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The detectability of the gravitational-wave signal from r-modes depends on the interplay between the
amplification of the mode by the Chandrasekhar-Friedman-Schutz (CFS) instability and its damping due to
dissipative mechanisms present in the stellar matter. The instability window of r-modes describes the
region of stellar parameters (angular velocity, Ω, and redshifted stellar temperature, T∞), for which the
mode is unstable. In this study, we reexamine this problem in nonbarotropic neutron stars, taking into
account the previously overlooked nonanalytic behavior (inΩ) of relativistic r-modes and enhanced energy
dissipation resulting from diffusion in superconducting stellar matter. We demonstrate that at slow rotation
rates, relativistic r-modes exhibit weaker amplification by the CFS instability compared to Newtonian ones.
However, their dissipation through viscosity and diffusion is significantly more efficient. In rapidly rotating
neutron stars within the framework of general relativity, the amplification of r-modes by the CFS
mechanism and their damping due to shear viscosity become comparable to those predicted by Newtonian
theory. In contrast, the relativistic damping of the mode by diffusion and bulk viscosity remains
significantly stronger than in the nonrelativistic case. Consequently, account for diffusion and general
relativity leads to a substantial modification of the r-mode instability window compared to the Newtonian
prediction. This finding is important for the interpretation of observations of rotating neutron stars, as well
as for overall understanding of r-mode physics.
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I. INTRODUCTION

A perturbed neutron star (NS) can oscillate in many
different ways, each distinguished by the geometry of
the corresponding fluid element displacements and the
restoring force that influences its dynamics the most.
Predominantly toroidal oscillations of rotating stars,
governed primarily by the Coriolis force, are known as
r-modes in the literature. Compared to other oscillations,
r-modes are the most easily [1,2] driven unstable by
the Chandrasekhar-Friedman-Schutz (CFS) mechanism.
According to this mechanism [3–6], gravitational-wave
emission from the perturbed star triggers the transfer of the
stellar rotation energy into the oscillation energy, leading to
the growth of the oscillation amplitude. Therefore, the
strong CFS instability of the r-modes makes them prom-
ising targets for gravitational radiation searches. If detected,
r-mode gravitational signal would provide valuable infor-
mation on the physics of the superdense stellar matter,
irreproducible in terrestrial laboratories. Unfortunately,
current electromagnetic and gravitational-wave observa-
tions only allow to set the upper limits on the r-mode
amplitude, but the next generation gravitational-wave
detectors might be able to capture the first signals from
r-modes (see, e.g., [7–14] and references therein).
The fact that no reliable r-mode detection has occurred

so far can be explained not only by the insufficient sen-
sitivity of the gravitational-wave detectors, but also by the

influence of various dissipative mechanisms, preventing the
mode amplitude from growing. Indeed, an r-mode can
develop in a star with a given angular velocity, Ω, and
redshifted temperature, T∞, only if the CFS mechanism
(whose efficiency depends on Ω) can overcome the mode
damping caused by dissipative processes (the latter depend
on Ω and T∞). The region in the ðΩ; T∞Þ plane, where this
condition is satisfied, defines what is known as the r-mode
instability window [15–19].
One of the main problems in the physics of r-modes is

identification of the most efficient dissipative mechanisms,
responsible for the r-mode stabilization. According to
numerical calculations (see, e.g., [16,20–22]), a neutron
star with excited r-mode cannot spend much time deep
inside the instability window due to its rapid spin-down by
gravitational-wave emission. In other words, the proba-
bility to find a star there is negligibly small. Therefore,
dissipation should be strong enough to form the instability
window, that would not contain observable sources. The
failure of the frequently considered “minimal” model [15],
where the shear viscosity determines the energy dissipation
at low and moderate temperatures, while at high temper-
atures the mode is stabilized by the bulk viscosity, implies
the existence of other energy loss channels. A number of
extensions of the minimal model, such as dissipation in
the Ekman layer [23–25], mutual friction [26], resonant
r-mode stabilization by superfluid modes [27,28] and
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enhanced bulk viscosity in hyperonic matter [29,30] have
been considered in the literature as possible candidates (see
reviews [22,31] for details). Here we would like to study
another possibility.
In our study, we improve the theory of the r-mode

instability windows by modifying it in three ways. The first
two modifications, accounting for the stellar matter
nonbarotropicity and relativity, are tightly related to the
so-called “continuous spectrum problem”: while the tradi-
tional perturbation theory in the slow-rotation approxima-
tion predicts the existence of the continuous part in the
oscillation spectrum, more accurate treatment beyond this
approximation leads to discrete oscillation frequencies
(see the detailed review in [32]). Recently, we have
managed to show [32,33], that the reason for the slow-
rotation approximation breakdown is that, in nonbarotropic
slowly rotating neutron stars, relativistic generalization of
the Newtonian r-modes is described by nonanalytic func-
tions of Ω, which, in turn, results in the relations between
the r-mode eigenfunctions (their “ordering”), significantly
different from those of the Newtonian theory. As we shall
see, the peculiarities of the relativistic r-mode eigenfunc-
tions significantly influence the shape of the instability
window.
The third modification of the theory we would like to

make is to determine the efficiency of particle diffusion in
damping the relativistic r-modes. Previously we have shown
[34] that diffusive dissipation is significantly enhanced in
superconducting stellar matter, and becomes the dominant
dissipative mechanism for sound waves, p-modes, and
g-modes. Although in the very same study we found that
the effect of diffusion on the r-mode instability window is
weak in the Newtonian theory, in general relativity (GR), as
we shall see, the situation is completely different and
diffusion becomes the leading dissipative mechanism at
not too high stellar temperatures.
This paper is structured as follows. Section II provides an

overview of key assumptions about the properties of neutron
star matter, its equilibrium, modeling of stellar oscillations,
and the consideration of the CFS instability and dissipative
effects. In that sectionwe also present general expressions for
the calculation of the oscillation energy change rates and
timescales, associated with shear viscosity, bulk viscosity,
diffusion and CFS instability. Section III starts with the brief
review of the nonanalytic relativistic r-mode properties,
followed by the derivation of the r-mode energy change
rates, associated with evolutionary mechanisms under con-
sideration. We compare the derived expressions with their
Newtonian counterparts and consider the limit of the
extremely slow rotation, where the difference is especially
pronounced. We finish Sec. III by presenting the results of
our numerical calculation of the r-mode evolutionary time-
scales and instability windows. Finally, Sec. IV contains a
discussion of the results obtained and some concluding
remarks.

Throughout the text almost all the equations are written
in the dimensionless form, unless stated otherwise (whether
we use dimensionless form or not is always clear from the
context). This means that by all the quantities in equations
we imply their dimensionless counterparts. These counter-
parts are obtained by measuring mass in units of the stellar
massM, distance in units of the stellar radius R, and time in
unitsΩ−1

K , whereΩK ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
is a quantity of the order

of Keplerian frequency and G is the gravitational constant.
Although in the chosen units G ¼ 1, we still retain G in
equations. With G retained, the dimensionless and non-
dimensionless forms of any equation exactly coincide with
each other.

II. THEORETICAL FRAMEWORK

A. Stellar matter

As outlined in the introduction, our aim is to clarify the
effects of the peculiar behavior of relativistic r-modes
and energy dissipation due to particle diffusion on the
r-mode instability window. Both of these effects are
inherent primarily to the neutron star core. Diffusion is
important only when enhanced by the strong proton
superconductivity in the core [34], while the relativistic
r-mode peculiarities arise due to nonbarotropicity of the
core matter (the neutron star crust can be considered as
effectively barotropic [32]). We would also like to note that
the effects, associated with the presence of the stellar crust,
are unlikely to qualitatively change our results (see Sec. IV).
For these reasons in what follows, unless stated otherwise,
we ignore the crust and use the toy model of a neutron star,
consisting only of a liquid nonbarotropic core. In our study,
we also neglect the stellar magnetic field, since it is unlikely
that it significantly affects the r-mode dynamics [35,36].
Finally, dissipation and gravitational radiation effects only
weakly affect stellar oscillations, and their influence typically
manifests itself on the timescales much larger than the
oscillation period. This allows us tomodel stellar oscillations
within the nondissipative hydrodynamics, and account for
these effects perturbatively, as discussed in Sec. II D.
We think of a neutron star as of a liquid mixture of

different particle species, labeled throughout the text by
Latin indices (i; j; k;…). We characterize the stellar matter
by the total pressure p, energy density ε, enthalpy density
w ¼ pþ ε, temperature T, and by the electric charges ek,
chemical potentials μk and number densities nk of different
particle species k in the mixture. For simplicity, we restrict
ourselves to the case, when all the particle species are
normal (i.e., not superfluid or superconducting) except for a
one charged completely superconducting component “s”
(in reality, we imply protons by this component). Then,
in the absence of dissipation, the macroscopic flow of
normal particle species jμk ¼ nkuμ is described by the
collective “normal” four-velocity uμ, while that of the
superconducting component jμs ¼ nsu

μ
s is described by

KRAAV, GUSAKOV, and KANTOR PHYS. REV. D 109, 043012 (2024)

043012-2



the “superconducting” four-velocity uμ
s . All the mentioned

thermodynamic quantities are, by definition, measured in
the reference frame, comoving with the “normal” compo-
nent of the fluid, which implies that for any particle species
uμj

μ
k ¼ −nk and, therefore, uμu

μ
s ¼ −1 (the summation

over repeated Greek indices is implied).
In superconducting matter the thermodynamic quan-

tities, generally, depend on the relative velocity uμ
s − uμ.

When considering the global stellar dynamics it is, how-
ever, a very good approximation to assume that electric
charges and electric currents almost cancel each other out,
so that the condition ekj

μ
k ¼ 0 (the summation over

repeated Latin indices is implied) is met with tremendous
accuracy, ensured by the adjusting self-consistent electric
field. In our case this condition reduces to the equality
uμ
s ¼ uμ, and the dependence of thermodynamic quantities

on the relative velocity can be ignored. In degenerate stellar
matter one can also ignore their temperature dependence,
so that any thermodynamic quantity f can be considered as
a function only of the set of number densities fnkg. Given
the equation of state (EOS), ε ¼ εðfnkgÞ, provided by the
microscopic theory, one can use thermodynamic relations

dε ¼ μkdnk; dp ¼ nkdμk; w ¼ μknk ð1Þ

to find pðfnkgÞ, wðfnkgÞ, and μmðfnkgÞ. We will be
interested in the case of nonbarotropic EOS, when these
dependencies cannot be parametrized by a single quantity
(say, baryon number density). Note, however, that in equi-
librium such parametrization becomes possible due to addi-
tional conditions, imposed by the chemical equilibrium.
Due to equality uμ

s ¼ uμ, the nondissipative stress-
energy tensor Tμν of the described superconducting neutron
star effectively coincides with that of nonsuperconducting
case

Tμν ¼ wuμuν þ pgμν; ð2Þ

where gμν is the metric tensor. As a result, the equations,
governing the stellar dynamics and structure, are essentially
the same, as in nonsuperconducting case. As for the
superconductivity, it becomes important in consideration
of the viscous and diffusive dissipation, since it affects
viscous and diffusion coefficients, as well as the self-
consistent electric field (to be discussed below).

