14Þ

with

VE ¼ 1

Θ2
½VðhÞ þUðΘ; h; BμÞ�: ð2:15Þ

Finally, we perform the field redefinition

ϕ ¼ MP

ffiffiffi
3

2

r
lnΘ: ð2:16Þ

to arrive at the action in the form
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SE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
RE −

1

2
GIJg

μν
E Dμϕ

IDνϕ
J − VEðϕIÞ − 1

4
gμρE gνσE BμνBρσ

−
1

4
gμρE gνσE Wi

μνWi
ρσ −

1

4
e−

ffiffi
2
3

p
ϕ
MPgμνE g2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p

−
1

8
e−

ffiffi
2
3

p
ϕ
MPgμνE h2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ − e−

ffiffi
2
3

p
ϕ
MPgμνE f̄eaμγ̃a∇f

νf
�
: ð2:17Þ

The multi-field ϕI ∈ fϕ; hg alongside the field-space metric GIJ

Gϕϕ ¼ 1; Gϕh ¼ Ghϕ ¼ 0; Ghh ¼ e−
ffiffi
2
3

p
ϕ
MP ð2:18Þ

highlight that we are working with a noncanonical kinetic term as alluded to above (see Appendix B for the corresponding
field-space Christoffel symbols). The potential VEðϕIÞ, consistently truncated at dimension-six level, reads

VEðϕIÞ ¼ e−2
ffiffi
2
3

p
ϕ
MP

�
λ

4
h4 þ M4

P

4ξR

�
1 − e

ffiffi
2
3

p
ϕ
MP þ ξH

M2
P
h2 −

2

Λ2M2
P

ϵμνρσffiffiffiffiffiffiffiffi−gE
p e2

ffiffi
2
3

p
ϕ
MPBμνBρσ

�
2
�

¼ V0ðϕIÞ þ 2M2
P

ξRΛ2
FðϕIÞe

ffiffi
2
3

p
ϕ
MPBμνB̃μν; ð2:19Þ

with

V0ðϕIÞ ¼ λ

4
h4e−2

ffiffi
2
3

p
ϕ
MP þ M4

P

4ξR
F2ðϕIÞ; ð2:20aÞ

FðϕIÞ ¼ 1 − e−
ffiffi
2
3

p
ϕ
MP þ ξH

M2
P
h2e−

ffiffi
2
3

p
ϕ
MP ; B̃μν ¼ 1

2
ffiffiffiffiffiffiffiffi−gE

p ϵμνρσBρσ: ð2:20bÞ

Note that the unmodified Starobinsky potential is recovered when the BμνB̃μν term is absent.
We can now turn to the EoMs of the different fields in Eq. (2.17). By varying Eq. (2.17) with respect to the field ϕ,

we obtain

□ϕK þ ΓK
IJg

αν
E Dαϕ

IDνϕ
J − GKMVE;M þ gμνE XK

μν ¼ 0; ð2:21Þ

identifying ΓK
IJ as the field-space Christoffel symbols and

XK
μν ¼

1

4

ffiffiffi
2

3

r
1

MP
GK1e−

ffiffi
2
3

p
ϕ
MPg2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p −
1

2
e−

ffiffi
2
3

p
ϕ
MPGK2g2h

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p

þ 1

8

ffiffiffi
2

3

r
1

MP
GK1e−

ffiffi
2
3

p
ϕ
MPh2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ −

1

4
GK2e−

ffiffi
2
3

p
ϕ
MPhðgW3

μ − g0BμÞðgW3
ν − g0BνÞ

þ
ffiffiffi
2

3

r
1

MP
δK1 e

−
ffiffi
2
3

p
ϕ
MPgμνE f̄taμγ̃a∇f

νf: ð2:22Þ

Note that all the terms in XK
μν are quadratic in the gauge fields.

The energy-momentum tensor Tμν describes relevant quantities of the inflationary dynamics such as energy density or
pressure. One can derive the Einstein-Hilbert equation from the action SE by varying it with respect to gμνE

REμν −
1

2
gEμνRE ¼ 1

M2
P

�
LMgEμν − 2

δðLMÞ
δgμνE

�
ð2:23Þ

and identify Tμν as
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Tμν ¼
�
LMgEμν − 2

δðLMÞ
δgμνE

�
: ð2:24Þ

Appendix C provides the full expression of Tμν for the model considered in this work.
The EoM for the gauge field Bμ is given as

gμαE gνβE DαBμν þ
8M2

P

ξRΛ2
DαðFðϕIÞe

ffiffi
2
3

p
ϕ
MPÞB̃αβ þ

�
g0

4
e−

ffiffi
2
3

p
ϕ
MPgμβE h2ðgW3

μ − g0BμÞ
�

−
ig0QYf

2
e−

ffiffi
2
3

p
ϕ
MPgμβE f̄eaμγ̃af ¼ 0; ð2:25Þ

and those for the Wi
μ fields are found to be

gμαE gνβE DαWi
μν − ggμβE gνσE

X3
j;k¼1

ϵijkW
j
μνWk

σ −
g
4
gμβE e−

ffiffi
2
3

p
ϕ
MPh2Wi

μ þ
ig
2
e−

ffiffi
2
3

p
ϕ
MPgμβE f̄eaμγ̃aτif ¼ 0;

with Wi
μ ¼

�
gWi

μ; if i ¼ 1; 2

gW3
μ − g0Bμ; if i ¼ 3

: ð2:26Þ

We define Wμ, Zμ and Aμ in the usual way

Wμ ¼
W1

μ − iW2
μffiffiffi

2
p ; W†

μ ¼ W1
μ þ iW2

μffiffiffi
2

p

Aμ ¼ sin θWW3
μ þ cos θWBμ;

Zμ ¼ cos θWW3
μ − sin θWBμ; ð2:27Þ

with e ¼ g sin θW ¼ g0 cos θW , and electroweak angle θW .
We can express theWi

μ and Bμ fields in terms ofWμ, Zμ and
Aμ by inverting the above equations.
Given that we are in the broken phase, for which h0 ≠ 0,

where h0 is the homogeneous background field as we shall
see shortly, we can consider the trivial solution Wi

μ ¼ 0

from the mass term in Eq. (2.26) as the variation is small
compared to the background field. This means that we can
set Wμ ¼ W†

μ ¼ 0 and Zμ ¼ cos θWW3
μ − sin θWBμ ¼ 0

which implies that Bμ ¼ cos θWAμ and W3
μ ¼ sin θWAμ.

