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In this paper, we study the impact of anisotropy on neutron stars with different equations of state, which
have been modeled by a piecewise polytropic function with continuous sound speed. Anisotropic pressure
in neutron stars is often attributed to interior magnetic fields, rotation, and the presence of exotic matter or
condensates. We quantify the presence of anisotropy within the star by assuming a quasilocal relationship.
We find that the radial and tangential sound velocities constrain the range of anisotropy allowed within the
star. As expected, the anisotropy affects the macroscopic properties of stars, and it can be introduced to
reconcile them with astrophysical observations. For instance, the maximum mass of anisotropic neutron
stars can be increased by up to 15% compared to the maximum mass of the corresponding isotropic
configuration. This allows neutron stars to reach masses greater than 2.5M⊙, which may explain the
secondary compact object of the GW190814 event. Additionally, we propose a universal relation for
the binding energy of an anisotropic neutron star as a function of the star’s compactness and the degree
of anisotropy.
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I. INTRODUCTION

Neutron stars (NSs) are extremely dense and compact
objects that have traditionally been modeled as isotropic
configurations [1–4]. Recently, researchers have focused on
using anisotropic fluids to provide a more accurate
description of their internal structure, composition, and
to account for various physical phenomena associated with
them [5–14]. For example, phenomena such as phase
transitions [15], pion condensation [16], the presence of
very high magnetic field [17,18], and relativistic nuclear
interactions [19] could produce anisotropy in the stellar
interior, mainly where nuclear matter reaches densities
greater than 1015 g=cm3 (see Refs. [5,14,20,21] for a
complete review of these mechanisms and of the aniso-
tropic compact stellar solution in general relativity).
The study of anisotropic pressure effects on NSs can

shed light on the behavior of matter under extreme
conditions and provide insights into the equation of state
(EOS), which describes the relationship between the
pressure, density, and composition of matter. The aniso-
tropic distribution of nuclear matter can reveal the presence
of exotic particles [22] such as hyperons, kaon condensates,
or a deconfined phase of strange matter [23], as well as
phase transitions [24], the crystallization of the core [25],
superfluid core [26], and the nature of the strong force

interactions [12,27,28]. This knowledge is crucial for
understanding the behavior of matter in the early universe,
nuclear physics, and astrophysical processes involving
high densities.
The first work exploring the impact of anisotropic

pressure on stable NS configurations was carried out in
Ref. [6]. They requested that the anisotropy vanishes at the
origin, and assumed that it exhibits a nonlinear dependence
on radial pressure, and is induced by gravity. Their findings
indicated that this anisotropy has non-negligible effects
on the mass and redshift of a NS. Since then, nume-
rous publications have extensively studied solutions of
Einstein’s equations for spherically symmetric static arrange-
ments, considering anisotropic pressure [7,8,21,29–32].
These works reveal that anisotropy has remarkable effects
on the structure and properties of NSs, including observable
properties such as the mass-radius ratio [6,33], moment
of inertia [34], redshift [35], tidal deformability [36–38],
maximum mass [32,39], and nonradial oscillation [40].
Furthermore, anisotropy can stabilize stellar configura-
tions that would otherwise be unstable [21,30,41]. For
example, [38] noted that certain EOSs ruled out by gravi-
tational waves and electromagnetic observations could
become viable if the star attains a substantial degree of
anisotropy.
The influence of pressure anisotropy on stellar proper-

ties varies depending on the selected model and the
amount of anisotropy present. However, these factors
can be constrained by the analysis of observational data.
Reference [42] suggested that binary pulsar observations

*laura.becerra7@correo.uis.edu.co
†eduar.becerra@correo.uis.edu.co
‡fadulora@uis.edu.co

PHYSICAL REVIEW D 109, 043025 (2024)