B. Stellar equilibrium

According to Hartle [37], the spacetime of a neutron star,
rotating slowly with angular velocity Ω, is described in the
xμ ¼ ðct; r; θ;φÞ coordinates by the interval of the follow-
ing form:

ds2 ¼ gμνdxμdxν ¼ −e2νðrÞc2dt2 þ e2λðrÞdr2

þ r2fdθ2 þ sin2 θ½dφ −ΩωðrÞdt�2g þOðΩ2Þ: ð3Þ

This geometry possesses two independent Killing vectors:
vector tμ ¼ δμt is associated with the conserved energy of
the matter and vector φμ ¼ δμφ is associated with the
conserved angular momentum. Their linear combination
kμ ¼ tμ þ ðΩ=cÞφμ is also a Killing vector, that can be
associated with the conserved energy, as measured in the
corotating reference frame. In terms of these vectors the
four-velocity, corresponding to the equilibrium geometry
(3), can be written as (further we use the subscript “0” to
denote the equilibrium value f0 of any quantity f)

uμ ≡ uμ
0 ¼ Λ½tμ þ ðΩ=cÞφμ� ¼ Λkμ; ð4Þ

Λ ¼ ð−gμνkμkνÞ−1=2 ¼ e−νðrÞ þOðΩ2Þ: ð5Þ

The condition of thermal equilibrium requires the red-
shifted temperature, T∞, to be constant (see, e.g., [38]):

T∞ ≡ T=Λ ¼ const: ð6Þ

The chemical potentials in the unperturbed star, in turn,
should satisfy the relations (e.g., [39])

∂ρ

�
μk0
Λ

�
−
ekE0ρ

Λ
¼ 0; Eρ ≡ uλFρλ; ð7Þ

where ∂ρ ≡ ∂=∂xρ, Fμν is the electromagnetic tensor and Eρ

is the electric four-vector. For normal particle species this
condition follows from the absence of entropy generation
due to diffusion in equilibrium, while for the superconduct-
ing component it follows from the “superconducting”
hydrodynamic equation (to be discussed below). Finally,
note that from these conditions one immediately obtains

ekμ∞m0 − emμ∞k0 ≡ ðekμm0 − emμk0Þ=Λ ¼ const: ð8Þ

In what follows we, for simplicity, ignore the oblateness
of the neutron star due to rotation, i.e., we ignore OðΩ2Þ-
terms in the metric tensor (3) and redshift (4), and also
assume that the equilibrium value f0 of any thermodynamic
quantity f depends only on the coordinate r. For further
convenience in transitioning to the Newtonian limit, we
also avoid explicitly expressing the redshift Λ in the
equilibrium conditions (6)–(8) as e−νðrÞ (see Sec. III B
for details).

C. Stellar hydrodynamics

The most general way to describe perturbations of a
neutron star over the equilibrium state is to consider exact
deviation δ̂f ≡ f − f0 of any physical quantity f in a
perturbed star from its equilibrium value, f0. If we, for
example, consider the product ðfgÞ of two functions, its full
perturbation will be equal to δ̂ðfgÞ ¼ δ̂fg0 þ f0δ̂gþ δ̂fδ̂g.
In case of a weak stellar perturbation, one usually retains
only the linear terms in the perturbation amplitude and
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looks for the approximate solution to the oscillation
equations in the form f ≈ f0 þ δf, where δf is often
referred to as the Eulerian perturbation of a quantity f.
In what follows by the Eulerian perturbation, we denote a
quantity linear in the amplitude, which satisfies the Leibnitz
rule: δðfgÞ ¼ δfg0 þ f0δg. The smaller the perturbation
amplitude, the less is the error induced by using the
Eulerian perturbations instead of the exact perturbations.
It is thus natural to use Eulerian perturbations when
considering weak perturbations, unless one is interested
in quantities, quadratic in the perturbation amplitude, such
as oscillation energy in the frame rotating with the star (see
Appendix A).
In our study, we treat small deviations of a neutron star

from the equilibrium state within the Cowling approxima-
tion (i.e., we ignore metric perturbations in an oscillating
star), which greatly simplifies the problem and, at the
same time, provides a reasonably accurate estimate of the
properties of the global stellar oscillation modes [40–42]
(see also the discussion of the Cowling approximation in
application to nonanalytic relativistic r-modes in [32,33]).
Within this approximation, the nondissipative dynamics of
small stellar perturbations is described by the following
closed system of equations:

8>>>>>><
>>>>>>:

δ½uρ∇ρuμ þ ð1=wÞ⊥μρ∇ρp� ¼ 0

δ½∇μj
μ
k� ¼ 0

δμm ¼ ð∂μm=∂nkÞ0δnk
δp ¼ ð∂p=∂nkÞ0δnk ¼ nk0δμk
δw ¼ δϵþ δp ¼ μm0δnm þ δp

; ð9Þ

where ∇ρ is the covariant derivative, associated with the
geometry (3), and ⊥μν ≡ gμν þ uμuν is the orthogonal
projection tensor. The first equation of the system (9) is
the linearized relativistic Euler equation, ⊥μ

ρ∇λTρλ ¼ 0, the
second is the set of continuity equations for different
particle species, and the remaining equations follow from
the EOS and thermodynamic relations in degenerate matter.
Superconductivity brings to the problem an additional

hydrodynamic equation for the velocity uμ
s , that can be used

to find the self-consistent electric field Eμ. In the absence of
flux tubes, the “superconducting” velocity is defined by the
equation [43,44]:

usμ ¼ ð1=μsÞ½∇μϕ − esAμ�; ð10Þ

where Aμ is the electromagnetic four-potential, and ϕ is a
scalar proportional to the phase of the Cooper-pair con-
densate wave function. Note that this definition of the
superconducting velocity slightly differs from that adopted,
e.g., in Ref. [45].
The phase of the Cooper-pair condensate wave function

should naturally satisfy the potentiality condition, meaning
that ∇μ∇νϕ ¼ ∇ν∇μϕ, or, equivalently,

esFμν ¼ ∇νðμsusμÞ −∇μðμsusνÞ; ð11Þ

where we have used the definition of the electromag-
netic tensor, Fμν ≡∇μAν −∇νAμ. Using that in our case
uμ
s ¼ uμ and contracting this equation with uν, one finds:

Eμ ¼ ð1=esÞ½uν∇νðμsuμÞ − uν∇μðμsuνÞ�: ð12Þ

Using the explicit form of the four-velocity, uμ ¼ Λkμ, and
the Killing equation, ∇μkν þ∇νkμ ¼ 0, one can show that
in equilibrium this equation, as promised, reduces to the
condition (7), written for the superconducting component.
Finally, with the use of the Euler equation for uμ and
thermodynamic relations, we rewrite (12) as

Eμ ¼
Λ
es

�
δsk −

μsnk
w

�
⊥∇μ

�
μk
Λ

�
; ⊥∇μ ≡⊥ρ

μ∇ρ: ð13Þ

Instead of dealing with the four-velocity perturbation,
δuμ, we find it more convenient to operate with the
Lagrangian displacement vector ξμ, showing the variation
of the fluid element world lines, induced by a perturbation.
In the Cowling approximation, the velocity perturbation
and Lagrangian displacement are related as (see, e.g., [6])

δuμ ¼ −⊥μ
ρLξuρ ¼ ⊥μ

ρðuλ∇λξ
ρ − ξλ∇λuρÞ; ð14Þ

where Lξ is the Lie derivative along the vector field ξμ. The
invariance under the gauge transformation ξρ → ξρ þ fuρ

with arbitrary function f can be used to impose an addi-
tional condition uμξμ ¼ 0. It is also convenient to replace
the angular components of the displacement with the
functions Q and T, defined as

ξθ ¼ 1

r

�
∂Q
∂θ

þ 1

sin θ
∂T
∂φ

�
;

ξφ ¼ 1

r sin θ

�
1

sin θ
∂Q
∂φ

−
∂T
∂θ

�
: ð15Þ

Once Q and T are expanded in spherical harmonics, such
representation becomes equivalent to that used by Regge
and Wheeler [46] and Thorne and Campolattaro [47].
Function T will further be referred to as the toroidal
function (not to be confused with the temperature, T).
In terms of the Lagrangian displacement and Lagrangian

perturbations, Δ≡ δþ Lξ, the perturbed continuity equa-
tions take the form (see, e.g., [6])

Δnk þ nk0⊥∇ρξ
ρ ¼ 0: ð16Þ

Multiplying this equation by ð∂p=∂nkÞ0, by μk0 or by
ð∂μm=∂nkÞ0, and then performing the summation over the k
index, we obtain, with the use of thermodynamic relations,
the three following equations:
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Δpþ γp0
⊥∇ρξ

ρ ¼ 0; Δεþ w0
⊥∇ρξ

ρ ¼ 0; ð17Þ

Δμm þ
�
∂p
∂nm

�
0

⊥∇ρξ
ρ ¼ 0; ð18Þ

where the introduced coefficient γ is related to the speed of
sound cs in stellar matter with frozen composition as

γ ¼ w0

p0

�
cs
c

�
2

; cs ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

w0

�
∂p
∂nk

�
0

nk0

s
: ð19Þ

From the derived equations it is easy to see, that the
Lagrangain perturbations satisfy

Δnk
nk0

¼ Δμm
ð∂p=∂nmÞ0

¼ Δε
w0

¼ Δp
γp0

¼ Δw
w0 þ γp0

: ð20Þ

From these relations it follows that, if one knows the
Eulerian pressure perturbation and Lagrangian displace-
ment, one may find Eulerian perturbations of the remaining
thermodynamic quantities. In particular, for the energy
density and enthalpy density perturbations one finds

δε ¼ w0

γp0

δp − w0ξ
ρAρ; ð21Þ

δw ¼
�
1þ w0

γp0

�
δp − w0ξ

ρAρ; ð22Þ

where we have introduced

Aρ ≡ 1

w0

∇ρw0 −
1

w0

�
1þ w0

γp0

�
∇ρp0 ≡ AðrÞδrρ: ð23Þ

The function AðrÞ, sometimes referred to as the
Schwarzschild discriminant, serves as a measure of the
matter nonbarotropicity. In barotropic matter AðrÞ ¼ 0

and δp ¼ ðdp=dεÞ0δε ¼ ðcs=cÞ2δε, while in nonbarotropic
one AðrÞ ≠ 0. In the case of nonbarotropic stellar matter,
we are interested in, AðrÞ takes small (but nonzero) values
due to weak nonbarotropicity of stellar matter.