We will therefore retain only the photon field Aμ, replacing
Bμ with cos θWAμ in the corresponding Chern-Simons
term. Put differently, the production of photon fields
proceeds unsuppressed compared to the other heavy gauge
bosons.
We now turn to some comments related to the gauge

fixing in Eq. (2.5). The Higgs doublet contains, apart from
the radial degree of freedom h, three Goldstone bosons χ⃗.
Using SUð2ÞL gauge invariance, and fixing the corre-
sponding gauge parameter α⃗ðxÞ as α⃗ðxÞ ¼ −χ⃗ðxÞ (unitary
gauge), the Goldstone bosons disappear from the
Lagrangian and the Higgs doublet reduces to Eq. (2.5).
There is still the Uð1Þ gauge invariance that can be used to
fix the Coulomb gauge for the electromagnetic field

∂
iAi ¼ 0. This is done by fixing the hypercharge gauge
field Bμ as ∂

iBi ¼ − tan θW∂iW3
i . Moreover, in regions

where the electric charge density is zero, it turns out that
A0 ¼ 0 (the radiation gauge we use in this paper).
Therefore, the EoM for the Aμ field simplifies to

gμαE gνβE DαFAμν þ
8cos2θWM2

P

ξRΛ2
∂α

�
FðϕIÞe

ffiffi
2
3

p
ϕ
MP

	
F̃αβ
A

¼ ieQfe
−
ffiffi
2
3

p
ϕ
MPgμβE f̄eaμγ̃af; ð2:28Þ

with Qf ¼ 1
2
QYf

þ T3f, where T3 is the third component
of weak isospin.
Similarly, one can find the general covariant Dirac

equation as

gμνE eaμγ̃að∇f
νfÞ ¼ 0: ð2:29Þ

III. INFLATIONARY DYNAMICS
IN THE COVARIANT FORMALISM

We now study the inflationary dynamics of our
two-field scenario with the noncanonical kinetic term
(i.e., with a nontrivial field-space manifold) following
the covariant formalism discussed in Refs. [33,75,76] (see
also Refs. [31,77–88]). Focussing on linear order pertur-
bations, we decompose the fields into classical back-
ground (φI) and perturbation parts (δϕI) as

ϕIðxμÞ ¼ φIðtÞ þ δϕIðxμÞ; ð3:1Þ
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with φIðtÞ ¼ fφðtÞ; h0ðtÞg. The space-time dynamics
can be described by the perturbed spatially flat
Friedmann-Robertson-Walker (FRW) metric, which is
expanded as [89–91]

ds2¼−ð1þ2AÞdt2þ2aðtÞð∂iBÞdxidtþaðtÞ2½ð1−2ψÞδij
þ2∂i∂jE�dxidxj: ð3:2Þ

aðtÞ denotes the scale factor, t parametrizes cosmic time,
and A, B, ψ , and E characterize the scalar metric
perturbations. Like the scalar fields, the space-time metric
is also considered up to first order in the perturbations. In
the following, when deriving the background and pertur-
bation equations for scalar and gauge fields, we shall
adopt the longitudinal gauge, i.e., B ¼ E ¼ 0.
One may define covariant field fluctuations QI (covar-

iant with respect to the field-space metric) that connect
ϕIðxμÞ and φIðtÞ along the geodesic of the field-
space manifold with affine connection κ. Concretely,
we can take ϕIðκ ¼ 0Þ ¼ φI, ϕIðκ ¼ κ0Þ ¼ φI þ δϕI and
Dκϕ

Ijκ¼0 ¼ dϕI=dκjκ¼0 ≡QI , such that with these con-
ditions, the unique field-space vector QI connects ϕI and
φI [75]. Note here, that Dκ is the covariant derivative with
respect to the affine connection. The field fluctuations δϕI

can be expressed in a series of QI as [75,85]

δϕI ¼QI−
1

2
ΓI
JKQ

IQJþ 1

3!
ðΓI

MNΓN
JK−ΓI

JK;MÞ
×QIQJQMþ…; ð3:3Þ

where the Christoffel symbols ΓI
JK are evaluated at the

background field order. The field fluctuations δϕIðxμÞ are
gauge-dependent quantities under both the field-space
transformation φI → φ0I , as well as the space-time trans-
formation xμ → x0μ. This is motivation to formulate gauge-
independent Mukhanov-Sasaki variables, which are a linear
combinations of space-time metric perturbation ψ and
covariant field fluctuations QI as [90,92,93]

QI ¼ QI þ φ̇I

H
ψ : ð3:4Þ

We remark that, while φI is not a vector of the field-space
manifold,QI , φ̇I and QI all transform, indeed, as vectors of
the field-space manifold. The QI is doubly covariant with
respect to both space-time and field-space transformations
to first order in the perturbations. It is useful to define the
covariant derivative of vectors SI and SI in the field-space as

DJSI ≡ ∂JSI þ ΓI
JKS

K; DJSI ≡ ∂JSI − ΓK
IJSK: ð3:5Þ

It is convenient to also define a covariant derivative with
respect to cosmic time t

DtSI ≡ φ̇JDJSI ¼ ṠI þ ΓI
JKS

Jφ̇K; ð3:6Þ

see also Refs. [83,84,94–96].
We turn to the stress-energy tensor Tμν, which can be

written for the homogeneous, isotropic and spatially flat
metric g̃Eμν ¼ diagð−1; a2ðtÞ; a2ðtÞ; a2ðtÞÞ as

Tμν ¼ ðpþ ρÞUμUν þ pgμν; ð3:7Þ

with a choice ofUμ ¼ ð1; 0; 0; 0Þ for the fluid four-velocity.
For a spatially flat metric, employing Eq. (3.7) and the
Einstein equations, we get the Friedmann equations for the
background order

H2 ¼
�
ȧ
a

�
2

¼ 1

3M2
P
ρ; and Ḣ¼−

1

2M2
P
ðpþ ρÞ; ð3:8Þ

where p and ρ are pressure and energy density, respectively.
We can compare the 00 and ij component of Eqs. (2.24)
and (3.7) to get expressions for pressure p and energy
density ρ,

ρ ¼ T00; p ¼ 1

3a2
X3
i¼1

Tii: ð3:9Þ

At the considered background order, employing the explicit
expression of Eq. (C5) (see Appendix C), the (inflaton)
pressure and energy density reduce to

ρ ¼ 1

2
GIJφ̇

Iφ̇J þ V0ðφIÞ; ð3:10aÞ

p ¼ 1

2
GIJφ̇

Iφ̇J − V0ðφIÞ; ð3:10bÞ

yielding the equation of state

w ¼ p
ρ
¼ GIJφ̇

Iφ̇J − 2V0

GIJφ̇
Iφ̇J þ 2V0

: ð3:11Þ

Furthermore, the Hubble parameter and its derivative with
respect to cosmic time take the form

H2 ¼
�
ȧ
a

�
2

¼ 1

3M2
P

�
1

2
GIJφ̇

Iφ̇J þ V0ðφIÞ
�
; ð3:12aÞ

Ḣ ¼ −
1

2M2
P
ðGIJφ̇

Iφ̇JÞ: ð3:12bÞ

The EoMs for the background fields φI and the perturba-
tions QI at linear order can be derived utilizing Eqs. (3.4)
and (2.21)

Dtφ̇
I þ 3Hφ̇I þ GIJV0;J ¼ 0; ð3:13aÞ
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D2
t QI þ 3HDtQI þ k2

a2
δIJQ

J þMI
LQ

L ¼ 0; ð3:13bÞ

with

MI
L¼GIJðDLDJV0Þ−RI

JKLφ̇
Jφ̇K−

1

M2
Pa

3
Dt

�
a3

H
φ̇Iφ̇L

�
;

ð3:14Þ

and the field-space Riemann tensor RI
JKL. All relevant

quantities such as V0, GIJ, ΓI
JK , RI

JKL in Eqs. (3.13)
are evaluated at background order. Moreover, as the
field-space metric GIJ and MIJ are diagonal in this
approximation, the first-order perturbations do not mix
the different QI. Note also that the EoMs for background
and perturbations do not depend on the gauge fields for our
linear-order considerations.
To study perturbations, we can find a set of unit vectors

that differentiate between adiabatic and entropy directions.
Firstly, we define the length of the velocity vector φ̇I in
field-space defined as

