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We study the role of perturbative unitarity in the resonant annihilation of two dark matter particles into the
standard model bath. Systematically including all kinematically allowed holomorphic cuts of the corre-
sponding forward-scattering diagram, cancellation of the singularities occurs, resulting in a fixed-order
correction to the narrow-width approximation for the annihilation cross section. Unlike the standard approach
based on including the finite width of the mediator, no double counting of intermediate states occurs.
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I. INTRODUCTION

Among dark matter production mechanisms, one of the
known exceptions from the standard relic density calculation
originates from the resonant enhancement of the thermally
averaged annihilation cross section [1,2]. Resonance typi-
cally appears in the interactions mediated by s-channel
exchanges of unstable particles heavier than two dark matter
masses. Various aspects of this scenario, including the effect
of kinetic decoupling [3–6], gauge invariance [7], thermal
corrections [8], and higher-order perturbative corrections [9],
have been studied in the literature in recent years. In this
paper,we focuson the role of perturbative unitarity in treating
unstable particle intermediate states.
To avoid the singularity when the center-of-mass energy

approaches the mediator mass, the resonant propagator is
usually considered with a finite imaginary part. Then the
narrow-width approximation may be employed, which can
be understood as an on-shell production of themediatorwith
the cross section multiplied by the branching ratio of its
decay into standard model particles [10]. While the former
originates from the summing of all perturbative orders of the
Dyson series, the latter corresponds to the leading-order
calculation. Following the previous work in Ref. [14], our
approach is in between the two possibilities, allowing for a
next-to-leading-order correction without double counting
the leading-order result [15]. Here, instead of Cutkosky cuts
[17], we use holomorphic cutting rules [18–21], which are
more convenient for tracking real intermediate states.

Furthermore, at one loop, the results are equivalent to what
would be obtained within the modified perturbation theory
[22–24], which, to our knowledge, has not been applied to
resonant dark matter annihilation.
We further employ a model in which, for simplicity, all

particles are real scalars. The dark matter particles χ of mass
m annihilate into a pair of massless φ particles, while the
mediator ϕ of massM and width Γ couples to both χ and φ
fields through the Lagrangian density

L ¼ −
1

2
λχϕχ

2 −
1

2
λφϕφ

2: ð1Þ

Modifying the calculations presented here to more com-
plicated models is straightforward.
The rest of the paper is structured as follows. In Sec. II, we

apply the holomorphic cutting rules to a simple s-channel
diagram for darkmatter annihilation, obtaining a nonsingular
result. In Sec. III, the connection between the fixed-order
approach and the Breit-Wigner approximation is discussed.
Finally, in Sec. IV, the accuracy of our calculation for
predicting the dark matter abundance is studied.

II. HOLOMORPHIC CUTTING RULES
AND REAL-INTERMEDIATE STATES

Concerning singularities in particle physics, their pres-
ence often indicates incompleteness in the calculation. As
discussed in Refs. [25–27], forgetting anomalous thresh-
olds in right-handed neutrino interactions with quarks
leaves uncanceled infrared divergences. Their inclusion,
on the other hand, leads to a finite result by the Kinoshita-
Lee-Nauenberg theorem [28–30].
Unitarity is thus a good starting point when looking for a

complete set of contributions that may potentially lead to a
nonsingular outcome. For any initial state of interest,
this can generally be achieved by constructing all for-
ward-scattering diagrams of desired perturbative order and
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cutting them in all kinematically allowed ways with
complex conjugation at one side of the cut. The S-matrix
unitarity with iT ¼ S − 1 implies

2ImTii ¼
X
f

jTfij2: ð2Þ

It has been argued in Refs. [18–21] that in the above
equation, the right-hand side can be replaced by

−
X
f

iTifiTfi þ
X
f;k

iTikiTkfiTfi −… ð3Þ

and instead of a single cut with complex conjugation, each
forward-scattering diagram has to be cut, with alternating
signs, as many times as allowed by the kinematics [31]. The
cut diagrams will be understood further as contributions to
jMfij2¼jTfij2=V4 with V4¼ð2πÞ4δð4Þð0Þ. Integration over
the final-state momenta in the cut lines will be implicit.
If an uncanceled singularity occurs, we often have to

look at the right-hand side of Eq. (2) and check if all
possible final states f, i.e., all cuts in the respective
diagrams, have been properly included. It remarkably turns
out that the singularity coming from the integration over s
in the square of a tree-level amplitude containing���� 1

s −M2 þ iϵ

����
2

ð4Þ

can be treated in a very similarway. To see that, let us consider
the forward-scattering diagram, cutting of which contributes
to the s-channel-annihilation amplitude squared. In fact, there
are three independent cuts that can be made simultaneously.
Applying the holomorphic cutting rules of Eq. (3) yields