D. Dissipative effects and gravitational radiation

The consideration in the previous sections does not
account for the effects of dissipation and gravitational
radiation. These effects cause the energy E of a perturbed
star to decrease with the rate Ė (do not confuse E with the
electric vector Eμ). Let Ėζ be the loss rate due to bulk
viscosity, Ėη—due to shear viscosity, ĖD—due to diffu-
sion, and ĖGW—due to gravitational radiation.1 Then the
total energy loss rate, measured in the inertial reference
frame, equals

Ė ¼ Ėζ þ Ėη þ ĖD þ ĖGW: ð24Þ

The energy loss rate due to dissipative mechanisms
equals the heat generation rate in the course of a perturba-
tion. From the viewpoint of a local observer, comoving
with the fluid, a portion of heat dQ, generated in the
coordinate volume d3x ¼ drdθdφ with the temperature T
during the time dt, can be found from the equation [48]

dQ
T

¼ ð∇μsμÞc
ffiffiffiffiffiffi−gp

dtd3x; g≡ det gμν; ð25Þ

where sμ is the entropy density four-current. Following [48]
we note that the right-hand side of the equation above is a
relativistic invariant, so is the left-hand side, and, using
the fact that the (redshifted) temperature measured by the
distant observer equals T∞ ¼ T=Λ, we find the redshifted
heat dQ∞ ¼ dQ=Λ, measured by the same observer:

dQ∞ ¼ T∞ð∇μsμÞc
ffiffiffiffiffiffi−gp

dtd3x: ð26Þ

Adopting the general expression for the entropy generation
rate ∇μsμ from [49,50], introducing supplementary tensors

σμν ≡ ⊥∇μuν þ ⊥∇νuμ −
2

3
⊥μνð⊥∇λuλÞ; ð27Þ

dμk ≡ ⊥∇μ

�
μk
T

�
−
ekEμ

T
; ð28Þ

and integrating the heat generation rate dQ∞=dt over the
stellar volume, we find

Ėζ ¼ −
Z

ζð∇μuμÞ2c2
ffiffiffiffiffiffi−gp
Λ

d3x; ð29Þ

Ėη ¼ −
Z

η

2
σμνσ

μνc2
ffiffiffiffiffiffi−gp
Λ

d3x; ð30Þ

ĖD ¼ −
Z

TDkmd
μ
kdmμc

ffiffiffiffiffiffi−gp
Λ

d3x; ð31Þ

where with the accepted accuracy one has for the redshift
factor: 1=Λ ≈ eν. Bulk viscosity ζ > 0, shear viscosity
η > 0, and diffusion matrix Dkm (symmetric, positive
definite) are temperature-dependent kinetic coefficients,
provided by the microscopic theory. One can show
[49,50] that in degenerate matter diffusion coefficients
satisfy Dmkμk ¼ 0. Also, due to the superconductivity of
particle species “s”, diffusion coefficients related to “s”
vanish, Dsk ¼ Dks ¼ 0 for any k (including k ¼ s). It is
easy to verify that in equilibrium Ėζ ¼ Ėη ¼ 0, as
expected. In order to ensure the absence of dissipation
due to diffusion, the equilibrium chemical potentials of
normal particle species must satisfy a condition: dμk0 ¼ 0,

1We do not consider dissipation due to thermal conductivity
since it is negligible compared to the viscous dissipation.
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which is consistent with (6) and (7). Note that the require-
ment ĖD ¼ 0 does not lead to the condition dμs0 ¼ 0 for the
superconducting component. The latter, nevertheless, holds
and can be derived using the equilibrium superconducting
equation, as discussed above.
As mentioned previously, gravitational radiation and

dissipation only weakly affect stellar oscillations. For this
reason the calculation of the energy change rates Ėη;ζ;D;GW
can be performed with the use of solutions of nondissipa-
tive hydrodynamic equations, discussed in the preceding
sections. Keeping this in mind, let us rewrite the expression
for ĖD in a form, more convenient for further calculations.
First, we exclude the self-consistent electric field via (13)
and use the quasineutrality eknk ¼ 0 and equilibrium
condition (8) with m ¼ s to obtain

dkμ ¼
Λ
T
Φkm

⊥∇μ

�
δμm − em=esδμs

Λ

�
;

Φkm ≡ δkm −
ek
es

�
δsm −

μs0nm0

w0

�
: ð32Þ

Note that the supplementarymatrixΦkm satisfiesΦkmem ¼ 0
and Φkmμm0 ¼ μk0. Then, using (17), (18) and (8) with
m ¼ s, we find

∇μ

�
δμm − em=esδμs

Λ

�
¼ −

μm0 − em=es0μs0
Λ

∇μðξρ∇ρ lnΛÞ

þ∇μ

�
1

Λ

�
∂p
∂nm

−
em
es

∂p
∂ns

�
0

Δp
γp0

�
:

ð33Þ

Finally, we substitute this result into (32) and, using the
mentioned properties of Dkm and Φkm, obtain

2

ĖD ¼ −
Z

Λ2

T
D̂pqd̂

μ
pd̂qμceν

ffiffiffiffiffiffi−gp
d3x;

D̂pq ≡DkmΦkpΦmq;

d̂kμ ≡ ⊥∇μðπkΔpÞ; πkðrÞ ¼
1

Λγp0

�
∂p
∂nk

�
0

: ð34Þ

To compute the energy loss rate due to the emission of
gravitational waves, we use the general expressions,
derived by Thorne [51]. According to the formalism,
developed therein, the energy loss rate of a neutron star
associated with a periodic oscillation with frequency σ,
equals

ĖGW ¼ −
G
c3

X∞
L¼2

XL
M¼−L

�
σ

c

�
2Lþ2

NLðjILMj2 þ jSLMj2Þ;

NL ¼ 4π

½ð2Lþ 1Þ!!�2
ðLþ 1ÞðLþ 2Þ

LðL − 1Þ ; ð35Þ

where ILM and SLM are the mass and current multipole
moments, respectively. Once the effective stress-energy
tensor of the perturbed neutron star is known, these
quantities can be calculated using established formulas
(see Appendix B for technical details).
All the previously discussed expressions are written in

the inertial reference frame, implying that E includes the
rotational energy of the star. Further, it is more convenient
to use the corotating reference frame, where the energy
perturbation Ẽ coincides with the oscillation energy. In this

frame the dissipative energy loss rates ˙̃Eζ;η;D ¼ Ėζ;η;D

remain the same, while that due to gravitational radiation

changes to ˙̃EGW ¼ ðσr=σÞĖGW (see, e.g., [18]), where σr is
the oscillation frequency in the corotating reference frame.
As a result, the total (oscillation) energy change rate in the
corotating reference frame equals:

˙̃E ¼ Ėζ þ Ėη þ ĖD þ ðσr=σÞĖGW: ð36Þ

If, for a given perturbation, σr and σ are of opposite signs,
the last term becomes positive, indicating that the pertur-
bation is unstable with respect to the emission of gravita-
tional waves (physically, the emission of gravitational
waves triggers the transformation of the stellar rotation
energy into the oscillation energy). This effect, known as
the CFS instability, works against the energy leakage due to

dissipative mechanisms. The condition ˙̃E > 0 defines the
instability window, i.e., those combinations of ðΩ; T∞Þ, for
which the perturbation is unstable.
For periodic oscillations, each of the discussed mecha-

nisms can be suitably characterized by the corresponding
evolutionary timescale, defined as:

1

τζ;η;D;GW
¼ 1

2Ẽ
jh ˙̃Eζ;η;D;GWiPj; ð37Þ

where h…iP denotes the average over the oscillation period
P. In the Cowling approximation, the energy Ẽ can be
found with the use of the perturbed conservation law,
associated with the Killing vector kρ ¼ uρ=Λ (see
Appendix A):

Ẽ ¼
Z �

w0

2
δuρδuρ þ 1

2

ðδpÞ2
γp0

þ 1

Λ
δpδut

þ 1

2
w0ðξρAρÞðξλ∇λ lnΛÞ

� ffiffiffiffiffiffi
−g

p
d3x: ð38Þ

2One can show that the resulting expression for ĖD also holds
in the case when the temperature is perturbed in the course of
oscillations, since the terms containing temperature gradients
⊥∇μðT=ΛÞ vanish due to Dkmμm ¼ 0.

KRAAV, GUSAKOV, and KANTOR PHYS. REV. D 109, 043012 (2024)

043012-6



III. r-MODE INSTABILITY WINDOWS

A. Nonanalytic r-modes in a nutshell

In this study, we, for simplicity, ignore the oblateness of
the rotating stellar model [i.e., terms OðΩ2Þ in (3) and (4)]
and formally treat the framedragging effect as weak, i.e. we
use the equations, derived under the assumption that the
metric function ωðrÞ ¼ ϵω̃ðrÞ is small, ϵ ¼ maxωðrÞ ≪ 1.
Although in reality framedragging effect cannot be con-
sidered as weak throughout the entire star, it significantly
weakens as one approaches the stellar surface (for the NS
model, employed in this study, we have ω ∼ 0.1 near the
surface; more details on the NS model will be given in
Sec. III B). At the same time, as we shall see, at slow
rotation rates r-modes tend to localize in the vicinity of the
stellar surface, where the framedragging effect is, indeed,
weak. As a result, the slower the star rotates, the more
accurate the weak framedragging approximation. Although
for larger rotation rates the weak framedragging approxi-
mation may be not too accurate, we believe that it still
provides qualitatively correct relativistic r-mode descrip-
tion (see Refs. [32,33] for a more detailed discussion of
this issue).
Recently we have shown that, under these assumptions,

the general system (9) admits the solution in the form of
nonanalytic r-modes—predominantly toroidal oscillations
with discrete eigenfrequency spectrum and eigenfunctions,
demonstrating nonanalytic behavior in Ω for extremely
slow rotation rates. Below, we only briefly summarize the
properties of these r-modes, and refer the interested reader
to Refs. [32,33] for details.
Various r-mode solutions differ by quantum numbers

ðl; mÞ, which determine the angular dependence of the
leading contribution to the toroidal function T in the slow
rotation limit: T ∼ Pm

l ðxÞeimφ, where x ¼ cos θ and Pm
l ðxÞ

is the associated Legendre polynomial. From the viewpoint
of CFS instability, the most interesting r-mode is the one
that contributes the most to the L ¼ 2 terms in ĖGW. Below
we restrict ourselves to the l ¼ m ¼ 2 mode, which is
currently believed to be the most CFS unstable, at least in
Newtonian theory (see, however, comments below). The
eigenfunctions and oscillation frequency of this mode
possess the following structure:

σ ¼ Ω½σð0Þ þ σð1Þ�;
T ¼ −i½TmðrÞPm

mðxÞ þ Tmþ2ðrÞPm
mþ2ðxÞ�eiσtþimφ;

Q ¼ Qmþ1ðrÞPm
mþ1ðxÞeiσtþimφ;

ξr ¼ ξmþ1ðrÞPm
mþ1ðxÞeiσtþimφ;

δp ¼ δpmþ1ðrÞPm
mþ1ðxÞeiσtþimφ;

δw ¼ δwmþ1ðrÞPm
mþ1ðxÞeiσtþimφ;

δε ¼ δεmþ1ðrÞPm
mþ1ðxÞeiσtþimφ; ð39Þ

where the leading frequency contribution equals

σð0Þ ¼ σð0Þr −m ¼ 2m
mðmþ 1Þ −m: ð40Þ

Eigenfrequency correction σð1Þ and all the eigenfunctions
except Tm are small due to weak framedragging effect, slow
stellar rotation, or both (see appendix D for the comment on
the possible violation of the r-mode ordering due to the
interplay between weak matter nonbarotropicity and rapid
stellar rotation).
The eigenfrequency correction σð1Þ, toroidal function