σ̇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIJφ̇

Iφ̇J
q

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ p

p ð3:15Þ

and the corresponding unit vector

σ̂I ¼ φ̇I

σ̇
: ð3:16Þ

With this, we can rewrite Eq. (3.13a) to reproduce a single-
field model with a canonically normalized kinetic term. The
slow-roll parameters ϵ and η are

ϵ ¼ −
Ḣ
H2

¼ 3σ̇2

σ̇2 þ 2V0

; ð3:17aÞ

η ¼ M2
P
Mσσ

V0

; ð3:17bÞ

with Mσσ ≡ σ̂Iσ̂
JMI

J ¼ σ̂Iσ̂JðDIDJV0Þ. Inflation ends
when the slow-roll parameter reaches ϵ ¼ 1, and we
denote the corresponding cosmological time as tend in
the following.
The field-space directions orthogonal to σ̂I are given by

ŝIJ ¼ GIJ − σ̂I σ̂J; ð3:18Þ

and σ̂I and ŝIJ tensors are related by relations [31]

σ̂I σ̂I ¼ 1; ŝIJŝIJ ¼N−1; σ̂I ŝIJ ¼0 for each J: ð3:19Þ

N ¼ 2, and I; J ¼ 1, 2 in our two-field scenario. We can
now decompose the perturbations in the directions of σ̂I

and ŝIJ as

Qσ ¼ σ̂IQI; ð3:20Þ

δsI ¼ ŝIJQJ; ð3:21Þ

with Qσ and δsI being referred to as adiabatic and entropy
perturbations, respectively. We also define a “turning
vector” ωI as the covariant rate of change of σ̂I,

ωI ¼ Dtσ̂
I: ð3:22Þ

The turning vector is orthogonal with respect to σ̂I ,
ωI σ̂

I ¼ 0, the corresponding unit vector is

ω̂I ¼ ωI

ω
; ð3:23Þ

with ω ¼ jωIj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIJω

IωJ
p

.
With these definitions in place, we can now define the

entropy perturbations as

Qs ¼ ω̂IQI; ð3:24Þ

which are conveniently normalized to give

S ¼ H
σ̇
Qs: ð3:25Þ

The gauge-invariant curvature (adiabatic) perturbation
R [90,91,97]

R ¼ ψ −
H

ρþ p
δq; ð3:26Þ

with ρ, p as defined above, and δq given by ∂iδq ¼ −T0i
evaluated at background order (cf. Appendix C) together
with Eqs. (3.3) and (3.4)

δq ¼ −GIJφ̇
IδϕJ ¼ −σ̇σ̂I

�
QI −

φ̇I

H
ψ

�
: ð3:27Þ

Therefore, R takes the compact form

R ¼ ψ þ H
σ̇2

σ̇σ̂I

�
QI − σ̇

σ̂I

H
ψ

�
¼ H

σ̇
Qσ; ð3:28Þ

at linear order. In the presence of entropy perturbations, the
gauge-invariant curvature perturbation does not need to be
conserved, Ṙ ≠ 0. The nonadiabatic pressure perturbation
is given by [91,97]

δpnad ¼ δp −
ṗ
ρ̇
δρ ¼ −

2σ̂I∂IV
3Hσ̇

ϵm þ 2σ̇ðωIδsIÞ: ð3:29Þ
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with ϵm as the comoving density perturbation. For super-
horizon scales k ≪ aH, the only source of nonadiabatic
pressure stems from δsI . This means that Ṙ ≠ 0 will not
vanish even at the k ≪ aH scale and ωIδsI will source Qσ

and hence Ṙ.
The gauge invariant curvature perturbation is defined

as [90,97]

hRðk1ÞRðk2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPRðt; k1Þ ð3:30Þ

and PRðt; kÞ ¼ jRj2. The dimensionless power spectrum
for the adiabatic perturbation is given by

PRðt; kÞ ¼
k3

2π2
jRj2: ð3:31Þ

Similarly, the power spectrum for the entropy perturba-
tions is

PSðt; kÞ ¼
k3

2π2
jSj2: ð3:32Þ

To find the power spectra of the curvature and isocurvature
(entropy) perturbations, Eqs. (3.31) and (3.32), we utilize
the quantities H, ϵ and unit vectors such as σ̂I , ω̂I ,…, from
the solutions of the Eqs. (3.12a) and (3.13a) while Qσ and
Qs are evaluated using the solutions of mode equations
from Eq. (3.13b). For a given Fourier mode k, we calculate
the different power spectra at the t ¼ tend numerically as a
function of k as

PRðkÞ ¼ PRðtend; kÞ; PSðkÞ ¼ PSðtend; kÞ; ð3:33Þ

where tend denotes the time when inflation ends, i.e.
when ϵ ¼ 1.
The spectral index ns of the power spectrum of the

curvature perturbation is defined as

ns ¼ 1þ d lnPRðkÞ
d ln k

: ð3:34Þ

As we will discuss in the next section, although our
scenario involves scalar fields h and ϕ, we shall primarily
focus on a scenario where the dynamics are essentially
described by single fieldlike inflation. In such a case, the
spectral index can be calculated as

nsðt�Þ ≈ 1 − 6ϵðt�Þ þ 2ηðt�Þ; ð3:35Þ

where t� denotes the time when the reference scale exited
the horizon and the tensor-to-scalar ratio is given by
r ≈ 16ϵ.

We choose three benchmark points to highlight quanti-
tatively the implications of consistent inflation parameter
choices when contextualized with baryogenesis. These are
summarized in Table I alongside the required initial field
values to satisfy Planck 2018 measurements: At the pivot
scale k ¼ k�, the amplitude of PRðkÞ should match the
scalar amplitude measurement of Ref. [4]

As ¼ ð2.099� 0.014Þ × 10−9 at 68% CL: ð3:36Þ

As a guideline for our parameter choices and the initial
values of the background fields, we follow the valley
approximation that we discuss in Appendix D. We note
that, while finding the parameter sets, we also ensure
that the isocurvature mode remains orders of magnitude
smaller than the curvature perturbation. The background
equations are solved with initial conditions φðtinÞ and
h0ðtinÞ as in Table I, with vanishing time derivatives; tin
denotes the initial time for our numerical analysis in the
following. The perturbation equations (3.13b) are solved
with approximate initial conditions for a Fourier mode k

QIðtÞ ≃ Hffiffiffiffiffiffiffi
2k3

p
�
iþ k

aH

�
exp

�
i
k
aH



; ð3:37Þ

sufficiently in the past such that the Hubble parameter at tin
remains approximately constant. In practice, we initialize
the QI and their derivatives about four e-foldings before
they exit the horizon for each mode.
In Fig. 1, we show the evolution of power spectra PR

andPS (for the pivot scale k ¼ k�) and the spectral index ns
for BPa. Note, when calculating both power spectra, we
solve Eqs. (3.31) and (3.32) numerically without any
assumption related to slow-roll. It is clear from Fig. 1 that
the isocurvature mode is orders of magnitude smaller than
the adiabatic mode and both power spectra freeze out once
they exit the horizon. We remark that while finding the
power spectrum we always check the orthogonality con-
ditions of Eq. (3.19) in our numerical analysis. In the
following, we interchangeably use the cosmological time t
and the number of e-foldings before the end of inflation
which is defined as

TABLE I. Benchmark points chosen for our analysis. Scales are
given in units of the Planck mass MP. See text for details.

