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Recent advancements in gravitational wave astronomy have seen the application of convolutional neural
networks (CNNs) in signal detection from compact binary coalescences. This study presents a comparative
analysis of twoCNNarchitectures: one-dimensional (1D) and two-dimensional (2D) alongwith an ensemble
model combining both. We trained these models to detect gravitational wave signals from binary black hole
(BBH)mergers, neutron star-black hole (NSBH)mergers, and binary neutron star (BNS)mergers within real
detector noise. Our investigation entailed a comprehensive evaluation of the detection performance of each
model type across different signal classes. To understand the models’ decision-making processes, we
employed feature map visualization and attribution analysis. The findings revealed that while the 1D model
showed superior performance in detecting BBH signals, the 2D model excelled in identifying NSBH and
BNS signals. Notably, the ensemble model outperformed both individual models across all signal types,
demonstrating enhanced detection capabilities. Additionally, input feature visualization indicated distinct
areas of focus in the data for the 1D and 2D models, emphasizing the effectiveness of their combination.
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I. INTRODUCTION

The era of gravitational wave (GW) astronomy was
inaugurated with the first direct detection of GWs from a
binary black hole (BBH) merger by the Advanced Laser
Interferometer Gravitational-wave Observatory (Advanced
LIGO) [1] in 2015 [2]. This groundbreaking discovery was
followed by the first joint observation of GWs and electro-
magnetic counterparts from a binary neutron star (BNS)
merger, achieved by Advanced LIGO, Advanced Virgo [3],
and other telescopes, paving the way for multimessenger
astronomy [4]. Over the course of three observing runs
(O1, O2, and O3), 90 GW events from compact binary
coalescences (CBCs) were reported [5–8]. These events
included two neutron star-black hole (NSBH) mergers [9]
and two BNS mergers [10,11]. The detection of GWs,
alongside electromagnetic waves and neutrinos from these

mergers, is vital for understanding the physical properties of
neutron star interiors, which are reflected in their equation of
state. Now, with the commencement of the fourth observing
run (O4) in May 2023, which includes the participation of
KAGRA[12], expectations are high formoreGWdetections
from binary systems with neutron stars.
Traditionally, GWs from CBC sources have been ana-

lyzed using the matched-filtering technique [13] with
theoretical approximants, phenomenological models, and
templates derived from numerical simulations [14,15]. In
this technique, the signal-to-noise ratio (SNR) is computed
by correlating the detector’s strain data with each template
in a large bank that covers a wide parameter space, taking
into account variations in source masses and/or spins. This
method, however, can be computationally intensive, espe-
cially for complex GW signals that incorporate elements
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such as higher-order modes, precession, or orbital eccen-
tricity. This complexity underscores the need for more
efficient algorithms to manage the growing volume of
GW data.
In response to this challenge, deep learning approaches,

particularly convolutional neural networks (CNNs), have
been increasingly applied in the GW field. These applica-
tions range from parameter estimation of CBC sources
[16,17] to sky localization [18–20] and classification of
transient noises [21–23]. The effectiveness of CNNs in
detecting GWs from BBH mergers was first demonstrated
in 2018 by George and Huerta [24] and Gabbard et al. [25].
These initial studies have since been expanded to include
more sophisticated models that use real detector noise and
account for various signal complexities like the spin effect,
precession, higher-order modes, or eccentricity [26–40].
There are also some studies targeting BNS [41–48] or
NSBH signals [49–53], which are more challenging than
BBH signals due to their longer duration and smaller
amplitude.
Two main types of CNNs have been employed in this