TmðrÞ and radial displacement ξmþ1ðrÞ are found from
the system [see Appendix C for the explicit form of the
coefficients C1;2;3ðrÞ and G1;2ðrÞ]:8>>>>>><

>>>>>>:

h
C1ðrÞ d

dr þ C2ðrÞ
i
ξmþ1

þ
h
Ω2C3ðrÞ þ σð1Þ þ 2εω̃ðrÞ

mþ 1

i
Tm ¼ 0

h
d
dr þ G1ðrÞ

i
Tm þG2ðrÞ

Ω2
ξmþ1 ¼ 0:

ð41Þ

The sought eigenfunctions are required to (1) be regular at
the stellar center and (2) correspond to the vanishing total
pressure at the stellar surface. Once the system is solved,
the remaining eigenfunctions can be found using (21), (22),
(41) and relations [see Appendix C for ΠðrÞ, q1;2;3ðrÞ,
and t1;2;3ðrÞ]

δpmþ1ðrÞ ¼ Ω2ΠðrÞTm;

Qmþ1ðrÞ ¼
�
q1

�
σð1Þ þ 2ϵω̃ðrÞ

mþ 1

�
þ Ω2q2ðrÞ

�
Tm

þΩ2q3ðrÞT 0
m;

Tmþ2ðrÞ ¼
�
t1

�
σð1Þ þ 2ϵω̃ðrÞ

mþ 1

�
þΩ2t2ðrÞ

�
Tm

þΩ2t3ðrÞT 0
m; ð42Þ

where the prime denotes the derivative d=dr. The resulting
solutions are classified by the number of nodes of TmðrÞ.
Nodeless r-mode is referred to as the fundamental r-mode
in the literature, and is believed to be the most CFS
unstable.
Depending (mainly) on the values of Ω2 and ϵ, we

can formally distinguish the three possibilities for the
system (41):
(1) Newtonian limit. In order to make transition to the

Newtonian r-mode equations we first, keeping in
mind that gðrÞ ¼ ν0ðrÞ ¼ −p0

0ðrÞ=w0ðrÞ ∼ ð1=c2Þ,
retain the leading in ð1=c2Þ contributions to the
coefficients, appearing in Eqs. (41) and (42). Then
we set all the metric functions, including the
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framedrag ϵω̃ðrÞ, equal to zero.3 The resulting
equations coincide with the r-mode equations in
the Newtonian theory (see, e.g., [52]). The corre-
sponding r-mode eigenfunctions are analytic func-
tions of Ω, scaling as

σð1ÞNewt ∝ Ω2;

ξNewtmþ1 ∼QNewt
mþ1 ∼ TNewt

mþ2 ∼ Ω2TNewt
m ;

δpNewt
mþ1 ∼ δwNewt

mþ1 ∼ δεNewtmþ1 ∼Ω2TNewt
m : ð43Þ

In what follows, we will refer to these and similar
expressions, which demonstrate the relations be-
tween the r-mode eigenfunctions, as the r-mode
ordering. It is worth noting that the ordering (43)
would also be valid for relativistic r-modes, if
one would completely ignore the framedragging
effect.

(2) Relativistic r-modes with Ω2 ≫ ϵ. In this limit, the
terms, containing the framedrag ϵω̃ðrÞ, are negli-
gibly small, so that relativistic r-modes effectively
obey the Newtonian ordering (43). In our numerical
calculations (see Sec. III C for the details of the
employed NS model) this limit is formally achieved
at Ω≳ 1.5 ΩK.

4 As Ω decreases toward the slower
realistic rotation rates, the properties of relati-
vistic r-modes start to differ from those, predicted
by (43).

(3) Relativistic r-modes with Ω2 ≪ ϵ. In this limit, the
difference of the relativistic r-modes from their
Newtonian cousins becomes especially pronounced.
In this case, the analysis of the system (41) reveals
[32,33] that σð1Þ ∼ ϵ, ξmþ1 ∼

ffiffiffi
ϵ

p
ΩTm and that its

solution is described by nonanalytic functions of Ω,
such that the operator d=dr produces extra

ffiffiffi
ϵ

p
=Ω

when acting on them, i.e., d=dr ∼
ffiffiffi
ϵ

p
=Ω (as an

example, one may think of the function e
ffiffi
ϵ

p
r=Ω). As a

result, in this limit, the relativistic r-mode ordering
significantly differs from the Newtonian one (43):

σð1Þ ∼ ϵ; Qmþ1 ∼ Tmþ2 ∼ ϵTm;

ξmþ1 ∼ δwmþ1 ∼ δεmþ1 ∼ ϵκTm;

δpmþ1 ∼ ϵκ2Tm; d=dr ∼ 1=κ; ð44Þ

where we have introduced the parameter of non-
analyticity κ ≡Ω=

ffiffiffi
ϵ

p
. Another important feature

of relativistic r-modes in this limit is that, due to

nonanalyticity, toroidal eigenfunction (and, there-
fore, all other eigenfunctions) nontrivially depends
on Ω, in contrast to its Ω-independent Newtonian
analogue (see Fig. 1 for illustration). This depend-
ence becomes increasingly evident as Ω decreases,
ultimately resulting in the localization of the modes
near the stellar surface in the limit of extremely slow
rotation rates. Such localization is naturally accom-
panied by the steepening of the gradients of the
r-mode eigenfunctions in the vicinity of the stellar
surface.

Thus, we expect the typical timescales τζ;η;D;GW to
drastically differ from their Newtonian counterparts, at
least for slow stellar rotation. In fact, as we shall see, the
peculiar behavior of the relativistic r-modes leads to the
significant amplification of the energy dissipation due to
bulk viscosity and diffusion even at high rotation rates,
where the effect of the mode localization is weak.
Another intriguing feature of relativistic r-modes is that

the mass multipole contribution to gravitational radiation
from the ðl; mÞ ¼ ð3; 2Þ r-mode appears to be of the same
order in Ω as the current multipole contribution from the
discussed above ðl; mÞ ¼ ð2; 2Þ r-mode. As a result, it is
not completely clear, which of these modes is more
unstable. Comparing the corresponding instability win-
dows is an intriguing problem that deserves attention in
future studies. In this work we, as announced, consider only
the l ¼ m ¼ 2 r-mode.

B. r-mode energy and energy change rates

In this section, we provide the approximate expressions
for the r-mode energy and previously discussed energy
change rates, valid in the limit of slow stellar rotation. Their
derivation for both relativistic and Newtonian cases is

FIG. 1. Toroidal function of the fundamental relativistic l ¼
m ¼ 2 r-mode, calculated for different stellar rotation rates using
BSk24 EOS for a star with the mass M ¼ 1.4M⊙ (where M⊙ is
the solar mass) and radius R ¼ 11.5 km. The normalization
condition TmðRÞ ¼ 1 is implied. Details of the employed stellar
model are discussed in Sec. III C.

3At that we still retain the function gðrÞ.
4We would like to stress that here we treat Ω and ϵ as formal

parameters of the system (41). Of course, stars with such high
rotation rates do not exist and in the case of the NS model,
considered in the present study, the limit Ω2 ≫ ϵ is physically
unreachable.
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lengthy, but rather straightforward and, basically, consists
of the following steps:
(1) the solution in the form (39) is substituted into the

Eqs. (29), (30), (34), (35), and (38);
(2) one uses Eqs. (21), (22), (41), and (42) to write the

result in terms of TmðrÞ and T 0
mðrÞ;

(3) one retains the terms up to the desired orders in Ω
and ϵ;

(4) one performs the integration of the obtained ex-
pressions over the θ and φ angles.

In the derivation, one should remember that the previously
described r-mode solution is given in a complex form,
while the energy and energy change rates, being second
order quantities in Eulerian perturbations, are calculated
with the physical real-valued r-mode solution. For any
complex eigenfunction f we define the real-valued physical
eigenfunction fphys as the real part of f:

fphys ¼ ð1=2Þðf þ f⋆Þ: ð45Þ

It is easy to show that, with such notation, the average
of the product ðf1;physf2;physÞ over the oscillation period
equals

hf1;physf2;physiP ¼ 1

4
ðf1f⋆2 þ f⋆1 f2Þ: ð46Þ

In particular, we have hf2physiP ¼ ð1=2Þff⋆, where the
factor 1=2 can naturally be interpreted as a result of
averaging of sin2ðt=PÞ or cos2ðt=PÞ over the oscillation
period.
The formula (46) allows one to calculate the r-mode

energy (38) and the averaged energy loss rates (29), (30),
(34), and (35) using the complex r-mode eigenfunctions,
discussed in the previous section. We would also like to
note that the calculation of the mass and current multipole
moments in terms of the physical r-mode solution can be
replaced with that in terms of the complex solution
according to the following relations (note that in derivation
of these relations we explicitly assumed m ≠ 0):

jIL;M½fphys�j ¼ jIL;−M½fphys�j ¼
δM;m þ δM;−m

2
jIL;m½f�j;

jSL;M½fphys�j ¼ jSL;−M½fphys�j ¼
δM;m þ δM;−m

2
jSL;m½f�j:

ð47Þ
As a result, the formula (35) takes the form

ĖGW ¼ −
1

2

G
c3

X∞
L¼2

�
σ

c

�
2Lþ2

NLðjILm½f�j2 þ jSLm½f�j2Þ:

ð48Þ
Using the formulas, described above, we derived the

relativistic expressions for the r-mode energy and energy
change rates, valid for slow rotation rates irrespectively of
the relation between Ω2 and ϵ (in particular, they reduce to
their Newtonian counterparts in the Newtonian limit).
Some of them can be simplified by introducing the
supplementary functions h1;2ðrÞ as

TmðrÞ ¼ rme−ðm−1Þνh1ðrÞ; ð49Þ

h2ðrÞ ¼
rmþ1w0e−ðmþ1Þν

A
dh1
dr

: ð50Þ

The function h1, as we shall see, will play an important role
in the further analysis. For convenience, we also introduce
the following supplementary combinations of diffusion
coefficients:

D̂1ðrÞ ¼ πkD̂kmπm; D̂2ðrÞ ¼ r
dπk
dr

D̂kmπm;

D̂3ðrÞ ¼ r2
dπk
dr

D̂km
dπm
dr

;

D̂4ðrÞ ¼ e2λðmþ 1Þðmþ 2ÞD̂1ðrÞ þ D̂3ðrÞ; ð51Þ
In these notations, the obtained expressions can be written
as [α is the (conveniently chosen) normalization constant,
related to the r-mode amplitude; note that α depends on the
azimuthal quantum number m]

Ẽ ¼ α2Ω2

2c2

Z
R

0

w0T2
mr2eλ−νdr; ð52Þ

h ˙̃EζiP ¼ −
16mα2Ω6

c4ðmþ 1Þ5ð2mþ 3Þ
Z

R

0

ζeλ−ð2mþ3Þν

A2

�
c
cs

�
4
�
dh1
dr

�
2

r2mþ4eνdr; ð53Þ

h ˙̃EηiP ¼ −α2Ω2

Z
R

0

η

��
Tm − r

d
dr

Tm

�
2

þ ðm − 1Þðmþ 2Þe2λT2
m

�
e−λ−νeνdr; ð54Þ

h ˙̃EDiP ¼ −
4mα2Ω4

c3ðmþ 1Þ3ð2mþ 3Þ
Z

R

0

Λ2

T

�
r2
�
dh2
dr

�
2

D̂1 þ 2rh2
dh2
dr

D̂2 þ h22D̂4

�
eν−λeνdr; ð55Þ

h ˙̃EGWiP ¼ 32πGα2
22mðm − 1Þ2m
ðmþ 1Þ4

� ðmþ 2Þ!
ð2mþ 1Þ!

