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The existing matched filtering method for gravitational wave (GW) search relies on a template bank.
The computational efficiency of this method scales with the sizes of the templates within the bank. Higher-
order modes and eccentricity will play an important role when third-generation detectors operate in the
future. In this case, traditional GW search methods will hit computational limits. To speed up the
computational efficiency of GW searches, we propose the utilization of a deep learning (DL) model bank as
a substitute for the template bank. This model bank predicts the latent templates embedded in the strain
data. Combining an envelope extraction network and an astrophysical origin discrimination network, we
realize a novel GW search framework. The framework can predict the GW signal’s matched filtering signal-
to-noise ratio (SNR). Unlike the end-to-end DL-based GW search method, our statistical SNR holds
stronger physical interpretability than the pscore metric. Moreover, the intermediate results generated by our
approach, including the predicted template, offer valuable assistance in subsequent GW data processing
tasks such as parameter estimation and source localization. Compared to the traditional matched filtering
method, the proposed method can realize real-time analysis.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) holds
immense value for both validating and refining physical
theories, as well as advancing our understanding of
cosmology. Managed by the LIGO-VIRGO-KAGRA
(LVK) Collaboration, the second-generation ground-based
GW detectors have successfully identified more than 90
confident events originating from compact binary coales-
cences (CBCs) throughout their first, second, and third
observing runs [1–4]. These data have effectively substan-
tiated general relativity [5] and facilitated the measurement
of the Hubble constant [6]. Additionally, these data have
been employed to explore evidence of cosmic strings [7],
continuous GWs [8], and stochastic GW backgrounds [9].
For differences in the detectable frequency bands, space-
based GW detectors [10–12] and third-generation (3G)
ground-based detectors [13,14] will substantially enhance
the diversity and quantity of astrophysical sources associ-
ated with GWs. Consequently, the GW search pipeline must
continually improve to meet the forthcoming challenges.

The LVK organization employs PyCBC [15], GstLAL
[16],MBTA [17], SPIIR [18], andCWB [19] for the searches
of GW signals. The CWB uses an unmodeled method,
whereas the other four pipelines are all based on the template
waveforms and the matched filtering (MF) technique.
Although MF offers the benefit of being physically inter-
pretable, it suffers from the drawbackof having lowcomputa-
tional efficiency due to the large amount of the template
waveforms. When the higher-order modes and orbit eccen-
tricity play an important role in the 3G era, current template-
bank-based algorithms will hit computational limits.
To speed up the MF-based GW search method, in this

work, a deep learning (DL) model bank is proposed to
substitute for the waveform bank. The templates are
predicted by the DL model bank rather than contained
in a waveform bank. Notably, the outputs of the proposed
method correspond to matched filtering signal-to-noise
ratios, and the advantage of the proposed method is the
accelerated computational speed.
DL methods for GW detection have been extensively

investigated. Back in 2018, George et al. [20] and Gabbard
et al. [21] independently showcased the potential of a
DL-based algorithm for GW detection. Thus far, the*Corresponding author: zjcao@amt.ac.cn
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DL-based approaches for GW detection have undergone
significant development [22–34]. Furthermore, there also
have been various endeavors to utilize deep learning for
other aspects of GW data processing, such as localizing the
astrophysical origin [35,36] and estimating the parameters
of GW sources [37–40].
Like computer vision [41] and nature language process-

ing [42] tasks, DL-based GW detection can often exhibit a
black-box nature. This characteristic makes the end-to-end
DL models for GW detection less suitable for making
statistically significant claims about gravitational wave
detections [43]. One contribution of our work is that we
propose a novel scheme for GW search with feedback.
Instead of directly performing the end-to-end GW detection
task, we use DL models for template prediction, and these
predicted templates are then integrated into the conven-
tional MF (matched filtering)–based method.
The results show that most of the confident events in

GWTC-1, GWTC-2, GWTC-2.1, and GWTC-3 can be
identified. Notably, the proposed method is physically
interpretable, because other than the pscore in the previous
DL-based detection method [20,21], the event significance
is measured by the signal-to-noise ratio, and the signifi-
cance of each coincident trigger can be estimated by
calculating the false-alarm rate (FAR).
Most of the time slices only contain background noise.

Almost all the DL-based GW detection methods have a
disadvantage in using a time-sliding method with a small
time-sliding step [28]. To address this drawback, we use the
coalescence-time information predicted by the envelope
extraction model [31] to align the data analysis window.
When the coalescence time is obtained, the potential
templates will be predicted by the models in the denoising
model bank.
The potential templates derived from the denoisingmodel

cannot be directly employed for MF, due to the possibility
that the denoised output might not accurately resemble
the binary black hole (BBH) GW shape. To address this
concern, we propose the astrophysical origin identification
models to determine whether the denoised waveform
corresponds to the BBHGW shape. The potential templates
are selected by these proposed identification models.
The temporal extent of the GW signal within the

sensitivity band of the LIGO-VIRGO-KAGRA network
is influenced by the masses of the binary system. For BBH
systems, this duration ranges from a fraction of a second
for higher masses to a few seconds for lower masses.
Recognizing this variability, we organize the denoising
model bank to account for specific subparameter spaces.
These subspaces are defined by dividing the parameter
range based on the binary system’s masses. Consequently,
each model in the denoising model bank is focused on
templates within a particular subparameter space. The input
duration for denoising models is then adjusted according to
the corresponding subparameter space.

This paper is organized as follows: The proposed
framework and the key stages in the framework are
introduced in Sec. II. In Sec. III, we describe the training
datasets and training schemes for the neural networks in the
proposed framework. In Sec. IV, we describe the results of
the stages tested by the test dataset, the test results against
the real confident events reported by LIGO-VIRGO-
KAGRA Collaboration, and our model performance
against half a month of detected data by the Hanford
detector. The conclusion and discussion are given in Sec. V.

II. DEEP LEARNING FRAMEWORK FOR
MATCHED SIGNAL-TO-NOISE RATIO

PREDICTION OF GRAVITATIONAL WAVES

To alleviate the computational overhead issue of the
MF-based method, we propose a mutistep processing
method as shown in Fig. 1. The whole framework consists
of four key stages: significant time prediction (STP),
preliminary templates prediction (PTP), template selection
(TS), and matched filtering (MF). The details of the four
stages will be introduced in the following four subsections.
For reference convenience, we call the newly proposed
framework MSNRnet.

A. The significant time prediction stage

The output of the STP stage is a time set St ¼
ft1; t2; t3;…g, where ti is the significant time. These
significant times correspond to the coalescence time
predicted by the envelope prediction network. If the strain
data only contain background noise, the time set vanishes:
St ¼ ∅. We feed the whitened strain sX (the subscript
X∈H;L denoting the Hanford or Livingston interferom-
eter) to the envelope extraction network. The relation
between sX and the output of the envelope prediction
network (ĥenvX ) can be denoted as

ĥenvX ¼ EnvNetðsXjWenvÞ; ð1Þ

where EnvNet represents a parametrized system which is
proposed in [31], andWenv represents the trainable weights
of the envelope extraction model. If maxðĥenvX Þ > 0.5,
then the coalescence time of interferometer X can be
predicted by

tX ¼ Δt × argmax
n

ĥenvX ðnÞ; ð2Þ

where Δt is the sampling period, ĥenvX ðnÞ represents the
predicted envelope amplitude at time n × Δt, and argmaxn
means the index n which maximizes the envelope. In this
work, we employ the envelope extraction model trained in
[31] for direct envelope prediction. The envelope extraction
method proposed in [31] was used to test the coalescence
time of different detectors (Hanford and Livingston).
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By contrast, the network is used to quickly find out the
potential time segments that may contain GWs in the
current work. In the STP stage, coincidence between
the two detectors is not required. In cases where signals
are strong in one detector but relatively weak in the other,
the envelope extraction network may successfully extract
the envelope from only one detector. In such instances,
significant timing information will be predicted from just
one detector. The algorithm in [31] used a scheme that
forced coincidence, resulting in the omission of many
signals in the work’s results.

