
Soliton merger rates and enhanced axion dark matter decay

Xiaolong Du ,1,2,* David J. E. Marsh ,3,† Miguel Escudero ,4,‡ Andrew Benson ,1,§ Diego Blas ,5,6

Charis Kaur Pooni ,3 and Malcolm Fairbairn 3

1Carnegie Observatories, 813 Santa Barbara Street, Pasadena, California 91101, USA
2Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

3Theoretical Particle Physics and Cosmology, King’s College London,
Strand, London, WC2R 2LS, United Kingdom

4Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
5Grup de Física Teòrica, Departament de Física, Universitat Autònoma de Barcelona,

08193 Bellaterra (Barcelona), Spain
6Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,

Campus UAB, 08193 Bellaterra (Barcelona), Spain

(Received 28 February 2023; accepted 28 September 2023; published 8 February 2024)

Solitons are observed to form in simulations of dark matter (DM) halos consisting of bosonic fields. We
use the extended Press-Schechter formalism to compute the mass function of solitons, assuming various
forms for the relationship between halo mass and soliton mass. We further provide a new calculation of the
rate of soliton major mergers. Solitons composed of axion DM are unstable above a critical mass, and decay
to either relativistic axions or photons, depending on the values of the coupling constants. We use the
computed soliton major merger rate to predict the enhanced DM decay rate due to soliton instability. For
certain values of currently allowed axion parameters, the energy injection into the intergalactic medium
from soliton decays to photons is comparable to or larger than the energy injection due to core collapse
supernovae at z > 10. A preceding paper explores the phenomenology of such an energy injection.
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I. INTRODUCTION

Real scalar fields in general relativity have time-periodic,
spatially localized, finite energy ground state solutions [1,2].
These solutions are known by various names: oscillatons,
solitons, axion stars, and so forth. The inward force of
gravity is balanced in these configurations by the outward
pressure of scalar field gradients. In the nonrelativistic limit,
these objects are truly stationary ground state soliton
solutions of the Schrödinger-Poisson equations (see, e.g.,
Refs. [3–6]).1
If the observed [9] cosmological dark matter (DM) is

composed of a real scalar field, or scalar fields, then such
solitons should form in our Universe. Indeed, in numerical
simulations of both axion [10] and “fuzzy” DM [11]
solitons form in the centers of DM halos during the earliest
stages of collapse, driven by the initial coherence of
the field on scales near the de Broglie wavelength.

Furthermore, solitons can form by gravitational Bose-
Einstein condensation [12,13] in any environment where
the condensation timescale is shorter than the age of the
Universe.
The possible existence of solitons, being very dense

and coherent lumps of DM, opens a wide range of
possibilities concerning their phenomenology. Soliton
cores can affect stellar motions in the centers of galaxies
(e.g., Refs. [14–17]). As “exotic compact objects,” gravi-
tational waves (GWs) from soliton mergers can appear
distinctly in GW observations (e.g., Ref. [18]). Soliton
instabilities can also lead to new formation channels for
black holes [19,20], or production of relativistic par-
ticles [21,22].
Exploiting solitons as a phenomenological window onto

DM requires knowing the cosmological distribution of
solitons, and their merger rates, which we dedicate this
paper to studying. We study two mechanisms by which
solitons lead to enhanced DM decay: by plasma blocking of
parametric resonance, and by major mergers leading to
formation of supercritical solitons.
In the present work, we will be concerned with soliton

cores formed at very early times, z≳ 10, in some of the first
DM halos with masses M ≳ 10−5M⊙. The rough particle
mass scale we are concerned with is ma ≈ 10−11 eV. For
this mass scale, assuming an axionlike particle (ALP) with
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1Solitons also form for massive spin-1 fields (see, e.g.,

Refs. [7,8] and references therein). In the following we simplify
the discussion to scalar fields, although our methods can also be
applied more generally.
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temperature-independent mass, halo formation is strongly
suppressed forM < 8 × 10−5M⊙ [23]. Thus, the formation
of the halos of interest is expected to be very similar to the
formation of the first halos in thermal WIMP models,
where the minimum halo mass is M ≈ 10−6M⊙ [24–26].
For standard ΛCDM cosmology the power spectrum on
small scales is close to a fixed power law, which, together
with the scaling symmetries of the Schrödinger-Poisson
equations (and ignoring baryonic feedback), implies that
the halos of interest formed within a few orders of
magnitude of the cutoff scale should be morphologically
similar to the Oð1010M⊙Þ halos formed at z ≈ 8 and
simulated directly for ma ≈ 10−22 eV [11]. Crucially, these
first formed halos are expected to host a single soliton at
their center and to obey a “core-halo mass relation” [27],
which we discuss in detail below.
A key result of the present work is the computation of the

energy injection into the intergalactic medium caused by
the decay of axion dark matter due to soliton mergers.
Therefore, note that in most of this work we use the terms
“soliton” and “axion star” interchangeably. The energy
injection density is shown for some representative param-
eters in Fig. 1. We compare this to an approximate energy
injection due to core collapse supernovae from Pop-III
stars [28]. The energy injection from axion dark matter
soliton decay exceeds the supernova energy by many orders
of magnitude, and extends to much higher redshifts, deep
into the dark ages. This suggests that this phenomenon can
place new constraints on axion dark matter, and open a new
window onto axion observation. Details are explored in the
preceding paper [29].

This paper is organized as follows. In Sec. II we compute
the soliton mass function assuming various models for the
core-halo mass relation between DM halos and soliton
masses. We discuss the critical soliton mass in Sec. III,
and compute the DM fraction that decays instantaneously at
a given redshift due to plasma blocking. In Sec. IV we use
the extended Press-Schechter model and stochastic merger
trees to compute the soliton merger rate, and the DM decay
rate from the formation of super-critical solitons by major
mergers of sub-critical solitons. We conclude in Sec. V. The
Appendices give details of our numerical scheme. We adopt
fixed cosmological parametersΩM¼0.3153,Ωb¼0.04930,
h ¼ 0.6736, σ8 ¼ 0.8111, ns ¼ 0.9649 [30].

II. SOLITON MASS FUNCTION

We consider DM composed of a real scalar field ϕ
minimally coupled to gravity with canonical kinetic term
and potential VðϕÞ ¼ m2

aϕ
2=2þ λϕ4=4!, with ma the DM

particle mass (axion mass). In the nonrelativistic limit,
solitons are given by the ground-state solutions of the
Schrödinger-Poisson equations:

i∂tψ ¼ −
1

2ma
∇2ψ þmaΦψ þ λjψ j2ψ ; ð1Þ

∇2Φ ¼ 4πGjψ j2; ð2Þ

where Φ is the Newtonian gravitational potential, λ is the
self-interaction coupling, and we use units ℏ ¼ c ¼ 1.
The field ψ is related to the fundamental scalar field ϕ
by the WKB approximation:

ϕ ¼ 1ffiffiffi
2

p
ma

ðeimatψ þ e−imatψ�Þ: ð3Þ

In the relativistic limit, solitons are found as the time
periodic solutions of the Einstein-Klein-Gordon equations
[1,2]. The soliton solutions possess a scaling symmetry, and
as such are uniquely specified by the soliton mass, or
alternatively the central field value, ϕ0.
Simulations of DM structure formation with nonrelativ-

istic scalar fields observe a scaling relation between the DM
halo mass,Mh and the mass of the central soliton core,Mc,
known as a “core-halo mass relation” [27]:

Mc ¼
1

4

�
Mh

MminðzÞ
�
α

MminðzÞ; ð4Þ

where z is cosmological redshift, α is a power law
exponent, and

MminðzÞ ¼ 1.4 × 10−6
�

ma

10−13 eV

�
−3=2

×

�
ξðzÞ
ξð0Þ

�
1=4

ð1þ zÞ3=4M⊙; ð5Þ

FIG. 1. Energy injection into the intergalactic medium from
axion dark matter decay caused by soliton mergers. For
comparison, a typical energy scale and redshift for energy
injection from Pop-III core-collapse supernovae (CCSNe) is
indicated [28]. For the parameters shown, axion star explosions
inject more energy than supernovae. See [29] for the cosmo-
logical implications of such decays. Solid and dashed lines
indicate different assumptions for the core-halo mass relation of
α ¼ 1=3 and α ¼ 3=5.
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is the minimum halo mass at z. The function ξðzÞ is the
virial density contrast [31]. By definition, the total mass of
the central soliton/axion starMS ≈ 4Mc [27]. The core-halo
mass relation can be understood by fixing the soliton radius
from the de Broglie wavelength at the virial velocity of the
halo with a universal coefficient [32,33].
It has been proposed that in Eq. (4) α ¼ 1=3 is a

universal relation in a “fully relaxed” DM halo where
gravitational energy, kinetic energy, and field gradient
energy are in virial equilibrium [6,16,27]. The exponent
α ¼ 1=3 is also the attractor solution following multiple
mergers [34], and may be related to soliton condensation
and growth saturation [13,35]. However, significant scatter
in this relationship has also been observed [36–38],
which might be explained by environmental factors, and/
or merger history. Recently, it has been argued in Ref. [39]
that the scatter in the halo-concentration relation could
also lead to a sizable dispersion in the core-halo mass
relation. The effect of scatter on merger rates is discussed
in Sec. IV C.
We can relate the soliton mass function, FSðMSÞ ¼

dnS=d ln MS (where nS is the soliton number density), to
the halo mass function (HMF), FhðMhÞ ¼ dnh=d ln Mh, by
assuming one soliton per halo, nS ¼ nh, i.e.:

FSðMSÞd ln MS ¼ FhðMhÞd ln Mh; ð6Þ

⇒ FSðMSÞ ¼ FhðMhðMSÞÞ
d ln Mh

d ln MS
: ð7Þ

Given a core-halo mass relation such as Eq. (4) one can thus
compute FS given Fh. In the following we compute the
halo mass function using the Sheth-Tormen multiplicity
function [40]. This analytic approach has been shown to
accurately reproduce the soliton mass function found in
numerical zoom-in simulations by Ref. [33].
The primary ingredient in the HMF is the halo mass

variance, σ2ðMhÞ, which is computed from the matter
power spectrum, PðkÞ, given a window function, W̃ðkjMÞ.
It will turn out that the most phenomenologically interest-
ing halos have low mass, M ≲ 1M⊙. Accurately and
quickly computing the mass variance at low mass requires
special care, as described in Appendix A.
The power spectrum of scalar field DM displays a low

mass cutoff due to the field gradients acting as an effective
pressure and inducing a Jeans scale [41]. The linear power
spectrum is strongly suppressed below the Jeans scale at
radiation-matter equality [42,43]. In N-body simulations
such as Refs. [23,44], suppression of the linear power
spectrum leads to suppression of halo formation below the
half-mode scale of the transfer function relative to CDM.
The half-mode scale is redshift independent, since it is
determined by initial conditions. On the other hand, the
absolute minimum halo mass, Eq. (5), is determined by the
redshift-dependent Jeans scale. The minimum halo mass is

in general some orders of magnitude smaller than the half-
mode mass.
We compute the power spectrum as described in

Appendix A, which is appropriate for an axionlike field
given slow roll-initial conditions, a time-independent par-
ticle mass, adiabatic initial perturbations, and initial field
value ϕ=fa ≲ 1 (where fa is the axion decay constant in the
interaction Lagrangian given below). Generalization of our
results to other models requires the appropriate input PðkÞ,
which may differ in shape (see e.g. Refs. [8,45,46]). In
models with a small-scale (high-k) cut-off to PðkÞ, the
HMF depends on the form of the window function used to
compute σ [47]. We investigated both the sharp-k space
window function [47–49], and the smooth-k space window
function [50,51], which reproduce results of numerical
simulations after so-called “spurious structure” is removed.
In what follows, we use the smooth-k space window
function, since it gives a HMF in better agreement with
numerical simulations when PðkÞ has a sharp cut-off at
small scales.
We show the soliton mass function in Fig. 2 for various

parameters. In the absence of a small-scale cutoff the
soliton mass function has a universal form, with the soliton
mass scaling inversely with axion mass. In the presence
of a cutoff, the soliton mass function does not possess an
exact scaling symmetry with ma. We show how our results
depend on the slope of the core-halo mass relation, and find
that steeper slopes (larger α) lead to a higher number
density of solitons, with the lowest number density for
α ¼ 1=3. This is due to the mass function possessing a
higher number density of low mass halos.

III. SOLITON INSTABILITY

A. Critical solitons and critical halos

There are several instabilities shown in Fig. 3 that arise
when solitons reach a critical mass. Correctly describing
the instability requires specifying the interaction
Lagrangian, and considering relativistic and environmental
effects. All solitons are unstable to black hole formation
above the Kaup mass [52]:

MKaup ≈ 0.6 ×
M2

Pl

ma
≈ 8.5 × 10−2M⊙

�
10−13 eV

ma

�
: ð8Þ

This instability occurs when the soliton central field value
ϕ0 ∼Mpl (with Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
the reduced Planck mass).

Soliton collapse to a BH during merger may produce
distinct GW signals [53,54]. However, as we shall see,
ordinary structure formation occurs in environments that
are too underdense, and such mergers are expected to be
very rare. Soliton collapse to BHs may occur, however,
during the period of structure formation after inflation
[33,55], or with enhanced primordial fluctuations [20].
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Solitons composed of axions, axion stars, are also
unstable due to nonlinear interactions beyond m2

aϕ
2 in

the Lagrangian. The relevant terms in the interaction
Lagrangian are

Lint ¼ −m2
af2a½1 − cosðϕ=faÞ� −

gaγγ
4

ϕFμνF̃μν; ð9Þ

where Fμν is the photon field strength tensor, and F̃μν is
its dual.

In the first term in Eq. (9), we have introduced the axion
decay constant, fa, which controls the strength of the
attractive axion quartic self-interactions, λ. The presence of
these interactions triggers an instability of axion stars above
a critical mass. The instability is known as an “axion
Nova,” and leads to decay of the DM axion star into
relativistic axions [19,21]. The critical mass for an axion
Nova is

MNova ≈ 0.1M⊙

�
fa

1014 GeV

��
10−13 eV

ma

�
; ð10Þ

FIG. 2. The axion star mass function, FS ¼ dnS=d ln MS defined by Eq. (7), using the Sheth-Tormen halo mass function at z ¼ 10,
assuming the core-halo mass relation, Eq. (4). Left: in the absence of the Jeans scale, the mass function has a scaling symmetry with all
axion star masses proportional to 1=ma. We show various values of the exponent α in the core-halo relation. Right: including the Jeans
scale induces a cut-off and breaks the exact scaling symmetry with ma. We show different models for the cut-off, and different axion
masses, holding α ¼ 1=3 fixed. We use the smooth-k filter as our fiducial window function (solid lines). For ma ¼ 10−11 eV, we also
show the axion star mass functions assuming the sharp-k window function (dotted) and that computed from the halo mass function fit
found by [23] (dashed).