�
2
�
mþ 2

mþ 1

�
2m Ω2

c

�
Ω
c

�
2mþ2

�
1

c2

Z
R

0

w0Tme2λrmþ2dr

�
2

; ð56Þ
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In order tomake the transition to theNewtonian limit in the
equations above, we set all the metric functions to zero,
including those in the definitions ofh1,h2, and D̂4. Note that,
although in our model Λ ¼ e−ν, we retain the redshift Λ
along with its derivatives. This approach corresponds to the
consideration of theNewtonian oscillations on the relativistic
background, i.e., accounting for the relativistic equilibrium
distributionof the temperature (6) and chemical potentials (8)
inside the star. We also stress that, while for Newtonian
r-modes all the terms in the expressions above are of the same
order in Ω, for relativistic r-modes some of them turn out to
be of lower order in Ω than the others because of the more
complicated relativistic ordering.
We see that, at slow rotation rates, due to the r-mode

nonanalyticity (d=dr ∼ 1=κ), the subintegral expres-

sions in h ˙̃Eζ;ηiP are effectively amplified by a factor 1=Ω2

(more accurately, by 1=κ2), while that in h ˙̃EDiP is effec-
tively amplified even more strongly—by a factor 1=Ω4

(more accurately, by 1=κ4). Moreover, one should also
account for the fact that at slow rotation rates nonanalytic r-
modes are localized in a tiny region in the vicinity of the
stellar surface, whose size itself depends on the angular
velocity and tends to zero atΩ → 0 [32,33]. As a result, the
dependence of expressions (52)–(56) [and, therefore,
the evolutionary timescales τζ;η;D;GW] on Ω turns out to
be significantly more complicated than in the Newtonian
theory and, generally, cannot be explicitly determined,
unless one considers the limit of extremely slow rotation. In
this limit, we discard the relatively small terms in sub-
integral expressions, and, using the system (41) in order to
express the derivative T 00

mðrÞ through TmðrÞ, find that

Ẽ ≈
α2Ω2

2c2

Z
R

0

w0T2
meλ−νr2dr; ð57Þ

h ˙̃EζiP ≈ −
16mα2Ω6

ðmþ 1Þ5ð2mþ 3Þ
Z

R

0

ζT 02
m

A2c4s
r4eλ−5νeνdr; ð58Þ

h ˙̃EηiP ≈ −α2Ω2

Z
R

0

ηT 02
me−λ−νr2eνdr; ð59Þ

h ˙̃EDiP ≈ −
α2cð2mþ 3Þðmþ 1Þ3

16m

Z
R

0

g2w2
0

T
½ðmþ 1Þσð1Þ þ 2ϵω̃ðrÞ�2D̂1ðrÞT2

me−λ−νeνdr; ð60Þ

h ˙̃EGWiP ≈ 32πGα2
22mðm − 1Þ2m
ðmþ 1Þ4

� ðmþ 2Þ!
ð2mþ 1Þ!

�
2
�
mþ 2

mþ 1

�
2mΩ2

c

�
Ω
c

�
2mþ2

�
1

c2

Z
R

0

w0Tme2λrmþ2dr

�
2

: ð61Þ

Further, at Ω → 0, the r-mode is localized in the region
rt ≤ r ≤ R and exponentially suppressed at 0 ≤ r < rt
[33], where

rt ¼ Rþ z0

�
κ

β

�
2=3

; β2 ¼ −
2ω̃0ðRÞ
mþ 1

G2ðRÞ
C1ðRÞ

; ð62Þ

and z0 is the (closest to zero) root of the derivative of the
first type Airy function: Ai0ðz0Þ ¼ 0. Therefore, in the
formulas above, one can use the approximate expression
for the toroidal function, which is accurate in the region of
the mode localization and near the point rt (the normali-
zation constant can be safely absorbed in α) [33]:

TmðrÞ ≈ Ai½zðrÞ�; zðrÞ ¼ ðrt − rÞ
�
β

κ

�
2=3

: ð63Þ

Although for 0 ≤ r < rt, far from the point rt, this formula
is not too accurate, the function Ai½zðrÞ� just like the actual

toroidal function TmðrÞ is exponentially suppressed in this
region, so that the replacement TmðrÞ → Ai½zðrÞ� in the
whole area of integration cannot lead to significant errors.
Then the problem reduces to the calculation of the integrals
of the form

Ikn½f� ¼
Z

R

0

fðrÞ
�
dk

drk
Ai½zðrÞ�

�
n
dr; ð64Þ

where fðrÞ is some κ-independent function of r. Changing
the integration variable from r to zðrÞ, we obtain

Ikn½f� ¼ ð−1Þkn
�
β

κ

�ð2=3Þðkn−1Þ Z rtðβ=κÞ2=3

z0

f

�
R

þ ðz0 − zÞ
�
κ

β

�
2=3

��
dk

dzk
AiðzÞ

�
n
dz: ð65Þ

In the Ω → 0 limit the upper limit in the integral can be
replaced to infinity, and function f can be replaced by the
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leading term of its Taylor series near the stellar surface:
fðrÞ ≈ fRðr − RÞnf . As a result we have

Ikn½f� ≈ ð−1ÞknfR
�
β

κ

�ð2=3Þðkn−nf−1Þ
Jknnf ; ð66Þ

Jknnf ≡
Z

∞

z0

ðz0 − zÞnf
�
dk

dzk
AiðzÞ

�
n
dz: ð67Þ

We see that three integer numbers n, k and nf define the
dependence of the considered integrals on κ and, therefore,
on Ω. Let us, for example, estimate the dependence of
τGW on Ω. In our model, for the corresponding integrals
k ¼ 0 and nf ¼ 1. Then we find that Ẽ ∝ Ω2Ω4=3

and h ˙̃EGWiP ∝ Ω2Ω2mþ2ðΩ4=3Þ2, leading to τGW ∝ 1=
Ω2mþ2þ4=3, which differs from the traditional result
τ ∝ 1=Ω2mþ2, valid for Newtonian r-modes (a result we
have mentioned in [33]). Similar estimates can also be
made for τζ;η;D.

C. Evolutionary timescales and instability windows

In this section, we provide the results of our numerical
calculation of the evolutionary timescales τη;ζ;D;GW (37) and
instability windows for relativistic and Newtonian r-modes,
using (52)–(56). We remind the reader that for simplicity
in this study we, unless stated otherwise, ignore the neu-
tron star crust and consider a toy model of a neutron star,
consisting only of the liquid core (see Sec. IV for the
discussion of the crust-associated effects).
As a microphysical input, we use a neutron star with the

mass M ¼ 1.4M⊙ and radius R ¼ 11.5 km, described by
the BSk24 EOS [53].5 Its matter consists of neutrons (n),
protons (p), electrons (e) and muons (μ). To calculate τη;D
we assume that protons are strongly superconducting
and adopt the shear viscosity η from [54] and diffusion
matrix Dkm from [50]. Generally, to account for super-
conductivity in Dkm one should replace the number density
np with nexp , the number density of proton Bogoliubov
excitations (“normal” proton component). In our case of
strong proton superconductivity nexp ¼ 0, which effectively
reduces the number of particle species by one (i.e., in
the derivation of Dkm the 4-component npeμ-matter is
effectively considered as 3-component neμ-matter). As
for the energy dissipation due to bulk viscosity, the latter
is, strictly speaking, strongly suppressed by the proton

superconductivity and is unlikely to play a significant
role in our model. Nevertheless, keeping in mind future
application of the theory to the hyperonic stellar matter,
where the bulk viscosity is much stronger and might be
important [30], it is still interesting to look how the
dissipation due to bulk viscosity is affected by the peculiar
properties of relativistic r-modes. To address this question,
we will consider a simplified problem by ignoring the
proton superconductivity when calculating ζ generated
(in the npeμ-matter) by the modified Urca processes
[55] [note that ζ depends on the local oscillation frequency
σloc ¼ ðσ þmΩÞΛ]. Even for superconducting npeμ-
matter this approach is not completely unjustified, since,
as we shall see, the bulk viscosity appears to be efficient
only at very high temperatures, where not all protons are
superconducting.
Figure 2 shows the relativistic (“GR”, blue lines) and

Newtonian (“Newt”, red lines) fundamental l ¼ m ¼ 2
r-mode evolutionary timescales. In the upper left panel
we see that at Ω ≪ ΩK τGW;GR ≫ τGW;Newt, while at
realistic rotation rates τGW;GR ∼ τGW;Newt. Such behavior
of relativistic r-modes is a result of the mode localization
in the Ω → 0 limit, leading to τGW;GR=τGW;Newt ∼Ω−4=3.
Lower left panel shows that at realistic rotation rates
τη;GR ∼ τη;Newt, while at extremely slow rotation rates
τη;GR ≪ τη;Newt, in contrast to the case of τGW. This
behavior also arises due to the r-mode localization and
is related to the fact that the subintegral expression (54) for

h ˙̃EηiP, unlike the Eq. (56) for h ˙̃EGWiP, contains T 02
mðrÞ,

which is extremely large in the Ω → 0 limit, since
d=dr ∼ 1=Ω. Thus, despite the mode being trapped in a
narrow region near the stellar surface, its steep gradient
eventually leads to τη;GR ≪ τη;Newt.
Finally, the most interesting results are obtained for τD

(upper right panel) and τζ (lower right panel). Like for
τη;GR, the presence of the derivatives of TmðrÞ in (53) and
(55) significantly reduces τD;GR and τζ;GR compared to their
Newtonian values. This, however, does not explain the
reduction of τζ;GR and τD;GR at high rotation rates,
Ω≳ 0.1 ΩK. To explain this reduction we note that in
the Newtonian theory the function h1;Newt ¼ r−mTm;Newt is
almost constant, while the relativistic function h1;GR ¼
r−meðm−1ÞνTm;GR is not constant and varies throughout the
star, as shown in Fig. 3. As a result, we have jdh1;GR=drj ≫
jdh1;Newt=drj and jh2;GRj ≫ jh2;Newtj. This observation
combined with (53) and (55), explains why τD;GR ≪
τD;Newt and τζ;GR ≪ τζ;Newt.
The discovered amplification of the dissipation due to

diffusion turns out to be so strong, that (for relativistic
r-modes) in not too hot superconducting neutron stars the
diffusion becomes very efficient dissipative mechanism,
significantly exceeding shear viscosity, which is currently
believed to be one of the main sources of the r-mode
dissipation. This is illustrated in Fig. 4, where we plot the

