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Recently it was shown that small deformations of the asymptotically flat black-hole geometry in some
region near its horizon which do not alter considerably the fundamental mode, nevertheless, strongly affect
the first several (and higher) overtones which deviate at an increasing rate from their nondeformed limits.
Here we show that, despite the quasinormal spectrum in anti—de Sitter (AdS) space is totally different from
the asymptotically flat one, the outburst of overtones do take place at small near-horizon deformations of
Schwarzschild-AdS spacetime as well. Moreover, qualitatively new, nonoscillatory modes appear as a result
of such small deformations, representing, thereby, a nonperturbative branch of modes. For this purpose we
extend the general parametrization of asymptotically flat black holes to the AdS case. Small near-horizon
deformations may originate from various holographically motivated factors, such as quantum corrections or
attempts to describe the regime of intermediate coupling via higher curvature terms, while the nonoscillatory
modes may be related to the hydrodynamic mode on the gauge theory side. Therefore, the phenomenon of
the overtones’ outburst must be taken into consideration when analyzing correlation functions and
dispersion relations in the dual field theory. In addition to the ad hoc deformations we consider the case of
five-dimensional Einstein-Gauss-Bonnet-AdS black holes as an example of such near horizon deformations

and fulfill the detailed study of the overtones.
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I. INTRODUCTION

In the AdS/CFT correspondence [1-3], and, more
generally, gauge-gravity duality, one of the fundamental
insights is that quasinormal modes (QNMs) of black holes
in the asymptotically anti—de Sitter (AdS) bulk correspond
to poles of the retarded correlation functions in the dual
quantum (conformal) field theory (CFT) [4-6]. Thus, the
quasinormal spectra directly determine the dispersion rela-
tions of excitations in the dual strongly coupled theory. Of
particular interest are gapless QNMs of black holes with
planar horizons: they correspond to hydrodynamic long-
lived modes in the theory and therefore carry valuable
information about its transport properties such as viscosity
and conductivity [6,7]. This is relevant in the study of the
quark-gluon plasma [8], where strong coupling makes
conventional perturbative methods ineffective.

Quasinormal spectrum of asymptotically AdS space-
times [9,10] is drastically different from those of flat or de
Sitter spacetimes. The modes in AdS quickly achieve their
high overtone number limit » — oo being almost equally
spaced in n. When the black-hole radius vanishes the
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modes approach the normal modes of the pure AdS
spacetime [11], so that one could interpret the spectrum
as the AdS spectrum perturbed by the presence of a black
hole. Unlike asymptotically de Sitter or flat case, the AdS
modes form a full set and their superposition represents the
signal at all times. This feature apparently follows from a
different boundary conditions in AdS space, which serves as
an effective confining box for perturbations. These peculi-
arities of the AdS spectrum are worth mentioning because
the aspect we are interested in here is closely related to our
recent observations made in asymptotically flat spacetimes:
small deformations of the black-hole geometry in the near-
horizon zone will not affect the fundamental mode seem-
ingly, but first several and higher overtones will deviate from
their Schwarzschild limits at an increasing rate producing a
totally different picture of overtones [12]. This observation is
important mainly because of the two reasons: (a) The first
several overtones are necessary to model the ringdown with
a set of modes not only at its very end, but during the whole
stage of damped quasinormal oscillations [13]. (b) The
overtones are highly sensitive to the least deformations in the
near event horizon zone, so they allow one to probe the near-
horizon geometry, while the fundamental mode is dependent
on the geometry near the peak of the potential barrier. Thus,
the outburst of overtones represent a kind of “the sound of
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the event horizon.” Consequently, an outburst of overtones
has been considered in a number of black hole models which
differ from the Schwarzschild spacetime by a relatively
small deformation near the event horizon [14-20].

While overtones of asymptotically flat black holes are
difficult to observe in the current and near future experi-
ments, for the AdS case they have their own value within
the AdS/CFT correspondence as poles of the retarded
Green function in the dual field theory, expressing the
dispersion relations on the finite temperature field theory
side. At the same time, as the AdS spectrum is qualitatively
different from the flat one, it is risky to state beforehand
whether such outburst of overtones will take place in AdS
or not.

Here we answer positively this question and find that the
overtones not only explode by magnitude, but may change
qualitatively as a result of such small near-horizon defor-
mations, because the purely imaginary, i.e., nonoscillatory,
quasinormal modes appear in the spectrum. In order to
“prepare” the near-horizon deformations we extend here
the general parametrization of the spherical asymptotically
flat black holes, proposed by Rezzolla and Zhidenko [21] to
the asymptotically AdS case in four and five dimensions.