FIG. 3. Schematic of critical masses for three types of soliton instabilities with the smallest to largest critical masses corresponding to
the Decay, Nova and Kaup instability. See Sec. III for more detail.
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The Nova leaves a remnant axion star, with the mass of the
remnant depending inversely on the decay constant [21]. At
large decay constant, fa ≫ 1014 GeV, there is no remnant
and the total mass of the star is dispersed as relativistic
axions. Instability to a Nova occurs at lower mass than
the Kaup mass for fa ≲ 0.3Mpl, mapping out a “phase
diagram” [19,56].
In the second term in Eq. (9), we have introduced the

axion-photon coupling, gaγγ . This term also leads to
instability of axion stars, driven by parametric resonance
[22,57].2 The critical mass is

MDecay≈8.4×10−5M⊙

�
10−11GeV−1

gaγγ

��
10−13 eV

ma

�
: ð11Þ

The typical expectation for the axion photon coupling,
gaγγ , is that it is related to the decay constant appearing in
the self-interaction potential, fa, via gaγγ ¼ αEM=2πfa,
where αEM is the fine-structure constant. Taking fa <Mpl,
we then have MNova < MDecay < MKaup, and so decay of
solitons to relativistic axions via an axion Nova will be the
dominant decay channel. However, there are many axion
models with enhanced couplings gaγγ or suppressed
potentials relative to the naive estimate such that soliton
decay to photons may be the dominant channel (e.g.,
“aligned” models such as Ref. [59,60], and others [61]).
Reference [22] further note that the initial collapse of an
axion Nova can trigger the parametric resonance instability
to photon production.
Taking any of the instability masses, MKaup, MNova, of

Mdecay, rearranging Eq. (4) allows one to find which halos
host unstable solitons. Thus, if there is a universal core halo
mass relation, soliton instability occurs always in halos of a
fixed mass with only mild redshift dependence. On the
other hand, if there is intrinsic diversity in the core-halo
mass relation then unstable solitons can occur in a diversity
of halos. Furthermore, if α ¼ 1=3, the critical halo mass is
particle mass independent and depends only on the cou-
pling constants.
Assuming a universal core-halo mass relation, it is then

useful to compare the critical halo mass hosting unstable
solitons to scales in the halo mass function. The mass
function has two scales: the minimum halo mass, Eq. (5),
and the nonlinear mass scale, defined by σðMnlÞ ¼ 1,
above which the HMF is exponentially suppressed.
Comparing these scales to the critical halo mass gives
a rough estimate of when soliton decays are likely to
occur in cosmic history, and is shown in Fig. 4. Larger
values of α and/or gaγγ lead to instability in lower mass,

and thus more abundant, halos, and increases the redshift
where typical decays occur.
It was shown in Ref. [22] that if an axion star close to

MDecay grows by slow adiabatic accretion from the
background, then it loses energy by efficient photon
emission, and returns to a stable condition below
MDecay. The same is expected to be true for axion
emission close to the Nova instability. The growth rate
of solitons by accretion is slow, growing as t1=2 at low
mass [12], and even slower once virial equilibrium is
reached [13] (see also [62]). Therefore, soliton mass loss
by production of photons or axions from dark matter
accretion in the host halo is expected to be negligible
over a Hubble time.
There are two methods to obtain rapid decay of solitons:
(i) Plasma blocking;
(ii) Major mergers.
Plasma blocking effectively sends MDecay → ∞ as long

as ωpðzÞ > ma=2, allowing supercritical solitons with
masses larger than Eq. (11) to form. Once the plasma
frequency drops to ωpðzÞ < ma=2 then the decay is
kinematically allowed, and supercritical solitons will then
decay. We discuss this case in the next subsection.
Nonadiabatic soliton growth can occur during major

mergers (see, e.g., Ref. [63]). In such a case, a soliton can
jump above the critical barrier and will rapidly decay losing
an Oð1Þ fraction of its mass. This process is relevant for
decay either to photons or to relativistic axions [i.e., either
Eq. (11) or (10)]. We thus expect that the halo major merger

FIG. 4. Assuming an intrinsic core-halo mass relation, Eq. (4),
with slope parameter α, instability of a soliton to Nova [Eq. (10)]
or decay to photons [Eq. (11)] occurs in halos of a fixed critical
mass, as indicated. Solid lines show α ¼ 1=3, and dashed show
α ¼ 3=5. For reference, we also show the nonlinear mass,
σðMnlÞ ¼ 1, and the minimum halo mass [Eq. (5)]. For the
values of the axion-photon coupling and decay constant shown,
decay of axion stars to photons occurs before the critical mass for
an axion nova can be reached.

2We have recently characterized this mechanism in full
numerical relativity simulations [58].
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rate evaluated at the critical halo mass can be used to
estimate the enhanced dark matter decay rate due to soliton
mergers. We calculate this in Sec. IV.3

B. Soliton decay to photons from plasma blocking

Decay of axions to two photons is blocked if the
plasma frequency, ωp, in the environment satisfies
ωp > ma=2. The low mass DM halos of interest in the
present work are below the baryon Jeans scale, and
do not possess any cold gas. Therefore, the relevant
plasma frequency is given by that of the intergalactic
medium (IGM), and is determined by the evolution of
the free electron density of the Universe, neðzÞ, which is
well understood [64]. The Universe becomes trans-
parent to photons at recombination, z ≈ 1100 when
ωp ≈ 10−9 eV. The plasma frequency decreases as the
Universe grows and cools, reaching a minimum of ωp ≈
10−14 eV when the first stars begin to reionize the IGM,
which occurs between z ¼ 6 and z ¼ 10. Thus, post
recombination plasma blocking can be neglected
for ma ≳ 10−9 eV.4

When the plasma frequency achieves ωpðzcritÞ ¼ ma=2,
decay of all super-critical solitons occurs at once, in a burst.
The energy released can be expressed as a fraction of the
dark matter density at zcrit by integrating the soliton mass
function:

fburst ¼
1

ρDM

Z
∞

MDecay

ðMS −MDecayÞFSðMS; zcritÞd ln MS:

ð12Þ

With Eq. (12) one can then calculate the fractional dark
matter energy density that is converted into photons once
ωpðzcritÞ ¼ ma=2. However, it is important to highlight that
once the energy is injected and transformed into heat and
leads to reionization ωpðzcritÞ will in turn increase and
possibly eventually drop again below ωpðzcrit−2Þ ¼ ma=2
at a later time, zcrit−2 < zcrit. Calculating the subsequent
burst(s) energy requires solving for the free electron
fraction and baryon temperature: this is addressed in the
preceding paper Ref. [29].

IV. SOLITON MERGERS AND DARK
MATTER DECAY

A. Halo formation rate from extended
Press-Schechter formalism

To compute the decay rate of axions due to soliton
mergers, we need to compute the formation rate of critical
axion stars, which is related to the formation rate of
corresponding DM halos by the core-halo mass relation.
The formation rate of DM halos have been studied
extensively in the last decades using analytic formalism
and/or numerical simulations. We refer the readers to
Refs. [68–71] for more detailed discussions. For complete-
ness, we briefly summarize the procedure we have
taken below.
The naive halo formation rate comes from the time

derivative (redshift derivative) of the mass function. This
does not give the correct merger rate, because halos at a
specific mass are both formed and destroyed by mergers at
the same time. Thus, we can express the redshift derivative
of the mass function as [70,71]:

d2nhðM; zÞ
dMdz

¼ d2nformðM; zÞ
dM dz

−
d2ndestðM; zÞ

dM dz
: ð13Þ

The formation rate of halos per unit mass and per unit
volume is given by

d2nformðM; zÞ
dMdz

¼
Z

M

0

M0

M
dnhðM0; zÞ

dM0
d2f2→1ðM;M0; zÞ

dMdz
dM0;

ð14Þ

with d2f2→1ðM;M0; zÞ=dM=dz the fraction of mass in a
halo of massM0 that merges into halos of massM at a later
time per unit mass and per unit redshift. Here the subscripts
“1” and “2” denote halos corresponding to the first (M) and
second (M0) arguments, respectively. The arrow indicates
the mass flow, e.g., 2 → 1 represents the mass in halo 2
merges into halo 1, while 1 ← 2 represents halo 1 obtains
mass from halo 2. On the other hand, the destruction rate of
halos per unit mass and per unit volume is given by

d2ndestðM; zÞ
dMdz

¼
Z þ∞

M

dnhðM; zÞ
dM

d2f2→1ðM0;M; zÞ
dM0dz

dM0:

ð15Þ

Note that in the above equation we do the integration with
respect to the descendant halo mass. One can either
compute the halo formation rate directly from Eq. (14)
or first compute the halo destruction rate from Eq. (15) and
then convert it to formation rate using Eq. (13). In this
work, we choose the former approach.
The mass function and formation rate can be estimated

using extended Press-Schechter (EPS) theory [48,68]
as follows. Consider a random overdensity field

3Reference [22] also computes a maximum relative velocity
that solitons can have in order not to Doppler shift the relative
frequencies too much and block parametric resonance. This
relative velocity is computed for head on soliton collisions. In
halo mergers, dynamical friction effects slow down the cores such
that mergers occur. As such, we ignore the maximum velocity
constraint in the following.