2470-0010=2024=109(4)=043025(11) 043025-1 © 2024 American Physical Society

https://orcid.org/0000-0002-3262-5545
https://orcid.org/0000-0003-4848-1483
https://orcid.org/0000-0003-4613-2917
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.043025&domain=pdf&date_stamp=2024-02-14
https://doi.org/10.1103/PhysRevD.109.043025
https://doi.org/10.1103/PhysRevD.109.043025
https://doi.org/10.1103/PhysRevD.109.043025
https://doi.org/10.1103/PhysRevD.109.043025


could constrain the range of anisotropy. Reference [43] used
a relativistic mean-field model to show that an anisotropic
NS, based on Ref. [30] model, is consistent with the
constraints imposed by NS multimessenger observations.
Furthermore, the range of pressure anisotropy inside stars
was constrained in [38] using tidal deformability data from
GW170817. Similarly, [44,45] constrained the canonical
moment of inertia and f-mode frequency for different degrees
of anisotropy using the GW170817 and GW190814 events.
Additionally, the inferred mass and equatorial radius
from the NICER observations of the pulsars PSR J0030þ
045 [46,47] and PSR J0740þ 662 [48,49] could further
constrain the anisotropy range allowed within a NS.
The significance of accounting for anisotropy within NSs

is undeniable. This phenomenon holds the potential to guide
us towards a more profound comprehension of the intricate
interplay between the internal structure and observable
properties inherent to these astrophysical entities. Therefore,
our paper focuses on investigating the impact of anisotropy
on the macroscopic properties of NSs, such as mass, radius,
compactness, and binding energy. We obtain anisotropic NS
configurations by solving Einstein’s field equations for
spherically symmetricmatter. In this context,we characterize
the anisotropy of pressure within the star by adopting the
quasilocal relation proposed by [30]. According to this
relation, the difference between the radial and tangential
pressure is assumed to be proportional to the star’s local
compactness and radial pressure, ensuring that anisotropy
vanishes at the center of the star. Furthermore, we study
different nuclear EOSs coveringdifferentmodels andparticle
compositions of the star. We parametrize them using the
generalized piecewise polytropic (GPP) fit proposed by [50],
which guarantees continuity in radial pressure and sound
speed within the star.
The paper is organized as follows. In Sec. II, we present

the equations of structure for anisotropic spherically
symmetric stars in general relativity (Sec. II A). We also
introduce the parametrization used to model various EOSs
for the NS matter with the GPP fit (Sec. II B), and give a
brief description of the numerical code used to integrate the
equations (Sec. II C). The macroscopic properties of
anisotropic NSs, including mass-radius relation, compact-
ness, and binding energy, are presented in Sec. III. In this
section, we discuss the essential criteria that the NS
configurations must meet to be considered physically
realistic, and the constraints imposed by observations
(see Sec. III A). Furthermore, in Sec. III B, we propose a
fit for the binding energy of the star with anisotropy.
Finally, we give our concluding remarks in Sec. IV.

II. NEUTRON STAR MATTER

A. Tolman-Oppenheimer-Volkoff equations

Let us consider an anisotropic fluid in a spherically
symmetric spacetime, whose line element is given in terms
of the components of the metric gαβ tensor by

ds2 ¼ −c2α2dt2 þ
�
1 −

2Gm
c2r

�
−1
dr2 þ r2dΩ; ð1Þ

being α ¼ αðrÞ, m ¼ mðrÞ, dΩ ¼ dθ2 þ sin2θdϕ2, G the
gravitational constant and c the speed of light. The general
energy-momentum tensor for a static and spherically
symmetric fluid can be written as [51]

Tαβ ¼ ðϵþ P⊥Þuαuβ þ P⊥gαβ þ ðP − P⊥Þnαnβ; ð2Þ

where P is the radial pressure and P⊥ is the tangential
pressure. It is worth mentioning that uα and nα, given by the
following expressions:

uα ¼
�
1

cα
; 0; 0; 0

�
; ð3Þ

nα ¼
�
0;

�
1 −

2Gm
c2r

�
1=2

; 0; 0

�
; ð4Þ

correspond to unitary timelike and spacelike vectors, that
is, uαuα ¼ −1 and nαnα ¼ 1.
By solving the Einstein field equations and matter

equations, a general expression for an anisotropic spheri-
cally symmetric compact star is obtained,

dm
dr

¼ 4πr2ϵ; ð5Þ

dP
dr

¼ −

�
ϵþ P

c2

��
mþ 4πr3P

c2

�
r2
G

�
1 − 2Gm

rc2

� þ 2

r
ðP⊥ − PÞ; ð6Þ

1

α

dα
dr

¼ G
c2r2

�
mþ 4πr3P

c2

��
1 −

2Gm
rc2

�
−1
: ð7Þ

Notice that Eq. (6) is the only one that contains the
contribution of the radial and tangential pressure by the
difference P − P⊥. The assumption of spherical symmetry
holds for static matter sources where the energy-momentum
tensor exhibits the specific condition: jTθ