ð5Þ

where the cut diagrams contain singular expressions and
should be treated as distributions.
Except for the last term in Eq. (5), each diagram contains

an uncut subdiagram indicating the presence of on-shell
intermediate states or, by unitarity, a nonvanishing imagi-
nary part. Hence, for the uncut ϕ propagators, we employ

1

s −M2 þ iϵ
¼ P

1

s −M2
− iπδðs −M2Þ ð6Þ

or diagrammatically

ð7Þ

where the encircled line stands for the principal value or the
propagator’s real part. Similarly, the self-energy loop can be
split into real and imaginary parts as

ð8Þ

Plugging Eqs. (7) and (8) into Eq. (5), the on-shell
intermediate states are made explicit, leading to several
cancellations, and we are finally left with two nonsingular
pieces. The first of them corresponds to

ð9Þ

where the principal value and the delta function, both
squared, combine into

ðs −M2Þ2 − ϵ2

½ðs −M2Þ2 þ ϵ2�2 ¼ −
∂

∂s
P

1

s −M2
ð10Þ

which is integrable when it comes to thermal averaging.
Unlike the regularization by the finite mediator width,
Eq. (9) allows us to properly account for off-shell mediator
exchanges without double counting the leading-order result
[32]. Furthermore, double counting is avoided without
employing complex-valued counterterms, as it is in the
complex mass scheme [33]. Therefore, despite common
wisdom, the summation of the Dyson series is unnecessary
unless the resonance occurs very close to the on-shell
production threshold.
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The leading-order contribution originates from

ð11Þ

corresponding to the χχ → ϕ inverse decay, which is
multiplied by the branching ratio

ð12Þ

to obtain the contribution to the annihilation of dark matter.
In addition to Eq. (9), we further obtain from Eq. (5) two

terms that contain the real part of the inserted loop

ð13Þ

where the product of the principal value and the delta
function gives

2πδðs −M2ÞP 1

s −M2
¼ −

∂

∂s
πδðs −M2Þ: ð14Þ

As indicated by the cuts in Eq. (13), these diagrams
represent a higher-order correction to the χχ → ϕ inverse
decay and again have to be multiplied by the branching
ratio of Eq. (12). Integrating the derivative in Eq. (14) by
parts results in terms that contain the self-energy and its
derivative evaluated at s ¼ M2. These represent the mass
shift and the Lehmann-Symanzik-Zimmermann reduction
factor of the ϕ external leg, respectively [14].

III. UNITARITY AND BREIT-WIGNER
APPROXIMATION

In this section, we briefly comment on the role of
unitarity in the standard treatment based on the summation
of the Dyson series. Following the procedure introduced in
Ref. [14], we complete the one-loop self-energy of ϕ as

ð15Þ

defining ΣR and ΣI as the real and imaginary parts, respec-
tively. Then the expression in Eq. (9) can be rewritten as

2λ2χΣIðsÞ
�
∂

∂s
P

1

s −M2

�
× Bðϕ → φφÞ ð16Þ

where the imaginary part of the second loop added in Eq. (15)
is cancelled by the denominator in the branching ratio
of Eq. (12).
The situation is different for the contribution in Eq. (13),

which has to be extended as

2λ2χΣRðsÞ
�
−

∂

∂s
πδðs −M2Þ

�
× Bðϕ → φφÞ ð17Þ

to include the real part of both loops in Eq. (15). We further
employ the renormalization conditions for which ΣR and its
derivative vanish at s ¼ M2. Then the contribution of
Eq. (17) vanishes as well, and the only next-to-leading-
order correction comes from Eq. (16).
After summing the Dyson series, the finite width in the

propagator results from the nonvanishing imaginary part of
the self-energy. Therefore, instead of a single loop insertion
as in Eq. (5), we can sum over any number of loops inserted
in the propagator of ϕ. Then, we can apply the holomorphic
cutting rules to each forward-scattering diagram obtained in
this way, as in Ref. [21]. Alternatively, we can employ
Eqs. (16) and (17) with the one-particle-irreducible self-
energy replaced by

−iΣ̃ðsÞ ¼ −iΣðsÞ ×
X∞
n¼0

�
ΣðsÞ

s −M2 þ iϵ

�
n

ð18Þ

leading to [14]