4Plasma effects on axion photon conversion in neutron star
magnetospheres are discussed in, e.g., Refs. [65,66]. Pre-
recombination axion-photon conversion is discussed in
Ref. [67].
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δðxÞ≡ δρm=ρm linearly extrapolated to the present time
whose power spectrum is PðkÞ. One can smooth out
overdensities below the scale R by convolving δðxÞ with
a window function WðxjRÞ:

δSðxÞ ¼
Z

δðxÞWðxþ x0jRÞd3x0: ð16Þ

The variance of δSðxÞ is given by

SðRÞ≡ σ2ðRÞ ¼
Z

k2

2π2
PðkÞW̃ðkjRÞ2dk; ð17Þ

where W̃ðkjRÞ is the Fourier transform of WðxjRÞ.
For R → þ∞, S ¼ 0 corresponding to δSðxÞ ¼ 0 every-

where. As the smoothing scale decreases, more and more
perturbations on small scales are included, so S increases.
The trajectory of δSðxÞ at a spatial position is a random
walk if we treat S as the time variable. As S increases, δSðxÞ
will eventually pass a certain threshold, δc, which is called
the critical overdensity for collapse—the mass element at x
is then considered to be included in a collapsed halo with a
mass M that corresponds to the smoothing scale R. The
relation betweenM and R depends on the choice of window
function (see Appendix A for details). By computing the
probability that δSðxÞ makes its first upcrossing of δc
at SðMÞ,5 one can estimate the fraction of mass in the
Universe that is contained in halos with a mass M.
Assuming the spherical collapse model [72], the critical
overdensity for collapse of CDM (valid for axion DM
above the Jeans scale) is mass independent and only a
function of redshift. The probability that δSðxÞ first crosses
δc upward at SðMÞ per unit S is given by

dfðS; zÞ
dS

¼ δcðzÞffiffiffiffiffiffiffiffi
2πS

p 1

S
exp

�
−
δ2cðzÞ
2S

�
: ð18Þ

A fitting function for δc in ΛCDM is given by [73]

δcðzÞ ¼
3ð12πÞ2=3

20

Dð0Þ
DðzÞ ½1þ 0.0123log10ΩmðzÞ�: ð19Þ

Here ΩmðzÞ is the fractional matter density at z, i.e.
ΩmðzÞ ¼ Ωm;0ð1þ zÞ3=½ΩΛ þΩm;0ð1þ zÞ3� and DðzÞ is
the linear growth factor of matter perturbations [74]

DðzÞ ¼ 1

1þ z 2F1

�
1

3
; 1;

11

6
;−

ΩΛ

Ωm;0ð1þ zÞ3
�
: ð20Þ

Having dfðS; zÞ=dS, the halo mass function can be com-
puted as

dnhðM; zÞ
dM

¼ ρm
M

dfðS; zÞ
dS

���� dSdM
����: ð21Þ

Here ρm is the mean comoving matter density in the
Universe.
While Eqs. (18) and (21) agree reasonably well with

N-body cosmological simulations, they overpredict the
abundance of large halos and underpredicts that of small
halos. A more accurate model is to consider ellipsoidal
collapse, which gives rise to the Sheth-Tormen fitting
function [75,76] that we have used in Sec. II:

dfSTðS; zÞ
dS

¼ A

ffiffiffiffiffiffi
1

2π

r ffiffiffi
q

p
ν½1þ ð ffiffiffi

q
p

νÞ−2p� exp
�
−
qν2

2

�
1

S
;

ð22Þ

where ν≡ δcðzÞffiffi
S

p , A ¼ 0.3222, p ¼ 0.3, and q ¼ 0.707.

Now let us consider a trajectory starting from ðδcðzÞ; SÞ
and then first upcrossing the critical overdensity for
collapse at an earlier redshift z0 and a larger variance S0.
This corresponds to a halo M collapsing at z and having a
progenitor halo M0 at z0. Replacing δc and S in Eq. (18) by
δcðz0Þ − δcðzÞ and S0 − S, we obtain the probability for such
an event:

df1←2ðSðMÞ;S0ðM0ÞÞ
dS0

¼δcðz0Þ−δcðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðS0−SÞp exp

�
−
ðδcðz0Þ−δcðzÞÞ2

2ðS0−SÞ
�

1

S0−S
: ð23Þ

Equation (23) is related to the progenitor mass function of
halos of mass M, and as we will see, can be used to
compute the merger rate, which is found from the reverse
conditional probability df2→1ðS; S0Þ=dS. First, we compute
the backward rate, taking a small redshift step Δz:

d2f1←2ðS; S0Þ
dS0dz

¼ δcðzþΔzÞ− δcðzÞ
Δz

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðS0 − SÞp exp

�
−
ðδcðzþΔzÞ− δcðzÞÞ2

2ðS0 − SÞ
�

1

S0 − S
:

ð24Þ

When Δz → 0, the exponential term in Eq. (24) approaches
1 and thus can be removed from the equation, which is
commonly done in the literature (e.g., Ref. [68]), and the
term involving δc is simply the derivative with respect to z.
However, we keep the exponential term and take a small but
finite time step size when computing the halo formation
rate to avoid divergent results when S0 → S upon taking
integrals over S0 (which we do shortly). This is because the

5Since S is a monotonic function of R and R is a monotonic
function of M, here we write S as a function of M.
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quantities are probability distributions, and the order of
limits and integrals can be important.
As in the case of the halo mass function a more accurate

formula for the rate is obtained by accounting for depar-
tures from spherical collapse using an empirical modifi-
cation calibrated to N-body simulations [77]:

d2fNbody1←2 ðS; S0Þ
dS0dz

¼ d2f1←2ðS; S0Þ
dS0dz

GðS; S0Þ; ð25Þ

where G is

GðS; S0Þ ¼ G0

�
S0

S

�
γ1=2
�
δcðzÞ2
S

�
γ2=2

; ð26Þ

with G0 ¼ 0.57, γ1 ¼ 0.38 and γ2 ¼ −0.01.
We can now find the probability per unit redshift that

a halo of mass M0 merges into a halo of mass M at a later
time [68]:

d2fNbody2→1 ðS; S0Þ
dSdz

¼ d2fNbody1←2 ðS; S0Þ
dS0dz

dfSTðS; zÞ=dS
dfSTðS0; z0Þ=dS0 : ð27Þ

This reversal of conditional probabilities follows from
conservation of mass, i.e. the mass that halo S gets from
halo S0 equals to the mass that halo S0 merges into halo S.
Plugging Eqs. (21) and (27) into Eq. (14), the halo

formation rate is then given by:

d2nform
dMdz

¼
Z þ∞

S

M0

M
ρm
M0

dfSTðS0; z0Þ
dS0

d2fNbody2→1 ðS; S0Þ
dSdz

���� dSdM
����dS0

¼ ρm
M

���� dSdM
����
Z þ∞

S

dfSTðS0; z0Þ
dS0

d2fNbody2→1 ðS; S0Þ
dSdz

dS0

¼ ρm
M

dfSTðS; zÞ
dS

���� dSdM
����
Z þ∞

S

d2fNbody1←2 ðS; S0Þ
dS0dz

dS0

¼ dnSTh ðM; zÞ
dM

Z
Smax

SðM−MresÞ

d2fNbody1←2 ðS; S0Þ
dS0dz

dS0: ð28Þ

Here in the second and last lines we have used the
definition of the halo mass function Eq. (21). In the last
line, we also introduced finite Smax in the maximum of the
integral, and finite mass resolution Mres in the minimum.
From Eq. (28), we can see that the halo formation rate is
proportional to the halo mass function.
The upper limit in the integral in Eq. (28), Smax, should be

the largest value of S (which occurs forM → 0). For CDM,
Smax → ∞. However, the axion Jeans scale (or indeed the
free streaming scale of a thermally produced WIMP)
provides a natural upper limit and finite Smax. To avoid
the divergence of the integral, we only account for halos that
merged into M with a mass smaller than M −Mres, i.e.,
replacing the lower limit of the integral with SðM −MresÞ.
Furthermore, as noted earlier, convergence of the integral