θ − Tϕ
ϕj ≪ Tθ

θ. This
assumption works in diverse physical scenarios, including
those characterized by a solid core, or the state of pion
condensation.
To accommodate the transition between the isotropic and

anisotropic regimes, it becomes necessary to introduce a
functional form for P − P⊥, considering that the specific
relationship between energy density and radial and tangen-
tial pressures is unknown due to its dependence on micro-
scopic factors. Following the work of [30], the tangential
pressure can be written as

P⊥ ¼ P

�
1þ λa

2Gm
c2r

�
; ð8Þ
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where λa is a parameter controlling the degree of
anisotropy. When the anisotropy is due to a condensate
phase of pions [16], 0 ≤ ðP − P⊥Þ=P ≤ 1, therefore we
could expect that the maximum value for the pressure
difference is of the order of unity. Considering that the
compactness of NSs ranges from 0.05 to 0.3 more or less,
the range of values for the anisotropy parameter we will be
using for this work is −2 ≤ λa ≤ 2 [30,40]. Among various
models in the literature, relation (8) introduces the effects of
pressure anisotropy in a phenomenological manner (see
e.g. [52] for a covariant relation between P and P⊥).
Additionally, there are also works that introduce pressure
anisotropy self-consistently as the models presented in [53]
of stars with elastic matter (see also [54] for a review).

B. Equation of state

We parametrize the NS EOS using the GPP fit
presented in [50]. For the mass density, ρ, in the interval
between ½ρi; ρiþ1�, the pressure, P, and energy density, ϵ,
are given by

PðρÞ ¼ Kiρ
Γi þ Λi; ð9Þ

ϵðρÞ ¼ Ki

Γi þ 1
ρΓi þ ð1þ aiÞρ − Λi; ð10Þ

where the parameters Ki, Λi and ai are determined by
enforcing continuity and differentiability of the energy
density and pressure across the dividing densities:

Kiþ1 ¼ Ki
Γi

Γiþ1

ρΓi−Γiþ1 ; ð11Þ

Λiþ1 ¼ Λi þ
�
1 −

Γi

Γiþ1

�
Kiρ

Γi ð12Þ

aiþ1 ¼ ai þ Γi
Γiþ1 − Γi

ðΓiþ1 − 1ÞðΓiÞ − 1
Kiρ

Γi−1 ð13Þ

This paper explores a broad range of nuclear EOS from
different models and composition. All the EOS are listed
in Table II in the Appendix and were obtained using
COMPOSE [55]. For the low-density crust, we use the fit of
the Sly(4) EOS given in [50]. More details on the best-fits
made with the GPP framework can be found in the
Appendix. We use these fits to compute anisotropic NS
configurations.

C. Numerical calculations

All the simulations are computed using a fourth-order
Runge-Kutta integrator in a 1D spherical grid extending
from r ¼ 0M to the outer domain boundary, rmax ¼ 100M.
To avoid the singular behavior at r ¼ 0, we follow the
procedure shown in [56], where a Taylor expansion is
performed around this point. The resulting approximate

regular equations are programmed at least for the first mesh
point located at r ¼ Δr, being Δr the uniform spatial
resolution of the grid. On the other hand, the radius RNS of
the surface of the star is defined as the radius r ¼ RNS,
where the mass density ρðRNSÞ ¼ 104 g cm−3. In this sense,
the mass of the configuration isM ¼ mðRNSÞ. In particular,
this code has been used to constrain several configurations
of neutron and quark stars using the GW170817 observa-
tion [57]. In addition, we have used this code to study
anisotropic quark stars with an interacting quark equation
of state, where the contribution of the fourth-order correc-
tions parameter a4 of the QCD perturbation on the radial
and tangential pressure generates significant effects on the
mass-radius relation and the stability of the quark star [12].