We also consider a particular and well-known example
of the near-horizon deformations: Einstein-Gauss-Bonnet
theory, where the regime of small Gauss-Bonnet coupling
a is stable. We show that the spacing between modes for
the perturbative (in @) branch of modes is changing at an
increasing rate when n is growing. In addition, the new
nonperturbative branch of modes appears even at the
smallest coupling. As the lowest mode for this case
was extensively studied, here we have complemented it
by the analysis of the overtones for gravitational pertur-
bations of FEinstein-Gauss-Bonnet-AdS black holes in
D = 5 spacetime.

This work is organized as follows. Section II develops
the general parametrization of the asymptotically AdS
black holes. Section III is devoted to the master wavelike
equations for scalar and electromagnetic fields. In Sec. IV
we briefly review the methods used for finding quasinor-
mal modes. Section V describes features of the obtained
quasinormal modes. Finally, in Sec. VI we summarize the
obtained results and discuss relation of our work to other
observations in this area.

II. GENERAL PARAMETRIZED SPHERICALLY
SYMMETRIC BLACK HOLE IN AdS SPACE

The powerful formalism for testing various properties of
black holes in arbitrary metric theories of gravity was
suggested for spherical and slowly rotating asymptotically
flat black holes in [21] and extended to the general axially
symmetric case in [22]. The essence of this approach is a
general parametrization of the black-hole spacetime, similar
in spirit with the post-Newtonian parametrized formalism,
but working in the whole space outside the black hole

including the near-horizon zone. This formalism was
extensively applied for analytic approximations of various
numerical black-hole metrics (see, for instance, [23—25] and
references therein) as well as for analysis of various
radiation phenomena around them [26-35]. The advantage
of this method is that frequently it allows one to approxi-
mate the black hole spacetime by only a few parameters for
description of astrophysically relevant phenomena [36].

In this section the parametrization suggested initially
for D = 4 asymptotically de Sitter black holes in [37] is
reviewed with the minimal specifications concerning the
AdS asymptotic, while for more interesting D = 5 case we
generalize the approach of [38] allowing now for a nonzero
A term.

A. D=4

Here we will use the general parametrization of
spherically symmetric black holes in metric theories of
gravity [21], which was extended for the nonasymptoti-
cally flat backgrounds in [37]. The metric of a spherically
symmetric black hole can be written in the following
general form:

B(r)
N2(r)

ds* = —=N?(r)dt* + dr? + r*(d6? + sin*> 0d¢?*), (1)

where r( is the event horizon, satisfying N(ry) = 0.
We introduce the dimensionless variable

o
=1-— 2
x=1-1 @)

so that x = O corresponds to the event horizon, while x = 1
corresponds to spatial infinity. We define the function N as

N? = xA(x),

where A(x) >0for0<x< 1.
Following [37], we represent the functions A and B as
follows:

Ax)==21-x)2=w+2)(1-x)"+«
—e(1=x)+(ag—e€)(1=x)> +A(x)(1-x)3, (3)

B(x) =1+ by(1 —x) + B(x)(1 —x), (4)

where A and v are the far-region asymptotic coefficients,
corresponding to the cosmological constant,

2
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and the effective dark-matter term v [39]. We also define
k=1-41-v.

The parameter ¢ is related to the asymptotic mass M in
the following way:

2M 2M
e=——-k=—-14+21+4v,
ro ro

while the coefficients a, and b, correspond to the post-
Newtonian parameters.

The functions A and B are introduced through the infinite
continued fraction in order to describe the metric near the
horizon (i.e., for x ~0),

Y a; % b,
AW =g W= 0
T e
where ay, a,, ... and by, b,, ... are dimensionless constants

to be constrained from observations of phenomena which
are localized near the event horizon. At the horizon only the
first term in each of the continued fractions survives,
A(0) = a;, B(0) = by, which implies that near the horizon
only the lower-order terms of the expansions are essential.

As we are aimed here only at the AdS configurations,
further we will drop the dark-matter or post-Newtonian
terms from the general parametrization, so that

UV=ay—= b() = 0,
and the coefficient 1 is negative,
2
o
1=-3, (6)

where R is the AdS radius.

B.D=5

The higher-dimensional generalization for the spheri-
cally symmetric black hole parametrization has been
proposed in [38]. In a similar manner, we consider the
line element

B(r
as? = N2 (r)ae + 2D a4 2agy (1)

N2(r)

where dQ3,_, is the metric of the unit (D — 2)-sphere. The
compact dimensionless variable X is defined as follows:

F=1- (r—r")D_3. (8)

We notice that the consistent (anti—)de Sitter black hole
representation in terms of the variable X, such that

N? = %A(%),

is possible only for D = 5. For the five-dimensional AdS
black hole we need to choose
0

V=——

1=0, ik

and the functions A(X) and B(X) are defined in the same
way as for D = 4, via Eq. (5).