BP ξR ξH φðtinÞ [MP] h0ðtinÞ [MP]

a 2.35 × 109 10−3 5.5 2 × 10−4

b 2.55 × 109 1 5.5 8.94 × 10−4

c 2.2 × 109 10 5.4 5.00 × 10−3
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N ≡ ln
aðtÞ

aðtendÞ
: ð3:38Þ

The pivot scale k� exits the horizonN � ¼ 57, 59.3, 54.9e-
foldings before the end of inflation for BPa, BPb, and
BPc, respectively. For illustration, we also show the fields’
time evolution in Fig. 2 for BPa, while, the evolution of

the Hubble parameter and the inflaton energy density
are shown in Fig. 3. It is also clear from Fig. 1 that
the spectral index ns lies within the Planck 2018 range
when the reference scale exits the horizon. The corre-
sponding values of the tensor-to-scalar ratios are
r� ∼ 0.003, which is consistent with expected values for
R2-Higgs inflation.

FIG. 2. The evolution of the background fields φ and the h0 for the parameter values of BPa in Table I.

FIG. 1. The power spectra of the adiabatic and isocurvature modes and the spectral index ns for the parameter values of BPa in Table I.

FIG. 3. The Hubble function H and the inflaton energy density ρ as in Eq. (3.10) for the parameter values of BPa given in Table I.
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IV. GAUGE FIELD PRODUCTION

The EoM for the gauge field Aμ of Eq. (2.28) can be
rewritten as

1ffiffiffiffiffiffiffiffi−gE
p ∂α

� ffiffiffiffiffiffiffiffi
−gE

p
gμαE gνβE FAμν

	
þ 8cos2θWM2

P

ξRΛ2

× ∂αðFðϕIÞe
ffiffi
2
3

p
ϕ
MPÞF̃αβ

A

− ieQfe
−
ffiffi
2
3

p
ϕ
MPgμβE f̄eaμγ̃af ¼ 0; ð4:1Þ

without the presence of a torsion term FAμν ¼ DμAν−
DνAμ ¼ ∂μAν − ∂νAμ. One can identify the fermion current

jμ ¼
X
f

ieQfe
−
ffiffi
2
3

p
ϕ
MPgμν

E f̄eaν γ̃af ð4:2Þ

that sources the Schwinger effect.

A. Neglecting the Schwinger effect

First, we consider the scenario without Schwinger
effect, i.e., when the fermion current is negligible. This
is possible if the fermion field values are small. One can
now separate the space and time component of the Aμ field.
The time component of Eq. (2.25) at linear order in the
perturbations is

−
1

a2
∂ið∂iA0 − ∂0AiÞ ¼ 0; ð4:3Þ

which, in temporal gauge A0 ¼ 0, reduces to ∂iȦi ¼ 0. The
spatial components of Eq. (2.25) are found to be

ÄiþHȦi−
1

a2
∂jð∂jAi − ∂iAjÞ−

ξH
a

ϵijkð∂jAk− ∂kAjÞ ¼ 0:

ð4:4Þ

where

H¼ ȧ
a
; ξ¼ 4cos2θWM2

P

ξRΛ2H
∂0

�
FðφIÞe

ffiffi
2
3

p
φ=MP

	
: ð4:5Þ

In momentum space, using the notation A≡ A⃗

Aðt;xÞ ¼
Z

d3k

ð2πÞ3=2 Ãðt;kÞe−ik·x; ð4:6Þ

with jkj ¼ k, Eq. (4.4) reads

̈ÃþH ˙̃Aþ k2

a2
Ãþ 2iξH

a
ðk × ÃÞ ¼ 0: ð4:7Þ

The Ã field can be written in terms of transverse
components as

Ã ¼
X
λ¼�

Ãλðt;kÞϵ̂λðkÞ; with k · ϵ̂λðkÞ ¼ 0;

ik × ϵ̂λðkÞ ¼ λkϵ̂λðkÞ: ð4:8Þ

so that, using conformal time τ (with ∂0 ¼ ∂t ¼ a−1∂τ), the
EoM for the transverse components becomes

∂
2
τ Ã

λ þ ω2
λÃ

λ ¼ 0; ð4:9Þ

with

ω2
λðτ; kÞ ¼ k2 þ 2λξHak: ð4:10Þ

In order to quantize the gauge fields, we first integrate
Eq. (4.9) by parts to get the action quadratic in the fields

Sλ ¼
Z

dτLλ ¼
Z

dτd3k

�
1

2
j∂τÃλj2 − 1

2
ω2
λðτ; kÞjÃλj2

�
:

ð4:11Þ

As we deal with noncanonical kinetic terms, we apply the
quantization procedure detailed in Ref. [98]. The canonical
momentum of the transverse modes are

πλðτ;kÞ ¼
δLλ

δð∂τÃλðτ;−kÞÞ ; ð4:12Þ

with the commutation relation expressed as

½Ãλðτ;kÞ; ∂τÃλ0 ðτ;qÞ� ¼ iδλλ0δðkþ qÞ: ð4:13Þ

The field operator Ãλðτ;kÞ can be written as creation and
annihilation operators

Ãλðτ;kÞ ¼ âλku
λ
kðτÞ þ âλ−ku

λ
kðτÞ; ð4:14Þ

and the mode equations for the gauge fields are then

üλ þHu̇λ þ ω2
λ

a2
uλ ¼ 0: ð4:15Þ

From these mode functions, we can compute the gauge
observables, namely the magnetic and electric fields’
energy densities, magnetic helicity and its derivative,
defined as

ρB ¼ 1

a4

Z
kc

kmin

dk
k4

4π2
X
λ

juλj2; ð4:16aÞ

ρE ¼ 1

a4

Z
kc

kmin

dk
k2

4π2
X
λ

j∂τuλj2; ð4:16bÞ
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H ¼ 1

a3

Z
kc

kmin

dk
k3

2π2
ðjuþj2 − ju−j2Þ; ð4:16cÞ

G ¼ 1

2

∂H
∂t

; ð4:16dÞ

with the cutoff value given by [65,99]

kc ¼ 2jaHξj; ð4:17Þ

defined by the condition ω2
λðτ; kcÞ ¼ 0 satisfied by the

helicity λ such that signðλξÞ ¼ −1. The corresponding
Uð1ÞY quantities are linked to the electromagnetic ones via

ρBY
¼ ρBcos2θW ρEY

¼ ρEcos2θW

HY ¼ Hcos2θW GY ¼ Gcos2θW ð4:18Þ

In general, the integration limits should cover all modes
from zero to infinity, however, not all modes are amplified
during inflation. At the time t, the cut-off mode kc is found
by the solution of ωλ ¼ 0; essentially this is when a mode
k ¼ kc crosses the horizon for the first time (at least for one
helicity). The modes k ≫ kc are not excited during inflation
and can be neglected for the estimation of the above
observable quantities. We will discuss kmin shortly.

