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We show that the maximum shower depth (Xmax) distributions of ultrahigh energy cosmic rays
(UHECRs), as measured by fluorescence telescopes, can be augmented by building a mapping to
observables collected by surface detectors. The resulting statistical improvement of such an augmented
dataset depends in a universal way on the strength of the correlation exhibited by the mapping. Building
upon the publicly available data on “golden hybrid” events from the Pierre Auger Observatory, we project
possible improvements in the inferred composition of UHECRs for a range of possible mappings with
varying correlation strengths.
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I. INTRODUCTION

Cosmic rays (CRs) with ultrahigh energy E ≥ 1018 eV
are studied through the observation of the extensive air
showers (EAS) that are generated in Earth’s atmosphere.
The Pierre Auger Observatory [1] employs a “hybrid”
detection method: Surface detectors (SDs) measure elec-
trons and muons propagating to the surface, while fluo-
rescent detectors (FDs) capture the isotropic light emitted
by excited nitrogen and can track the development of the
EAS. In particular, the former can measure the atmospheric
depth at which the number of charged particles is at its
maximum, Xmax, which is, in turn, a key ingredient to infer
the mass composition of CRs.
While the hybrid measurement technique provides

detailed insights for the EAS study, the run-time of FDs
is largely limited by background light noise. This results in
∼10% of the total number of showers observed to be
reconstructed as “hybrid,” i.e., with both FD and SD data,
while the remaining part of the dataset is measured with the
SD only. For example, in the Pierre Auger 2021 open
data [2], there are 22731 SD measurements of EAS, which
we refer to as nonhybrid (NH) showers, and 3156 “brass
hybrid” (BH) events, that is, showers that have been

recorded simultaneously by the SD and the FD. Of these
BH, 1602 are called “golden hybrids” (GHs), with inde-
pendent SD and FD reconstructions. The low statistics of
BH and especially GH events compared to NH is currently
a dominant limiting factor in the determination of the CR
mass composition.
A possible solution is to infer Xmax from ground data,

exploiting GH events to build a map between SD and FD
observables. Unfortunately, linear and simple nonlinear fits
based solely on measured data, such as the Δ variable
proposed in Ref. [3], exhibit only relatively low levels of
predictive power (which we quantify in Sec. III). Recently,
an alternative has been proposed in terms of a deep neural
network trained on simulated ground data for four different
primaries to directly predict Xmax [4]. Unfortunately,
simulations currently cannot faithfully reproduce the
observed ground data of Pierre Auger events [5]. This
exposes any approach directly relying on such simulations
to potentially large systematic errors. In addition, the
chosen composition of simulated events used to train the
network can act as a confounding variable on the inferred
Xmax. This can, in turn, lead to biased estimates of CR
composition.
In this work, we address these drawbacks and propose a

general method for exploiting any observed correlations
between different datasets of a single process to maximize
their combined statistical power. In particular, given one
(smaller) dataset, containing measurements of a desired
observable (i.e., Xmax), and another (bigger) dataset, which
contains only measurements from which Xmax cannot be
reconstructed directly but which do exhibit correlations
with Xmax, we demonstrate how to effectively increase the
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statistics of the smaller dataset in determining (the distri-
bution of) Xmax. The sole assumption is that both datasets
are drawn from the same underlying distribution; i.e., the
observed physical process is the same. This method is
perfectly suited for the specific case of ultrahigh energy
CRs, where we can exploit the correlation between SD and
FD data to enhance the statistics of Xmax.
The remainder of the paper is structured as follows: After

briefly reviewing possible maps in Sec. II, in Sec. III we
show a rigorous way to combine the GH data with the
inferred one, which leads to the enhancement of the dataset
by an effective number of GH showers, Neff ¼ f × NGH.
The latter number monotonically increases with the level of
correlation given by the map. Finally, in Sec. IV, we employ
this method to improve the results on the full mass
composition obtained in Ref. [6].