B. The preliminary templates prediction stage

In the case St ≠ ∅, the PTP stage will be triggered. The
outputs of the PTP stage are two template sets SHPT ¼
fĥ1H; ĥ2H; ĥ3H;…g and SLPT ¼ fĥ1L; ĥ2L; ĥ3L;…g, where ĥiX
denotes the ith preliminary predicted template waveform.
In the PTP stage, a DL model bank is used. The DL model
bank is a set of DL models for denoising. The DL model
bank can be denoted as

SDM ¼ fDenoiseModeliji∈ ½1; NM�g; ð3Þ

where NM is the number of the denoising models. Suppose
the input of DenoiseModeli is siX ∈R1×Mi , where Mi ¼
Ti × 4096, Ti is the time duration of the input strain of
DenoiseModei. The output can be denoted as

ĥiX ¼ DenoiseModeliðsiXjWModiÞ; ð4Þ

where ĥiX is the denoised strain. WModi denotes the train-
able weights of DenoiseModeli, which can be optimized by

WModi ¼ arg min
WModi

1

NT

X
kDenoiseModeli

ðsi;kX jWModiÞ − hi;kX k2; ð5Þ

where hi;kX denotes the whitened signal buried in the kth
whitened strain sample.
In contrast to recent approaches in GW denoising, like

WaveNet [44], LSTM [45], and WaveFormer [46], our
methodology employs a multitude of models. Each denois-
ing model only focuses on a subset of the parameter space.
The source parameter of the BBH is divided by the mass
range of the binaries. The time duration of the GW signals
within the sensitivity band of the detector network varies
along with the BBH masses of the system. For the PyCBC
pipeline, the candidate and background events are divided
into three search classes based on template length [47,48].
Motivated by this, the input length of the denoising model
varies with the concerned parameter range. The subpara-
meter spaces and the input strain lengths of the denoising
models are listed in Table I.
The U-Net-like model for the envelope extraction task is

quite effective [31]. We have also adopted the U-Net-like
model for denoising, and its structure is shown in Fig. 2.
We use the same model structure for all the denoising

FIG. 1. The diagram of the proposed GW detection framework MSNRnet.

TABLE I. The subparameters and input strain lengths of
denoising models. The unit of the BBH’s mass is M⊙.

m1

m2 (5,10] (10,20] (20,40] (40,80]

(5,10] 2.00 s 1.75 s 1.50 s 1.25 s
(10,20] � � � 1.50 s 1.00 s 0.75 s
(20,40] � � � � � � 0.75 s 0.50 s
(40,80] � � � � � � � � � 0.25 s
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models in the model bank. But we let the input shape of the
denoising models vary with respect to the parameters of
BBH. The different denoising models in the model bank are
in charge of different parameter spaces. They are trained
with different data with different input shapes.

C. The template selection stage

The astrophysical origin discrimination networks are used
in this stage. The inputs of this stage are the preliminary
templates SXPTP ¼ fĥ1X;…; ĥNM

X g, and the outputs of this
stage are the selected templates that will be used in the
matched filtering stage. Suppose the selected templates
comprise a set SXTem. If a preliminary template generated

by the denoisingmodel does not have aGWwaveformshape,
the matched filtering results will not reflect the GW’s SNR
information. Therefore, before the matched filtering stage,
we select the templates according to the feature of the GW
waveform shape. The STP stage does not mandate the
coincidence phase. During the TS stage, we employ the
Hanford and Livingston coincidence strategy. The predicted
templates from both the Hanford and Livingston interfer-
ometers, possessing shapes of astrophysical origin, will be
selected. However, the coincidence strategy has a disadvant-
age, in that it may result in missing some signals. Instances
like GW170818, which were strong in one detector but
relatively weak in the other, would be overlooked in the
current scheme due to the requirement for coincidence.

FIG. 2. Network structure of the denoising models.
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We constructed astronomical origin discrimination net-
works, fAstroDisNetig, i ¼ 1;…; NM, to do the selection
work. An astrophysical origin discrimination network is a
classification model which can distinguish the astronom-
ically original waveforms from artificial ones. Plugging ĥiX
(the output of the ith denoising model of interferometer X)
into AstroDisNeti, we obtain the output oiastro;X, where i
denotes the ith astrophysical discrimination network and X
denotes the interferometer:

oiastro;X ¼ AstroDisNetiðĥiXjWastroiÞ; ð6Þ

where Wastroi denotes the trainable weights and is opti-
mized by

Wastroi ¼ arg min
Wastroi

1

Nai

X
k

CrossEntropyðyk; oi;kastroÞ ð7Þ

when the kth sample admits an astrophysical origin,
yk ¼ 1; otherwise, yk ¼ 0. Nai is the number of samples.
In this work, we use a convolutional network to utilize
AstroDisNeti. Every network only focuses on the wave-
forms corresponding to a subparameter space. When both
oiastro;H and oiastro;L are greater than a threshold oth, and the

peak time difference of ĥiH and ĥiL is less than 15 ms, then
ĥiH and ĥiL will be put into SHTem and SLTem, respectively.
Consequently, the number of templates in SHTem and SLTem is
the same.
We adopt the GW detection model designed by Gabbard

et al. [21] as the structure of the astrophysical origin
discrimination network [28,29,49,50]. For reference con-
venience, we list the network structure in Table II. Because
the time length of the input varies with the focused
parameter space, the input shape of the networks is
different. We apply the Elu activation function after every
layer except the last dense layer. For each convolutional
layer, no padding is applied. A soft-max activation function
is used after the last dense layer.

D. The matched filtering stage

The SNR information can further quantify the confi-
dence level of the signal. While the template selection
phase can exclude most false triggers, we believe it cannot
definitively determine whether an event is real. As a result,
we continue to analyze SNR information through matched
filtering. If the set of the selected template STem ≠ ∅, the
matched filtering stage will be triggered. The output of this
stage is two SNR sets, SHsnr ¼ fSNRH

1 ; SNRH
2 ; SNRH

3 ;…g
and SLsnr ¼ fSNRL

1 ; SNRL
2 ; SNRL

3 ;…g. The number of
SNRs is equal to the number of templates in the sets
SHTem and SLTem. Here, we detail the method for obtaining
SXsnr (interferometer X). For the template hXi ðtÞ∈ STem, the
output of the matched filtering can be written as

ρi;XðtÞ ¼
hdjhXi iðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhXi jhXi i

p ; ð8Þ

where dðtÞ is the strain. hdjhXi iðtÞ denotes the time-
dependent inner product of dðtÞ and hXi ðtÞ. In this work,
d and hXi are all whitened by the amplitude spectrum
density (ASD) of the background noise, so

hdjhiiðtÞ ¼ 4Re
Z

∞

0

d̃ðfÞh̃X�
i ðfÞe−2πjftdf ð9Þ

and

hhijhii ¼ 4

Z
∞

0

h̃Xi ðfÞh̃X�
i ðfÞdf; ð10Þ

where d̃ðfÞ, h̃Xi ðfÞ are the Fourier transform results of dðtÞ
and hXi ðtÞ, and h̃X

�
i ðfÞ is the complex conjugate of h̃Xi ðfÞ.

Then, the network SNR can be calculated by

SNR ¼ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2i;H þ ρ2i;L

q
: ð11Þ

TABLE II. The structure of the astronomical origin discrimination network.