In order to find ρB, ρE, H and G we solve Eq. (4.15)
numerically via fourth-order Runge-Kutta (RK4) method in
discrete time steps. We outline the details in Appendix E.
For the ith time step, the gauge field modes are initialized
with the Bunch-Davies (BD) initial condition as [100]

uλðk; tiÞ ≃
1ffiffiffiffiffi
2k

p e−iωiti ; u̇λ ≃ −i
ωiffiffiffiffiffi
2k

p e−iωiti ; ð4:19Þ

with ωi ¼ ka−1ðtiÞ. It is practically not possible to go to the
infinite past. Hence, to ensure that all modes remain well
within the horizon at the initial time step tin, we chose kmin ¼
xBDaðtinÞHðtinÞwith xBD ¼ 100. On the one hand, if a mode
k remains well within the horizon, k > xBDaðtiÞHðtiÞ, we
directly assume the BD solutions for the modes instead of
applying the RK4 method for any subsequent time step. On
the other hand, all superhorizon modes are solved with the
RK4 method. For the numerical solution discussed below,
we employ 25k time steps.
In Fig. 4, we show the evolution of ρB, ρE, H and G for

BPa with Λ ¼ 2.55 × 10−5 MP for illustration. Similar
values are found for the other benchmark points. We remark
that we have compared our numerical results to the
analytical approximation of the magnetic and electric fields’
energy densities, magnetic helicity, and its derivative as in
Ref. [65] and find good agreement.

FIG. 4. In the upper panel we plot the energy densities ρB and ρE with Λ ¼ 2.55 × 10−5 MP for the BPa summarized in Table I. The
lower panel corresponds to the hyperhelical magnetic fields H and G for identical parameter choices.
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B. Relevance of the Schwinger effect

We now turn to the impact of the Schwinger effect. The
fermion current of Eq. (4.2) can be expressed as

jμ ¼ ðρc; JÞ ð4:20Þ

The current and the gauge field are related by Ohm’s law

J ¼ σcE ¼ −σc∂τA; ð4:21Þ

where the conductivity σc has been defined as a comoving
quantity. The physical conductivity σph relates to the
comoving one via σc ¼ aσph. In the case of one Dirac
fermion f with massmf and chargeQf under aUð1Þ group
with coupling g, the comoving conductivity associated to f
can be written as [71]

σcf ¼
jgQfj3
6π2

a
H

ffiffiffiffiffiffiffiffi
2ρB

p
coth

 
π

ffiffiffiffiffi
ρB
ρE

r !

× exp

(
−

πm2
fffiffiffiffiffiffiffiffi

2ρE
p jgQfj

−
ffiffiffi
2

3

r
φ

MP

)
; ð4:22Þ

where mf ≡mfðh0Þ ¼ mfðvÞh0=v and so that

σc ¼
X
f

σcf ¼
X
l

σcl þ Nc

X
q

σcq; ð4:23Þ

with l ¼ e, μ, τ; q ¼ u; d; c; s; t; b, Nc ¼ 3 being the
number of colors. Last, since we are in the broken phase,
we identify g as the electric charge g≡ e ≃ 0.71 at the scale
in which inflation takes place.
This conductivity is to be distinguished from the

conductivity of a thermal plasma after reheating in a
radiation-dominated universe. We stress that the above
is the conductivity at the end of inflation, before the
reheating, produced by fermion pair formation from the
magnetic field. Also, this estimation is valid in the case of
collinear electric and magnetic fields, an assumption that
we have numerically checked. Finally, the electric and
magnetic fields are assumed to be slowly varying, as we
expect the hypercharge gauge field to reach a stationary
configuration, where the tachyonic instability and the
induced current balance each other. We have verified in
our numerical simulation that this is indeed the case.
In the presence of the fermion current, Eq. (4.7) becomes

̈Ãþ ðH þ σphÞ ˙̃Aþ k2

a2
Ãþ 2iHξ

a
ðk × ÃÞ ¼ 0; ð4:24Þ

which, for the transverse components in conformal time
reads as

∂
2
τ Ã

λ þ σc∂τÃ
λ þ ω2

λÃ
λ ¼ 0; ð4:25Þ

which can be recast as

∂
2
τ Ã

λ þ
�
∂

∂τ
logðΔðτÞÞ

�
∂τÃ

λ þ ω2
λÃ

λ ¼ 0; ð4:26Þ

with

ΔðτÞ ¼ exp

�Z
τ

−∞
σcðτ0Þdτ0



: ð4:27Þ

Integrating Eq. (4.26) by parts as in the previous sub-
section, one can now define the canonical momentum for
the transverse modes as

πλðτ;kÞ ¼
δLλ

δð∂τÃλðτ;−kÞÞ ¼ ΔðτÞ∂τÃλ0 ðτ;kÞ; ð4:28Þ

and the commutation relation now becomes [98]

½Ãλðτ;kÞ; ∂τÃλ0 ðτ;qÞ� ¼ i
1

ΔðτÞ δλλ0δðkþ qÞ;

with; Ãλðτ;kÞ ¼ âλku
λ
kðτÞ þ âλ−ku

λ
kðτÞ: ð4:29Þ

The mode equations for the gauge fields in the presence of
the Schwinger effect become

üλ þ ðH þ σcÞu̇λ þ
k
a

�
k
a
þ 2λHξ

�
uλ ¼ 0; ð4:30Þ

and the cut-off momenta kc is now modified to

kc ¼ jaHξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaHξÞ2 þ a2

2

�
σ̇ph þ σph

�
σph
2

þH

��s
:

ð4:31Þ

At early times solution of the mode equations of Eq. (4.30)
are represented by WKB solution [33,98]

uλðτÞ ¼ 1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðτÞωλðτ; kÞ

p e
−i
R

τ

τin
dτ0ωλðτ0;kÞ ð4:32Þ

as long as j ∂τωλ
ωλ

j ≪ 1. In practice, we utilize the early-time
solution for the modes

uλðτÞ ¼ 1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðτÞωλðτ; kÞ

p e−ikτ ð4:33Þ

to find relevant, observable quantities. From Eqs. (4.30)
and (4.31), we find the energy densities for BPa and
display them in the right panel of Fig. 5.
Due to the coupling between the fermion and gauge

sectors, massless hypercharged fermions are continuously
produced during inflation. They are massless as long as the
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EW symmetry remains intact and thus contribute to the
energy density of relativistic radiation as

ρψ ¼ lim
V→∞

σc
V

Z
V
d3x

hA · Ei
a4

¼ σc
a4

Z
kc

kmin

dk
k2

2π2
d
dτ

X
λ

juλj2:

ð4:34Þ

It has been shown in Ref. [99] that the fermion energy
density can easily dominate over the energy densities of E
and B fields at the end of inflation. This situation has been
chosen as an example in Fig. 5 where we display the
energy fraction ρiðN Þ=ρðN Þ, i ¼ E, B, ψ at the end of
inflation and the onset of reheating. We show a direct
comparison between the presence and the absence of the
Schwinger effect. While for Λ≳ 4 × 10−5MP the differ-
ence is an order one factor, the Schwinger effect reduces
the amount of electromagnetic energy and helicity up to
two orders of magnitude for Λ ≃ 2.4 × 10−5MP, see Fig. 7.
This is because the presence of the Schwinger effect trades
an exponential behavior in ξ with a polynomial one.
When the gauge share dominates at least by 80%, the

Universe will reheat before the perturbative decay of the
inflaton [100], a phenomenon called gauge preheating. As
in Ref. [65], we found that preheating is unlikely since the
ratio is ∼10−6 at most. However, the huge damping in both
energy and helicity does not preclude a window in the
parameter space where the BAU is achieved, as we will see
in the next section.