II. CORRELATING GROUND
DETECTOR DATA WITH Xmax

For our purpose, the ith GH event in the dataset can be

characterized by one FD measurement, xðiÞ ≡ XðiÞ
max, and a

set of m SD observables, QðiÞ ¼ fQðiÞ
1 ;…; QðiÞ

m g. We can
then consider functions of SD observables yðfQgÞ for
which the GH set exhibits some correlation between x and
y, as parametrized by

ρðx; yÞ ¼ Covðx; yÞ
σðxÞσðyÞ ; ð1Þ

where σðxÞ, σðyÞ, and Covðx; yÞ are the standard deviations
of x and y and their covariance, respectively.
Possibly the simplest example of y is the weighted

average of Qj:

yðiÞ ¼
Xm
j¼1

ajQ
ðiÞ
j ; ð2Þ

where the weights aj are fixed by maximizing ρðx; yÞ2. For
simplicity, we assume that the Parton Distribution Function
(PDF) of each variable is a normal distribution described by
its measurement and the respective uncertainty. Namely, we
have

PðiÞðxÞ ∼N ðxjxðiÞ; δxðiÞÞ; ð3Þ

and similarly for PðiÞðyÞ. Note that the fit has to be
performed separately for each subset of GH events (i.e.,
in a particular CR energy bin or angular window) for which
one wants to infer composition. This ensures an unbiased
estimator, assuming the GH and NH events in the same
subset are of the same composition and follow the same
distribution of Q.

As a proof of concept, we use the set of observables1

QðiÞ ¼ fθ; hTsi; σðTsÞ;maxðTsÞgðiÞ; ð4Þ

with their respective uncertainties. Here, θ is the azimuthal
angle of the shower core, while Ts ¼ ðtend − tstartÞs is the
duration of the signal in the sth Cherenkov station hit by
the shower, defined as the difference between the final and
initial time bin. We take the mean, standard deviation, and
maximum values over the active stations for each event.
For each shower, we generate multiple samples of the
observables from their PDF, Eq. (3). In such a way, we can
also compute the uncertainty associated with yðiÞ.
Uncertainties on the bins tstart and tend are not provided
in the open data; hence, we assume the uncertainties on
both quantities to be � one bin. These samples are then
utilized to maximize ρ2 through the “Nelder-Mead” (also
known as “simplex-downhill”) method (any similar opti-
mization algorithm would work). Finally, we employ
K-folding to check for overfitting. Following this pro-
cedure, we are able to achieve ρ ¼ ð30� 4Þ% correlation
between x and y for GH in the energy bin [2, 5] EeV, with
455 GH showers. We chose this bin as the only one where
GH and NH data overlap in the Pierre Auger open dataset.
In practice, more advanced approaches, such as non-

linear fits or neural networks, may be employed to obtain
stronger correlations between y and x. As two explicit
examples of such more complicated observables, we
mention the Δ variable [3] and the deep neural network
trained on simulated ground data [4]. In the same energy
bin, the former yields ρ ¼ 0.26� 0.02,2 while the latter can
reach ρ ¼ 63%. We stress that for our purpose the strength
of an observable is measured solely in terms its correlation
with x as established on a particular measured GH dataset
fðx; yÞg. In this way, we avoid potential systematic biases
associated with direct inference of individual xðiÞ from
nonequivalent datasets or simulations.

III. INFERENCE OF Xmax DISTRIBUTION

Following the previous section, we can represent the GH
dataset as a set of N pairs ðxj; yjÞ, with j ¼ 1;…; N, and
we assume that there is some level of correlation between
the two observables. The NH dataset is then represented by
the M pairs ðx̂k; ŷkÞ, with k ¼ 1;…;M, where M ≫ N.

1We have repeated this exercise with multiple combinations
of available observables. The chosen set represents the one
with the largest correlation achievable without overfitting of
the data.