C. Parametrization for the Gauss-Bonnet-AdS
black hole

The Lagrangian of the D-dimensional Einstein-Gauss-
Bonnet theory [40],

a
L= =2M+ R 45 (RusgRM7 ~4R,R + RY). - (9)

where «a is the Gauss-Bonnet coupling, leads to the
equations allowing for a static spherically symmetric
black-hole solution given by the line element (7) with

N (r) =1 D ,
1+\/1+8%‘2 ,A‘_l+ﬁ)
B(r) =1, &Ea(D_3)2(D_4), (10)

where y is a constant, which defines the asymptotic mass
and can be expressed in terms of the horizon radius, as
follows [41]:

(D—-2)rf> ( 2

B er)/\
5 rota-—

p— . 1 1
g o=tw=g) W

Following [38], by comparing the asymptotic behavior
of (10) and the parametrized functions for D = 5, we find
the values of the asymptotic parameters:

B r%A
349+ 6aA’
€:27ﬂ—1+1/
20 + 6ah ’
ay=by=0. (12)
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Similarly, by comparing the near-horizon expansions for
the function N?(r), one can calculate the near-horizon
coefficients,

14\ — 6r3e — 12ae + 6a
3r§ + 6a
A3 —2aA)  r§(2aA + 3e —v)
an =
> 7 184, (2 + 22)° a,(r3 + 2a)*
réa(2al + 18¢ — 6v — 3)
+ 2 3
ay(rg + 2a)
2?(9e —=3v—1) +8a*(3e — 1)
a,(r + 2a)*

a, =2v-—

(13)

-3

e (14)

and b; = 0. Notice that when finding quasinormal modes
of the Einstein-Gauss-Bonnet-AdS black holes with the
Bernstein polynomial method, we use the full metric and
the truncated parametrization is necessary here to show that
the Gauss-Bonnet correction belong to the considered class
of near-horizon deformations. If one uses Frobenius series
approach for finding quasinormal modes (e.g., Horowitz-
Hubeny method [9]), then the parametrization must be
extended to a sufficiently high order for which the quasi-
normal frequencies approach the accurate ones for the full
metric, as was done, for example, in [19].

III. WAVE EQUATION

Once we are illustrating general idea of the near-horizon
deformation of the black-hole geometry rather than fix any
particular theory of gravity, we may have two approaches
to perturbation equations. The first way is to consider
test fields in a black hole background and deform the
metric near the horizon, looking at the consequent changes
in the spectrum. The second approach is to consider
master wave equations for gravitational perturbations of
the Schwarzschild-AdS solution and implement small
near horizon deformations directly therein. We will use
both approaches here.

The general covariant equations for the scalar (®)
and electromagnetic (A,) fields can be written in the
following way:

1
—0,(v/—g99"0,®) =0,
\/_—g }4( )
1
S5 V=) = 0. (15)
where F,, = d,A, —d,A, is the electromagnetic tensor.

After separation of the variables the above Eq. (15) take
the Schrodinger wavelike form

with the effective potential,

1—s d N*(r)
dr, B(r)’

£+ 1)

7'2 r

V(r) = N*(r) (17)

for the scalar (s = 0) and electromagnetic (s = 1) fields,
and the tortoise coordinate is defined as

B(r)dr
N(r) (18)

dr, =

Equation (16) has two regular singular points, » = r, and
r = oo, and the appropriate boundary conditions are the
ingoing wave at the horizon and vanishing at infinity,

W (r— ry) /%o, r— 1o, (19)

¥ ps=(1=9)D/2, r— oo, (20)
where kg = N(rq)N'(rg)/B(r) is the surface gravity at the
horizon.

IV. THE METHODS FOR STUDYING
QUASINORMAL SPECTRUM

Here we will briefly summarize two methods used for
finding quasinormal modes: the Bernstein polynomial
method and the shooting method. Both approaches are in
excellent agreement, convergent, and allow one to control
the accuracy of the obtained results.

A. Bernstein spectral method

Following [42], we introduce the function ¢(x), which is
regular for 0 < x < 1 when w is a quasinormal mode,

O(r) = <l—r—r0> T g ‘>D¢(1—r—r0>, (21)

and represent ¢(x) as a sum

N-2
P(x)(1—x)? =" CBY (x), (22)
k=0

where

N!