III. NEUTRON STARS PROPERTIES

A. Mass-radius relation

For the EOS presented in Table II, we solve equa-
tions (5)–(7) together with Eq. (8), for different values of
the anisotropic parameter λa and the central mass density
ρc. The resulting mass-radius relations are shown in Fig. 1.
In general, positive (negative) values of the anisotropic
parameter support more (less) massive configurations
compared with the isotropic model (λa ¼ 0). This is
expected since positive (negative) λa produces an outward
(inward) force that is opposite (aligned) to the gravitational
force [see Eq. (6)].
We consider the obtained configurations to represent

physical objects if they satisfy the two following conditions:
(i) Stability condition: the central density ρc should be

smaller than ρcðMmaxÞ, where Mmax corresponds to
the configuration with the maximum mass. Models
with ρc > ρcðMmaxÞ are unstable to radial perturba-
tion and collapse into black holes [58]. In Fig. 1,
configurations located to the left of the solid black
line are stable to radial perturbations.

(ii) Causality condition: The radial and tangential
speeds of sound, denoted by

c2s;r ¼
∂P
∂ϵ

and c2s;t ¼
∂P⊥
∂ϵ

; ð14Þ

respectively, must not exceed the speed of light, c. In
Fig. 1, configurations to the left of the dashed black
lines have superluminal radial sound speeds. While,
the configurations inside the region bounded by the
dotted black line satisfies the condition 0<c2s;t <c2.
It is important to clarify that in a spherically symme-
tric anisotropic configuration, up to five independent
wave speedmodes could be identified [54,59].While
in this workwe define and analyze the twomainwave
modes in the radial and tangential directions, it would
be extremely interesting to explore, in future re-
search, whether these configurations exhibit all wave
speeds and if subluminal speeds persist.
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FIG. 1. Mass-radius relations for different equations of states with the GPP parametrization (see Table II) The color scale corresponds
to the value of the anisotropic parameter, λa. Positive values support more massive configurations. Configurations on the left of the solid
black line are stable against radial perturbations. Configurations on the right of the dashed black lines satisfy the causality conditions for
radial sound speed, while the configurations inside the region enclosed by the dotted black line satisfy it for tangential sound speed.
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Further conditions of acceptability for self-gravitating stellar
models have been compiled in otherworks (see e.g. [60,61]).
But, we only checked for the two above conditions because
we considered them to be theminimum set of conditions that
a model would have to meet in order to be physically
feasible.
As expected, EOS models built with the relativistic mean

field theory, such as GM1Y6, XMLSL, DDH, DD2Y,
QHC19, QHC21, and CMF8-EOS, naturally satisfy the
casualty condition for the radial speed of sound. This is also
the case for the SKI2, SKI3, SKI4, SKI5, SKI6 and BsK-
25-EOS. For the BHF, RS, SKMP, SKOP, SLY230a and
SLY9-EOS, we found configurations with superluminal
radial velocities, but they are unstable to radial perturba-
tions. This is also the case for the remaining EOS studied
here, when the anisotropic parameter is positive, λa > 0
(i.e. tangential pressure is greater than the radial one). For
the opposite case, when λa < 0 (i.e. radial pressure is
greater than the tangential one), we found stable configu-
rations with radial sound speed greater than the speed of
light. It is particular the case of the APR-EOS because we
found this last situation but for all the values of the
anisotropic parameter considered here. For this reason,
we discard the APR-EOS and do not consider it in the
following analysis.
The maximum value of the anisotropic parameter for all

EOS is limited by the tangential sound speed. Configurations
with superluminal tangential sound speeds occur generally
for λa > 1.0. In the case of the relativistic EOS, GM1Y6,
DDH, XML5L, DD2Y, and CMF8, there are no restrictions
on the minimum value of the anisotropic parameter.
However, for the remaining EOS, configurations with
negative anisotropic parameter can be stable to radial
perturbations, but do not satisfy the causality condition of
the tangential sound speed, and thus the maximum stable
mass is restricted.

For a given value of the anisotropic parameter, the
maximum mass is the mass of the most massive configu-
ration that satisfies both the stability and causality con-
ditions for the radial and tangential sound speeds. Figure 2
displays the ratio between the maximum mass for an
anisotropic configuration and the one of the isotropic
model (λa ¼ 0) as a function of the anisotropy parameter,
λa, for each EOS. The maximum mass increases with the
anisotropic parameter until λa ∼ 1.0, where it becomes a
decreasing function. In general, for negative values of the
anisotropic parameter or values greater than one, the
maximum mass is defined by the causality condition for
the tangential sound speed, while for positive values and
less than one, it is defined by the stability condition. We can
fit the maximum mass with the following relation, inde-
pendent of the EOS:

MNS;max ¼
(
Mλa¼0

NS;maxð1.0þ 0.16λaÞ λa < 1.0

Mλa¼0
NS;maxð1.0 − 0.5λaÞ λa > 1.0:

ð15Þ

This relation reproduced the maximum allowed mass for an
anisotropic NS configuration with 1−χ2≈0.015 for λa < 1

and 1 − χ2 ≈ 0.038 for λa > 1.
In addition to the conditions mentioned above, we also

compare our models to astrophysical observations. Figure 3
shows the mass-radius relation of the isotropic configura-
tion for all the EOS summarized in Table II. In this figure,
we have included the following observational constraints:

FIG. 2. Fraction between the maximum mass for an anisotropic
configuration, MNS;max, and the isotropic one, Mλa¼0

NS;max, as a
function of the anisotropic parameter. Configuration with M <
MNS;max satisfies the stability and causality conditions. Colored
lines correspond to the results of the EOS used, and black line is
the fit given in Eq. (15).

FIG. 3. Mass-radius relation of the isotropic configuration for all
the EOS summarized in Table II. In blue are the configurations
composed of npem matter, in red the ones with hyperons and in
black the ones with quarks. Colors bands indicate observational
constrains given by the pulsar masses of PSR J0348þ 0432 [62]
and PSR J0952-0607, the mass and radius NICER constraints
for the pulsars PSR J0030þ 0451 [46,47] and PSR J0740þ
662 [48,49], and the mass of the secondary compact object of
the GW190814 event [64]. The dashed gray line corresponds to the
faster observed pulsar, PSR J1748-2446ad [65], and the dotted gray
line to the Buchdahl limit for the star compactness [66].
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(i) Observation of pulsar masses: PSR J0348þ 0432
with 2.01� 0.04M⊙ [62] and PSR J0952-0607 with
2.35� 0.17M⊙ [63].

(ii) NICER constraints for the mass-radius relation
of PSR J0030þ 0451 [46,47] and PSR J0740þ
662 [48,49].

(iii) The mass of the secondary compact object of the
merger in GW190814 [64], which is between 2.5M⊙
and 2.7M⊙.

As can be seen in Fig. 3, no isotropic model could explain
the massive secondary object of GW190814 as a non-
rotating NS. On the other hand, BHF, KDE0v, KDE1v-
EOS, SKOP and QHC19-EOS would be ruled out by the
constraints of pulsar observations. However, anisotropic
configurations have the potential to satisfy some of these
constraints for a given EOS, when the isotropic model does
not. For example, Fig. 4 shows themass-radius relation with
different values of the anisotropic parameter, λa, for the BHF
and GM1Y6-EOS. While the isotropic configurations with
the BHF-EOS do not satisfy any of the observational
constraints, the anisotropic configurations with λa > 0.24
satisfy the mass constraint given by the pulsar PSR
J0348þ 0432, and the configuration with λa > 0.52 could
model the pulsar PSR J0030þ 0451. On the other hand,
GM1Y6-EOS satisfies nearly all observational constraints,
and a configuration with λa > 0.56 of the anisotropic model
could describe the secondary object of GW190814.
In Table I we report the value range of the anisotropic

parameter that satisfies the observational constraint for each

FIG. 4. Same as Fig. 3 but for anisotropic NSs with, λa ϵð−2; 2Þ
for two selected EOSs: BHF and GM1Y6. Only models satisfy-
ing the stability and causality conditions are displayed.

TABLE I. Limiting values for the anisotropic parameter from which the observational constraints are satisfied. When the (✗) symbol is
present, none of the values within the range ½−2; 1� satisfy the given constraint. Conversely, when the (✓) symbol is present, all
configurations within the same range satisfy the constraint. It is worthmentioning that themaximumvalue of the anisotropic parameter for
all EOS is limited by the tangential sound speed. Configurations with superluminal tangential sound speeds occur generally for λa > 1.0.