research: one-dimensional (1D) CNNs, which process
whitened time-series data, and two-dimensional (2D)
CNNs, which analyze time-frequency maps. Although
most studies have favored 1D CNNs [24–28,30,31,34–
36,39,41–44,46,47,50,52,53], a subset has opted for 2D
CNNs [32,33,40,45,48,49,51]. 1D CNNs are preferred for
their efficiency in not generating time-frequency maps,
thereby reducing processing time. On the other hand, 2D
CNNs excel at capturing the temporal evolution of GW
frequencies in their input. For the analysis of GWs from
core-collapse supernovae, Iess et al. [54] conducted a
comparative study of 1D and 2D CNNs, alongside long
short-term memory networks. Their approach involved
combining these models by averaging their outputs.
However, to our knowledge, a similar comprehensive
comparison of various CNN architectures for CBC sources
has not been extensively explored.
A common method for analyzing and interpreting CNNs

involves pinpointing the segments of input data that
significantly influence the model’s predictions. This analy-
sis can be performed using class activation mapping
(CAM) techniques [55] or by assessing the contribution
of each input feature to the model’s output. In our prior
research [56], we applied CAM techniques to a CNN
classifier designed for GWs from core-collapse supernovae.
This investigation revealed that the model primarily
focused on specific GW modes within the input spectro-
gram to make predictions.
In the current study, we train both 1D and 2D CNN

models to detect and classify GWs from CBC sources. We
then develop an ensemble model that combines these two
CNN types. Our analysis includes a detailed comparison of
the detection performance of these models across each type
of CBC signals. To distinguish the different aspects that 1D

and 2D models focus on within the input, we employ the
integrated gradients technique [57]. This approach allows
us to identify the influential regions in the input that guide
the models’ predictions, revealing distinct areas of focus
between the 1D and 2D models.
The paper is organized as follows. Section II details our

datasets, the architecture of the CNN models, and the
theoretical background of the CNN analysis methods.
Section III presents the classification performance and a
comprehensive analysis of our trained models. Finally, we
conclude our findings in Sec. IV.

II. METHOD

Our CNN models are trained to classify strains at three
detectors LIGO Hanford (H1), LIGO Livingston (L1), and
Virgo (V1) into four distinct classes: BBH, NSBH, BNS,
and pure noise. This section provides a detailed description
of the datasets used for both training and testing our
models. Following this, we describe the architecture and
training procedures of the CNN models. Lastly, we address
the dimensionality reduction technique implemented in our
study, as well as the methodology employed for computing
feature attribution, which are crucial for interpreting the
models’ decision-making processes.

A. Dataset

To train and test our model, we used nonprecessing
CBC signals and injected them into noise obtained from
O3 real data at H1, L1, and V1, which are available at the
Gravitational Wave Open Science Center [58].

1. Signal and noise generation

To construct our datasets, nonprecessing CBC signals
were generated using the LIGO Algorithm Library
Suite (LALSuite) [59]. Specifically, BBH signals were
simulated using the SEOBNRv4 approximant [60], based
on the effective-one-body method, while NSBH and BNS
signals were generated using the SpinTaylorT4 approx-
imant [61], a time-domain post-Newtonian model incor-
porating spin effects. For BBH signals, component masses
were uniformly sampled in the range of 5 to 80M⊙. NSBH
signals had NS masses sampled between 1 and 2M⊙,
and BH masses between 5 and 35M⊙. The component
masses of BNS signals ranged uniformly from 1 to 2M⊙.
The individual components have spins aligned with the
orbital angular momentum, uniformly distributed between
0 and 0.99. These waveforms were sampled at a rate of
4096 Hz. We used four-second data segments, with the
merger event uniformly placed between 3.8 and 3.9 sec.
Although NSBH and BNS signals are typically longer
than 4 sec, we found this segment length is sufficient to
discriminate between different classes. The use of shorter-
segment signals also reduces the memory requirements for
training models. The sky position of the source, defined by
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declination and right ascension, was randomly selected,
and GW amplitude calculations were performed consider-
ing the antenna pattern functions and time delays
across detectors. These computations utilized the PyCBC

library [62].
For noise samples and background noise for signal

samples, real strain data from GPS time 1238163456
to 1238659072 was used for the training set, 1238663168
to 1239162880 was used for the validation set, and
1239166976 to 1239875584 was used for the test set.
Data around the GW event time reported in the GWTC-2.1
catalog [7] were excluded.