BEO = v — o

xk(1 = x)N-k

are the Bernstein polynomials.

The representation (22) is chosen in order to satisfy the
Dirichlet condition at the AdS boundary (20), which
provides the best accuracy of the Bernstein approximation
[43]. We used the Mathematica code publicly shared
in [44].
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B. The shooting method

In order to check the frequencies obtained via Bernstein
polynomial approximation we perform numerical integra-
tion of the wavelike differential equation. We introduce the
new function, which is finite at the AdS bound (x = 1),

f(x) = (1= x) P06 (x), (23)

then, from the wavelike equation (16), we find a Taylor
expansion for the function f(x), assuming that it is regular
at the horizon (x = 0). We use the obtained series expansion
as the initial approximation for the value of the function and
its derivative at some point near the horizon x = xy < 1,
where we set up the initial condition for the second-order
differential equation for f(x). For each value of @ we solve
the equation numerically using the Runge-Kutta method in
the interval x) < x < 1 and find numerically the value f(1).
We take x; = 0.05 and make sure that the approximation
given by the series expansion in this point is sufficient
within the chosen tolerance of the numerical solution.
The Dirichlet boundary condition (20) is equivalent to

f(1)=0. (24)

In order to obtain the quasinormal frequency we shoot for
the value of @ until we satisfy the condition (24). This
method allows us to calculate the dominant quasinormal
frequencies.

V. QUASINORMAL MODES

We will start from the four-dimensional example of
the Schwarzschild-AdS black hole and compare it with
the metric which is deformed near the event horizon but the
deformation slowly decay at larger r, so that at about r ~ 3r,
the difference between the deformed and original spacetime
is negligible. This way we create a deformation which is not
highly localized and would not require high energies to
support it. This kind of smooth deformation in some spread
region rather than the highly localized deformation is also
required by realistic physical configurations: the fields, even
when they decay quickly, exist everywhere in space and
must be smooth.

The quasinormal modes of asymptotically AdS black
holes are different depending on the ratio between the
radius of the event horizon r and the AdS radius R. We can
conditionally distinguish the three regimes.

(1) When ry < R (small black holes), the spectrum
usually resembles the one of the pure AdS space-
time, approaching normal modes of the AdS space in
the limit ry — O [11], provided such small black
holes are dynamically stable in the theory under
consideration.

(2) When ry > R (large black holes) the highly damped
modes quickly achieve the regime of equidistant
spacing. The regime of large black holes is the most
important for the AdS/CFT correspondence as one
can think the large black hole is similar to the black
brane in this regime.

TABLE I. QNMs for s =¢=0, e =ay=by=0, ryp=R=1, a, =—-1000, a3 = 1001, a; = 0 for i > 3. First line: Bernstein

spectral method, second line: shooting method.

a) = 10_3

ay = 10_2

n a; =0 a, =107
0 2.798223 —2.6712061 2.817861 — 2.669980 i
2.798223 — 2.6712061 2.817861 —2.669980 1
1 4.758489 — 5.0375691 4.867591 — 5.0410581
4.758489 — 5.037569 1 4.867591 — 5.041058 1
2 6.719268 — 7.394493 i 7.004002 — 7.3742271
6.719268 — 7.394493 i 7.004002 — 7.374227 1
3 8.682227 —9.748517 i 9.181600 — 9.642673 1
8.682227 —9.748517 i 9.181600 — 9.642673 1
4 10.646670 — 12.1012481 —11.092746111436081 i
10.646670 — 12.101248 i —11.092746111436082 i
5 12.612107 — 14.453276i 11.353990 — 11.867664 1
12.612107 — 14.4532771 11.353990 — 11.867664 1
6 14.578238 — 16.80487611 13.511339 — 14.076038 1
14.578269 — 16.804821 1 13.511339 — 14.076038 1
7 16.544871 — 19.1561901 15.657220 — 16.280837 1
16.521359 — 19.1798461 15.657235 — 16.280869 1
8 18.511881 — 21.507304 1 17.796306 — 18.4866191
9 20.479182 — 23.8582711 19.931921 —20.6942651