requires retaining finite Δz in Eq. (24), which retains the
exponential factor, until after the integral has been per-
formed. Retaining explicit resolution factors everywhere
is consistent with the computation of these quantities in
N-body simulations and in merger trees, which we use to
calibrate and check the analytic results.
Figure 5 compares the halo formation rate for two axion

masses, ma ¼ 10−9 eV and ma ¼ 10−11 eV. For ma ¼
10−11 eV the effect of the Jeans scale becomes apparent
for M ≲ 10−4M⊙. Comparing to Fig. 4, we notice that
although for ma ¼ 10−11 eV typical fluctuations only
become nonlinear for z < 20, there is still significant halo
formation occurring at earlier times from rarer fluctuations
(consider the z ¼ 30 curve in Fig. 5). We further notice that
for ma ¼ 10−11 eV the turn over in halo formation rate at
low masses will suppress the formation of critical halos for
gaγγ ≳ 10−10 GeV−1. Bearing in mind these considerations,
we now estimate the halo major merger rate, and dark
matter decay rate from near-critical soliton mergers.

B. Dark matter decay rate

As is shown in Ref. [78], during a binary merger, the mass
of an axion star increases only when themass ratio of the two
axion stars μ ¼ Mc2=Mc1 > 3=7 (assuming Mc2 ≤ Mc1).
Therefore, we will consider only major mergers for which
the halo mass ratio of two progenitors μh > μh;min ¼
ð3=7Þ1=α, for Mc ∝ Mα

h. Then Eq. (28) becomes

d2nformðM; zÞ
dMdz

¼ dnhðM; zÞ
dM

×
Z

SðMlowerÞ

SðMupperÞ

d2fNbody1←2 ðS; S0Þ
dS0dz

dS0; ð29Þ

FIG. 5. Halo formation rate, per logarithmic mass bin, per
redshift, with mass resolution Mres ¼ 10−3M. Solid lines show
ma ¼ 10−9 eV, while dashed lines show ma ¼ 10−11 eV. The
computation uses the N-body fit in Eq. (25) from Ref. [77], which
agrees to within a factor ofOð3Þ with the EPS result for spherical
collapse for z ≳ 10.
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where

Mupper ¼ min
�

1

1þ μh;max
M;Mh;critðzÞ

	
; ð30Þ

Mlower ¼ max

�
μh;min

1þ μh;min
M;M −Mh;critðzÞ

	
: ð31Þ

In the above equations, we have imposed another condition
that the mass of two progenitor halos are both smaller than
the critical halo mass.
Additionally, since the halo mass after a merger is not

necessarily exactly equal to the critical halo mass, e.g., two
halos with masses below the critical halo mass merge and
form a bigger halo with a mass larger than the critical value,
we integrate (29) over the interval ðMh;crit; 2Mh;critÞ to get
the total number of halos that produce axion stars above the
critical mass between redshifts zþ Δz and z.
We thus arrive at a key result: the major merger rate of

solitons around a given critical mass is given by

dnmerge

dz
¼
Z

2Mhalo;crit

Mhalo;crit

dnhðM; zÞ
dM

×
Z

SðMlowerÞ

SðMupperÞ

d2fNbody1←2 ðS; S0Þ
dS0dz

dS0dM: ð32Þ

An example of the soliton major merger rate is shown in
Fig. 6. The rate is computed for a given soliton mass Msol.
The mass is chosen to correspond to the critical mass for
decay to photons, Eq. (11) for various values of gaγγ .

However, the same rate calculation can be used for any
soliton mass of interest. We also demonstrate dependence
on the core-halo mass relation parameter, α.
We can reexpress Eq. (32) in terms of the fractional

decay rate of dark matter, dfmerge=dz:

dfmerge

dz
¼ MS;crit

ρm

dnmerge

dz
: ð33Þ

Note that here we have neglected an Oð1Þ factor and
assumed that the axion star completely decays. For
Mhalf < Mh;crit < 105M⊙ (where Mhalf is the mass corre-
sponding to the half-mode scale in the transfer function
relative to CDM), Eq. (33) can be well approximated by

dfmerge

dz
¼ χ

MS;crit

ρm

dnh
d ln M

����
M¼Mh;crit

; ð34Þ

where χ is an Oð0.1Þ coefficient

χ ¼
aðzÞ þ bðzÞ

h
log10



Mh;crit

10−6M⊙

�i
1þ cðzÞ



Mh;crit

105M⊙

�
0.39 : ð35Þ

The parameters a, b and c are redshift dependent:

a ¼ a0 þ a1zþ a2z2; ð36Þ

b ¼ b0 þ b1zþ b2z2; ð37Þ

c ¼ c0 þ c1zþ c2z2: ð38Þ

The best-fit coefficients for several different values of α are
given in Table I.
Figure 7 shows the DM fractional decay rate, dfmerge=dz,

for a variety of model parameters. For fixed axion param-
eters ma and gaγγ there is a large dependence on the core-
halo mass relation, expressed via α. For α ¼ 1=3 we notice

FIG. 6. Soliton major merger rate density (per unit redshift, i.e.
dimensionless time) forma ¼ 10−11 eV. The major merger rate is
evaluated at a given soliton mass, measured in M⊙, which
corresponds to the critical soliton mass for a corresponding
value of gaγγ (in GeV−1). For different applications, the soliton
merger rate can be computed at any desired soliton mass
regardless of instability/criticality. Solid lines correspond to
core-halo mass relation α ¼ 1=3 and dashed lines to α ¼ 3=5.

TABLE I. Best-fit coefficients in Eqs. (36)–(38) for different
values of slope parameter α.

α ¼ 1=3 α ¼ 2=5 α ¼ 3=5

a0 1.07369 × 10−1 9.86049 × 10−2 8.00409 × 10−2
a1 −7.55082 × 10−5 −7.07799 × 10−5 −6.22972 × 10−5
a2 −9.39435 × 10−7 −9.54236 × 10−7 −9.31684 × 10−7

b0 6.84693 × 10−3 6.28750 × 10−3 5.10077 × 10−3
b1 −1.40186 × 10−5 −1.36381 × 10−5 −1.31868 × 10−5
b2 −1.85082 × 10−7 −1.86434 × 10−7 −1.68590 × 10−7

c0 2.71084 × 10−1 2.65829 × 10−1 2.57776 × 10−1
c1 2.47512 × 10−3 2.67660 × 10−3 2.76791 × 10−3
c2 6.89772 × 10−5 7.77110 × 10−5 1.02358 × 10−4
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almost constant power law scaling of the result with ma
and gaγγ .
Figure 8 compares the DM fractional decay rate from the

full EPS calculation to the fit given in Eq. (34). The fit is in
general very good, except that the fit breaks down at high
values of gaγγ ≳ 10−10 GeV−1 when the critical halo mass
drops below Mhalf where the halo mass function shape
changes abruptly. Such high values of gaγγ , however, are
robustly excluded by nonobservation of solar axions by the
Cern Axion Solar Telescope [79]. We conclude that the fit
in Eq. (34) can be used quite generally.
The decay rate, Eq. (33) can be converted into energy per

unit volume per unit time with appropriate factors of the

Hubble parameter, HðzÞ, and dark matter density
ΩDMh2 ¼ 0.12. The energy injection is shown in Fig. 1,
compared to a typical energy injection from supernovae.
For the supernova model we use the results of Ref. [28] for
core-collapse Pop-III supernovae. We approximate the star
formation rate density as a constant between redshifts
10 and 30, and assume one core collapse supernova per
100 Solar masses of star formation. We observe that for the
axion parameters considered the energy injection into the
intergalactic medium caused by axion star explosions is
significantly larger than the energy injection due to super-
novae, and with energy injection extending significantly
into the dark ages at z ≫ 20, suggesting that this is a
phenomenon with observable consequences.
The python code we used to do the calculations in this

subsection is publicly available at https://github.com/
Xiaolong-Du/Merger_Rate_of_Axion_Stars.