2. Preprocessing

After the signal samples were truncated to four-second
segments, they were scaled based on the computed optimal
matched-filter SNR, defined as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

Z
fmax

fmin

jh̃ðfÞj2
SnðfÞ

df

s

; ð1Þ

where h̃ðfÞ is the Fourier transform of the truncated signal
and SnðfÞ is the one-side power spectral density of the
noise, estimated using Welch’s method [63]. The integra-
tion was performed from a cutoff frequency of 20 Hz up to
the Nyquist frequency. The training and validation signals
were scaled so that the network SNR of the three detectors,
given by

ρnet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2H1 þ ρ2L1 þ ρ2V1

q
; ð2Þ

followed a uniform distribution between 8 and 24, while the
SNRs of the test signals ranged from 3 to 24. After each
signal was injected in noise, we whitened the sample in
frequency domain using the power spectral density. For the
input to the 2D CNN model, we generated time-frequency
maps using the Q transform [64] of the whitened samples,
defined by

Xðτ;ϕ; QÞ ¼
Z

∞

−∞
x̃ðf þ ϕÞw̃�ðf;ϕ; QÞe2πifτdf; ð3Þ

where Q is the quality factor, and the Connes window
functions is used as the window function [65].
The final dataset comprised 408,000 training samples,

408,000 validation samples, and 528,000 test samples.
Each dataset had an equal distribution of 25% BBH,
25% NSBH, 25% BNS, and 25% pure noise samples.
Representative samples from each class in the training set
are displayed in Fig. 1.

B. Model

1. 1D CNN

One-dimensional CNN consists of 1D convolutional
filters. Let xci be the ith value of the cth channel of the
input series and ymi be the ith value of the mth channel
of the output. The output of a 1D convolutional filter is
given by

ymi ¼
XC−1

c¼0

XK−1

k¼0

wm
k x

c
iþk þ bm; ð4Þ

FIG. 1. Example strain data at H1 detector in the training set. The upper figures show the whitened time-series data used as input to the
1D model, and the lower figures show the time-frequency maps for the 2Dmodel. The component masses of the BBH signal are 51.3M⊙
and 50.9M⊙, whereas in the NSBH sample, the respective masses are 33.3M⊙ and 1.83M⊙, and the masses of the BNS sample are
1.54M⊙ and 1.40M⊙. The single-detector SNR of each signal is 15, and the merger time is fixed at 3.9 s.
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where K is the kernel size and C is the number of input
channels. Weight parameters w and bias parameters b are
learned during training processes.
Our 1D CNN model takes a three-channel whitened time

series at H1, L1, and V1 as input. Our implementation
uses a 54-layer deep residual network (ResNet-54) which
was proposed in Ref. [39]. ResNet is a type of deep CNN
architecture that uses residual blocks to address the
vanishing gradient problem commonly encountered in
deep networks. It achieves this by adding skip connections
between layers, enabling the network to learn residual
functions and make training deep networks more
efficient [66]. Details of the ResNet-54 model architecture
can be found in Ref. [39].
For input normalization, a deep adaptive input normali-

zation layer [67] is employed in this analysis as used in
Ref. [39] to address nonstationary noise that appears in real
detector noise. In this layer, unlike conventional normali-
zation, shifting and scaling parameters for normalizing the
input are optimized during the training. Including the
parameters in the normalization layer, the model has a total
of 1,935,698 trainable parameters.
The employed architecture is one of the state-of-the-art

models in BBH detection that surpassed the matched-
filtering pipeline in a specific condition [39]. Alternatively,
we also employed the CNN architecture used in Ref. [52]
designed to detect all types of CBC signals, however, it did
not show a better performance than the ResNet-54 model in
our datasets.