V. BARYOGENESIS

To generate a baryon asymmetry, the Sakharov con-
ditions [51] must be met: (i) the system must contain a
process that violates the baryon number, (ii), this process
also violates C=CP symmetries, (iii) this process occurs out
of thermal equilibrium. In the SM, the CP-violating term
from the CKM matrix phase is too small to induce a

significant baryon asymmetry at a low energy scale, hence
we included the dimension-six CP-odd term between Ricci
scalar and Uð1ÞY gauge boson. On the other hand, in the
symmetric phase of the EW plasma, the SM exhibits a
chiral anomaly that is enough to source the present-day
BAU. The anomaly expresses the fact that the Bþ L
anomaly, the Uð1ÞY helicity and the weak sphaleron are
connected as

ΔNB ¼ ΔNL ¼ Ng

�
ΔNCS −

g02

16π2
ΔHY

�
: ð5:1Þ

The factor Ng ¼ 3 is the number of fermion generations
and g0 is the Uð1ÞY gauge coupling. Under the thermal
fluctuation of the SUð2ÞL gauge fields, the Chern-Simons
number NCS is diffusive, resulting in the rapid washout of
both lepton NL and baryon NB numbers. On the contrary, a
helical primordial magnetic field acts as a source, and a
net baryon asymmetry can remain after the EW phase
transition.
In Refs. [53,60], the effects of the helicity decay and

sphaleron washout balance have been studied within a
careful analysis of the transport equations for all SM species
during the EWPT. As a result, a nonzero baryon-to-entropy
ratio ηB remains in the broken phase while the trans-
formation of baryon asymmetry back into helicity is
avoided. The novelty of the mechanism lies in the intro-
duction of a time-dependent (temperature-dependent) weak
mixing angle θWðTÞ which enters an additional source of
the baryon number into the kinetic equation. When the EW
symmetry breaking occurs at T ≃ 160 GeV, the primordial
hypermagnetic field becomes an electromagnetic field.
However, the electroweak sphaleron remains in equilibrium
until T ≃ 130 GeV and threatens to washout the baryon
asymmetry. Therefore proper modeling of the epoch
160 GeV≳ T ≳ 130 GeV is critical to an accurate predic-
tion of the relic BAU.

FIG. 5. Energy breakdown for ξR ¼ 2.35 × 109, ξH ¼ 10−3 and Λ ¼ 2 × 10−5 MP at the end of inflation and the onset of reheating.
We show a comparison between the absence and the presence of the Schwinger effect for the quantities ρiðN Þ=ρðN Þ, i ¼ E, B, ψ . When
the Schwinger effect is strong, like here, the fermion energy density can dominate over the gauge density. Still, all energy shares are
reduced in the presence of the Schwinger effect.
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The behavior of θWðTÞ is confirmed by analytic calcu-
lations [50], and numerical lattice simulations [101]. We
follow Refs. [60,61] and model it with a smooth step
function

cos2θW ¼ g2

g02þg2
þ1

2

g02

g02þg2

�
1þ tanh

�
T−Tstep

ΔT

��
ð5:2Þ

which, for 155 GeV≲ Tstep ≲ 160 GeV and 5 GeV≲
ΔT ≲ 20 GeV, describes reasonably well the analytical
and lattice results for the temperature dependence.
Consequently, it is possible to generate the observed
BAU from a maximally helical magnetic field that was
generated before the EW crossover. Indeed, including all
contributions, the Boltzmann equation for the baryon-to-
entropy ratio ηB reads

dηB
dx

¼ −
111

34
γW sphηB þ

3

16π2
ðg02 þ g2Þ sinð2θWÞ

dθW
dx

HY

s
;

ð5:3Þ

where x ¼ T=HðTÞ, with HðTÞ being the Hubble rate at
temperature T, HY the hypermagnetic helicity that is
initially present and s the comoving entropy density of
the SM plasma given by s ¼ ð2π2=45Þg�T3. Furthermore,
γW sph ¼ 6ΓW sph=T4 is the dimensionless transport coeffi-
cient for the EW sphaleron which, for temperatures
T < 161 GeV, is found from lattice simulations to be [102]

γW sph ≃ exp

�
−147.7þ 107.9

T
130 GeV



: ð5:4Þ

The Boltzmann equation (5.3) has been numerically
solved in Ref. [60] and the baryon-to-entropy ratio ηB was
found to become frozen, i.e. η̇B ¼ 0, at a temperature
T ≃ 135 GeV. As expected, this is close to the temperature
T ≃ 130 GeV at which EW sphalerons freeze out. Setting
the RHS of Eq. (5.3) to zero and solving for ηB yields

ηB ≃ 4 × 10−12fθW
HY

H3ðtendÞ
�

HðtendÞ
1013 GeV

�3
2

�
Trh

T ins
rh

�
; ð5:5Þ

where the (instant) reheating temperature is

Trh ¼
�

90

π2g�

�1
4 ffiffiffiffiffiffi

Γϕ

p
; T ins

rh ¼
�

90

π2g�

�1
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðtendÞ
p

; ð5:6Þ

and Γϕ is the total decay width of the inflaton that reheats
the universe after inflation.
All the details on the EWPT dynamics are encoded in the

parameter fθW which is subject to significant uncertainties

fθW ¼ − sinð2θWÞ
dθW

d logT

����
T¼135 GeV

;

5.6 × 10−4 ≲ fθW ≲ 0.32: ð5:7Þ

The bounds on fθW are given by varying Tstep andΔT in the
ranges given below Eq. (5.2). The result Eq. (5.5) is a main
ingredient of this work as it directly relates the amount of
the final BAU to the amount of hypermagnetic helicity
available at the EWPT.
The production of hypermagnetic fields nevertheless

happens at the inflationary scale, hence one must ensure
that the helicity is preserved as the Universe cools down in
the radiation-dominated era that follows reheating. A
rough estimate is to require that the magnetic Reynolds
number Rm is bigger than unity, as this implies that the
effects of magnetic induction are dominating over mag-
netic diffusion in the thermal plasma. On the other hand,
the electric Reynolds number Re determines in which
regime the plasma evolves and informs us how to calculate
the magnetic Reynolds number, see, e.g., Refs. [62,64]. In
our work, we found that we are in the viscous regime,
Re < 1, and hence we need to satisfy the constraint

Rrh
m ≈5.9×10−6

ρBY
l2
BY

HðtendÞ2
�

HðtendÞ
1013 GeV

��
Trh

T ins
rh

�2
3

> 1; ð5:8Þ

where lBY
is the hypermagnetic characteristic size

given by

lBY
¼ 2π

ρBa3

Z
kc

kmin

dk
k3

4π2
X
λ

juλj2: ð5:9Þ

The magnetohydrodynamics description of the plasma also
admits aCP-odd term that can induce a helicity cancellation
because of the fermion asymmetry back-transformation into
helical gauge fields with opposite sign. This is because the
energy configuration in the gauge sector is more favorable
than in the fermion sector [103], a phenomenon called chiral
plasma instability (CPI). Thus, one must ensure that all
fermion asymmetry created alongside the helical field
during inflation is erased by the action of the weak
sphaleron for 1012 GeV≳ T ≳ 130 GeV. Because the weak
interaction only couples to left-handed fermions, the right-
handed fermions are protected from the washout until their
Yukawa interaction becomes relevant in thermal equilib-
rium. The right-handed electron eR is the last species to
come into chemical equilibrium, at temperatures ∼105 GeV,
thus its asymmetry survives the longest. Therefore, to
efficiently erase the fermion asymmetry, while preserving
the helicity in the gauge sector, before the CPI can happen,
one must require that [62,103]