Layer Layer type Number of neurons Filter size Max pool size Dropout Activation function

1 Convolution 32 32 Not applicable 0 Elu
2 Convolution 32 32 8 0 Elu
3 Convolution 64 16 Not applicable 0 Elu
4 Convolution 64 16 4 0 Elu
5 Convolution 128 8 Not applicable 0 Elu
6 Convolution 128 8 4 0 Elu
7 Dense 64 Not applicable Not applicable 0.5 Elu
8 Dense 32 Not applicable Not applicable 0 Elu
9 Dense 2 Not applicable Not applicable 0 Softmax
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III. TRAINING METHODS

In the previous section, we have introduced the proposed
GW detection framework. In this section, we will detail the
training dataset and the training schemes.

A. Training dataset for the denoising model

We construct ten training datasets corresponding to the
ten subparameter spaces shown in Table I. For each
subparameter space, 105 samples are generated for training.
We take the GPS time randomly from 1238163456 to
1238806528. For each GPS time, we take the correspond-
ing LIGO data as the background noise. Each sample of the
training dataset contains one background noise time series
nðtÞ and one GW signal time series hðtÞ originating from a
BBH system. Both nðtÞ and hðtÞ were whitened by the
noise ASD, which is estimated by the Weltch method.
The time durations of nðtÞ and hðtÞ are all 16 s, and the
sampling rate is 4096 Hz.
The waveforms are generated with the IMRPhenomD

model for the cases where at least one of the black
hole’s masses is less than 10M⊙. Otherwise, we use the
SEOBNRv4 model to generate the GW waveforms. In the
waveform simulation, we sample the dimensionless spin
randomly in (0,0.998). The polarization angle and coales-
cence phase are sampled randomly in the interval ð0; 2πÞ.
The declination and the right ascension are sampled uni-
formly over the sphere. We set the cosine of the inclination
parameter sampled uniformly. Because no precession and
higher modes are included, this simulation parameter con-
figuration does not influence the signal shape.

B. Training scheme for the denoising model

The training scheme for the denoising model is improved
compared to our previous work [31]. In [31], the noise and
the signal were summed up before training according to the
fixed SNR for each data sample. In the current work, for
each batch, the noise and the signal were synthesized at the
training stage as

s ¼ λ × hðthb∶theÞ þ nðtnb∶tneÞ; ð12Þ

where t1∶t2 means from t1 to t2. λ is used to control the
SNR of the training sample. the − thb ¼ tne − tnb are used to set
the input time duration of the modeled waveform and noise.
The background noise is randomly sampled from the whole
16 s length data for every batch of training. The coalescence
time is set within 60% to 95% of the time window. In the
training stage, the λ is changed to fit a SNR range. The SNR
ranges considered include [(17,20), (14,17), (10,14),
(5,10), (5,10), (10,14), (14,17)]. The Adam algorithm is
applied to optimize the model parameters, the learning rate
is set to 1.5 × 10−5, and the batch number value is 64, for a
total of 30 epochs trained.

C. Data for training the astrophysical origin
discrimination networks

As detailed in the previous section, the preliminary
templates obtained by the denoising models are afterwards
selected by the astrophysical origin discrimination network.
The discrimination networks are deep convolutional neural
networks designed for classification. We construct ten
astrophysical discrimination networks corresponding to
ten denoising networks.
For each discrimination network, two classes of data are

used for training. One is the positive class, and the other is
the negative class. The positive class is composed of the
data with an astrophysical origin. The negative class is
composed of the data without an astrophysical origin. In
order to distinguish whether the waveform has an astro-
physical origin or not, we employ automatic labeling for the
positive class and manual labeling for the negative class.
Labeling the data with a positive astrophysical origin is

straightforward. Feeding the denoising model with the
strain sðtÞ ¼ hðtÞ þ nðtÞ, we then obtain the output ĥðtÞ.
When the overlap of hðtÞ and ĥðtÞ is bigger than a
threshold, we label ĥðtÞ as a sample with an astrophysical
origin. In this paper, we define the threshold as 0.8.
Labeling the data without an astrophysical origin is

challenging. We use three methods to generate the negative
data samples. The three methods are described as follows.
As the first method, we generate the negative samples

nðtÞ with background noises. Feeding the denoising model
with the strain nðtÞ, we then get the output ĥðtÞ. We find
that some outputs ĥðtÞ can mimic true waveforms very
well. We thus drop these mimickers. We generate 10,000
samples for each model through this method. We denote the
dataset composed of these samples as the negative dataset I.
As the second method, we feed the denoising model with

the strain sðtÞ ¼ hðtÞ þ nðtÞ and obtain the output ĥðtÞ.
When the overlap between hðtÞ and ĥðtÞ is less than 0.8, we
label the ĥðtÞ as negative class. We generate 10,000
samples for each model through this method. We denote
the dataset composed of these samples as the negative
dataset II. We believe that the labeling method warrants
further investigation in the future. The quality of the
training data significantly impacts the classification per-
formance of the discriminator. Although the size of the
discriminator’s training data is extensive, we manually
labeled only 100,000 data points. The objective of classi-
fying unreliable templates as negative is to enhance the
differentiation between template and nontemplate shapes.
We believe that an overlap threshold of 0.8 might not be the
optimal choice. Conducting extensive experiments is nec-
essary to confirm better data annotation methods.
As the third method, we generate the negative samples

from selected background noises that trigger the envelope
extraction model. The background noises from the first half-
month of August 2017 that trigger the envelope extraction
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model are used. We then feed these strains to the denoising
models. We select the output as the negative samples. There
are 9080 samples generated for each denoisingmodel by this
method.We denote the dataset composed of these samples as
the negative dataset III.
We train three kinds of astrophysical origin discrimina-

tion models, denoted as APOD_MODEL_I, APOD_
MODEL_II, and APOD_MODEL_III, respectively. The
only difference among these three types of models is
the selection of negative samples in the training dataset.
The number of positive samples is equal to the number of
negative samples. The detailed settings of the training
datasets for the three models are shown in Table III.
To label the data without astrophysical origin shape

(shape represents whether there are data features of
astrophysical origin), as shown in Fig. 3. We employ this
program to annotate the data through mouse clicks. The
user can judge whether there is a gravitational wave shape
through the details of the waveform. The labeled data are

automatically saved in an npy format file that can be used
for training.
We think the labeling method should be refined in the

future. The labeling strategy can influence the performance
of the discrimination network. If the discrimination net-
work tends toward wrong judgment of signal-like shapes’
waveforms as noise, the true positive probability of the
framework will be low. Otherwise, if it tends toward wrong
judgment of noise-like shapes as signals, the false positive
probability of the framework will be high.

D. Training scheme for the astrophysical
origin discrimination model

In order to achieve the purpose of identifying the
astrophysical origin signal, we use the astrophysical origin
discrimination model described in the previous section to
determine whether it is an astrophysical origin waveform.
The loss function is the binary cross-entropy, which is used
to evaluate the deviation between the predicted values and
the actual values in the training set. The gradient descent
strategy is Adam. The learning rate is set to 1.5 × 10−5, and
the batch number value is set as 16.

IV. PERFORMANCE OF MSNRnet FRAMEWORK

We have established the MSNRnet framework for
GW searches. The framework takes the whitened strain
as its input and provides a set with SNRs as output.

TABLE III. Training datasets for APOD_MODEL_I,
APOD_MODEL_II, and APOD_MODEL_III.

Name
Negative
dataset I

Negative
dataset II

Negative
dataset III

Samples in
dataset

APOD_MODEL_I 10000 � � � � � � 20000
APOD_MODEL_II 10000 10000 � � � 40000
APOD_MODEL_III 10000 10000 9080 58160

FIG. 3. The graphical interface of the data annotation system.
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This framework comprises an envelope extraction model,
along with ten denoising models and ten models for
discriminating astrophysical origins. We have tested the
performance of both the denoising models and the astro-
physical discrimination models individually, as well as the
overall MSNRnet framework. Both the test dataset and real
strain data of Hanford and Livingston interferometers are
used. The results convincingly showcase the effectiveness
of the newly proposed framework MSNRnet.