2.976585 —2.638038 i
2.976585 —2.638038 i

5.429435 — 4.851398 1
5.429435 — 4.851398 1

—5.5142531273540891
—5.514253127354271 1

7.893864 — 6.9740411
7.893864 — 6.9740411

10.344339 — 9.0921761
10.344339 —9.0921761

12.793191 — 11.2099591
12.793223 — 11.2099591

15.241362 — 13.3255401i
15.242962 — 13.3288131

—15.4152947700877 1
—15.4152947686748 1

17.688451 — 15.439313 11
20.13456 — 17.551871

3.689333 —2.2414281i
3.689333 —2.2414281

—2.9708483639178491
—2.9708483639177321

6.906420 — 4.068041 i
6.906420 — 4.068041 1

10.090392 — 5.882584 1
10.090392 — 5.882584 1

13.265095 — 7.6871091
13.265095 — 7.687109 1

16.435264 — 9.486718 1
16.435277 — 9.4867211

19.602705 — 11.2834901i
19.603995 — 11.2832871

—11.31246641101
—11.31246641021

22.768315 — 13.0784551
25.932606 — 14.8721861
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(3) When ry ~ R (intermediate black holes) we have a
transition between the pure AdS spacetime and large
black holes regime.

From Table I we can see the quasinormal modes of the
test scalar field for # = 0 perturbations of the intermediate
black holes ry = R = 1. The data obtained here by the
Bernstein polynomial and shooting methods are in excel-
lent agreement with that obtained by the Horowitz-Hubeny
method [9,11]. There one can see that all the frequencies
have nonzero real and imaginary parts and the modes
approaching the equidistant spectrum as the overtone
number is increased.

We also present quasinormal frequencies for small
deformations of the metric function near the event horizon
shown in Fig. 1. The bigger value of a; corresponds to the
larger deformation. We can see that the spacing between
the nearby frequencies is changing at much larger rate
when the deformation is turned on. Moreover, a new
branch of modes on the imaginary axis appears in the
spectrum. These modes completely change the picture of
poles of the Green functions, as even at relatively small
deformations they may appear already in the place of the
first few low-lying modes. For instance, already for
a; = 1073, the new branch of modes starts at the second
overtone, while for a; = 1072 the purely imaginary mode
is the first overtone.

In the limit of vanishing black hole radius r (or mass )
the contribution of the Gauss-Bonnet correction does not
vanish, which happens for an asymptotically flat case.
Small black holes with r} < |@| are unstable against
gravitational perturbations as was shown, for example, in
[45]. Consequently, the quasinormal spectrum does not
approach the purely AdS one as there is a gap in the range
of ry in which the instability breaks down the black hole
configuration.

V()

AN S S AT S S ST SN S ST S SN NS S S S ST SO S S ¥

At the same time, when there is no black hole (¢ = 0),
the spacetime is purely AdS, with the radius R depending
on @,

1 4A o 8AG
- " o-no-2| "V FTo-no-2

and the spectrum of the normal modes for the gravitational
perturbations in the purely AdS spacetime does not contain
unstable modes [46],

@R =D +7¢—j+2n, neN. (25)
Here j = 1 for tensor-type perturbations, j = 2 vector-type
perturbations, and j = 3 for scalar-type perturbations.

In [47] highly localized deformations were considered
for the asymptotically flat spacetimes, which, in our
opinion, somewhat misleadingly, were called “high fre-
quency perturbations” and the correspondingly changed
quasinormal spectrum was called “pseudospectrum.”
Those kind of deformations, although interesting math-
ematically, evidently cannot represent a situation we are
considering here, when the deformations are supposed to
be induced by adding extra matter fields, or curvature
terms, or other physically or holographically motivated
corrections.

Indeed, a particular example we consider here in Tables II
and III is the five-dimensional Einstein-Gauss-Bonnet
theory, which is the most interesting case, because it is
dual to the four-dimensional field theory. Here the coupling
a is considered to be very small, so that the fundamental
mode deviates insignificantly from its Schwarzschild
values. However, we see that the new branch of modes
appears in that case. This effect was extensively studied

1.5 2.0 2.5 3.0 3.5

FIG. 1.

Left panel: the effective potentials for Schwarzschild-AdS and two types of deformed metrics. Right panel: the difference

between the effective potentials of the nondeformed (Schwarzschild-AdS) and deformed metrics; £ = s =e¢=a9=0,R=1,ry =1,
a, = 107 (bottom, blue), a; = 103 (middle, red), a; = 1072 (top, magenta) with a, = —1000, a3 = 1001, a; = 0 for i > 3.
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QNMs for the gravitational perturbations (¢ = 2) of the five-dimensional Gauss-Bonnet black holes (ry = R = 1).