C. Merger trees

In the previous subsection, we showed the calculations
of DM fractional decay rate for a given power-law core-
halo mass relation using the EPS formalism. In reality, there
can be a large dispersion in the core-halo mass relation [37]
and a universal core-halo mass relation may not exist [38].
Thus for fixed axion parameters, ma and gaγγ , the critical
halo mass also has a scatter making it difficult to compute
the DM fractional decay rate using Eqs. (32) and (33). The
lower and upper limits of the integral are not determined
by a unique core-halo mass relation, e.g. the halo and its
progenitors may have different critical values. One way to
include possible variation in the core-halo mass relation is
to build a large number of “merger trees” (Monte Carlo
realizations of halo formation based on EPS) [68,77] which
record the merger history of halos. Then each halo can be
assigned a core mass from a distribution function or

FIG. 7. Axion dark matter fractional decay rate to photons due to soliton major mergers and parametric resonance. Solid lines assume
a core-halo mass relation with slope α ¼ 1=3, while dashed lines show α ¼ 3=5. Left: dependence on axion mass at fixed coupling.
Right: dependence on coupling at fixed axion mass.

FIG. 8. Comparison of fractional dark matter decay rate due to
soliton mergers comparing the full EPS calculation, Eq. (33)
(solid lines), to the fitting formula Eq. (34) (bold dashed lines).
We fix the axion mass ma ¼ 10−11 eV and core-halo mass
relation α ¼ 1=3.
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following the core mass growth model proposed by one of
us in Ref. [34].
Being Monte Carlo models, merger trees also allow for

additional physics to be included within individual halos. In
our case, we allow that the axion stars are removed from
halos after they cross criticality, which circumvents a
possible double counting in our calculation of the soliton
merger rate from the halo merger rate using EPS. For
example, when computing the integral Eq. (29), we con-
sider only the cases with progenitor halo masses smaller
thanMh;critðzÞ [see Eqs. (30) and (31)]. However,Mh;critðzÞ
decreases with increasing redshift (increases with time), so
there might be cases where the progenitor halo mass is
above the critical value at an earlier time. Those cases
should not be included in the integral Eq. (29).
Figure 9 shows the schematic diagram of a merger tree.

Two halos, M1 and M2, below Mh;crit merge and form a
larger halo M3 ¼ M1 þM2 þ ΔMacc whose mass is larger
than Mh;crit. Here ΔMacc is the mass accreted from sub-
resolution halos and the mass smoothly accreted from the
environment (see Refs. [49,80] for more details). After the
merger, we assume the central axion star in M3 completely
decays and remove it from the halo. In reality, when two
halos merge, it will take some time for their central axion
stars to merge and form a new axion star, which may lead to
delayed axion decays. The timescale for the merging
process is discussed in Appendix C.We leave more detailed
study of such a delay effect to further work. We also do not
consider the reformation of axion star after the first

explosion through gravitational relaxation since this proc-
ess is slow [12,13] compared to mergers, but we do allow
the halo to accrete a new axion star at a later time through
major merger in some of the models we consider below.
This essentially changes the core-halo mass relation above
the critical halo mass.
We use the semianalytic code GALACTICUS [81] to

generate realizations of merger trees. More details about
the merger tree setup can be found in Appendix B. To
cross-check with the calculations in the previous subsec-
tion, we first look at a fixed core-halo mass relation without
any scatter. As mentioned previously, the core-halo mass
relation is changed due to the decay of supercritical axion
stars. So the core-halo mass relation is not applied to those
halos that were ever above the critical halo mass in the past.
We make a naive assumption that their core masses remain
0 since the first explosion and leave the study of other
details such as the formation of a new core through
dynamical relaxation to future work. The results of this
calculation are shown in Fig. 10. We see good agreement
between the analytic EPS model and the merger tree. This
indicates that the calibration of the halo formation and
destruction rates was performed correctly, and that there
was no double counting of solitons caused by their non-
removal after explosion in the EPS result.
To introduce scatter to the core-halo mass relation, we

consider two models: (1) determining the core mass based
on the merger histories as in Ref. [34]; (2) sampling the
slope of the core-halo mass relation from a Gaussian
distribution such that the core masses have a large scatter
as found by Ref. [37]. In the first model, the core mass
grows as halo mass increases. However, this is not
guaranteed in the second model. So in the second model
after we draw a core mass for the halo in the merger tree, we
checked whether it is smaller than the core mass of the

FIG. 9. A sketch of merger tree. At time t1, two halos (black
circles) M1 and M2 are below the critical halo mass. Each halo
has an axion star in its center (red circles). At time t2,M1, andM2

merge and form a larger halo M3 > Mh;crit. The axion star in the
center of M3 (dashed red circle) becomes unstable and explodes.
Thus we remove the central axion star from M3, i.e. resetting the
core mass to 0. At a later time t3, halo M3 merges with another
haloM4 (below the critical halo mass). If the central axion star in
M4 is not disrupted during the merger, the final haloM5 will have
a new core (central axion star).

FIG. 10. Comparison of mean DM fractional decay rate from
merger trees (empty circles) with that from EPS formalism
(solid lines).
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halo’s main progenitor. If it is, the halo is assigned the same
core mass as its main progenitor. This additional constraint
tends to make the slope of the core-halo mass relation
steeper as mergers happen. To recover the core mass range
found by Ref. [37], we set the mean and standard deviation
of the slope parameter as αmean ¼ 0.3266 and σα ¼ 0.1.
Figure 11 shows the core mass versus halo mass from the

two models above. In this test, to compare with previous
findings on the core-halo mass relation, we have not
included the decay of super-critical axion stars. In model
(1), the core mass grows only in a major merger event, so
for small halos which have experienced only a few mergers
the core masses have a large scatter, i.e. a halo growing
through major mergers will have a large core mass than
the one growing through minor mergers. As more mergers
happen, the core-halo mass relation approaches a
1=3-power law, which is consistent with that found by
Ref. [27] in cosmological simulations, but the scatter in
core masses is much smaller than the other model. As we
expected, model (2) reproduces the dispersion in the core-
halo mass relation reported in Ref. [37] (shaded region).
Then we rerun the above two models and allow the axion

star to decay when it becomes supercritical. For model (2),
as in the case with a fixed core-halo mass relation, we apply
Eq. (4) only to halos that have never been above the critical
halo mass. For model (1), we allow the halo to accrete a
new core from major merger, but assume there is no
adiabatic core growth.

In Fig. 12, we compare the DM fractional decay rate
predicted by the models above with those assuming a fixed
core-halo mass relation. We found that the results from
model (1) agree well with a fixed core-halo mass relation
with α ¼ 1=3, while the results frommodel (2) lies between
two limiting cases with α ¼ 1=3 and α ¼ 3=5, correspond-
ing to an effective average value α ≈ 2=5.

V. SUMMARY AND CONCLUSION

For DM composed of a bosonic field, numerical work in
the last decade has shown that a general prediction of such a
model is the formation of a soliton in every dark matter
halo. Numerical and semianalytic models can be used to
compute the soliton mass function and merger rate. In the
present work, we used the extended Press-Schechter
formalism to first write down the soliton mass function
assuming a core-halo mass relation with the host DM halos.
Figure 2 shows the resulting number density of solitons
predicted in a standard cosmology.
Using this result as a baseline, we then presented a new

calculation of the soliton formation rate and merger rate,
culminating in the double-differential formation rate,
Eq. (28). Solitons form and grow primarily due to mergers,
and the formation rate can be used to calculate the rate of
major mergers of solitons of any given mass, Eq. (32),
and Fig. 6.
Due to nonlinear interactions, and including relativistic

corrections, bosonic DM solitons are unstable above a
critical mass. For gravity, this instability leads to BH
formation, but is predicted to occur only in very massive
DM halos. For quartic self-interactions, and for axionlike
interactions with photons, the instability leads to soliton
explosions, and decay of DM into relativistic degrees of
freedom. Soliton explosions caused by major mergers

FIG. 12. DM fractional decay rate from merger trees assuming
different core-halo mass relation models comparing with the EPS
models assuming a fixed core-halo mass relation with different
values of α.