2Uncertainties due to limited statistics and above stated
systematics in both cases have been estimated using bootstrap-
ping [7].
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In the latter set, the x̂k entries, which are missing in the
original data, can be inferred by exploiting the map built
through the fðx; yÞg set correlation, that is, x̂ ¼ x̂ðŷÞ.
Let Pðx; yÞ be the joint probability distribution of the

fðx; yÞg set. For simplicity, we start by assuming that such
distribution follows a bivariate normal (BN) model, while
we comment later for the general case. Each BN distribu-
tion is defined by the means μx and μy, the standard
deviations σx and σy, and the correlation ρ. The conditional
distribution PðxjyÞ is then simply given by the normal
distribution with mean μx þ ρ σx

σy
ðy − μyÞ and standard

deviation σx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
. Therefore, one can sample x̂ ∼

PðxjyÞ following the formula

x̂ðŷÞ ¼ μx þ ρ
σx
σy

ðŷ0 − μyÞ þ σx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
ϵ; ð5Þ

where ŷ0 ¼ ŷþ δŷϵ accounts for systematic uncertainty of
ŷ and ϵ is a random number drawn from a normal
distribution, ϵ ∼N ð0; 1Þ. In this way, we obtain a set of
inferred values, fx̂ðŷ1Þ;…; x̂ðŷMÞg.
Because of the finite number (N and M) of events, we

need to account for statistical uncertainties in the inference
via bootstrapping [7]. The latter method consists of infer-
ring values x̂ for each ŷ multiple times, each time starting
with a different set of pairs fðx̃; ỹÞg, called the bootstrapped
sample. The procedure is repeatedB times, where each time
the bootstrapped sample is given by sampling N pairs
ðx̃j; ỹjÞ from the first set fðx; yÞg with allowed repetitions.
Namely, at bootstrap step l, where l ¼ 1;…; B, we have

x̃j;l ¼ ðxj þ δxjϵj;lÞOj;l;

ỹj;l ¼ ðyj þ δyjϵj;lÞOj;l: ð6Þ

Here, δxj and δyj represent the systematic uncertainties on
xj and yj, while ϵj;l ∼N ð0; 1Þ. Finally, the N-dimensional
vector Ol is drawn from the multinomial distribution with
N events and N classes which are all equally probable,
MultðN; p ¼ ð1=N;…; 1=NÞÞ. The values in this array,
Oj;l, count how many times each pair j is chosen in the lth
bootstrapped sample. It, thus, satisfies the relationP

j Ol;j ¼ N. As a result of this procedure, we obtain at
each step l the set of N couples

Xl ¼ fðx̃; ỹÞgl: ð7Þ

We can now estimate the lth joint distribution Plðx̃; ỹÞ
from the bootstrapped samples.
Similarly, we define

˜̂yk;l ¼ ðŷk þ δŷkϵk;lÞÕk;l; ð8Þ

where now the index k runs over the ŷ elements,
k ¼ 1;…;M, and Õk;l ∼MultðM;p ¼ ð1=M;…; 1=MÞÞ.

The ˜̂yk;l account for both statistical and systematic
uncertainties.
For each bootstrapped sample, we can now obtain a set

of M pairs

X inf
l ¼ fðx̂ð ˜̂yÞ; ˜̂yÞgl; ð9Þ

where the first component of the pair is inferred by
plugging ˜̂yk;l in Eq. (5). Finally, we can combine the
two sets to obtain