2. 2D CNN

Two-dimensional CNN consists of 2D convolutional
filters. Let xci;j be the ði; jÞ component of the cth channel
of the input image and ymi;j be the ði; jÞ component of the cth
channel of the output. The output of a 2D convolutional
filter is given by

ymi;j ¼
XC−1

c¼0

XK−1

k¼0

XL−1

l¼0

wm
k;lx

c
iþk;jþl þ bm; ð5Þ

where ðK;LÞ is the kernel sizes and C is the number of
input channels. Weight parameters w and bias parameters b
are learned during training processes.
The ResNet-50 model [66], a variant of ResNet with

proven efficacy in image recognition tasks, forms the basis
of our 2D CNN. This model processes three-channel
images of time-frequency maps and includes 23,508,548
trainable parameters. We adopt this model because it is one
of the most widely used 2D CNNs in GW signal detection
and has a similar number of layers to our 1D model. Its
efficiency has been validated in previous studies [45,49,51].

3. Ensemble model

In our ensemble approach, we combine the outputs of the
1D and 2D CNN models to enhance predictive perfor-
mance. This is achieved by first training a fully connected
neural network, which takes as input a concatenated vector
of features extracted from the trained 1D and 2D models.
The input vector, with a dimension of 10240, is processed
through a hidden layer of 200 units, outputting a four-
dimensional vector. The network incorporates a Leaky
ReLU layer [68] and a dropout layer [69] with a 0.25
dropout rate for regularization. The ensemble network
comprises 2,049,004 trainable parameters.
For the final model output, we employ a weighted

average of the predictions from the 1D, 2D, and ensemble
network. The weights, optimized for accuracy on the
validation set, are set at 0.4 for each of the 1D and 2D
CNNs and 0.2 for the ensemble network. The ensemble
model is illustrated in Fig. 2.

4. Training process

Both the 1D and 2D CNN models, as well as the
ensemble network, were developed using the PyTorch
library [70] and trained on four NVIDIA Tesla V100
GPUs. All models were trained using categorical cross
entropy as the loss function and Adam optimizer [71]
with an initial learning rate of 10−3. The learning rate was
controlled by PyTorch’s ReduceLROnPlateau method.
During the training of the 1D and 2D CNNs, we

FIG. 2. Illustration of the ensemble model. The final output is
the weighted average of the outputs from the 1D CNN, 2D CNN,
and ensemble network.
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implemented the curriculum learning technique [72].
This method involves initially training with high SNR
samples and progressively incorporating lower SNR sam-
ples, thereby improving learning efficiency and model
performance.
The 1D CNN underwent 300 epochs of training with a

minibatch size of 1024. In contrast, the 2D CNN was
trained for 45 epochs using a minibatch size of 36. The
ensemble network’s training lasted for 25 epochs with a
minibatch size of 256.

C. t-distributed stochastic neighbor embedding

To understand the ability of 1D and 2D convolutional
filters to extract meaningful features from the input for
classification, we analyzed feature maps from the final
convolutional layer. Given the high-dimensional nature of
these feature maps, we utilized the t-distributed stochastic
neighbor embedding (t-SNE) technique [73] for dimen-
sionality reduction.
In the original space, the conditional probability pjji that

a data point xi would pick a data point xj as its neighbor
is modeled as a Gaussian distribution centered at xi,
defined as

pjji ¼
expð−kxi − xjk2=2σ2i ÞP
k≠i expð−kxi − xkk2=2σ2i Þ

; ð6Þ

where σi is the standard deviation. We define the joint
probability pij as the symmetrized conditional probabil-
ities, which can be expressed as pij ¼ ðpjji þ pijjÞ=2n,
where n is the number of data points. In the low-
dimensional space, the student t distribution with 1 degree
of freedom, defined by

qij ¼
ð1þ kyi − yjk2Þ−1P
k≠lð1þ kyk − ylk2Þ−1

; ð7Þ

is used to quantify the similarity of data points. The optimal
low-dimensional representations are obtained by minimiz-
ing the Kullback-Leibler divergence of the distributions pij

and qij, given by

C ¼
X

i;j

pij log
pij

qij
: ð8Þ

The value of σi in Eq. (6) is determined by selecting the
hyperparameter called perplexity, which is defined as 2 to
the power of the Shannon entropy. The perplexity can be
interpreted as a measure of the number of valid neighbors,
and typical values are between 5 and 50 [73]. We set the
perplexity at 25.