FIG. 11. Core mass versus halo mass at z ¼ 10 for ma ¼
10−11 eV from different models: (1) Du et al. 2017 [34] (blue
circles); (2) random sampling (orange circles). The shaded region
shows the range of core masses found by [37]. The horizontal
lines mark the critical core mass Mc;crit ¼ Mdecay=4.

6Note that the mean value required for the dynamical merger
tree model to reproduce the scatter is smaller than the measured
mean value at fixed z, 0.515, reported in Ref. [37].
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producing heavy and unstable solitons thus leads to an
enhanced DM decay rate.
We write the decay rate as df=dz, where f is the fraction

of the total DM density, and z is redshift. Assuming a
given core-halo mass relation, our computation of this rate
can be approximated from the halo mass function and is
given in Eq. (34), which applies for any instability to decay
at a mass Mdecay, regardless of the specific mechanism.
Taking the axion-like instability to production of radio
photons [22], we used our computation of the major merger
rate to compute the DM decay rate for different values of
the axion mass, ma, and coupling constant, gaγγ , as shown
in Fig. 7.
The analytical EPS model can only be used to compute

the DM decay rate if there exists an exact analytical core-
halo mass relation. Given that this is thought to be a
statistical phenomenon, with scatter due to halo formation
histories and departures from equilibrium, we extended our
computation to semianalytical Monte Carlo methods using
the GALACTICUS code [81]. Firstly, we used our Monte Carlo
model to validate the EPS calculation of the merger rate for a
fixed core-halo mass relation. Next, we introduced scatter to
the core halo mass relation tuned to match results of
numerical studies [37], as shown in Fig. 11. We found that
the results of such a model can bematched by the EPSmodel
using a mean value of the core-halo mass relation slope
parameter α, as shown in Fig. 12.
The enhanced decay of axion DM induced by soliton

mergers may have phenomenological consequences that
either offer new windows to axion indirect detection, or
place stronger constraints on the axion parameter space.
Soliton decay injects energy into the intergalactic medium,
which, for the reference parameters shown in Fig. 1, is
significantly larger than the energy injection due to core
collapse supernovae, and extends to much higher redshifts.
We explore phenomenology of this energy injection in
detail in a preceding paper [29].
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APPENDIX A: DETAILS OF THE CALCULATION

Our calculation of the soliton merger rate at very high
redshift and at very low halo mass requires the computation
of many nested integrals covering a wide range of scales.
We describe briefly here how this calculation is done in a
numerically efficient and physically accurate manner.
We used CLASS [82] to compute the matter power

spectrum, PðkÞ, in a standard CDM cosmology. We then
applied the analytic approximation for the effect of the
Jeans scale cut-off given by Ref. [42]. We chose this
methodology, rather than direct computation of the Jeans
scale using AXIONCAMB [83] because: (a) we use CLASS in
Ref. [29] to compute the reionization effect of soliton
decays, and (b) the analytic approximation is simpler to
implement at larger particle massma and wave number k of
interest at present.7

We pre-compute σðMÞ at z ¼ 0 at fixed particle masses,
ma and fixed cosmological parameters, Ωm ¼ 0.3153,
Ωb ¼ 0.04930, ΩΛ ¼ 0.6847, σ8 ¼ 0.8111, ns ¼ 0.9649,
h ¼ 0.6736 [30]. We first compute σðRÞ using three
different window functions, W̃ðkjRÞ discussed in the text:
(a) real space top-hat, (b) sharp-k space, (c) smooth-k space
window function [50,51]. These are given by:

W̃top-hatðkjRÞ ¼ 3½sinðkRÞ − kR cosðkRÞ�
ðkRÞ3 ; ðA1Þ

W̃sharp-kðkjRÞ ¼ θð1 − kRÞ; ðA2Þ

W̃smooth-kðkjRÞ ¼ 1

1þ ðkRÞβ : ðA3Þ

Here θ is the Heaviside step function. The variance is
defined by:

σ2ðRÞ ¼
Z

∞

0

k2

2π2
PðkÞW̃ðkjRÞ2dk: ðA4Þ

In the calculation of the soliton merger rate using the
EPS formalism in Sec. IVA, we adopt the smooth-k space
window function, Eq. (A3) as a reference, with mass
assignment Eq. (A7). This is because this mass variance
reproduces the HMF cutoff seen in simulations very well
directly from σðMÞ, without the need for additional fitting
functions. This σðMÞ can then be used as direct input in the
merger rate calculation.

7See Ref. [84] for discussion of the accuracy of these various
methods for computing the Jeans scale cutoff.
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To find the mass variance, we need to assign mass to a
scale (R). This is trivial for the real-space top hat, but
requires calibration for both sharp-k and smooth-k
space window functions. We use the following mass
assignments:

Mtop-hatðRÞ ¼ 4

3
πR3ρm; ðA5Þ

Msharp-kðRÞ ¼ 4

3
πðaWRÞ3ρm; ðA6Þ

Msmooth-kðRÞ ¼ 4

3
πðcWRÞ3ρm: ðA7Þ

For the sharp-k filter we take aW ¼ 2.5 as in [49]. For the
smooth-k filter, we take cW ¼ 2.15940 and β ¼ 9.10049
which were found by fitting large N-body simulations [85].
A converged computation of σðMÞ at the required low

values of M requires computing PðkÞ to large k. In CLASS

we set kmax ¼ 2.5 × 104 Mpc−1, and extrapolate PðkÞ at
k > kmax using a power law. The large value of kmax
required might suggest that an analytic approximation to
PðkÞ would be useful. However, the best such approxima-
tion, Ref. [86] is not accurate on k larger than the baryon
Jeans scale, and gives PðkÞ which is too large compared to
the one computed accurately by CLASS direct solution of the
Boltzmann equation.
For cosmological parameters adopted in this paper, we

found the following fitting functions for σðMÞ for both
CDM and axion DM models:

σCDMðMÞ ¼ a

�
M

103M⊙

�
−b
"
1 − c ln

 
1þ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

103M⊙

s !#
;

ðA8Þ

σaxionðMÞ ¼
�
1þ

�
M

eMhalf

�
f
�
b=f

σCDMðMÞ; ðA9Þ

where Mhalf is the half-mode mass

Mhalf ¼
4

3
π

�
π

khalf

�
3

ρm; ðA10Þ

khalf ¼ 4.986 × 104
�

ma

10−13 eV

�
4=9

Mpc−1; ðA11Þ

and the best-fit parameters take

a ¼ 11.2934; ðA12Þ

b ¼ 0.0231895; ðA13Þ

c ¼ 0.0800510; ðA14Þ

d ¼ 0.125902; ðA15Þ

e ¼ 0.329159; ðA16Þ

f ¼ −2.41133: ðA17Þ

Note that the fitting functions above are only fitted to halo
masses smaller than 1012M⊙ and axion masses larger than
10−17 eV. For those cases, they provide an accuracy better
than 1%. To compute the halo mass function and halo
formation rate, one also need to compute α≡d ln σ=d lnM.8

This can easily be done using the fitting functions Eqs. (A8)
and (A9). But we found that directly computing α for axion
DM models using Eq. (A9) leads to large errors for
M ≪ Mhalf . So we provide an additional fitting function
for αaxion below.

αaxionðMÞ ¼
�
1þ

�
M

eMhalf

�
f
�
g=f

αCDMðMÞ: ðA18Þ

Here αCDMðMÞ≡ d ln σCDM=d ln M is computed using
Eq. (A8) and g ¼ 2.86571.
With the above fitting functions, the halo mass function

can be computed as

dnh
dM

¼ 2
ρm
M

dfSTðSðMÞ; zÞ
dS

σðMÞ2
M

jαðMÞj; ðA19Þ

where dfSTðS; zÞ=dS is given by Eq. (22).