Scalar-type gravitational perturbations

a=0.05

a=0.08

TABLE 1I.

n a = —0.05 a=20

0 2.47376 — 0.54029 i 2.20478 — 0.581371i
1 5.24255 —2.303321i 4.80507 — 2.584861
2 8.19528 — 3.96873 1 7.54268 — 4.60733 1
3 11.13940 — 5.538121i 10.32318 — 6.621301
4 14.05506 — 7.06896 i 13.12149 — 8.63064 1
5 —7.7633613322751 15.92897 — 10.63734 1
6 16.94930 — 8.58429 1 18.74183 — 12.64241 i
7 19.82890 — 10.09266 i 21.5580 — 14.64601i

1.95912 — 0.572861
4.61348 —2.69809 1
7.52654 —4.881611
10.57627 — 7.09311 1
13.67306 —9.321891
—11.467802046439 i
16.78659 — 11.57317 i
199111 — 13.84661

1.83306 — 0.552201
4.65242 —2.7740511
7.78514 — 5.0653011
—7.19970847625683 1
10.99732 —7.410801
14.23492 — 9.81674 1
17.49606 — 12.26552 i
20.7780 — 14.74101

Vector-type gravitational perturbations

n a = —0.05 a=0 a = 0.05 a=0.08
0 5.35720 — 2.41565i —1.45861795797447 i —0.93899127219167 i —0.74452594828788 i
1 1.08405 — 3.43947 i 4.99634 —2.36133 1 498538 —2.30107 1 5.04502 —2.313811i
2 8.37330 — 4.09124 i 7.70523 — 4.479711i 7.76948 — 4.55582 1 7.96310 —4.71901 i
3 11.29271 — 5.63807 i 10.46719 — 6.52871 i 10.71453 — 6.822521 11.07063 — 7.16093 i
4 14.17626 — 7.15417 i 13.25125 — 8.556421i 13.74639 — 9.10558 i 14.26052 — 9.62974 i
5 17.04381 — 8.659161 16.04743 — 10.57460 i 16.82385 — 11.39979 1 —10.34203287425i
6 19.90281 — 10.15951 1 18.85112 — 12.58761 i 19.92740 — 13.70460 i 17.49616 — 12.12033 i
7 22.75649 — 11.657751 21.660 — 14.5971 —15.087818741291 20.763 — 14.626 1
Tensor-type gravitational perturbations
n a = —0.05 a=20 a = 0.05 a=0.08
0 6.11794 — 2.216021 5.79660 — 2.16599 i 5.75896 — 1.90920 i 5.83169 — 1.79812i
1 8.89360 — 4.021171 8.32497 — 4.28183 1 8.32192 — 4.05824 1 8.45714 — 4.07714 1
2 —5.65141597938718 i 10.98254 — 6.35001 i 11.09063 — 6.28957 i 11.31138 —6.523391
3 11.68540 — 5.66341i 13.69816 — 8.39604 i 13.97285 — 8.58568 1 14.31711 —9.074361
4 14.47585 — 7.23263 i 16.44540 — 10.42946 i 16.93406 — 10.92479 i 17.44440 — 11.67248 1
5 17.27152 — 8.76309 i 19.21200 — 12.45496 1 19.95573 — 13.288411 20.66074 — 14.275111
6 20.07573 — 10.27277 i 21.99144 — 14.475151i 23.02387 — 15.662751 23.93242 — 16.863411i
7 22.88813 — 11.771881 24.77988 — 16.49158 1 26.12660 — 18.03909 i 27.23566 — 19.435221i

in [41,45,48], but essentially for the slowest damping
modes. In [41] it was shown that once ry/RZZ the least
damped sound mode in the vector channel of gravitational
perturbations obeys a simple fit,

0 =—

(¢-1)(f+D=2)(. D+1 @\,
(D -, <]_D—3'R2>” (26)

where @ = a(D —3)(D —4)/2. Here we will see that in
addition to this purely imaginary mode, there is a full branch
of nonoscillatory modes, which, however, should not be
confused with the sound mode.

Therefore, here by the revision of the spectrum for the
Einstein-Gauss-Bonnet black holes we have in mind two
purposes. First, we present the quasinormal modes for this
case as an illustration of the fact that the small deformations
we consider in this paper have a physically motivated origin
and small coupling « plays the role of such a near-horizon
deformation parameter (see Fig. 2). The second aim is to

complete the previous study of the Einstein-Gauss-Bonnet-
AdS quasinormal spectrum via the analysis of its overtones.