BARYOGENESIS IN R2-HIGGS INFLATION: THE … PHYS. REV. D 109, 043026 (2024)

043026-15



TCPI ≈ ð4 × 10−7 GeVÞ H2
Y

HðtendÞ6
�

HðtendÞ
1013 GeV

�
3
�
Trh

T ins
rh

�
2

≲ 105 GeV: ð5:10Þ

In Figs. 6 and 7, we display the main results for the
baryogenesis mechanism both in the presence and absence
of the Schwinger effect. In both figures, the top panels
display the electromagnetic energy and energy ratio to the
background energy density. In the middle panels we show
the quantities ηBðΛ; fθW Þ, RmðΛÞ and ReðΛÞ. On the left,
the red line must be in between the two curves to meet the
constraint. On the right, the only constraint is that Rm is

above the red line. Finally, at the bottom, we present the
CPI temperature as a function of Λ and the regions where
the different constraints are met. On the bottom left panel,
the curve should be below the red line. On the right one,
we shall seek the overlapping region. In this last plot, we
add the temperature ratio Trh=T ins

rh as a supplementary
parameter. We see that the window is larger in the presence
of the Schwinger, which also totally removes the constraint
on TCPI. Indeed, the backreactionless mechanism tends
to overshoot the BAU, an issue addressed by the presence
of the Schwinger effect which therefore acts as a
BAU facilitator.

FIG. 6. These figures display a scan of the parameter Λ with the first set of initial conditions, see BPa in Table I without Schwinger
effect. Top panels: magnetic and electric energy density (left) and their ratio with the inflation energy density (right). Middle panel:
baryon asymmetry ηB (left) and Reynolds numbers (right) with their corresponding constraints in red. Bottom panels: CPI temperature
with constraint in red (left) and baryogenesis parameter space (right).
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VI. SUMMARY AND CONCLUSIONS

We have discussed baryogenesis in the context of R2-
Higgs inflation, involving the CP-violating dimension-six
term proportional to ðR=Λ2ÞBμνB̃μν. We adopt a fully
covariant formalism for both inflationary dynamics and
gauge field production. Our linear order analysis shows that
if Λ ∼ 3 × 10−5 MP, sufficient helical hypermagnetic fields
are produced, which can lead to the observed BAU during
the electroweak crossover. Smaller values of Λ imply an
overproduction of baryons. Once the Schwinger effect is
included, the energy densities ρE and ρB are suppressed, but

there is a subtlety: the Schwinger effect is exponentially
suppressed by a factor ∼ expð− ffiffiffiffiffiffiffiffiffiffiffið2=3Þp

φ=MPÞ, which
dilutes its relevance during the inflationary epoch, but
becomes pronounced around and after the end of inflation.
The Schwinger effect can then lead to baryogenesis for
smaller values Λ ∼ 2.2 × 10−5 MP. We also find that when
the Schwinger effect is included, the radiation density ρψ
can dominate over the electromagnetic densities ρE and ρB,
cf. Fig. 5.
We have primarily focused on the Starobinsky-

like regime in our linear order analysis. In the mixed

FIG. 7. Similar to Fig. 6, these figures again display a scan of the parameter Λ with the first set of initial conditions, BPa in Table I
including the Schwinger effect. Top panels: Magnetic and electric energy density (left) and their ratio with the inflation energy density
(right). Middle panel: baryon asymmetry ηB (left) and Reynolds numbers (right) with their corresponding constraints in red. Bottom
panels: CPI temperature with constraint in red (left) and baryogenesis parameter space (right). We did not display the CPI temperature on
this last plot as the CPI is no longer a constraint.
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R2-Higgs scenario, a smaller Λ may generate BAU without
the Schwinger effect. This can be understood from
Eq. (2.25) where a smaller ξR and moderately large ξH
(i.e. the mixed R2-Higgs like regime) can induce inflation,
while BAU can be triggered by a larger scale Λ. However, a
larger ξH may lead to an exponential growth of isocurvature
modes (see e.g. Refs. [78,104,105]) in our backreactionless
scenario although such a mode is suppressed during
inflation. Moreover, in such a scenario, one would need
to take into account nonperturbative effects. In our analysis,
we have not considered the impact of decay and self-
resonance. Thus, the ratio Trh=T ins

rh is essentially a free
parameter in our analysis. We leave a more detailed
analysis of (p)reheating and particle production for future
work. It has been pointed out that the helical gauge fields
may source non-Gaussianity [106,107], which may result
in moderate constraint to the parameter space for baryo-
genesis without the Schwinger effect [64]. In the presence
of the Schwinger effect, the produced helical gauge fields
are much weaker and we expect those constraints to be
harmless. However, one needs to be careful when inter-
preting results from Refs. [106,107] as they focus on a
single field. In our multi-field model, a proper estimation of
non-Gaussianity requires considering perturbations up to
third order. This would induce several new contributions
from field-space Riemann tensor [76] and is beyond the
scope of our work.
While there are many avenues to achieve the observed

BAU, baryogenesis driven by a dimension-sixCP-odd term
∼ðR=Λ2ÞBμνB̃μν provides a motivated approach to address
BAU within the framework of R2-Higgs inflation. This
approach critically rests on the presence of an effective
dimension-six term, but it does not require additional
degrees of freedom beyond the SM. In parallel, such
dimension-six terms can also shed light on the UV
sensitivity of R2-Higgs inflation as discussed in, e.g.,
Refs. [108,109].
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APPENDIX A: THE VIERBEIN FIELDS

The vierbein fields eaμ are defined as follows: The metric
in the Jordan frame gJμν can be related at every point to a
Minkowski tangent space ηab via the vierbein, which obeys
the following orthogonality conditions

eaμeνa ¼ δνμ; eaμe
μ
b ¼ δab;

gJμν ¼ eaμebνηab and γμ ¼ eaμγ̃a; ðA1Þ

where γ̃a are the Minkowski γ-matrices. The γμ satisfy
fγμ; γνg ¼ 2gμνJ in curved space-time. The spin-affine
connection is given by

Γμ ¼
1

2
ωμabσ

ab with σab ¼ 1

4
½γ̃a; γ̃b�: ðA2Þ

The spin-connection ωa
μb is defined as [110]

ωa
μb ≡ ðeaνeβbΓν

μβ − eβb∂μe
a
βÞ: ðA3Þ

APPENDIX B: FIELD-SPACE METRIC
AND CHRISTOFFEL SYMBOLS

The field-space GIJ metric is given by

Gϕϕ ¼ 1; Ghh ¼ e
ffiffi
2
3

p
ϕ
MP ; Gϕh ¼ Ghϕ ¼ 0: ðB1Þ

The corresponding nonvanishing Christoffel symbols are
therefore

Γϕ
hh ¼

e−
ffiffi
2
3

p
ϕ
MPffiffiffi

6
p

MP

; Γh
ϕh ¼ Γh

hϕ ¼ −
1ffiffiffi
6

p
MP

: ðB2Þ

APPENDIX C: EINSTEIN EQUATION
AND STRESS-ENERGY TENSOR

The action SE can be rewritten in the following way

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
RE þ LM

�
; ðC1Þ

where LM is all terms in the action other than RE. Varying
the action with respect to gμνE we get
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0 ¼ δSE