5Note that this model differs from that adopted in Ref. [32]. It
is obtained by stopping the integration of the Tolman–
Oppenheimer–Volkoff equations at the density, corresponding
to the crust-core interface of the model, adopted in Ref. [32] (the
pressure in this point equals approximately 5 × 10−3pc, where pc
is the central pressure). Thus, the surface of the NS model in the
present study formally corresponds to the crust-core interface of
the model in Ref. [32]. In fact, this is the model that we used in
Ref. [33].
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ratios τη=τD for the relativistic (shown in blue) and
Newtonian (shown in red) r-modes. Since τη ∝ ðT∞Þ2
and τD ∝ ðT∞Þ2 with high accuracy, the ratio τη=τD is
almost temperature-independent. We see that, while in the
Newtonian theory shear viscosity is, indeed, stronger than
the diffusion, in GR diffusion dominates in the whole range
of the considered rotation rates. Therefore, we expect that
diffusion will significantly affect the shape of the relativ-
istic r-mode instability window at not too high stellar
temperatures.
To investigate the combined effects of the r-mode

nonanalyticity and particle diffusion in strongly super-
conducting matter on the r-mode instability window, we
consider three stabilization scenarios, each leading to a
corresponding critical angular velocity, ΩcðT∞Þ, at which
the mode amplification by CFS mechanism equals the
mode damping by dissipative mechanisms of interest:

(1) mode stabilization by shear viscosity:

h ˙̃EGWðΩcÞ þ ˙̃EηðΩc; T∞ÞiP ¼ 0;

(2) mode stabilization by diffusion:

h ˙̃EGWðΩcÞ þ ˙̃EDðΩc; T∞ÞiP ¼ 0;

(3) mode stabilization by shear viscosity and diffusion:

h ˙̃EGWðΩcÞ þ ˙̃EηðΩc; T∞Þ þ ˙̃EDðΩc; T∞ÞiP ¼ 0:

We show the resulting critical curves, ΩcðT∞Þ, calcu-
lated for relativistic (“GR”) and Newtonian (“Newt”)
fundamental l ¼ m ¼ 2 r-modes in Fig. 5. Each curve
divides the ðΩ; T∞Þ-plane into the upper area, where the
modes are unstable, and the lower area, where they are

FIG. 2. Relativistic (“GR”, blue lines) and Newtonian (“Newt”, red lines) l ¼ m ¼ 2 fundamental r-mode evolutionary timescales,
associated with the CFS instability (upper left panel), diffusion (upper right panel), shear viscosity (lower left panel) and bulk viscosity
(due to modified Urca processes; lower right panel).
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damped by dissipative mechanisms of interest. Apart from
the completely nonbarotropic neutron star model, intro-
duced above (the corresponding results are shown in red
and blue), we have also considered the relativistic r-mode
stabilization by diffusion in a more realistic stellar model,
accounting for the barotropic NS crust (see black and green
thin dashes; the crust model is the same as in Ref. [32]).
Black dashes show the instability window, calculated
assuming that the strong proton superconductivity resides
in the whole NS core. Green dashes show the estimate
of the r-mode instability window in the case when proton
superconductivity weakens at large densities, as predicted
by somemicroscopic theories (see, e.g., Refs. [56–59]) and is
only active in the core up to the density ρ≲4×1014 gcm−3

(see Fig. 7 in Ref. [60]), which approximately corresponds
to the region 0.76 < r=R < 0.92 in our model. As expected,
we see that in the Newtonian theory the effect of par-
ticle diffusion on the r-mode instability window is rather

FIG. 4. Comparison of the l ¼ m ¼ 2 fundamental r-mode
damping timescales due to shear viscosity and particle diffusion
in general relativity (“GR”, blue line) and Newtonian theory
(“Newt”, red line).

FIG. 3. The ratio h1ðrÞ=h1ðRÞ in the Newtonian theory (red
line; does not depend on Ω) and in GR (blue lines).

FIG. 5. Instability windows of the relativistic (“GR”) and
Newtonian (“Newt”) fundamental l ¼ m ¼ 2 r-modes in super-
conducting NS. Results, obtained for completely nonbarotropic
stellar matter, are shown in red and blue by solid lines (stabiliza-
tion by diffusion and shear viscosity,“Dþ η”), short thick
dashes (stabilization only by diffusion,“D”), and long thick
dashes (stabilization only by shear viscosity,“η”). Thin
black dashes [“D (crust)”] show the relativistic r-mode stabiliza-
tion by diffusion in an NS with nonbarotropic core and barotropic
crust, while thin green dashes [“D (crust, limited)”] show the
stabilization by diffusion in the very same NS but with proton
superconductivity limited to the core region with density
ρ ≤ 4 × 1014 g=cm3 (which approximately corresponds to
0.76 < r=R < 0.92). Each curve divides the ðΩ; T∞Þ-plane into
the upper area, where the modes are unstable, and the lower area,
where they are damped by dissipative mechanisms. Black dots
and bars represent the observational data on LMXBs taken from
[28]. The error bars represent the uncertainty in our knowledge of
the internal temperature associated with the poorly known
composition of the outer NS layers (see [61] for details).
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weak, and the latter is determined primarily by dissipation
due to shear viscosity, whereas in general relativity the
picture is exactly the opposite: particle diffusion deter-
mines the shape of the window and the effect of shear
viscosity is negligibly small, even if diffusion is only efficient
in the outer layers of the stellar core (see the green
dashed curve).
Black dots with error bars in the figure represent the

observational data on NSs in LMXBs, taken from Ref. [28].
We see that, unfortunately, diffusion is not sufficient to
stabilize (i.e., “explain”) all the observed sources and,
therefore, inclusion of additional dissipative mechanisms
(such as, e.g., dissipation in Ekman layer [23–25], mutual
friction [26], resonant r-mode stabilization by superfluid
modes [27,28] and enhanced bulk viscosity in hyperonic
matter [29,30]) is still required.
Finally, we would like to finish this section with the

discussion of how the discovered amplification of the
dissipation due to bulk viscosity might affect the r-mode
instability window at high temperatures, T∞ ≳ 109 K. As
discussed above, it is likely that at temperatures, where
the bulk viscosity is efficient, the protons are not com-
pletely superconducting. For this reason (and having in
mind application to hyperon stars), below we, for simplic-
ity, restrict ourselves to the case of normal matter.
In the absence of proton superconductivity particle
diffusion is inefficient (for both Newtonian and relativistic
r-modes) and shear viscosity (to be adopted from [62])
usually becomes the leading dissipative mechanism at
T∞ ≲ 109 K, while at higher temperatures the energy
dissipation is mainly caused by the bulk viscosity. In
addition to the bulk viscosity associated with the modified
Urca processes, we will also, for illustrative purposes,
consider the bulk viscosity associated with the direct
Urca process (taken from [63]). Although the latter is
not allowed in our model, we can formally consider two
scenarios, when this process proceeds either in the whole
star or, say, in its inner half, 0 ≤ r ≤ R=2. In this way,
ignoring dissipation due to diffusion, we obtain the
instability windows shown in Fig. 6.
We see that, independently of the processes behind the

bulk viscosity (modified or direct Urca), at low temper-
atures the relativistic and Newtonian instability windows
almost coincide, while at high temperatures relativistic
instability curve goes higher than Newtonian one, reflecting
the fact that in GR dissipation due to bulk viscosity is
significantly amplified compared to the Newtonian case.
This amplification, however, is not strong enough to
stabilize the observed sources and we again arrive at a
conclusion, that the theory requires additional dissipative
mechanisms. In particular, relativistic (i.e., accounting for
the discussed amplification) consideration of the dissipa-
tion due to strong bulk viscosity in hyperonic matter
[29,30] is an interesting problem to be addressed in the
subsequent publication.

IV. DISCUSSION

Until recently, calculating the evolutionary timescales
and instability windows of relativistic r-modes in non-
barotropic neutron stars was a challenging task due to their
unclear properties and the lack of a viable and consistent
method to determine their oscillation spectrum and eigen-
frequencies (the problem of the continuous r-mode spec-
trum mentioned above). However, our discovery of the
nonanalytic (in Ω) behavior of relativistic r-modes [32,33]
has allowed us to overcome these difficulties. We have
obtained relativistic r-mode eigenfunctions (with certain
simplifying assumptions) and proceeded with investiga-
ting the impact of various evolutionary mechanisms on
relativistic r-modes, in comparison to their Newtonian
counterparts.
In addition to studying the evolution of r-modes influ-

enced by the commonly considered CFS instability and
dissipative effects from shear and bulk viscosities, we have
also explored the role of diffusion as a dissipative mecha-
nism for relativistic r-modes. Initially, our motivation for
including diffusion in the study was based on the signifi-
cant energy losses observed in certain stellar oscillation
modes (such as sound waves, p-modes, and g-modes) that
exist in neutron stars with strong proton superconductivity

FIG. 6. Relativistic (“GR”, solid lines) and Newtonian
(“Newt”, dashes) fundamental l ¼ m ¼ 2 r-mode instability
windows for the case of normal npeμ-matter. Calculations with
bulk viscosity, associated with modified Urca processes
(“mUrca”), are shown in blue. Those with bulk viscosity due
to the direct Urca process are shown in red (“dUrca 1=2”’; the
process is allowed in the region 0 ≤ r ≤ R=2) and green
(“dUrca”; the process is allowed in the entire neutron star).
Black dots and bars represent the observational data, see caption
to Fig. 5 for details.
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in their cores. These losses surpass those attributed to shear
viscosity, which is typically considered a primary dissipa-
tive agent in moderately hot neutron stars. Although our
preliminary estimates [34] suggested that this might not be
the case for r-modes, these estimates did not fully account
for the newly discovered nonanalytic behavior of relativ-
istic r-modes in nonbarotropic matter.
We began this paper by discussing the general theoretical

framework used to study oscillations and their evolution in
nonbarotropic strongly superconducting stellar matter,
considering the influence of CFS instability (GW), shear
viscosity (η), bulk viscosity (ζ), and diffusion (D). Except
for the diffusion,6 this framework can also be applied to
oscillations in normal matter, with the only difference being
the replacement of the coefficients η and ζ with their normal
matter counterparts.
We then focused on applying this framework to the

case of relativistic r-modes. We derived explicit expres-
sions (52)–(56) for the energy Ẽ of r-modes and their
(averaged over the oscillation period) energy change rates

h ˙̃Eζ;η;D;GWiP. These expressions are valid for slowly rotat-
ing neutron stars in GR and, with minor modifications, in
Newtonian theory. Our analysis of these expressions
revealed that at slow rotation rates, relativistic r-modes,
due to their nonanalytic behavior, are less affected by
the CFS instability compared to their Newtonian counter-
parts. However, the effects of dissipative mechanisms in
GR are expected to be significantly stronger than in the
Newtonian case.
To illustrate these differences, we considered the limit

of extremely slow stellar rotation and examined how
exactly the relativistic r-mode nonanalyticity influences

the dependence of their evolutionary timescales τζ;η;D;GW ¼
ð2ẼÞ=jh ˙̃Eζ;η;D;GWiPj on Ω.
These findings received further confirmation in our

numerical calculations. Employing a simplified model of
a neutron star, consisting of a liquid inner npeμ-core and
outer npe-core, we determined the evolutionary timescales
of the Newtonian and relativistic l ¼ m ¼ 2 fundamental
r-modes. The results not only confirmed our theoretical
predictions but also revealed an unexpected finding: for
relativistic r-modes, diffusion and bulk viscosity are signi-
ficantly more effective damping agents than for Newtonian
r-modes, even at high rotation rates.
Our analysis indicates that this discrepancy is not

primarily caused by the relativistic r-mode nonanalyticity
but rather by the distinct behavior of the Newtonian
r-mode eigenfunctions. Unlike in general relativity, in
Newtonian theory the function h1;Newt (49) is almost
constant and, therefore the functions, which define