EoS
PSR J0348þ 0432

M > 1.97M⊙

PSR J0952-0607
M > 2.17M⊙ PSR J0030þ 0451 NICER PSR J0740þ 6620 NICER

GW190814
M > 2.5M⊙

BHF λa > 0.24 λa > 0.52 ✗ ✗ ✗
KDE0v λa > 0.08 λa > 0.88 λa > 0.24 ✗ ✗
KDE1v λa > 0.08 λa > 0.84 λa > −0.36 ✗ ✗
RS λa > −0.40 λa > 0.28 ✓ λa > −0.12 ✗
SK255 λa > −0.40 λa > 0.20 ✓ λa > 0.04 ✗
SK272 λa > −0.52 λa > −0.04 ✓ λa > −0.43 ✗
SkI2 λa > −0.56 λa > 0.12 ✓ λa > −0.40 ✗
SkI3 λa > −0.76 λa > −0.12 ✓ λa > −0.63 λa > 0.84
SkI4 λa > −0.56 λa > 0.08 ✓ λa > −0.24 ✗
SkI5 λa > −0.72 λa > −0.12 ✓ λa > −0.63 λa > 0.88
SkI6 λa > −0.60 λa > 0.04 ✓ λa > −0.32 ✗
SkMp λa > −0.36 λa > 0.32 ✓ λa > 0.04 ✗
SkOp λa > 0.08 λa > 0.8 λa > −1.68 λa > 0.72 ✗
SLy230a λa > −0.32 λa > 0.32 λa > −0.76 λa > 0.40 ✗
SLy2 λa > −0.20 λa > 0.52 λa > −0.72 λa > 0.76 ✗
SLy4 λa > −0.16 λa > 0.52 λa > −0.52 λa > 0.80 ✗
SLy9 λa > −0.44 λa > 0.16 ✓ λa > −0.12 ✗
BSk25 λa > −0.84 λa > −0.20 ✓ λa > −0.72 λa > 0.72
GM1Y6 λa > −0.92 λa > −0.32 ✓ λa > −0.80 λa > 0.56
DDH λa > −0.44 λa > 0.16 ✓ λa > −0.32 ✗
DD2Y λa > −0.20 λa > 0.43 ✓ λa > −0.08 ✗
XMLSL λa > −0.60 λa > 0.04 ✓ λa > −0.48 λa > 0.96
QHC19 λa > 0.16 λa > 0.84 λa > 0.20 λa > 0.84 ✗
QHC21 λa > −0.56 λa > 0.08 ✓ λa > −0.32 ✗
CMF8 λa > −0.20 λa > 0.44 ✓ λa > −0.08 ✗

BECERRA, BECERRA-VERGARA, and LORA-CLAVIJO PHYS. REV. D 109, 043025 (2024)

043025-6



EOS considered here. If the boundary value of the
anisotropic parameter is negative, it means that the corre-
sponding isotropic model satisfies the given constraint.
Notably, NICER observations of PSR J0030þ 0451 rule
out BHF, KDE0v, and KDE1v-EOS, even when anisotropic
configurations are taken into consideration. The secondary
object observed in the GW190814 event could potentially
be explained as an anisotropic NS with SKI3, SKI5,
GM1Y6, BsK25, and XMLSL-EOS.

B. Compactness and binding-energy

For a nonrotating, spherically symmetric NS, its total
gravitational mass is defined as

MNS ¼
Z

RNS

0

4πr2ϵdr ð16Þ

while, its rests mass is given by

MB ¼ mBN ; ð17Þ

where N is the total number of baryons:

N ¼ 1

mB

Z
RNS

0

4πr2ρ
�
1 −

2Gm
rc2

�
−1=2

dr: ð18Þ

Then, the binding energy of the star, BE, is

BE ¼ ðMNS −MBÞc2; ð19Þ

which can be understood as the amount of energy needed to
bringN baryons together from infinity to form a stable star.
During a core collapse, approximately 99% of the star’s
binding energy is released through the emission of neu-
trinos [67].
The binding energy depends on the internal structure of

the star and can be calculated using Eqs. (5)–(7). Figure 5

shows the specific binding energy as function of the
compactness of the star, C ¼ GMNS=RNSc2, for the differ-
ent EOS and values of the anisotropic parameter. Positive
values for the anisotropic parameter increase the binding
energy, while, negative values, decrease it. It can be clearly
seen that, for the EOS considered here, the specific binding
energy is a universal function of the compactness of
the star.
In fact, in [67] is proposed a relatively accurate universal

relation of the binding energy as

BE
MNSc2

ðCÞ ≈ ð0.6� 0.05ÞC
1 − 0.5C

: ð20Þ

In this work, we propose the following extended relation
that includes anisotropic configurations:

BE
MNSc2

ðC; λaÞ ¼
αðλaÞC

1 − βðλaÞC
; ð21Þ

where

αðλaÞ ¼ 0.5213 − 0.0197λa þ 0.0059λ2a;

βðλaÞ ¼ 0.5732þ 0.6024λa − 0.1942λ2a:

The above relation is plotted in Fig. 6. The error reported is
calculated as

error ¼ jBE − BEfitj
BE

: ð22Þ

The differences between the individual EOSs and the
universal fits are in the order of a few percent. This
universal fit performs better for compactness values greater
than 0.1, with an error less than 10%.