¼
Z

d4x

�
M2

P

2

δð ffiffiffiffiffiffiffiffi−gE
p

REÞ
δgμνE

þ δð ffiffiffiffiffiffiffiffi−gE
p

LMÞ
δgμνE

�
δgμνE

¼
Z

d4x

�
M2

P

2

�
RE

δð ffiffiffiffiffiffiffiffi−gE
p Þ
δgμνE

þ ffiffiffiffiffiffiffiffi
−gE

p δðREÞ
δgμνE

�
þ ffiffiffiffiffiffiffiffi

−gE
p δðLMÞ

δgμνE
þ LM

δð ffiffiffiffiffiffiffiffi−gE
p Þ
δgμνE

�
δgμνE : ðC2Þ

Utilizing δð ffiffiffiffiffiffi−gE
p Þ
δgμνE

¼ − 1
2

ffiffiffiffiffiffiffiffi−gE
p

gEμν,
δðREÞ
δgμνE

¼ REμν and ignoring the surface term we get

REμν −
1

2
gEμνRE ¼ 1

M2
P
Tμν ðC3Þ

where

Tμν ¼
�
LMgEμν − 2

δLM

δgμνE

�
; ðC4Þ

which is found to be

Tμν ¼
�
GIJDμϕ

IDνϕ
J þ gαβE BαμBβν þ gαβE Wi

αμWi
βν þ

1

2
e−

ffiffi
2
3

p
ϕ
MPg2h2

ðW1
μ − iW2

μÞffiffiffi
2

p ðW1
ν þ iW2

νÞffiffiffi
2

p

þ 2M2
P

ξRΛ2 ffiffiffiffiffiffiffiffi−gE
p FðϕIÞe

ffiffi
2
3

p
ϕ
MP

�
2gEμαϵαβρσBνβBρσ þ

1

8
gEμνϵαβρσBαβBρσ

�

þ 1

4
e−

ffiffi
2
3

p
ϕ
MPh2ðgW3

μ − g0BμÞðgW3
ν − g0BνÞ

�

− gEμν

�
1

2
GIJg

αβ
E Dαϕ

IDβϕ
J þ V0ðϕIÞ þ 2M2

P

ξRΛ2 ffiffiffiffiffiffiffiffi−gE
p FðϕIÞe

ffiffi
2
3

p
ϕ
MPBαβB̃αβ

þ 1

4
gαρE gβσE BαβBρσ þ

1

4
gαρE gβσE Wi

αβW
i
ρσ þ

1

4
e−

ffiffi
2
3

p
ϕ
MPgαβE g2h2

ðW1
α − iW2

αÞffiffiffi
2

p ðW1
β þ iW2

βÞffiffiffi
2

p

þ 1

8
e−

ffiffi
2
3

p
ϕ
MPgαβE h2ðgW3

α − g0BαÞðgW3
β − g0BβÞ

�
þ e−

ffiffi
2
3

p
ϕ
MP f̄eaμγ̃a∇f

νf: ðC5Þ

APPENDIX D: THE VALLEY APPROXIMATION

In this section, we detail aspects of the so-called valley
approximation for V0. In this approximation, the system
essentially behaves as a single-field scenario. First, for
positivity of the potential at the inflationary scale, one
requires

λþ ξ2H
4ξR

> 0: ðD1Þ

For solving the background equations and the inflationary
dynamics we focus on the R2-like regime and the initial
condition of the valley approximation derives from

∂V0

∂h
¼ 0; ðD2Þ

which gives three solutions

h ¼ 0; and h ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
ffiffi
2
3

p
ϕ
MP − 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λþ ξ2H

ξR

q
ffiffiffiffiffiffi
ξH
ξR

s
MP: ðD3Þ

One may choose the trivial solution h ¼ 0, or the solution
with a positive sign for convenience.

APPENDIX E: NUMERICAL SOLUTIONS
OF THE ELECTROMAGNETIC EQUATIONS

In the following, we summarize the details of solving the
mode equation of Eq. (4.15) in cosmological time t using
the RK4 method
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üλþHu̇λþ
�
k2

a2
þ8cos2θWM2

P

ξRΛ2a
∂0ðFðφIÞe

ffiffi
2
3

p
φ=MPÞλk

�
uλ

¼0: ðE1Þ

First, as required for the RK4 method, we rewrite the above
equation as two first order equations

duλ

dt
¼ yλ

and;
dyλ

dt
¼ −yλH −

 
k2

a2
þ 8cos2θWM2

P

ξRΛ2a

× ∂0ðFðφIÞe
ffiffi
2
3

p
φ=MPÞλk

!
uλ ðE2Þ

The equations are essentially in the form of

duλ

dt
¼ fðuλ; yλ; tÞ; and

dyλ

dt
¼ gðuλ; yλ; tÞ; ðE3Þ

with

fðuλ; yλ; tÞ ¼ yλ;

gðuλ; yλ; tÞ ¼ −yλH −
 
k2

a2
þ 8cos2θWM2

P

ξRΛ2a

× ∂0ðFðφIÞe
ffiffi
2
3

p
φ=MPÞλk

!
uλ: ðE4Þ

Now the task is to find out uλ and y for each time step
utilizing the RK4 method. This is provided by

uλiþ1 ¼ uλi þ
1

6
ðl0 þ 2l1 þ 2l2 þ l3Þ;

yλiþ1 ¼ yλi þ
1

6
ðm0 þ 2m1 þ 2m2 þm3Þ; ðE5Þ

with

l0 ¼ δtfðuλi ; yλi ; tiÞ;
m0 ¼ δtgðuλi ; yλi ; tiÞ;

l1 ¼ δtf

�
uλi þ

1

2
l0; yλi þ

1

2
m0; ti þ

1

2
δt

�
;

m1 ¼ δtg

�
uλi þ

1

2
l0; yλi þ

1

2
m0; ti þ

1

2
δt

�
;

l2 ¼ δtf

�
uλi þ

1

2
l1; yλi þ

1

2
m1; ti þ

1

2
δt

�
;

m2 ¼ δtg

�
uλi þ

1

2
l1; yλi þ

1

2
m1; ti þ

1

2
δt

�
;

l3 ¼ δtfðuλi þ l2; yi þm2; tiÞ;
m3 ¼ δtgðuλi þ l2; yi þm3; tiÞ; ðE6Þ

where δt is the time step. The Bunch-Davis initial con-
ditions for the modes uλ and y are given in Eq. (4.19).
One can in principle fix the number of modes Nk in each

time step within ½kmin; kc� for the integration of Eqs. (4.16).
However, this makes the initialization of the modes in the
next time step more involved. This is because as kc
increases in each time step, keeping Nk fixed each time
would require some more involved initialization for sub-
sequent time steps. We can take a simpler route and keep
the number of k modes the same for all time steps. This
ensures that the number of modesNk and the corresponding
modes are identical at each time step. In practice, we take a
large range ½kmin; kmax� with kmax ¼ CaðtnumendÞHðtnumendÞ
where tnumend is the numerical end of our simulation. We
chose C ¼ 100 to ensure that kcðtnumendÞ < kmax and divide
the range ½kmin; kmax� into Nk ¼ 200 intervals. In each time
step, we then numerically interpolate Eqs. (4.16) in
½kmin; kmax� and truncate the numerical integration up to
the corresponding kc values. Increasing Nk to higher values
does not significantly impact our results. For further details
of the numerical procedure, we refer the reader to Ref. [65].
In the presence of the Schwinger effect the correspond-

ing equation of motion, Eq. (4.30), is solved numerically
using similar methods as those described above.
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