A. Results based on the test dataset

In order to test the performance of the MSNRnet
framework, we generate ten test datasets. The GPS time
of the background noise is sampled from 1238904832 to
1239023616, which is different from the GPS time sam-
pling employed in the training dataset.

1. Performance of the denoising models

In this subsection, we investigate the performance of the
denoising model based on the test dataset. We randomly
select 16 samples from the test dataset and feed them to the
corresponding denoising models. The whitened strain, the
buried signal, and the output of the denoising model of each
sample are shown in Fig. 4. The input and output lengths of
the denoising model vary in accordance with the model’s
associated parameter space. For a BBH with relatively large
masses, the duration of the denoised output is less than two
seconds. In such cases, the denoised output’s residual
portion is zero-padded to match a two-second length.
From Fig. 4, we can see that in most scenarios, the
denoising model effectively recovers the buried signal.
In order to measure the consistency of the denoised result

and the buried signal, the overlap between them is
calculated. The overlap between the denoising model’s
output ĥ and the buried signal h can be calculated by

oðh; ĥÞ ¼ hh; ĥiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh; hihĥ; ĥi

q : ð13Þ

The signal’s duration within the sensitivity band of the
detection network varies with the masses of the system. In
the case of BBH systems, this duration spans from fractions
of a second to several seconds. In contrast to the pioneer
works [44,45] for DL-based GW denoising, we take the
variation of the duration with the source parameters into
consideration, and the detailed design has been discussed in
the previous section. Essentially, we use the parameter
division strategy. Different denoising models are in charge
of different subparameter spaces and are trained with
different datasets falling within the corresponding subpara-
meter space. To illustrate the advantage of this parameter
division strategy, we establish a denoising model trained
with a full parameter dataset. Since a two-second-length
whitened signal adequately capturing the characteristics of

the signal originates from binary masses between 5M⊙ and
80M⊙, we set the input duration of the full parameter
denoising model to 2 s. The model structure of the full
parameter denoising model is the same as the model
illustrated previously.
For each sample within every subparameter test dataset,

we feed it into two distinct denoising models: the denoising
model specific to the corresponding subparameter and the
full-parameter denoising model. Subsequently, we obtain
the respective outputs. Next, we calculate the overlap
between the output and the buried GW signal. The outcome
is presented in Fig. 5. The orange color denotes the
subparameter denoising model’s result, and the blue color
denotes the full-parameter denoising model’s result.
Figure 5 also shows that the average overlap decreases

when the mass of the BBH becomes smaller. This fact can
be understood as follows: For the low-mass binary system
case, the duration of the signal will be long. The waveform
features of these systems admit long-range dependencies.
The U-Net employed in the current study is based on
convolutional neural networks (CNNs). However, CNN-
based models exhibit a limitation in modeling long-range
dependencies. Convolution operators are restricted to local
receptive fields. Only after traversing multiple convolu-
tional layers does perceiving long-range dependencies
become possible.
Differently from CNNs, the WaveNet tackles the limi-

tation of local receptive fields by employing deeper models
and using dilated convolutional layers [44]. In order to
avoid the huge neuron number of a denoising model which
is too computationally expensive to us, we insist on using
CNN rather than WaveNet in the current work. Since the
denoising models constitute just one component of our
comprehensive framework MSNRnet, it is straightforward to
replace WaveNet [44], LSTM [45], Waveformer [46],
and other possibilities with CNN within the framework
MSNRnet. Moreover, the well-behaved parameter division
strategy, as shown in Fig. 5, can also be applied to these
possible denoising models, including WaveNet, LSTM,
Waveformer, and others.

2. Performance of the matched SNR predictions

We thoroughly examine the precision of matched SNR
predictions by our frameworkMSNRnet in this subsection.We
feed samples in the test set into the denoisingmodel and then
compute the matched filtering SNRs using the denoising
output as a waveform template. A comparison between the
SNRs calculated by our framework and the actual SNRs is
illustrated in Fig. 6. For most cases, the SNRs predicted by
our framework MSNRnet are highly consistent with the actual
SNRs. Several panels contain low-SNR events that are
predicted with significantly higher SNRs. We guess that
the predicted templatemay contain features of the noise. The
results in Fig. 6 and Table V further support the opinion that
the proposed method potentially introduces a bias toward
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higher SNRs during the derivation of the “template” from
the data. Correspondingly, we show the distribution of the
relative error of the predicted SNR in Fig. 7. The relative
error is defined as

relative error≡ SNRpred − SNRtrue

jSNRtruej
; ð14Þ

where SNRpred is the SNR predicted by the proposed
framework and SNRtrue is the matched-filter SNR of the

strain and the buried signal.We can see that the relative error
is less than 10% for most samples.
After checking the “noiseþ signal” samples, we move to

pure “noise” samples. We feed the background noise from
the ten test sets into the denoising models and compute the
matched SNR of the background noise using the denoising
model’s output as a waveform template. Each of the test sets
encompasses 10,000 samples. The distributions of matched-
filtering SNRs for the denoising output are depicted in Fig. 8.

FIG. 4. The whitened strain, the whitened signal, and the denoised output of 16 randomly selected samples in the test dataset. The left
subplot of each sample shows the whole 2 s time duration. The right subplot of each sample is the enlargement of the merger part
including a 0.25 s time duration. The right subplot includes only the whitened signal and the denoised output for clear comparison. Note
that we use the knowledge of the parameters of the injected signal and the corresponding denoising model.
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From Fig. 8, we can see that most predicted SNRs by
models for larger than 40M⊙ are less than 6. But a
significant amount of predicted SNRs by models for
smaller than 40M⊙ fall within the range (10,12). This fact
indicates that the denoising model may result in a signifi-
cant number of fake signals. This is the major motivation
for us to introduce the discrimination networks to judge if
the denoising output admits an astrophysical origin or not.
In the subsequent subsection, we will delve into the
performance of the astrophysical origin discrimination
networks in the test set.

3. Performance of the astrophysical origin
discrimination networks

From the last subsection, we have learned that the
denoising output may result in a significant number of fake
signals. To solve this problem, we introduce an astrophysical
origin discrimination network. As described in Sec. III C, we
have constructed three kinds of astrophysical discrimination
networks (APOD_MODEL_I, APOD_MODEL_II, and
APOD_MODEL_III) for each subparameter space based
on the training datasets. In this subsection,wewill investigate

FIG. 5. The overlap between the outputs of the denoising models and the buried GW signals. The denoising models trained by the
subparameter space training data (orange) and full parameter training data (blue) are compared. In order to avoid mutual coverage of a
large number of points, only 1000 points of each model are shown in the scatter plot. All of the 10,000 samples are used to plot the
histogram in the right panel of each subplot. Note that we use the knowledge of the parameters of the injected signal and the
corresponding denoising model.
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FIG. 6. The SNRs of the “noiseþ signal” samples. Vertical coordinates indicate the SNRs calculated by the denoising output.
Horizontal coordinates indicate the actual SNRs calculated by the injected signal. To avoid mutual coverage of a large number of points,
each subfigure only shows a randomly selected set of 1000 points. Note that we use the knowledge of the parameters of the injected
signal and the corresponding denoising model.

FIG. 7. The distribution of the relative error range of the predicted SNR. This figure corresponds to Fig. 6. The bin size 0.1 is used in
this figure. Note that we use the knowledge of the parameters of the injected signal and the corresponding denoising model.