X comb
l ¼ Xl ∪ X inf

l ¼ fðX; YÞgl: ð10Þ

At this point, one can use the larger combined dataset to
perform the desired analysis. As we obtain the x̂ elements
from the inference method described above, it is fair to ask
what is the gain in terms of statistical power with the
combined dataset. In order to estimate it, we can compute
the variance of the distribution of the means, Varðx̄Þ. That
is, we compute the mean value of x̃ for each Xl set, x̄l; the
resulting distribution defined by all x̄l is a Gaussian with
variance Varðx̄Þ. The ratio between the variances obtained
with the initial dataset Xl and with the combined one,
VarðX̄Þ, can provide a measure of the improvement in the
statistical significance obtained with this method. Indeed,
the quantity

f ≡ Varðx̄Þ
VarðX̄Þ ð11Þ

can be interpreted as the effective increase of events in the
combined dataset, with respect to the original one,
Neff ¼ f × N. This interpretation follows from the fact
that the variance of the mean distribution is given by the
variance divided by the number of events. Namely, if
f ¼ 1, it means no additional information is contained in
the inferred set X inf . On the contrary, if f > 1, the
effective statistical power of X comb amounts to having
f × N total events. The functional dependence of f on the
correlation ρ, for different values of M and N, is shown in
Figs. 1 and 2. Points in these figures are obtained
numerically, with the procedure described above, using
B ¼ 105 bootstrapped samples. Furthermore, we assumed
that systematic uncertainties are small. The latter trans-

lates to having ρσx=σyδŷ ≪ σx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
in Eq. (5). In this

scenario, the ratio f increases monotonically with ρ and
does not depend on the number of events M and N but
only on their ratio; see Fig. 1. Larger M=N ratios allow
then for larger values of f for the same level of correlation,
as shown in Fig. 2.
In the limit of ρ → 1, f tends to the maximal value

f ¼ ðM þ 1Þ=N. In practice, ρ ¼ 1 cannot be obtained
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with a finite number of events N due to statistical
uncertainties; thus, the maximum value of f is smaller.
In the general case, the joint distribution Pðx; yÞ does not

follow a BN distribution. One may then try to use kernel
density estimation to obtain Pðx; yÞ; however, if the latter is
computed inappropriately, we may introduce a bias in
inferring x̂ values (variance-bias trade-off). For this reason,
we propose to transform bootstrapped samples using a
probability integral transformation in 2D [8], which has the
advantage to preserve the correlation between x and y.
In the Auger open data, NH and GH events given in the

open data in the energy interval E=EeV∈ ½2.5; 10� amount
to M ∼ 15700 and N ∼ 300, respectively, thus with a ratio
M=N ∼ 50. In the case of maps between y and x≡ Xmax
constructed with linear or nonlinear fits (see the previous
section), the correlation is ρ ≃ 0.3, which corresponds to
f ≈ 1.06. On the other hand, the deep neural network

presented in Ref. [4] can reach ρ ¼ 63%, resulting in
f ¼ 1.4–1.5 for M=N ¼ 10–50.

IV. PROJECTIONS OF UHECR COMPOSITION
FROM NONHYBRID EVENTS

Using the Xmax distribution inferred from a combination
of GH and NH events, we follow our previous analysis of
the mass composition of ultrahigh energy cosmic rays
(UHECRs) [6]. That is, we infer the posterior distribution
of the composition w ¼ ðwp;…; wFeÞ using the moment
decomposition of measured and simulated Xmax distribu-
tions in a fixed energy bin. However, due to the small
number of events in the energy bin E=EeV∈ ½2.5; 5�, we
use here the larger E=EeV∈ ½0.65; 5� energy bin for
projections. We use the same set of shower simulations
and the same inference procedure of Ref. [6]; the improve-
ments shown here come solely from considering the
enhanced dataset, X comb

l ≡ fXl;kjk ¼ 1;…; N þMg.
At each bootstrap step l, we compute the moments of the

Xmax distribution as

zl;1 ¼
1

N þM

XNþM

k¼1

Xl;k; ð12Þ

zl;n ¼
1

N þM

XNþM

k¼1

ðXl;k − zl;1Þn ð13Þ

for n ¼ 2, 3, 4. We then calculate the mean of the
distribution of moments μ and the covariance matrix Σ.
The effect of the enhanced dataset can be included here by
considering the new covariance matrix Σeff ¼ Σ=f.
In Fig. 3, we show the composition obtained using a

mixture model of four primaries (p, He, N, and Fe), usingFIG. 2. The same as Fig. 1, with N ¼ 1000 and different values
of the ratio M=N.