D. Integrated gradients

To discern which aspects of the inputs significantly
influence the predictions in our trained 1D and 2D models,
we employed the integrated gradients method [57]. While
class activation mapping techniques [55,74] are commonly
used for such analysis, they often yield low-resolution
saliency maps, especially in deep models. To circumvent
this limitation, the integrated gradients method provides
high-resolution feature attribution maps, proving advanta-
geous for our analysis.
The integrated gradients method is grounded in two

axioms that attribution methods should satisfy: (i) sensitiv-
ity, where any difference in one feature between the input
and the baseline resulting in different predictions should
receive a nonzero attribution, and (ii) implementation
invariance, where the attributions for two functionally
equivalent networks should be always identical.
Consider a function F that represents a network and let x

be the input and x0 be the baseline input. The feature
attribution map is calculated by examining the path from
the baseline x0 to the input x and accumulating the
network’s gradients along this path. A point on this path
can be expressed as x0 þ αðx − x0Þ where α varies from 0 to
1. The integrated gradients along the ith dimension for an
input x are defined as

IGiðxÞ ¼ ðxi − x0iÞ
Z

1

0

∂Fðx0 þ αðx − x0ÞÞ
∂xi

dα: ð9Þ

In practice, this integration is approximated using the
Riemann sum, described as

IGiðxÞ ≈ ðxi − x0iÞ
XN

k¼1

∂Fðx0 þ k
N ðx − x0ÞÞ
∂xi

1

N
: ð10Þ

Here N represents the number of interpolation steps. For
accurately approximating the integral, a step size ranging
from 20 to 300 is typically effective [57]. In our imple-
mentation, we choseN ¼ 30 steps. The Captum library [75]
was utilized to compute the attribution maps using the
integrated gradients method.

III. RESULTS AND DISCUSSION

A. Model performance

To evaluate the performance of our three models (1D,
2D, and the ensemble model), we first examined the
receiver operating characteristic (ROC) curves for each
signal type. The ROC curve plots the true alarm probability
(TAP) against the false alarm probability (FAP) at various
classification thresholds. As depicted in Fig. 3, the ROC
curves for each type of GW signal at a fixed network SNR
of 8 show distinctive sensitivities.
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It was observed that all models exhibited the highest
sensitivity to BBH signals, followed by NSBH and BNS
signals. This trend aligns with expectations considering the
relative amplitude of each signal type. Notably, the ensem-
ble model demonstrated superior performance across all
signal types. For BBH signals, the performance ranking
was ensemble, followed by the 1D and then the 2D model.
In contrast, for NSBH and BNS signals, the 2D model
outperformed the 1D model. This variation in performance
can be attributed to the transient nature of BBH signals,
which are more effectively captured by the 1D convolution
in time-series data. Conversely, the smaller amplitudes of
NSBH and BNS signals, which are more challenging to
identify in time-series data, render the 2D model more
effective. This difference highlights the effectiveness of
combining the 1D and 2D models.
We further calculated the detection sensitivity for each

signal type as a function of network SNR. Figure 4 shows the
sensitivity curves for the three models at a fixed FAP of
0.001. The 1D model’s sensitivity is on par with that
reported in Ref. [52], where the model was trained using
single-detector input. Their model’s sensitivity saturates at a
single-detector SNRof ρL1 ≥ 8 for BBH signals, at ρL1 ≥ 10

for NSBH signals, and at ρL1 ≥ 13 for BNS signals. Our 1D
model, however, reaches saturation for BBH signals at
ρnet ≥ 12, for NSBH signals at ρnet ≥ 17, and for BNS
signals at ρnet ≥ 22. Given that the network SNR of three
detectors is roughly

ffiffiffi
3

p
times that of a single-detector SNR,

the performance of our 1D model is consistent with their
model. The ensemble model further enhances this perfor-
mance, lowering the saturation SNRs to 10 for BBH signals,
14 for NSBH signals, and 21 for BNS signals.