FIG. 8. Distribution of the predicted matched-filtering SNR for pure “noise” samples and the corresponding “noise.”
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the performance of the astrophysical origin discrimination
networks.
We randomly chose 20,000 samples from the test dataset

which is constructed though the same procedure as the
training dataset to test the astrophysical discrimination
network. Corresponding to the ten groups of subparameter
space, each subparameter space has 2000 samples (1000
positive and 1000 negative samples). The performances
of the astrophysical discrimination network on these
samples are shown in Table IV. APOD_MODEL_I,
APOD_MODEL_II, and APOD_MODEL_III show sim-
ilar behavior. As we expected, if the true alarm rate is
better, then the false alarm rate is worse. Roughly,
APOD_MODEL_I admits a higher true alarm rate than
APOD_MODEL_II and APOD_MODEL_III.
As Table IV shows, the discrimination network can really

recognize fakewaveforms. But it may alsomistake some true
signals as fake ones. Hopefully, this situation can be
eliminated if only the signal is strong. To check this fact,
we feed the denoising outputs into astrophysical origin
discrimination networks and investigate the corresponding
classification outcomes. A statistical analysis of the classi-
fication results is shown in Fig. 9. We can see that in the low-
SNR range case,APOD_MODEL_I andAPOD_MODEL_II
outperform APOD_MODEL_III. In the high-SNR case, the
three kinds of astrophysical origin discrimination models
perform similarly. Even for APOD_MODEL_III, a signifi-
cant majority of the denoising outputs can be correctly
classified when the buried signal’s SNR ≥ 8.

4. Performance of the combination of PTP, TS,
and MF stages

In this subsection, we will investigate the performance of
the combination of PTP, TS, and MF stages through the test
dataset. The test set is composed of samples with relatively
short durations. Noting that the “noise” samples often fail
to trigger the STP stage, we do not investigate this specific
stage in this section. The comprehensive framework

including STP will undergo testing using the confident
events and half-month detected strain data detailed in
Secs. IV B and IV C.
Similarly to various other classification tasks, we use

receiver operator characteristic (ROC) curves to evaluate
the performance of the search methods. The ROC curve
reflects the relationship between the true alarm probability
(TAP) and false alarm probability (FAP). The TAP and FAP
are defined as follows:

TAP ≔
TP

TPþ FN
; ð15Þ

FAP ≔
FP

FPþ TN
: ð16Þ

In this context, TP represents the number of true positive
samples, FP signifies the number of false positive samples,
TN corresponds to the number of true negative samples,
and FN denotes the number of false negative samples.
In the proposed framework, two comparable metrics are

used. One is the output of the astrophysical discrimination
network ðoastroÞ, and the other is the output of the matched
filtering process (SNR). For simplification, we set the
threshold of oastro to 0.5. In the case of oastro < 0.5, the
proposed framework categorizes the strain as noise.
Conversely, when oastro > 0.5, the MF stage will be further
conducted, and the confidence of the strain-containing
signal is evaluated using SNR. When the SNR surpasses
a predefined threshold, a GW trigger will generate. It
sweeps the SNR threshold from 5 to 20, recording the TAP
and FAP for each threshold value to produce the ROC curve
of the proposed framework. It is important to acknowledge
that due to the fixed threshold value of oastro, certain
“noiseþ signal” samples might not surpass this threshold,
thereby preventing TAP from reaching 100% in such cases.
Figure 10 shows the ROC curves of the combination

of PTP, TS, and MF stages. For comparison, the results
of the combination of PTP and TS stages and that of the

TABLE IV. The percentage of samples classified correctly by the astrophysical discrimination network. I, II,
and III correspond to APOD_MODEL_I, APOD_MODEL_II, and APOD_MODEL_III respectively.

Mass1 (M⊙) Mass2 (M⊙)

Positive class Negative class

I II III I II III

[5, 10] [5, 10] 98.70% 92.50% 93.30% 69.70% 95.90% 93.30%
[5, 10] [10, 20] 98.90% 95.60% 94.80% 64.90% 85.70% 86.60%
[5, 10] [20, 40] 95.40% 90.60% 92.30% 68.50% 91.10% 90.70%
[5, 10] [40, 80] 93.40% 88.30% 90.70% 50.80% 90.50% 89.90%
[10, 20] [10, 20] 97.70% 92.00% 94.70% 72.90% 94.00% 92.00%
[10, 20] [20, 40] 97.30% 90.60% 91.00% 62.50% 94.40% 95.00%
[10, 20] [40, 80] 97.50% 91.60% 90.60% 71.00% 92.70% 93.10%
[20, 40] [20, 40] 97.90% 94.20% 94.00% 71.30% 96.10% 96.20%
[20, 40] [40, 80] 95.90% 91.80% 93.00% 83.10% 95.50% 96.70%
[40, 80] [40, 80] 95.60% 90.40% 89.40% 85.50% 96.60% 97.50%
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FIG. 9. The percentage of correctly classified results by the astrophysical discrimination network for the denoised results of
“signalþ noise” input. Note that we use the knowledge of the parameters of the injected signal and the corresponding denoising model.

FIG. 10. The ROC curves of the combination of PTP, TS, and MF stages; the combination of PTP and TS stages and the end-to-end
DL method. Methods I, II, and III correspond to the three different astrophysical origin discrimination models. Note that we use the
knowledge of the parameters of the injected signal and the corresponding denoising model.
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end-to-end DL method are also shown together. Each plot
corresponds to a specific subparameter space. The classi-
fication model takes the whitened strain as input and
generates an output in the form of Pscore, which falls
within the range of 0 to 1.
We conduct threemethods (Methods I, II, and III) basedon

the PTP, TS, andMF stages. The disparity among these three
methods lies in the choice of astrophysical origin discrimi-
nation networks during theTS stage. Specifically,we employ
APOD_MODEL_I for Method I, APOD_MODEL_II for
Method II, and APOD_MODEL_III for Method III.
For real data, most of the strain’s GW signals are often

indiscernible. Real data are consequently assumed to consist
mainly of background noise. Despite a relatively low FAP,
numerous false triggers can still emerge for a searching
method, especially in scenarios involving long-duration
detection. Therefore, we only consider the low FAP range
here. Figure 10 displays the FAP range below 10−3.
From Fig. 10, we can see clearly the improvement of the

combination of the PTP, TS, and MF stages. Specifically,
when FAP ¼ 10−4, for the combination of PTP, TS, and
MF stages, the TAPs are consistently around 0.8. On the
contrary, for the combination without the TS stage, the
TAPs are almost 0. This is consistent with Fig. 8 and proves
once again the importance of the astrophysical origin
discrimination model. The output of the denoising models
may result in fake signals, which result in a large SNR.
Interestingly, the FAP of the end-to-end DL method can

be effectively brought down to the magnitude of 10−4, as
shown in Fig. 10. The results in [30] and [28] all show that
the FAP of such a model can hardly reach 10−4. The
difference presented here is that we have considered the
subparameter space division strategy. This suggests that an
end-to-end DL method aided by a subparameter space
division strategy has the potential to significantly enhance
search performance. Within the context of a subparameter
GW search, the ability to optimize the duration of the time
window for data analysis becomes feasible. This shows the
potential of the subparameter end-to-end classification
model for GW search, which we believe is a promising
avenue for further investigation in the future.