˙̃Eζ;D (53), (55), satisfy jh01;NewtðrÞj≪ jh01;GRðrÞj, jh2;Newtj ≪
jh2;GRj and jh02;NewtðrÞj ≪ jh02;GRðrÞj. This behavior of
Newtonian eigenfunctions, leads to the suppression of all

the terms contributing to h ˙̃Eζ;DiP, even at high rotation
rates, in contrast to their relativistic counterparts. The
resulting disparity in diffusive dissipation is so significant
that in the case of superconducting matter, diffusion
becomes the dominant dissipative mechanism for relativ-
istic r-modes, surpassing the dissipation caused by shear
viscosity by several orders of magnitude.
Finally, for the considered toy model of a neutron

star, we have calculated the instability windows for both
relativistic and Newtonian r-modes. At not too high
temperatures, we have explored three scenarios for stabi-
lizing the r-modes: shear viscosity alone, diffusion alone,
or a combination of diffusion and shear viscosity. As
predicted, the shape of the instability window for relativ-
istic r-modes is primarily governed by diffusion, with shear
viscosity playing a negligible role. This stands in stark
contrast to the behavior observed for Newtonian r-modes.
Furthermore, to evaluate the impact of bulk viscosity
amplification in general relativity on the instability win-
dows, we intentionally disabled proton superconductivity
and computed the instability window for both relativistic
and Newtonian r-modes stabilized by shear and bulk
viscosities (disregarding diffusion in normal matter). As
anticipated, at high temperatures where the window’s
shape is primarily determined by bulk viscosity, relativistic
r-modes exhibit significantly more efficient stabilization
compared to their Newtonian counterparts.
Summarizing, the main result of this study is that

accounting for GR and particle diffusion in nonbarotropic
stellar matter may significantly affect the r-mode instability
windows. At low and moderate stellar temperatures in the
presence of proton superconductivity diffusion becomes
the leading dissipative mechanism, much stronger than
shear viscosity. Considering normal (nonsuperconducting)
matter we have also shown that at high temperatures
relativistic r-modes lose energy due to bulk viscosity much
faster than their Newtonian cousins. A number of com-
ments, concerning the validity of the made approximations,
however, should be made.
First, in our consideration we (almost) completely

ignore the effects, associated with the neutron star crust.
To justify this approximation, we note that diffusion and
bulk viscosity are not very efficient in the crust (but see
[64]). Being rather thin compared to the neutron star core
[32], the crust will only slightly affect the r-mode eigen-
functions at high rotation rates, typical for the instability
windows. Indeed, the r-mode eigenfunctions are practically
not suppressed in the core at these rotation rates so that,
for instance, the dissipation due to shear viscosity in a
thin crust cannot lead to significant additional losses of
mechanical energy. Moreover, according to our calcula-
tions (see Fig. 5), critical curves, corresponding to the

6The developed framework cannot be directly applied to
diffusion in normal matter because the expression for the self-
consistent electric field in normal matter differs from Eq. (13).
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relativistic r-mode stabilization by diffusion in NS models
with and without crust are close to each other, and thus
accounting for the crust does not qualitatively change the
r-mode instability window. At smallΩ, however, instead of
being localized in the vicinity of the stellar surface,
eigenfunctions will localize in the vicinity of the crust-
core interface and inside the crust. Therefore, at extremely
slow rotation rates the crust will provide the leading
contribution to the r-mode energy (52) and the r-mode
energy change rate (56) due to CFS-instability, since the
corresponding subintegral expressions do not contain large
eigenfunction gradients, while eigenfunctions themselves
are suppressed almost everywhere in the core. As a result,
the dependence of the r-mode evolutionary timescales onΩ
differ from those in the purely nonbarotropic neutron star.
Particularly, τGW recovers its traditional dependence on the
rotation rate, τGW ∝ Ω2mþ2. Nevertheless, in our numerical
calculations, the CFS instability of relativistic r-modes
is still suppressed compared to the Newtonian case for
Ω≲ 0.05 ΩK.
Second, in our calculations we ignore the quadratic

rotational corrections to the background, describing the
oblateness of the neutron star due to rotation. Strictly
speaking, these corrections should be accounted for in the
most accurate calculation but, at the same time, Newtonian
calculations show that they may affect mostly the r-mode
eigenfrequency correction σð1Þ, while the r-mode toroidal
function is practically insensitive to their inclusion. As a
result, accounting for the rotational corrections to the back-
ground should not have significant effect on the Newtonian
r-mode properties. This conclusion, in fact, is corroborated
by the straightforward comparison of the obtained here
Newtonian r-mode instability windows with the calculation
accounting for the background rotational corrections, pre-
sented in our previous study [34]. As for relativistic r-modes,
accounting for these corrections will not change their most
important properties—nonanalyticity and peculiar ordering
—responsible for their drastically different behavior under
the influence of the evolutionary mechanisms, discussed in
the paper. Moreover, our preliminary calculations show that
accounting for the rotational corrections does not affect the
expressions (53)–(56) for the relativistic r-mode energy
change rates, and, at the same time, only weakly influences
relativistic r-mode eigenfunctions.
Third, in our calculations we employ the Cowling

approximation, i.e., in the Euler equations, continuity
equations and in the derivation of the energy change rate
due to CFS mechanism we ignore perturbations of the
gravitational field, assuming that they are small, compared
to hydrodynamic ones. This approximation significantly
simplifies the problem and, at the same time, is known to
provide reasonable estimates of the r-mode properties [42].
Moreover, as our preliminary results indicate [32], the most
general equations, that govern the dynamics of nonanalytic
relativistic r-modes in the Ω → 0 limit, exactly coincide
with those, obtained within the Cowling approximation in

the Ω → 0 limit. Of course, in the most accurate calculation
one should account for all themetric tensor perturbations and
look for the complex eigenfrequency correction, that would
determine the mode driving timescale, associated with the
CFS instability, but such calculation deserves separate
consideration and goes far beyond the scope of this work.
Fourth, in our study we completely ignore the neutron

superfluidity, present in the stellar matter. As discussed in
one of our previous works [34], within the conditions of
neutron star interiors, we found that the weaker the friction
forces acting between different particle species, the
more pronounced the diffusive dissipation becomes. This
pattern can be understood as follows: Strong friction forces
effectively bind particle species together, suppressing their
relative motion, which is the primary cause of dissipation.
The efficiency of friction forces is directly influenced by
the frequency of particle collisions in the stellar matter. In
normal npeμ-matter strong neutron-proton interaction
and electromagnetic baryon-lepton and lepton-lepton inter-
actions do not allow different particle species to acquire
significant relative velocities and, therefore, dissipation due
to diffusion is weak. Proton superconductivity weakens the
interactions of particles with protons and, therefore, allows
for larger relative neutron-lepton velocities, leading to
stronger diffusive dissipation. Now, if protons are strongly
superconducting and neutrons are strongly superfluid in a
given stellar region (i.e., T ≪ Tcn, where Tcn is the neutron
transition temperature to superfluid state), their scattering
on other particle species is suppressed. Consequently,
diffusive dissipation arises mainly due to the interaction
of charged particles, which is significantly stronger than
neutron-lepton interaction. As a result, diffusive dissipation
in such region is suppressed (the stronger the friction forces
the lower the dissipation). In other words, a stellar region
can significantly contribute to dissipation due to diffusion
only if it contains strongly superconducting protons and
normal or weakly-superfluid neutrons. Here we would like
to note that even when diffusive dissipation is confined to
such regions, it still may (depending on the superfluidity
model) be strong enough to surpass that due to shear
viscosity. Although the theoretical framework for the
calculation of diffusion coefficients in mixtures of super-
fluid/superconducting Fermi-liquids has recently been
developed [65], the detailed calculations have not yet been
performed, so at this point we can only make estimates by
varying the stellar regions contributing to diffusive dis-
sipation. For instance, as illustrated in Fig. 5, even when
proton superconductivity is confined to a narrow region
near the crust-core interface, the relativistic r-mode insta-
bility window is still primarily determined by diffusion
rather than shear viscosity. In addition to its impact on
microphysics, neutron superfluidity also influences the
hydrodynamic equations and introduces mutual friction
as an additional channel for the leakage of r-mode energy.
Detailed study of these effects on the r-mode instability
window requires separate consideration.
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Lastly, several Newtonian studies [66–68] suggest that,
at high rotation rates, r-modes may effectively violate
the assumed ordering and behave as if the matter were
barotropic, due toweakmatter nonbarotropicity (i.e., a small
Schwarzschild discriminant). However, in Appendix D, we
address this issue in the context of relativistic r-modes and
demonstrate that, at least for the fundamental l ¼ m ¼ 2
r-mode considered in this study, this is not the case.
In conclusion, we must acknowledge that while diffusion

and bulk viscosity are indeed significantly more efficient
for stabilizing relativistic r-modes compared to Newtonian
ones, they are still not strong enough to stabilize all
observed sources. This suggests that the developed theory
requires the inclusion of additional dissipative mechanisms.
Some potential candidates include, but not limited to,
dissipation in the Ekman layer [23–25], resonant r-mode
stabilization by superfluid modes [27,28], enhanced bulk
viscosity in hyperonic matter [29,30], and vortex-mediated
mutual friction [26]. To obtain a comprehensive under-
standing of the properties of relativistic r-modes, all these
mechanisms should be taken into account in the general
calculation of the instability window. Addressing this
intriguing problem can provide valuable insights into the
role of r-modes in the dynamics of neutron stars.
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APPENDIX A: OSCILLATION ENERGY

To find the oscillation energy Ẽ in the corotating reference
frame, we start with the perturbed form of the conservation
law, associated with the Killing vector kρ ¼ uρ=Λ:

∇μðkρδ̂TμρÞ ¼ 0; ðA1Þ

where δ̂f is the exact deviation of the quantity f from the
equilibrium (do not confuse with Eulerian perturbation δf).
The exact four-velocity normalization condition and con-
tinuity equations can be written as

2uρδ̂uρ þ δ̂uρδ̂uρ ¼ 0; ðA2Þ

∇μðδ̂nkuμ þ nk0δ̂uμ þ δ̂nkδ̂uμÞ ¼ 0: ðA3Þ

Note that, using these equations, equilibrium conditions (8)
and quasineutrality condition, eknk ¼ 0, it is easy to show
that the vector