FIG. 5. Specific binding energy as a function of star compact-
ness for all EOS summarized in Table II. The color scale
corresponds to the value of the anisotropic parameter. Onlymodels
satisfying the stability and causality conditions are displayed.

FIG. 6. Fit for the specific binding energy as a function of star
compactness [see Eq. (21)]. It is worth mentioning that all fits
were done up to C ¼ Mmax=Rmax.
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IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we study spherical anisotropic configura-
tions of NSs, adopting the quasilocal relation for the
tangential pressure proposed by [30] [see Eq. (8)]. The
anisotropy strength is proportional to the anisotropic param-
eter, λa. It should be noted that our results can be quite
sensitive to this choice. We have studied a wide range of
nuclear EOS and parametrized them using the GPP formal-
ism [50]. We have calculated the mass-radius relation for all
of them. As expected, it is affected by the value of the
anisotropic parameter. More massive configurations can be
obtained by making the tangential pressure greater than the
radial one (i.e. for λa > 0).
We consider an anisotropic configuration to be physically

feasible if it is stable to radial perturbations and satisfies the
causality condition for the radial and tangential sound speeds.
We have found that the maximum value of the anisotropic
parameter for all EOS is mainly limited by the tangential
sound speed. Configurations with superluminal tangential
sound speeds generally occur for λa > 1.0 and λa < 0. We
have found that introducing anisotropy in the form of Eq. (8)
can increase the maximummass for an EOS to about 15% of
the maximum mass of the isotropic configuration.
In addition, we have compared the mass-radius relations

obtained for each EOS with the observational constraints:

observations of pulsar masses (PSR J0348þ 0432 and PSR
J0952-0607), the results of NICER observations of PSR
J0030þ 045 and PSR J0740þ 662, and gravitational wave
data. We conclude than an anisotropic configuration has the
potential to satisfy the observational constraints, especially
if the corresponding isotropic configuration does not (see
Table I). For example, the massive secondary object of
GW190814 could be explained by an anisotropic NS.
Finally, we propose a universal relation for the binding

energy of anisotropic stars, given by Eq. (21). This relation
is satisfied for all EOSs used here, regardless of their
particle composition. It is worth saying that this relation, as
well as Eq. (15), depends directly on the anisotropic
parameter, λa, introduced in Eq. (8). For a different function
of the tangential pressure, these fits will not apply.
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TABLE II. GPP fit parameter for the EOS used in this paper. All EOS used here were obtained with COMPOSE [69]. npem: neutrons,
protons, electrons and muons. npemN: neutrons, protons, electrons and hyperons.