B. Results for confident events

In this subsection, we investigate the detection
performance of the proposed MSNRnet framework on the
confident events listed in the GWTC-1, GWTC-2, GWTC-
2.1, andGWTC-3 catalogs.We first investigate the denoising
performance related to the confident events. Subsequently,
those events thatworkwell with bothHanford andLivingston
interferometers are studied by all four stages (STP, PTP, TS,
and MF) of the proposed framework.
Here, we analyze the denoising outcomes in relation to

strains containing confident events. To begin, we extract the
envelope (in the STP stage detailed in Sec. II) of the
whitened strain. Subsequently, we cut Ti seconds whitened

strain to the ith denoising model and get the output. Note
that the envelope’s peak time corresponds to the final 0.05 s
of the Ti seconds data. We select 16 samples of the
confident events from the Hanford interferometer. Our
investigation encompasses a wide range of masses for
the detected binary black hole (BBH) mergers.
The comparison between the denoising outputs and the

optimal templates (sampled from the posterior distribution
provided by GWTC-2.1 and GWTC-3) is depicted in
Fig. 11. Figure 11 illustrates that our denoising model
effectively retrieves the signal from the confident events.
Intriguingly, our denoising model successfully reconstructs
the GW170608 signal detected by the Hanford interfer-
ometer. The overlap between the denoising output and the
template is notably high, measuring 0.95 at a two-second
timescale and reaching an impressive 0.99 at a 0.25-second
timescale. Notably, the denoising output of GW170608
outperforms the WaveNet denoising result, which achieved
an overlap of 0.73 according to previous findings [44].
In order to comprehensively evaluate the effectiveness of

our MSNRnet framework on real data, we feed the whitened
strains of the confident events into the framework encom-
passing the STP, PTP, TS, and MF stages. For the TS stage,
we employ three distinct models: APOD_MODEL_I,
APOD_MODEL_II, and APOD_MODEL_III, correspond-
ing to Methods I, II, and III, respectively, as described in the
above subsections.
Table V shows the SNRs predicted by our MSNRnet

framework (Methods I, II, and III) alongside those generated
by five widely used GW search pipelines (cWB, GstLAL,
MBTA, PyCBC, and PyCBC_BBH). Since GWTC-1 does
not include results of MBTA or PyCBC_BBH, the ten O1
and O2 BBH events’ network SNRs predicted by the two
pipelines are missing.
Once the strains from both the Hanford and Livingston

interferometers within the same subparameter space
(denoising and astrophysical origin discrimination) suc-
cessfully pass the STP, PTP, and TS stages, the MF stage is
subsequently engaged to compute the network SNR of that
subparameter space. For each method, the outcome takes
the form of a network SNR set.
Every SNR in the set corresponds to the SNR associated

with a distinct subparameter space. The final network SNR
is calculated by

NetworkSNR ¼ max
i
NetworkSNRi; ð17Þ

where NetworkSNRi is the predicted network SNR, and

NetworkSNRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR2

i;H þ SNR2
i;L

q
; ð18Þ

where SNRi;H and SNRi;L are the predicted SNR values for
the ith subparameter spaces in Hanford and Livingston,
respectively.
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In O1 and O2, nine confident events are successfully
identified using both Method I and Method II. However,
owing to the weakness of the signal at the Hanford interfer-
ometer, all three methods fail to detect GW170818. Method
III also fails to successfully detect GW151012, GW151226,
and GW170823. Method I achieves a success rate of
approximately 71% in event detection, followed by
Method II at 60%, and Method III at 41%. Method I has a
higher correct detection probability thanMBTAandPyCBC.
Note that this does not mean that the superior of Method I to
MBTA and PyCBC pipelines, because the detection bench-
marks of our proposed framework and traditional MF-based
pipelines are different. Conventional MF-based pipelines

employ pastro as their detection benchmark, while we utilize
the output of the astrophysical origin discriminationnetwork,
oastro, for our detection benchmark.
In the case of Method II, we also examine the merge-time

differences in denoised strains between the Hanford and
Livingston interferometers. The merge-time difference is
defined by

difft ¼ jarg max
t

ĥLðtÞ − arg max
t

ĥHðtÞj; ð19Þ

where ĥHðtÞ is the denoised strain of Hanford, and ĥLðtÞ is
the denoised strain of Livingston. The results (presented in
the final column of Table V) show that the merge-time

FIG. 11. Comparison between the denoised waveform from real data and the expected waveform from LVK reports.
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TABLE V. SNRs of the GW events reported by LVK in O1, O2, and O3 [1–3]. Events that work well with both Hanford and
Livingston interferometers are listed. The SNRs predicted by the pipelines cWB, GstLAL, MBTA, PyCBC, and PyCBC_BBH are
shown. Here we compare SNRs predicted by our MSNRnet framework to these reported results. Because three kinds of astrophysical
origin discrimination networks are constructed, we use three GW search methods (Method I, Method II, and Method III). Methods I, II,
and III use APOD_MODEL_I, APOD_MODEL_II, and APOD_MODEL_III for the astrophysical origin discrimination network,
respectively. Note that some events’ FAR or pastro are not in the confident event range, and in this case, the SNR value is not shown. The
time differences between the peak values of the denoised strain (Method II) of Hanford and Livingston interferometers are also shown.
Note that these results are obtained through a blind search (the corresponding parameter space or signal length not being known).

Name cWB GstLAL MBTA PyCBC
PyCBC
BBH Method I Method II Method III

Time differences
of Method II(s)

GW150914 25.2 24.4 � � � 23.6 � � � 24.5 24.5 24.4 0.00439
GW151012 � � � 10.0 � � � 9.5 � � � 13.4 10.6 � � � 0.00293
GW151226 11.39 13.1 � � � 13.1 � � � 14.8 13.7 � � � 0.00269
GW170104 13.0 13.0 � � � 13.0 � � � 14.4 14.4 14.2 0.00024
GW170608 14.1 14.9 � � � 15.4 � � � 17.0 16.9 16.9 0.00024
GW170729 10.2 10.8 � � � 9.8 � � � 10.9 11.6 10.8 0.00586
GW170809 � � � 12.4 � � � 12.2 � � � 14.7 13.4 13.4 0.01220
GW170814 17.2 15.9 � � � 16.3 � � � 17.1 17.1 17.1 0.01220
GW170818 � � � 11.3 � � � � � � � � � � � � � � � � � � � � �
GW170823 10.8 11.5 � � � 11.1 � � � 12.7 12.7 � � � 0.00537
GW190403-051519 � � � � � � � � � 16.3 8.0 � � � � � � � � � � � �
GW190408-181802 14.8 14.7 14.4 13.1 13.7 15.6 15.6 15.6 0.00659
GW190412 19.7 19.0 18.2 17.4 17.9 20.0 20.0 19.5 0.00122
GW190413-052954 � � � � � � � � � � � � 8.5 9.1 9.1 � � � 0.00049
GW190413-134308 � � � � � � 10.3 � � � 8.9 10.3 9.9 � � � 0.00098
GW190421-213856 9.3 10.5 9.7 10.1 10.1 11.2 11.2 10.2 0.00171
GW190426-190642 � � � � � � � � � � � � 9.6 � � � � � � � � � � � �
GW190503-185404 11.5 12.0 12.8 12.2 12.2 14.9 14.9 12.4 0.00610
GW190512-180714 10.7 12.2 11.7 12.4 12.4 13.4 � � � � � � � � �
GW190513-205428 � � � 12.3 13.0 � � � 11.8 14.1 14.1 13.0 0.0000
GW190514-065416 � � � � � � � � � � � � 8.4 9.1 � � � � � � � � �
GW190517-055101 10.7 10.8 11.3 10.4 10.3 10.9 11.1 10.9 0.00342
GW190519-153544 14.0 12.4 13.7 13.2 13.2 14.8 15.1 14.8 0.00269
GW190521 14.4 13.3 13.0 13.7 13.6 � � � � � � � � � � � �
GW190521-074359 24.7 24.4 22.2 24.0 24.0 25.0 24.4 24.4 0.00098
GW190527-092055 � � � 8.7 � � � � � � � � � 8.8 � � � � � � � � �
GW190602-175927 11.1 12.3 12.6 11.9 11.9 12.0 12.8 11.9 0.01293
GW190701-203306 10.2 11.7 11.3 11.9 11.7 10.7 10.7 10.4 0.00513
GW190706-222641 12.7 12.5 11.9 11.7 12.6 13.6 13.6 12.7 0.00488
GW190707-093326 � � � 13.2 12.6 13.0 13.0 14.9 14.2 14.2 0.00708
GW190719-215514 � � � � � � � � � � � � 8.0 10.1 10.1 � � � 0.00269
GW190720-000836 � � � 11.5 11.6 10.6 11.4 � � � � � � � � � � � �
GW190725-174728 � � � � � � 9.8 9.1 8.8 12.2 � � � � � � � � �
GW190727-060333 11.4 12.1 12.0 11.4 11.1 13.6 12.6 12.0 0.00537
GW190728-064510 � � � 13.4 13.1 13.0 13.0 14.9 14.9 14.9 0.00220
GW190731-140936 � � � 8.5 9.1 � � � 7.8 9.5 8.6 � � � 0.01050
GW190803-022701 � � � 9.1 9.0 � � � 8.7 10.1 9.6 � � � 0.00220
GW190805-211137 � � � � � � � � � � � � 8.3 8.8 � � � � � � � � �
GW190814 � � � 22.2 20.4 19.5 � � � 23.7 23.4 23.4 0.00806
GW190828-063405 16.6 16.3 15.2 13.9 15.9 17.3 17.3 17.3 0.00317
GW190828-065509 � � � 11.1 10.8 10.5 10.5 12.3 11.3 � � � 0.00024
GW190915-235702 12.3 13.0 12.7 13.0 13.1 14.1 13.6 13.6 0.00342
GW190916-200658 � � � � � � 8.2 � � � 7.9 9.2 9.2 � � � 0.00513
GW190917-114630 � � � 9.5 � � � � � � � � � � � � � � � � � � � � �
GW190924-021846 � � � 13.0 11.9 12.4 12.5 � � � � � � � � � � � �
GW190926-050336 � � � 9.0 � � � � � � � � � 9.0 9.0 � � � 0.00342
GW190929-012149 � � � 10.1 10.3 � � � � � � � � � � � � � � � � � �
GW190930-133541 � � � 10.1 10.0 9.8 10.0 � � � � � � � � � � � �

(Table continued)
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differences of all identified event mergers are within 13 ms.
Similarly to the MF-based approach, the time differences
across multiple interferometers can be employed to further
validate the results.
Method II shows that about 40% of a successfully

detected event’s loudest SNR is actually obtained by a
predicted template that comes from the “correct” denoising
model (from a denoising network trained on signals with
masses the same as the injection). We think that the loudest
SNR denoising model cannot be used for the mass range
parameter estimation. However, due to the generalization
ability of neural networks, the denoised shape may be used
for parameter estimation in the future.

C. Results for GW search based on continued
half-month data

The previous experiments indicate the effectiveness of
the proposed framework for GW search on test datasets and

confident events in GWTC-1, GWTC-2.0, GWTC-2.1, and
GWTC-3. Nevertheless, these previous findings may not
adequately capture the framework’s performance in long-
time-duration detection scenarios. In this subsection, we
check the framework’s ability to detect strains spanning a
half-month duration in August 2017.
The data were used in the previous research [28,31].

Because a section of the first half of the August 2017 strain
was employed for training the astrophysical origin dis-
crimination network, we only test the second half of the
strain, and the GPS times of the strain fall between
1186683883 and 1187733597. To prevent redundancy
from earlier sections, our focus here is solely on examining
the “noise” background’s response. Consequently, the
confident events that occurred in August 2017 are not
subjected to investigation within this subsection.
Table VI presents the experiment results of false triggers

of the half-month strain. We investigated the variation
of the FAR concerning the SNR threshold through the

TABLE V. (Continued)

Name cWB GstLAL MBTA PyCBC
PyCBC
BBH Method I Method II Method III

Time differences
of Method II(s)

GW191103-012549 � � � � � � � � � 9.3 9.3 � � � � � � � � � � � �
GW191105-143521 � � � � � � 10.7 9.8 9.8 11.9 � � � � � � � � �
GW191109-010717 15.6 15.8 15.2 13.2 14.4 16.6 15.8 15.8 0.00293
GW191113-071753 � � � � � � 9.2 � � � � � � � � � � � � � � � � � �
GW191126-115259 � � � � � � � � � � � � 8.5 � � � � � � � � � � � �
GW191127-050227 � � � 10.3 9.8 � � � 8.7 9.5 9.5 � � � 0.00708
GW191129-134029 � � � 13.3 12.7 12.9 12.9 � � � � � � � � � � � �
GW191204-110529 � � � � � � � � � � � � 8.9 10.5 10.5 � � � 0.00244
GW191204-171526 17.1 15.6 17.1 16.9 16.9 17.3 17.3 17.3 0.00171
GW191215-223052 9.8 10.9 10.8 10.3 10.2 10.8 11.3 � � � 0.00635
GW191219-163120 � � � � � � � � � 8.9 � � � � � � � � � � � � � � �
GW191222-033537 11.1 12.0 10.8 11.5 11.5 14.0 11.8 11.8 0.00366
GW191230-180458 10.3 10.3 � � � � � � 9.9 12.1 10.5 9.9 0.00195
GW200115-042309 � � � 11.5 11.2 10.8 � � � � � � � � � � � � � � �
GW200128-022011 8.8 10.1 9.4 9.8 9.9 10.1 10.1 9.8 0.00317
GW200129-065458 � � � 26.5 � � � 16.3 16.2 27.3 26.9 26.5 0.00269
GW200202-154313 � � � 11.3 � � � � � � 10.8 � � � � � � � � � � � �
GW200208-130117 � � � 10.7 10.4 9.6 10.8 10.6 � � � � � � � � �
GW200208-222617 � � � � � � � � � � � � 7.9 � � � � � � � � � � � �
GW200209-085452 � � � 10.0 9.7 � � � 9.2 9.5 � � � � � � � � �
GW200210-092254 � � � 9.5 � � � 8.9 8.9 � � � � � � � � � � � �
GW200216-220804 � � � 9.4 � � � � � � 8.7 8.8 8.8 8.8 0.01221
GW200219-094415 9.7 10.7 10.6 9.9 10.0 12.7 11.6 � � � 0.00122
GW200220-061928 � � � � � � � � � � � � 7.5 � � � � � � � � � � � �
GW200220-124850 � � � � � � 8.2 � � � � � � 10.2 � � � � � � � � �
GW200224-222234 18.8 18.9 19.0 19.2 18.6 19.6 19.6 18.3 0.00098
GW200225-060421 13.1 12.9 12.5 12.3 12.3 14.5 14.5 14.5 0.00684
GW200306-093714 � � � � � � 8.5 � � � � � � � � � � � � � � � � � �
GW200308-173609 � � � � � � � � � � � � 8.0 � � � � � � � � � � � �
GW200311-115853 16.2 17.7 16.5 17.0 17.4 18.4 16.7 16.6 0.00342
GW200316-215756 � � � 10.1 � � � 9.3 9.3 � � � � � � � � � � � �
GW200322-091133 � � � � � � 9.0 � � � 9.6 � � � � � � � � � � � �
Detection (%) 40.0 73.8 60.0 62.5 73.8 71.3 60.0 41.3
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half-month data analysis. Because the sliding window step
of the STP stage is two seconds, the FAR can be roughly
predicted by FAP

2
per second. The FAP of interferometer X

(FAPX) varies with the SNR threshold (SNRth), and FAPX
can be estimated by

FAPXðSNRthÞ ¼
NðSNR > SNRthÞ

Ndet
; ð20Þ

where Ndet denotes the detection number, which can be
evaluated by T

2
, where T denotes the whole time duration

(in this work, we analyzed about nine days). Considering
that we use the coincidence strategy in the TS stage and
supposing FAPH ¼ FAPL, the FAR of the detector

network containing two interferometers (Hanford and
Livingston) can be calculated by