The gravitational perturbations can be treated independ-
ently for the three channels which transforms as tensors,
vectors and scalars relatively the three-dimensional sphere.
The appropriate master wave equations can be found
in [49,50] and also summarized in the Appendix to this
article for convenience. From Table II one can see the new
purely imaginary mode in the spectrum for all three channels
of gravitational perturbations of the intermediate-size black
holes (ry, = R). However, for the tensor channel it appears
for negative a. These new nonoscillatory modes should not
be confused with the fundamental purely imaginary mode of
the vector type of gravitational perturbations, responsible for
the hydrodynamic pole in the dual field theory. The position
of this fundamental mode agrees with the results of [41,45].
These new purely imaginary modes are nonperturbative on
the coupling a and were discussed first in the context of the
holographic models of thermalization [51].
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TABLE III.

QNMs for the gravitational perturbations (£ = 2) of the five-dimensional Gauss-Bonnet black holes (r; = 10R = 10).

 The pure damped (nonoscillatory) mode for small & in scalar-type channel corresponds to a large value of the overtone: we have shown
it for @ = 0.05 at n = 5 position in the place of the corresponding mode with nonzero real and imaginary parts.

Scalar-type gravitational perturbations

n a=-0.05 a=0 a=0.05 a=0.08

0 1.64197 — 0.09574 1 1.63975 — 0.08305 1 1.63770 — 0.07081 1 1.63655 — 0.063691

1 33.07867 — 27.47543 i 31.38586 — 27.44097 i 30.84532 — 27.04797 i 31.01640 — 26.92059 1

2 55.76607 — 46.389151 51.97484 — 47.615181 52.20465 — 47.991001 53.63586 — 48.94729 1

3 78.04014 — 64.043801 72.25286 — 67.677311 74.01045 — 69.57613 1 76.95270 — 71.73247 1

4 —74.39673029 1 92.44166 — 87.707721 96.2318 —91.48971 -92.8691

5 99.82944 — 81.131811 112.594 — 107.7261 T —433.4857149571i 100.443 — 94.78821
Vector-type gravitational perturbations

n a = —0.05 a=0 a=0.05 a =0.08

0 —0.1446909840048998 i —0.1252395152661459 1 —0.1065241589233073 1 —0.0956857407606597 1

1 33.12108 — 27.47324 1 31.42895 —27.42769 1 30.89095 — 27.01957 i 31.06271 — 26.882471

2 55.79525 — 46.39269 1 52.00549 — 47.60653 1 52.23675 —47.96177 1 53.66123 — 48.90858 1

3 78.06157 — 64.04865 1 72.27743 — 67.670561 74.03081 — 69.54649 i 76.96189 — 71.70095 i

4 —74.334587202459727 i 92.46250 — 87.70206 1 96.24229 —91.463181 —93.24616226105020597 1

5 99.84551 — 81.137021 112.61191 — 107.72042 1 118.64084 — 113.50264 i 100.44518 —94.76488 1

6 121.29630 — 98.01024 1 132.74359 — 127.732301 —134.12834960251351 1 123.9424 — 118.095171

7 142.53479 — 114.79737 1 152.86531 — 147.74055 1 141.07865 — 135.641261 147.49294 — 141.651751
Tensor-type gravitational perturbations

n a = -0.05 a=0 a=0.05 a=0.08

0 33.24895 — 27.46565 1 31.55838 —27.38851 1 31.02709 — 26.93635 i 31.20066 — 26.77078 i

1 55.88289 — 46.402191 52.09753 — 47.58078 1 52.33247 — 47.875401 53.73739 — 48.79396 1

2 78.12577 — 64.06252 1 72.35121 — 67.650401 74.09182 — 69.458501 76.98978 — 71.606761

3 —74.162239894658740 1 92.52504 — 87.68514 1 96.27417 — 91.38387 i —94.373003543864476 1

4 99.89361 — 81.152221 112.66671 — 107.70566 1 118.65471 — 113.43699 1 100.45168 — 94.69473 i

5 121.33310 — 98.02553 i 132.79268 — 127.719121i —135.419747021130999 i 123.93986 — 118.041321

6 142.56346 — 114.812141 152.90997 — 147.72858 1 141.08308 — 135.587751 147.48560 — 141.60900 i

7 163.65593 — 131.56094 i 173.02204 — 167.73557 i 163.52222 — 157.85064 1 171.11181 — 165.323351

RN IS S S SR SN AN S S ST S SN S|

IR S S S SR S ST S S Nt

1.5 2.0 2.5

3.0 35

FIG. 2. Left panel: the effective potentials for the tensor-type perturbations (£ = 2) of the 5D Gauss-Bonnet-AdS black hole
(ro =R =1) for a =0.05 (red, upper) and @ = —0.05 (blue, lower) and 5D Tangherlini-AdS black hole (¢ = 0) for comparison
(black). Right panel: the difference between the effective potentials of the Gauss-Bonnet-AdS (deformed metric) and Tangherlini-AdS
(nondeformed metric).
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The quasinormal modes of large black holes (ry = 10R)
in Einstein-Gauss-Bonnet-AdS theory are presented in
Table III. There one can see that the new purely imaginary
modes appear at slightly higher overtone numbers n.