B. Feature map

We extract feature maps from the final convolutional
layers. Since these vectors are fed into fully connected
layers to make predictions, these feature maps represent the
characteristics of each class. Figures 5 and 6 display the
t-SNE projections of the feature maps for the trained 1D
and 2D models, respectively. For these visualizations, we
randomly selected 200 samples from the test set. In the
figures, the size of each marker representing a signal
sample is proportional to its SNR. Smaller markers indicate
lower SNR signals, while larger markers correspond to
higher SNR signals.

FIG. 4. Sensitivity curves of the three models for BBH, NSBH,
and BNS signals at a fixed false alarm probability of 0.001. The
SNRs are computed with four-second signals.

FIG. 5. Two-dimensional representations of feature maps of the
1D model by t-SNE. The marker size of signal sample corre-
sponds to the SNR.

FIG. 3. ROC curves of the three models for BBH, NSBH, and
BNS signals at a fixed network SNR of 8. The SNRs are
computed with four-second signals.
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Figure 5 shows that the high-SNR BBH and NSBH
samples are distinctly separated from the noise cluster,
indicating effective classification of these signals by the 1D
model. However, BNS samples are observed to be closer to
the noise cluster, suggesting less clear differentiation for
this signal type. Low-SNR signals across all types are more
diffusely distributed within the noise cluster. In contrast,
Fig. 6 indicates that the 2D model has an improved ability
to separate not only the BBH and NSBH signals but also
the BNS signals from the noise cluster. This indicates that
the 2Dmodel may be more proficient at identifying features
of BNS signals compared to the 1D model.
Additionally, we explored embedding the feature maps

into a three-dimensional space. However, this analysis
revealed similar characteristics to those observed in the
two-dimensional embeddings.

C. Attribution map

To understand how input features contribute to model
predictions, we generated attribution maps for each type of
signal using the integrated gradients method. For this
analysis, a single signal was randomly selected from the
test set, and ten distinct noise samples were added to create
10 different input samples. Attribution maps were produced
for each input sample, and their average was computed to
discern universal characteristics of the attribution.
Figures 7–9 present the attribution maps for a BBH,

NSBH, and BNS signal, respectively, as identified by the
1D and 2D models. Each signal had a fixed network SNR
of 20, and the attribution maps for both models were
normalized to a [0, 1] range. The bottom plots in Figs. 7–9
show the values of integrated gradients summed over all
frequencies for each time bin for 1D and 2D model,

respectively. The values are normalized to a maximum
integrated gradients of one for each model.
In Fig. 7, the 1D model shows significant contributions

from data at the coalescence time of the BBH signal. In
contrast, the 2D model’s attribution map indicates that the
2D model focuses on the entire inspiral signal. Both the 1D
and 2D models exhibit similar characteristics when inte-
grated-gradients values are temporally aggregated, how-
ever, the 2D model sees data at more broader time frame
than the 1D model.
As for the NSBH signal, the 1D model exhibits multiple

peaks in the integrated gradients values before the coa-
lescence, with the peak values progressively increasing,
shown in Fig. 8. Since the model not only detects the signal
but also classifies it into three classes, the data prior to
the time of coalescence seem to be more significant than the
data at the time of coalescence for determining that the
signal is NSBH, not BBH. In the 2D model, the feature
contribution of the entire inspiral is large, as in the case of
the BBH signal. Similar characteristics of the NSBH
sample are seen in the BNS sample in Fig. 9, but in the
case of 1D attribution map of the BNS sample, peaks are

FIG. 7. Attribution maps of the 1D and 2D models for a BBH
signal and corresponding input samples at H1 detector. The
component masses are 37.7M⊙ and 6.94M⊙. The red dashed line
shows the time of coalescence. The bottom plot shows the values
of integrated gradients summed over all frequencies for each
time bin.