APPENDIX B: GENERATING MERGER TREES

The merger trees are generated using the semi-
analytic code GALACTICUS [81] which employs the EPS
Monte Carlo algorithm proposed in Ref. [77] (see also
Ref. [87]). To compute the formation rate of axion stars
with critical masses at different redshifts, we start building
the merger from a final redshift of zf. As we go backward in
time along the merger trees, halos fragment into smaller
and smaller progenitor halos. After significant fragmenta-
tion has occurred the number of halos with masses in the
range we are interested in becomes too small, so we only
use the data in the redshift range ½zf; zf þ 5�. At this point a
new set of trees is built starting from from zf þ 5. For each
case, we generate 400,000 trees with root halo masses
sampled from the halo mass function in the mass range
½10−7; 103�M⊙. The mass resolution of the tree is set to
10−7M⊙ to make sure that for the cases we shown in
Sec. IV C, the critical halo mass is always resolved.

8It should not be confused with the slope parameter in the core-
halo mass relation Eq. (4).
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For ma ¼ 10−11 eV, gaγγ ¼ 10−12 GeV−1, and the core-
halo mass relation from Ref. [11], the critical halo mass
Mh;crit at z ¼ 10 (z ¼ 100) is 11.4M⊙ (0.4M⊙). If we
sample the root halo masses from the halo mass function,
we will have too few halos close to Mh;crit making the
calculation of formation rate inaccurate. So for this case, we
sample the root halo masses from a loguniform distribution
in the mass range ½10−2; 103�M⊙ instead. To get the correct
formation rate, each tree is assigned a weight

wi ¼
Z

Miþ1=2

Mi−1=2

dn
dM

dM; ðB1Þ

where fMig is in ascending order andMi−1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMi−1

p
.

Having the merger trees, we can assign each halo in
the tree a core mass Mc (the axion star mass MS ≈ 4Mc)
using either a chosen core-halo mass relation or the
model proposed in Ref. [34] (see Sec. IV C). For the
latter case, we include some additional physics: (1) when
the axion star in the center of a halo is above the critical
star mass MS;crit, we set Mc ¼ 0; (2) if a halo, with mass
above Mh;crit, and whose central axion star has com-
pletely decayed, has another major merger with a halo
below Mh;crit, the axion star from the second progenitor
will remain in the new halo, i.e. it is not disrupted (see
Fig. 9). The major merger mass ratio is defined as 1∶13.9

With the second assumption, a halo can have a second
explosion of the central axion star, which leads to
slightly higher dark matter decay rate at lower redshifts,
see Fig. 13.

APPENDIX C: TIMESCALE OF MERGING
PROCESS

In Sec. IV, when we compute the decay rate of axion
stars due to major mergers, we have assumed that the axion
stars in the center of halos merge at the same time when two
halos merge. In reality, when two halos encounter each
other, the smaller one will become the subhalo of the larger
one (the host). The orbit of the subhalo decays due to
dynamical friction [88]. As its orbit decays with time, the
subhalo gradually sinks into the host’s center. The central
axion star of the subhalo finally merges with the one
residing in the host’s center if it is not disrupted by tidal
forces. The dynamical friction is stronger for more massive
subhalos, thus the timescale of the merging process,
τmerging, is shorter for larger mass ratios μh ¼ Msub=Mhost.
To obtain the timescale τmerging, we simulate the merger

of two halos with different mass ratios using the N-body
code GADGET-4 [89]. In this work, we are only concerned
with major mergers, i.e., μh ≥ ð3=7Þ1=α, which lead to the
growth of axion stars (for more details, see the discussions
in Sec. IV B).
As an example, we consider a host mass of 10−3M⊙

which corresponds to a halo containing an axion star close
to the critical mass at z ¼ 20 for ma ¼ 10−11 eV,
gaγγ ¼ 10−11 GeV−1, and α ¼ 1=3 (assuming a core-halo
mass relation found in Ref. [27]). The subhalo first enters
the host’s virial radius, Rvir;host, at redshift zinfall ¼ 20, at
which redshift both halos are assumed to have Navarro-
Frenk-White (NFW) profiles [90]. The concentration
parameters of the NFW profiles are computed using the
model proposed in Ref. [91].10 We start the simulation at
zinfall and consider two types of initial orbits: (1) the
subhalo is initially on a circular orbit with a zero radial
velocity and a tangential velocity computed as
Vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMhost=Rvir;host

p ð1þ μhÞ; (2) the subhalo has typ-
ical radial and tangential velocities found in cosmological
simulations [93].
Figure 14 shows the distance between the subhalo and

the host as a function of time since infall obtained from our
simulations. The results for type (1) and type (2) initial
orbits are shown in the left and right panels, respectively.
Compared to type (1) orbits, subhalos with type (2) orbits
can reach further inside the host where the host density is
higher, thus are subjected to stronger dynamical friction
and have smaller τmerging. For μh ¼ 0.1, the orbit of the
subhalo decays rapidly at early times, but then the subhalo
remains on a nearly stable orbit when the dynamical
friction becomes negligible. Instead of sinking into the
host’s center, the subhalo gradually loses its mass and may

FIG. 13. DM fractional decay rate from merger trees assuming
core growth model from Ref. [34]. If a second explosion is
allowed, the result is slightly higher at lower redshifts.

9The result is only slightly affected by the specific choice of
this ratio.

10The model in Ref. [91] is shown to work reasonably well for
the halo mass we consider here. At z ¼ 0 the concentration
predicted by this model for a halo of mass 10−3M⊙ is only
slightly higher than that found in numerical simulations [92].
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finally be destroyed by the tidal forces from the host. When
the number of particles gravitationally bound to the subhalo
drops below 20, we track the position of the subhalo by the
most-bound particle, the particle that has the most negative
potential energy (identified in the last snapshot at which the
subhalo contained more than 20 bound particles). The
orbits of the most-bound particle are shown as dashed
curves. For μh ≳ 0.3, the subhalo is able to reach close
enough to the host’s center so that the axion star in the
subhalo can merge with that in the host.

The N-body simulations we perform cannot describe
the axion stars in the halos and their mergers. Thus we
only obtain a rough estimate of τmerging from Fig. 14.
While type (2) orbits are better representations of realistic
subhalo orbits, we take τmerging from the type (1) simulations
as a conservative estimate. For μh ≳ 0.3, we find
τmerging ∼ 0.16 Gyr. After the merger of two axion stars,
if the new axion star has a mass above the critical value
given by Eq. (11), the axion particles in the axion star will
decay to photons exponentially within a timescale negli-
gible compared to τmerging. So we expect the axion decays
are delayed by τmerging compared to the time that we
calculate in Sec. IV. Note that τmerging is smaller than the
Hubble time at zinfall (vertical dashed curve in Fig. 14), so
the effect of delay is expected to be minor. Simulations that
are capable of correctly including the quantum pressure of
the scalar field are needed to study the merging process
more accurately. We leave such a detailed and statistical
analysis to further work (although see Ref. [94]).
As shown above, not all major mergers as we defined in

Sec. IV, i.e., μh ≥ ð3=7Þ1=α, result in the merger of the
central axion stars in halos. To check how this may affect
the axion decay rate, we impose an additional condition,
μh ≥ 0.3, when computing the integral Eq. (29). Figure 15
shows the DM fractional decay rate due to mergers if we
impose this additional condition comparing with that from
our fiducial EPS models. For α ¼ 1=3 (α ¼ 3=5), the DM
fractional decay rate is reduced by 40% (10%), a relatively
small effect on the scales shown that does not affect our
main conclusions.

FIG. 15. DM fractional decay rate due to soliton mergers with
μh > 0.3 (black curves) comparing with our fiducial EPS models
(colored curves).

FIG. 14. Orbital decays caused by dynamical friction for halos mergers with different mass ratios. The host has a mass of 10−3M⊙. The
subhalo falls into the host’s virial radius, Rvir;host, at zinfall ¼ 20. Left: type (1) orbit, the subhalo is initially on a circular orbit. Right: type
(2) orbit, the subhalo is initially on an elliptical orbit with the radial and tangential velocity taken for typical infalling subhalos [93].
When the subhalo contains less than 20 bound particles, its position tracked by the most-bound particle is show as dashed curve.
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