EoS Composition Mmax [M⊙] log ρ0 ½g cm−3� Γ1 Γ2 Γ3 rms

APR [70] npem 2.17 14.02� 0.02 3.09� 0.07 3.59� 0.17 3.61� 0.20 0.065
BHF [71] npem 1.92 14.08� 0.02 3.21� 0.08 2.58� 0.18 2.60� 0.21 0.068
KDE0V [72–74] npem 1.97 13.95� 0.02 2.92� 0.07 2.83� 0.19 2.85� 0.22 0.015
KDE1V [72–74] npem 1.98 13.89� 0.02 2.84� 0.07 2.83� 0.19 2.86� 0.24 0.022
RS [72,74,75] npem 2.12 13.71� 0.03 2.73� 0.06 2.57� 0.28 2.59� 0.34 0.033
SK255 [72,74,76] npem 2.15 13.65� 0.03 2.65� 0.05 2.84� 0.26 2.85� 0.33 0.019
SK272 [72,74,76] npem 2.24 13.70� 0.04 2.75� 0.06 2.88� 0.26 2.93� 0.33 0.021
SkI2 [72,74,77] npem 2.17 13.65� 0.03 2.70� 0.06 2.49� 0.26 2.50� 0.32 0.044
SkI3 [72,74,77] npem 2.25 13.73� 0.03 2.85� 0.06 2.43� 0.36 2.43� 0.42 0.046
SkI4 [72,74,77] npem 2.18 13.95� 0.02 3.16� 0.07 2.44� 0.25 2.43� 0.29 0.063
SkI5 [72,74,77] npem 2.25 13.58� 0.04 2.66� 0.06 2.54� 0.39 2.54� 0.47 0.051
SkI6 [72,74,77] npem 2.20 13.94� 0.02 3.15� 0.07 2.42� 0.32 2.41� 0.37 0.054
SkMp [72,74,78] npem 2.17 13.80� 0.03 2.83� 0.06 2.66� 0.24 2.67� 0.29 0.025
SkOp [72,74,79] npem 1.98 13.77� 0.03 2.71� 0.06 2.62� 0.19 2.64� 0.24 0.009
SLy230a [72,74,80] npem 2.11 14.03� 0.02 3.24� 0.07 2.63� 0.22 2.63� 0.26 0.032
SLy2 [72,74,80] npem 2.06 13.96� 0.02 3.02� 0.06 2.79� 0.19 2.80� 0.23 0.005
SLy4 [72,74,80] npem 2.06 13.98� 0.02 3.05� 0.07 2.80� 0.19 2.81� 0.23 0.007
SLy9 [72,74,80] npem 2.16 13.90� 0.02 3.02� 0.66 2.66� 0.26 2.68� 0.31 0.011
BSk25 [81,82] npem 2.22 13.90� 0.02 3.14� 0.07 2.26� 0.38 2.26� 0.43 0.046
GM1Y6 [83,84] npeN 2.29 13.75� 0.02 2.96� 0.05 1.62� 0.35 1.63� 0.39 0.006
DDH [83,85] npeN 2.05 14.06� 0.01 3.52� 0.05 1.15� 0.11 1.14� 0.12 0.326
DD2Y [86,87] npeN 2.04 13.86� 0.02 2.99� 0.06 1.69� 0.29 1.69� 0.32 0.073
XMLSL [88] npemN 2.18 13.58� 0.03 2.68� 0.05 1.83� 0.47 1.88� 0.53 0.038
QHC19 [89] npeN-quark 1.93 14.09� 0.02 3.38� 0.08 1.95� 0.23 1.98� 0.27 0.022
QHC21 [90] npeN-quark 2.20 13.98� 0.02 3.26� 0.07 2.12� 0.30 2.22� 0.37 0.058
CMF8 [91] npeN-quark 2.01 13.78� 0.03 2.89� 0.05 1.29� 0.22 1.33� 0.06 0.098
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APPENDIX: PARAMETRIZATION FOR THE
EQUATION OF STATE

In this appendix, we describe our numerical approach to
obtain a GPP parametrization for a nuclear EOS.
For the high-density core, following [50], we used

a three-segment parametrization, with the limiting den-
sities ρ1 ¼ 1014.87 g cm−3 and ρ2 ¼ 1014.99 g cm−3. For
the low-density crust, we use the fit of the Sly(4) EOS
given in Table II of [50]. Then, in order to obtain a
parametrized model of a given EOS, we need to deter-
mine the set of four parameters, fρ0;Γ1;Γ2;Γ3g, where ρ0
is the density separating the star’s core from its crust. The
remaining parameters (Ki, Λi and ai) are given by
Eqs. (11)–(13).
We perform a Markov Chain Monte Carlo (MCMC)

simulation to find the set of parameters, fρ0;Γ1;Γ2;Γ3g,
that minimize the difference between the tabulated EOS
and the GPP parametrization. For this we used the PyMC3

library [68] of PYTHON. The parameters are assumed to be
normal distributed. First, we found an initial guess for the
set of parameters using a Broyden-Fletcher-Goldfarb-
Shanno (BFGS) optimization algorithm, and iterate from
these values for a total of 40,000 iterations using a No-U-
Turn Sampler (NUTS). The results are summarized in
Table II. We report the rms residual of the fit,

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
j

½logPj − logðPðρjÞÞ�2;
s

ðA1Þ

where N is the number of points of the tabulated EOS, Pj is
the tabulated pressure and PðρÞ is given by Eq. (9). For
illustration, Fig. 7 shows a comparison of the pressure and
mass density relation between the tabulated EOS and the
obtained GPP parametrization.
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