FIG. 6. Two-dimensional representations of feature maps of the
2D model by t-SNE. The marker size of signal sample corre-
sponds to the SNR.
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also seen at earlier times and the overall values of the
integrated gradients are generally identical. This indicates
that the model focuses on various parts of the input time
series data, which is reasonable because the inspiral signal
is longer than the other signals. The 2D attribution map of
the BNS sample shows that the 2D model accurately
captures the BNS chirp signal on the input spectrogram,
and it demonstrates the consistent performance of the 2D
model for BNS events. The temporally aggregated attri-
bution maps have similar characteristics for each signal
type for the 1D and 2D models, but the 2D model shows a
greater emphasis on longer signal durations than the
1D model.
In summary, from the attribution maps, we observe that

the 1D model places greater emphasis on the time preced-
ing coalescence, especially as the waveform lengthens,
with significant contributions from specific moments in the
inspiral phase. Conversely, the 2D model assesses the entire
chirp waveform in the spectrogram, classifying based on
the shape of the chirp, i.e., the temporal evolution of its
frequency.

IV. CONCLUSIONS

In this study, we explored the application of three distinct
models: a 1D CNN, a 2D CNN, and an ensemble model for
detecting and classifying GWs from CBC sources. The 1D
model, trained on whitened time-series data, excelled in
identifying BBH signals, while the 2D model, trained on
Q-transformed spectrograms, showed superior performance
with NSBH and BNS signals. Overall, the ensemble model
demonstrated the most robust classification capability
across all signal types.
The effectiveness of combining 1D and 2D models was

further reinforced through feature map visualization using
the t-SNE technique and attribution map analysis via the
integrated gradients method. We observed that the 1D
model tends to focus on data preceding the merger time,
especially as signal duration increases. In contrast, the 2D
model scrutinizes the entire chirp waveform, capturing the
intricacies of GW signals more comprehensively. These
differences in focus and performance between the models
highlight the benefits of their integration.
While our study presents results based on a specific

selection of architectures for 1D and 2D CNNs, it is

FIG. 9. Attribution maps of the 1D and 2D models for a BNS
signal and corresponding input samples at H1 detector. The
component masses are 1.18M⊙ and 1.15M⊙. The red dashed line
shows the time of coalescence. The bottom plot shows the values
of integrated gradients summed over all frequencies for each
time bin.

FIG. 8. Attribution maps of the 1D and 2D models for a NSBH
signal and corresponding input samples at H1 detector. The
component masses are 6.78M⊙ and 1.99M⊙. The red dashed line
shows the time of coalescence. The bottom plot shows the values
of integrated gradients summed over all frequencies for each
time bin.
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important to recognize that the field offers a wide variety of
CNN architectures. Future research exploring additional
architectures may provide a more comprehensive under-
standing and validation of the conclusions drawn in
this study.
We discussed the performance of the models by fixing a

FAP at 0.001, but given that each data sample is 4 s long,
this would result in roughly one false positive every hour,
making our method insufficient for real application.
Efficiency could be enhanced by incorporating a sub-
sequent model, such as a binary classifier differentiating
BBH signals from noise, to further reduce the FAP.
Validation is also required to address unbalanced data,
considering the source population.
Our classification models hold potential for analyzing

long continuous data through a sliding window approach.
Although our models were trained to identify GW signals
occurring between 3.8 and 3.9 sec within four-second
segments, sliding input window with a step size, for
example, of 0.1 seconds, allows us to detect signals at
any time point in principle. However, this approach may
lead to encountering multiple triggers within a single event,
requiring further tuning, which will be addressed in future
studies.
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