Fμ ≡ μk0
Λ

δ̂jμk ¼
μk0
Λ

½δ̂nkuμ þ nk0δ̂uμ þ δ̂nkδ̂uμ� ðA4Þ

is divergenceless, ∇μFμ ¼ 0. This result implies that the
integral

F ≡
Z

Ft ffiffiffiffiffiffi
−g

p
d3x ¼ const ðA5Þ

is conserved. Moreover, using the perturbed quasineutrality
condition, ekδ̂jtk ¼ 0, and chemical equilibrium condition
(8) with m ¼ s it is easy to see, that it vanishes:

F ¼
Z

μk0
Λ

δ̂jtk
ffiffiffiffiffiffi
−g

p
d3x

¼
Z

μk0 − ek=esμs0
Λ

δ̂jtk
ffiffiffiffiffiffi
−g

p
d3x

¼ μk0 − ek=esμs0
Λ

Z
δ̂jtk

ffiffiffiffiffiffi
−g

p
d3x

¼ μk0
Λ

δ̂Nk ¼ 0: ðA6Þ

Here in the final step,we have utilized the conservation of the
total number of particle species, ensuring that its variation
vanishes in the perturbed star,

δ̂Nk ¼
Z

δ̂jtk
ffiffiffiffiffiffi
−g

p
d3x ¼ 0: ðA7Þ

Now, retaining the terms up to the second order in δ̂, we
obtain

kρδ̂Tμρ ¼ −
uμ

Λ

�
w0

2
δ̂uρδ̂uρ þ δ̂μknk0 þ δ̂μkδ̂nk − δ̂p

�

−
1

Λ
nk0δ̂μkδ̂uμ − Fμ: ðA8Þ

Within the required accuracy, everywhere in the second
δ̂-order terms one may safely replace δ̂f with the solutions
of the linearized equations δf. For the first order terms,
however, it is necessary to use the following relations,
accurate up to the second order:

δ̂p ≈ nn0

�
∂μn
∂nk

�
0

δ̂nk þ
1

2

�
∂

∂nm
nn

∂μn
∂nk

�
0

δnkδnm;

δ̂μn ≈
�
∂μn
∂nk

�
0

δ̂nk þ
1

2

�
∂
2μn

∂nk∂nm

�
0

δnkδnm: ðA9Þ

Using these formulas and linearized thermodynamic rela-
tions, we find:

kρδ̂Tμρ ≈ −
uμ

2Λ
½w0δuρδuρ þ δμkδnk� −

1

Λ
δpδuμ − Fμ:

ðA10Þ
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Now, integrating the conservation law (A1) using the fact
that the integral (A5) over Ft vanishes and that ut ¼ Λ, we
find the expression for the energy in the corotating
reference frame:

Ẽ ¼
Z �

w0

2
δuρδuρ þ 1

2
δμkδnk þ

1

Λ
δpδut

� ffiffiffiffiffiffi
−g

p
d3x:

ðA11Þ

Finally, using thermodynamic relations and general rela-
tions between the Eulerian perturbations, one can show that

δμkδnk ¼
ðδpÞ2
γp0

þ w0ðξρAρÞðξλ∇λ lnΛÞ; ðA12Þ

so that the final expression for the energy takes the form

Ẽ ¼
Z �

w0

2
δuρδuρ þ 1

2

ðδpÞ2
γp0

þ 1

Λ
δpδut

þ 1

2
w0ðξρAρÞðξλ∇λ lnΛÞ

� ffiffiffiffiffiffi
−g

p
d3x: ðA13Þ

APPENDIX B: GRAVITATIONAL
MULTIPOLE MOMENTS

As mentioned in the main text, to compute the energy
loss rate due to the emission of gravitational waves, we use
the general formalism, developed by Thorne [51]. His
mathematical notation, as he admits, is “somewhat special,”
and it is our feeling that it should be briefly reviewed. In his
analysis, Thorne uses the “physical” basis êμ instead of the
conventional coordinate basis eμ ≡ ∂μ:

êμ ¼ Sμρeρ; eμ ¼ ðS−1Þμρêρ; ðB1Þ

Sμρ ¼ diagf1; 1; 1=r; 1=r sin θg: ðB2Þ

Thorne also treats coordinates as though the spacetime is
flat and uses the “flat”metric tensor ημν ≡ diagf−1; 1; 1; 1g
to raise and lower tensor indices. We have to note that
such notation leads to ambiguities in definitions of tensor
components. For example, let us consider the vector field
with components Vμ with respect to the basis eμ. On one
hand, its components V̂μ with respect to the basis êμ can be
found as V̂ρ ¼ VμðS−1Þμρ, and we then obtain V̂μ ¼
VρðS−1Þρκηκμ. On the other hand, we can first lower the

index with gμν, then perform the transition to the physical
basis, and find V̂μ ¼ SμρgρκVκ, which, generally, differs
from the previous result. In order to avoid such ambiguities
it is necessary to state, which components, Vμ or Vμ, should
be viewed as primary.
Following Thorne (see Eq. (5.3) in Ref. [51]), we

consider the contravariant components τμν of the effective
stress-energy pseudotensor of the whole system “neutron
star þ gravitational radiation” as primary, and then
define τ̂μν ¼ τηκðS−1ÞημðS−1Þκν and τ̂μν ¼ ημρηνλτ̂

ρλ.
Particularly, within the Cowling approximation, we will
use τ̂μν ≈ ð−ĝÞT̂μν, where ĝ ¼ det ĝμν. Next, we introduce
the spherical harmonic YLMðθ;φÞ and the magnetic-type
vector-spherical harmonic YB;LMðθ;φÞ defined as (in the
physical basis):

YB;LM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp �

0;−
1

sin θ
∂YLM

∂φ
;
∂YLM

∂θ

�
: ðB3Þ

In these notations, mass ILM and current SLM multipole
moments, required in the calculation of ĖGW (35), are given
by the following formulas

ILM ¼
Z

τ̂ttYLMð⋆ÞrLr2 sin θd3x;

SLM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
L

Lþ 1

r Z
ð−τ̂tkÞYB;LMð⋆Þ

k rLr2 sin θd3x; ðB4Þ

where d3x ¼ drdθdφ, “⋆” is the complex conjugation,
and the summation over the spatial k index is implied.

APPENDIX C: COEFFICIENTS
IN THE r-MODE EQUATIONS

Let us introduce the following notations:

kþL ¼ Lþm
2Lþ 1

; k−L ¼ L −mþ 1

2Lþ 1
;

γ1 ¼
m2

ðmþ 1Þ2ð2mþ 3Þ ; γ2 ¼
m3½9 −mð3mþ 2Þ�
ðmþ 1Þð2mþ 3Þ ;

F ¼ 2r

�
λ0 − g

�
c
cs

�
2
�
þ 5; g ¼ −

p0
0

w0

¼ ν0: ðC1Þ

Then the coefficients that appear in the system (41) and
Eqs. (42) can be written as:

C1ðrÞ ¼ −
2rkþmþ1

ðmþ 1Þ2 ; C2ðrÞ ¼
kþmþ1

ðmþ 1Þ2 ½2rgðmþ 1Þ − F − 2m − 1�; C3ðrÞ ¼
r2e−2ν

c2m2ðmþ 1Þ2
�
γ2 þ 8mγ1

c2

c2s

�

G1ðrÞ ¼ Aþ gðm − 1Þ −m
r
; G2ðrÞ ¼

Ac2gðmþ 1Þ2e2ν
4rmk−m

; ΠðrÞ ¼ −
4rme−2νw0

c2ðmþ 1Þ2ð2mþ 1Þ ;
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q1 ¼
ð2mþ 3Þðmþ 1Þ
2ðmþ 2Þð2mþ 1Þ ; q3ðrÞ ¼ −

4rmðrg − 1Þe−2ν
c2ðmþ 1Þ2ðmþ 2Þð2mþ 1ÞAg ;

q2ðrÞ ¼ −
me−2νfrA½rðm − 1Þ2g − 8� þ 8ðrg − 1Þ½rðm − 1Þg −m�g

2c2ðmþ 1Þ2ðmþ 2Þð2mþ 1ÞAg ;

t1 ¼
ðmþ 1Þ3ðmþ 3Þ

2ðmþ 2Þð2mþ 1Þð2mþ 3Þ ; t3ðrÞ ¼ −
4rmðmþ 3Þ½rg − 1�e−2ν

c2ðmþ 1Þðmþ 2Þð2mþ 1Þð2mþ 3ÞAg ;

t2ðrÞ ¼ −
me−2νfrA½rgðm½mðmþ 5Þ þ 7� þ 11Þ − 8ðmþ 3Þ� þ 8ðmþ 3Þðrg − 1Þ½rðm − 1Þg −m�g

2c2ðmþ 1Þðmþ 2Þð2mþ 1Þð2mþ 3ÞAg : ðC2Þ

APPENDIX D: NONBAROTROPICITY
AND THE r-MODE ORDERING

According to several studies [66–68], at high rotation
rates (i.e., those, exceeding g-mode eigenfrequencies), r-
modes can effectively violate the assumed ordering and
behave as if the matter were barotropic. While the analysis
presented in those studies is focused solely on Newtonian
r-modes, the argument, in principle, could be applicable to
relativistic r-modes as well. Indeed, from appendix C we
see that the denominators of the coefficients q2;3 and t2;3
[which define the functions Qmþ1 and Tmþ2, see Eq. (42)]
contain the Schwarzschild discriminant AðrÞ, which is
small due to weak matter nonbarotropicity. For the NS
model, empoyed in this study, it is shown in Fig. 7 along
with the related Brunt-Väisälä frequency N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2gjAj

p
.

Keeping in mind that q2;3 and t2;3 are multiplied by Ω2Tm

and Ω2T 0
m in (42), it is reasonable to question whether the

functions Qmþ1 and Tmþ2 can be considered small (as we

FIG. 7. Dimensionless Brunt-Väisälä frequency (red curve) and
dimensionless absolute value of the Schwarzschild discriminant
(blue curve). Brunt-Väisälä frequency is measured in units of
Keplerian velocity, ΩK≈1752 Hz.

FIG. 8. Ratios Qmþ1=Tm (left panel) and Tmþ2=Tm (right panel) of the eigenfunctions of the fundamental relativistic l ¼ m ¼ 2
r-mode, calculated for the completely nonbarotropic NS model. Different colors correspond to different stellar rotation rates.
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do) at rotation rates typical for the r-mode instability
windows. Figure 8 addresses this question by presenting
the ratios Qmþ1=Tm and Tmþ2=Tm of the relativistic
l ¼ m ¼ 2 r-mode eigenfunctions, calculated for the
completely nonbarotropic stellar model. Different colors
correspond to different rotation rates, ranging from
0.5 ΩK ≈ 876 Hz to 0.01 ΩK ≈ 18 Hz. Note that 0.5 ΩK
is significantly larger than g-mode eigenfrequencies and
we, therefore, could already expect the violation of the

ordering and transition to the effectively barotropic behav-
ior. In reality, however, we see that for all considered
rotation rates the functions Qmþ1 and Tmþ2 are small
compared to the toroidal eigenfunction Tm, indicating that,
at least in our model, the ordering of the considered
fundamental l ¼ m ¼ 2 r-mode is not affected by rapid
rotation, and can be safely considered quasitoroidal at any
reasonable rotation rate. This result resembles that of
Yoshida & Lee [66] for the Newtonian l ¼ m r-modes.
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