FIG. 3. Fraction of primaries p, He, Li, and Fe shown as 2σ
confidence intervals for various values of f and corresponding ρ
for hadronic model EPOS. The black solid line represents the
most probable composition.

FIG. 1. Effective increase f as a function of correlation ρ, for
three values of GH dataset size N, when fixing the ratio
M=N ¼ 50.
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the EPOS3 hadronic model. The black line indicates the
best fit, while the bars represent the allowed fractions at
95% C.L. Different colors show the effect of including
inferred values of Xmax, for different values of f: the gray
band obtained for f ¼ 2, that is, by doubling the size of the
GH dataset, down to the purple one, where f ¼ 1.
Similarly, in Fig. 4, we show the result for the full

cumulative composition; that is, for each primary Z0, we
show the allowed fraction of heavier primaries, Z > Z0. We
observe again an improvement of the gray region with
respect to the purple.
We provide the same results for the hadronic models

Sibyll, QGSJet01, and QGSJetII-04 in the Appendix.

V. CONCLUSIONS

We have developed a novel method to improve the
statistical power of GH events by including Xmax values of
UHECRs inferred from SD observables. The effective
number of events obtained is quantified by the variance
ratio f, which strongly depends on the level of correlation

between ground and fluorescent data. While simple linear
or nonlinear fits can achieve at most 30% correlation levels,
resulting in rather modest values of f, more advanced
approaches can reach above 60% correlation [4], leading
to f ≳ 1.5.
We have projected the CR composition inference

with such enhanced datasets, as a function of the ratio f.
The resulting potential improvements in the composition
C.L. for the Auger open data are shown in Figs. 3 and 4 and
in the Appendix. Although the latter results seem meager,
this study shows that, as a proof of concept, these improve-
ments are possible and can be exploited by the experi-
mental collaboration on their full dataset. Furthermore, it
underlines the potential of probing deeper the correlation of
SD and FD data, where the advancement in artificial
intelligence tools can lead to interesting and powerful
results.4

Finally, we point out that the procedure to enhance the
Xmax dataset by SD observables is very general and based
on statistics arguments only. That is, any analysis based on
correlated observables can make use of this method to
augment a dataset containing measurements of both
observables with a (preferably much larger) dataset of
measurements of only a single one.5
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FIG. 4. Fraction of primaries shown as 2σ confidence intervals
for various values of f and corresponding ρ for hadronic model
EPOS. The black solid line represents the most probable
composition.

3Energy conserving quantum mechanical approach, based on
Partons, parton ladders, strings, Off-shell remnants and Splitting
of parton ladders.

4We note that unbiased statistical improvement via our method
relies purely on the correlation observed in the actual data. In the
case one is able to construct and measure observables for which
there is firm theoretical knowledge of their correlation with Xmax,
then one can infer the latter directly (e.g., via a capable enough
approximator like a neural network, as done in Ref. [4]).

5For the Pierre Auger Collaboration, this could be advanta-
geous, i.e., in the exploration of observables to discriminate
between hadronic models, a direction we leave for future
work.
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FIG. 5. Fraction of primaries p, He, Li, and Fe shown as 2σ confidence intervals for various values of f and corresponding ρ for
hadronic models EPOS, Sybill, QGSJetII-04, and QGSJet01 in energy interval E=EeV∈ ½0.65; 5�. The black solid line represents the
most probable composition.

APPENDIX: UHECR COMPOSITION FROM NONHYBRID EVENTS

Below, we present the projections of compositions for all hadronic models considered: EPOS (as in the main text), Sybill,
QGSJetII-04, and QGSJet01 in the energy bin E=EeV∈ ½0.65; 5�. In the case of four primaries, projections are shown in
Fig. 5, while for 26 primaries are given in Fig. 6.
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