FARðSNRthÞ ¼
FAPðSNRthÞ

2

¼ α ×
FAP2

XðSNRthÞ
2

; ð21Þ

where α denotes the probability of peak values of ĥH and
ĥL below 15 ms. We suppose that for the background-
noise-only case, the peak values difference of ĥH and ĥL is
uniformly distributed. Because most of the false triggers are
generated by the analysis with a time window greater than
0.5 s in length, we set α ≈ 0.015

0.5 ¼ 0.03. We calculate the
variation of SNRth to the FAR of Methods I, II, and III. The
relationships are plotted in Fig. 12. From the figure, it is
evident that the upper limits of the FARs for Methods I, II,
and III are about 185, 18, and 0.1 per month, respectively.
When considering the SNR threshold, the lower limits of
the FARs for Methods I, II, and III are about 0.1, 10−3, and
10−6 per month.
Certain false triggers generated by our proposed frame-

work warrant further investigation. We plot the information
of the two false triggers generated by Method II in Fig. 13.
For easier comparison, the whitened strain is rescaled
by 1=50. These two false triggers are characterized by
GPS times approximately close to 1187014846 and
1187612152. We checked and found that the GPS times
do not overlap with any of the subthreshold triggers in the
LIGO-Virgo Catalogues or Open Gravitational Wave
Catalogues. Denoised results of the two false triggers
exhibit chirplike shapes. The SNRs calculated through

FIG. 13. Whitened strain and denoised outputs near the two false triggers of Method II.

FIG. 12. The variation of SNRth to the FAR of Methods I, II,
and III.
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matched filtering between the denoised results and the
whitened strain are all above 5.
Displayed in Fig. 14 is a comparison between the

denoising outputs from Hanford and Livingston for the
two false triggers. The two signals denoised by the strain of
Hanford and Livingston are shifted to align with the time
corresponding to the maximum value. Interestingly, the
denoised shapes of Hanford and Livingston around GPS
time 1187014846 appear remarkably similar. We calculated
the overlap between the denoised output of the two
interferometers near GPS time 1187014846 and yielded
88.9%. We believe that the strain near the GPS time can
be further investigated in the future. This indicates the

potential of our proposed framework for conducting more
in-depth investigations into the archived data of GWTC-1,
GWTC-2, and GWTC-3.
The computational costs of the proposed framework can

be evaluated based on the runtime of each stage involved in
analyzing half a month’s worth of data. We calculated the
running time of each stage using a workstation equipped
with a consumer-grade NVIDIA 3060 GPU, and the results
are displayed in Table VII. From the table, it is evident that
the combined running time of all stages for analyzing half a
month’s data is under 14 hours. Moreover, the operational
speed of the proposed framework can be enhanced by
leveraging multiple GPU platforms.

FIG. 14. Comparation of the two false triggers’ denoised output of Hanford and Livingston, where the waveform of Livingston has
been flipped and time-shifted due to the detector alignment relation between Hanford and Livingston. Left: The denoised outputs near
GPS time 1187014846. Right: The denoised outputs near GPS time 1187612152.

TABLE VI. The number of false triggers for the proposed framework detected by Hanford only (H), and that detected by Hanford and
tested by Livingston (Hþ L), for Methods I, II, and III. The abbreviations H, L, T, and S denote Hanford, Livingston, time-difference
testing, and network SNR threshold testing. The network SNR threshold is set to 8.

Mass1 (M⊙) Mass2 (M⊙)

Method I Method II Method III

H HþL H+L+T H+L+T+S H HþL H+L+T H+L+T+S H HþL H+L+T H+L+T+S

[5, 10] [5, 10] 87 1 0 0 3 0 0 0 2 0 0 0
[5, 10] [10, 20] 383 9 0 0 135 0 0 0 29 0 0 0
[5, 10] [20, 40] 1196 19 0 0 284 1 0 0 44 0 0 0
[5, 10] [40, 80] 3265 32 2 2 300 0 0 0 49 0 0 0
[10, 20] [10, 20] 717 5 0 0 280 0 0 0 27 0 0 0
[10, 20] [20, 40] 2710 39 1 1 646 0 0 0 34 0 0 0
[10, 20] [40, 80] 5259 55 7 7 2290 6 1 1 92 0 0 0
[20, 40] [20, 40] 3823 41 4 4 1197 2 0 0 45 0 0 0
[20, 40] [40, 80] 5185 60 15 11 2238 7 0 0 129 0 0 0
[40, 80] [40, 80] 4375 135 65 3 1061 2 1 1 246 1 0 0
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V. CONCLUSION AND DISCUSSION

In this work, we introduce a novel framework to predict
the matched filtering SNR without a theoretical template
bank. This framework employs an envelope extraction
network alongside denoising networks and astrophysical
origin discrimination networks. Notably, we have devel-
oped and trained ten denoising networks and ten astro-
physical discrimination networks within this proposed
framework. The test results of both the test set and the
real LIGO data demonstrate the effectiveness of the
proposed framework.
For the sake of simplicity in our analysis, we opt for a

relatively compact neural network structure for denoising,
consisting of just 11 layers. This denoising network can be
executed and trained on a NVIDIA GeForce RTX 3060
Laptop GPU (6 GB). We demonstrate the effectiveness of a
neural network with a relatively small scale for denoising.
We are of the opinion that more complex network

architectures, such as deeper networks like WaveNet [44],
wider networks like WaveFormer [46], and sequential
modeled networks like CNN-LSTM [45], can be seamlessly

integrated into our framework to enhance the overall gravi-
tational wave search performance.
The denoising output serves as an intermediary outcome

within our approach. This intermediary result encompasses
crucial details like arrival time delays, signal amplitudes,
and phases. Such information can be harnessed to enhance
various other facets of gravitational wave data processing,
including tasks like localization and parameter estimation.
Given the notably low phase recovery error exhibited by

the end-to-end denoising model, our proposed method
holds promise for effectively tackling the phase-related
challenges in the search for Extreme Mass Ratio Inspiral
(EMRI) GW signals [32] in the future. Additionally, this
method exhibits potential utility in detecting GW signals
stemming from binaries with quantifiable eccentricities.
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Sarah Caudill, and Jean-René Cudell, Convolutional neural
networks for the detection of the early inspiral of a
gravitational-wave signal, Phys. Rev. D 103, 102003
(2021).

[24] Banafsheh Beheshtipour and Maria Alessandra Papa, Deep
learning for clustering of continuous gravitational wave
candidates. II. Identification of low-SNR candidates, Phys.
Rev. D 103, 064027 (2021).

[25] Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X
Adhikari, and Erik Katsavounidis, Noise reduction in
gravitational-wave data via deep learning, Phys. Rev.
Res. 2, 033066 (2020).

[26] Chayan Chatterjee, Linqing Wen, Kevin Vinsen, Manoj
Kovalam, and Amitava Datta, Using deep learning to
localize gravitational wave sources, Phys. Rev. D 100,
103025 (2019).

[27] He Wang, Shichao Wu, Zhoujian Cao, Xiaolin Liu, and
Jian-Yang Zhu, Gravitational-wave signal recognition of
LIGO data by deep learning, Phys. Rev. D 101, 104003
(2020).

[28] CunLiang Ma, Wei Wang, He Wang, and Zhoujian Cao,
Ensemble of deep convolutional neural networks for real-
time gravitational wave signal recognition, Phys. Rev. D
105, 083013 (2022).

[29] Marlin B. Schäfer and Alexander H. Nitz, From one to
many: A deep learning coincident gravitational-wave
search, Phys. Rev. D 105, 043003 (2022).
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