For all the considered cases, we observe a specific
consequence of the small near-horizon deformations: the
presence of the new branch of modes changes the structure
of the overtones seemingly. Therefore, once even a small
correction is considered on the AdS gravity side of the
correspondence, the spectrum must carefully revised
because it may considerably change the structure of the
poles in the dual field theory.

In the course of calculations, we have also observed that
the Bernstein polynomial method is a powerful and
automatic tool for finding quasinormal modes of the
asymptotically AdS black holes, especially of the purely
imaginary modes which may be important for the dual
description of hydrodynamics.

VI. CONCLUSIONS

Quasinormal modes of asymptotically AdS black holes
are important, because they may be interpreted as poles of
the retarded Green functions in the dual conformal field
theory and describe strongly coupled systems, such as
quark-gluon plasma, which cannot be treated by the usual
perturbative methods of the quantum field theory.

The phenomenon we studied here is the high sensitivity
of overtones (in comparison with the fundamental mode)
to the least deformations of the geometry in some region
near the event horizon. Such small deformations may
come, for instance, from higher curvature corrections to
the Einstein action, which is used to understand the
intermediate coupling regime in the dual field theory.

Here we have obtained the following results:

(I) We have shown that ad hoc deformation of the
Schwarzschild-AdS black hole in some region near
the event horizon leads to almost the values of the
fundamental modes. This feature of the quasinormal
spectrum is similar to the asymptotically flat case,
where, for small deformations of the effective po-
tential in the whole region outside the event horizon,
the fundamental mode is destabilized at the same
order as the size of the deformation [52,53]. When
small deformations of the asymptotically flat black
holes are restricted by the near-horizon zone the
fundmaental mode is practically indistinguishable
from the Schwarzschild/Kerr limit [12,54].

(2) The near-horizon deformations drastically change the
picture of overtones, leading even to the appearance
of a new branch of nonperturbaitve (in the Gauss-
Bonnet coupling @) modes with vanishing real parts.
This change of the overtones’ structure may occur
not only at high overtones but already at n = 1 for
relatively small near-horizon deformations. The
spacing of the perturbative branch changes at an

increasing rate when the overtone number n is
increased.

(3) In order to prepare deformation solely in the near
horizon zone, we extended the general parametriza-
tion of the asymptotically flat black holes in four and
five spacetime dimensions to the asymptotically AdS
case. This parametrization can be further applied to
finding analytical approximations for the numerical
asymptotically AdS black holes solutions.

(4) As a well-known example of the above small
deformations we have considered gravitational per-
turbations of the Einstein-Gauss-Bonnet-AdS black
holes and studied the overtones behavior for this
case in detail.

Our work on the black hole parametrization could be
extended to the case of rotating asymptotically AdS black
holes using similar approach which was developed for the
asymptotically flat case [22]. However, the parametrization
in higher than five dimensions would require a different
ansatz to include the lower dimensional black holes as well.
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APPENDIX

Here we summarize the basics of perturbations of the
gravitational sector in the Einstein-Gauss-Bonnet theory
allowing for a cosmological constant. After decoupling of
the angular variables the gravitational perturbation equa-
tions can be reduced to the second-order master differential
equations [55]

&’ 0
- vV, ®(t,r,) =0, Al
(5 Vil )wi0.m) (A1)
where r, is the tortoise coordinate,
dr dr
dr, = = , A2
" N2(r)  1—r*yp(r) (A2)

and i stands for ¢ (tensor), v (vector), and s (scalar) types of
gravitational perturbations. The explicit forms of the effec-
tive potentials V(r), V,(r), and V,(r) [56] are given by

(€ +n—1)N*(r)T"(r) 1 d*R(r)
Vilr) = (n—2)rT'(r) +R(r) dr?
~(=1)(Z+n)N*(n)T'(r) (1
v = R0 g (i)
_26(CH4n— 1)N?(r)P'(r) (r) d? r
Vilr) = nrP(r) rodr? (P(r))’
(A3)
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where n=D -2, ¢=2,3,4, ...

nr'!
T(r) = 7
R(r) = r\/T'(r)
P(r) =

2( = 1)(€ +n) —nriy'(r)

is the multipole number and functions 7(r), R(r), and P(r) can be written as follows:

(1 + 2ay(r)).

T(r). (A4)

T'(r)
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