Σ̃R ¼ ðs −M2Þ2ΣR − ðs −M2ÞðΣ2
R þ Σ2

I Þ
ðs −M2 − ΣRÞ2 þ Σ2

I
ð19Þ

Σ̃I ¼
ðs −M2Þ2ΣI

ðs −M2 − ΣRÞ2 þ Σ2
I

ð20Þ

where we put ϵ ¼ 0 after the summation. From Eq. (19) we
can immediately see that

Σ̃RðsÞjs¼M2 ¼ 0;
∂Σ̃RðsÞ
∂s

����
s¼M2

¼ −1: ð21Þ

When replacing ΣR by Σ̃R in Eq. (17), the only non-
vanishing part contains its derivative and cancels the
leading-order contribution of Eq. (11). This result agrees
with Ref. [34] stating that no unstable particles need to be
included in the initial or final states [35]. Instead, we should
only include them in resummed propagators, as seen from
Eqs. (16) and (20) combined into

−2λ2χΣIðsÞ
ðs −M2 − ΣRðsÞÞ2 þ ΣIðsÞ2

× Bðϕ → φφÞ: ð22Þ
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Neglecting the energy dependence of the self-energy after
the appropriate counterterms are included in its real part,
the usual Breit-Wigner approximation is obtained.

IV. THERMAL AVERAGING AND DARK
MATTER RELIC DENSITY

To study the accuracy of the fixed-order approximation
in the calculation of the dark matter relic abundance, we
need to solve the Boltzmann equation for the number
density to entropy density ratio [2]

dY
dx

¼ −
�
45

π
G

�
−1=2 g1=2� m

x2
hσviðY2 − Y2

eqÞ: ð23Þ

In this equation, x ¼ m=T, G is the gravitational constant,
and Yeq ¼ neq=s with

neqðxÞ ¼
m3

2π2
K2ðxÞ
x

and sðxÞ ¼ 2π2

45
g�

m3

x3
ð24Þ

where K2ðxÞ is the modified Bessel function of the second
kind. The number of effective degrees of freedom is set at
g� ¼ 106.75 as if all particles in the standard model were
ultrarelativistic.
It may seem that Eq. (23) only represents the dark matter

density evolution due to two-particle annihilations. At the
leading and next-to-leading order, we also deal with decays
and inverse decays; thus, a system of two Boltzmann
equations for χ and ϕ particles has to be considered.
Although this statement is generally correct, we argue in
the Appendix that for the dark matter freeze-out, the single
equation (23) can also account for decays and inverse
decays with high precision.
Following the convention of Refs. [36,37], we introduce

Δ ¼ 1 −
M2

4m2
< 0 and γ ¼ Γ

M
ð25Þ

while the annihilation cross section is proportional to the
square of α ¼ λχλφ=ð4M2Þ. These parameters are not
independent for the particular model in Eq. (1); we have
to require

4πγ

α
≥
�

−Δ
1 − Δ

�
1=4

: ð26Þ

Furthermore, we focus only on −Δ ≫ γ. Otherwise, the
summation of the Dyson series with energy-dependent self-
energy may become unavoidable [3].
With the new parametrization, the square of the leading-

order amplitude in Eq. (11), including the multiplication by
the branching ratio, can be written as

jMj2LO ¼ α2
1 − Δ
γ

δðs̃ − 1þ ΔÞ ð27Þ

where we introduce s̃ ¼ s=ð4m2Þ. This allows us to write
the respective thermally averaged cross section as [2]

hσviLO ¼ 1 − Δ
M2

2x
K2ðxÞ2

Z
∞

1

ds̃
ffiffiffiffiffiffiffiffiffiffi
s̃ − 1

p
K1ð2x

ffiffiffĩ
s

p
ÞjMj2LO

¼ α2
ffiffiffiffiffiffiffi
−Δ

p

γ

ð1 − ΔÞ2
M2

2xK1ð2x
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p Þ
K2ðxÞ2

: ð28Þ

To account for higher-order corrections, we need to add
to the above expression a contribution in which jMj2LO in
the first row of Eq. (28) is replaced by

jMj2NLO ¼ α2

π
ð1 − ΔÞ2

�
−

∂

∂s̃
P

1

s̃ − 1þ Δ

�
ð29Þ

from Eq. (16), obtaining hσviLOþNLO. It is important to
emphasize that the total cross section is still a distribution
for the squared amplitude in Eq. (29). In other words, ϵ in
Eq. (10) cannot be set to zero until integration over s̃ is
performed.
Finally, we compute the cross-section average for the

Breit-Wigner approximation, denoted hσviBW, using

jMj2BW ¼ α2

π

1

½s̃=ð1 − ΔÞ − 1�2 þ γ2
ð30Þ

from which the leading-order result in Eq. (27) can be
obtained in the narrow-width approximation. For a fermion
dark matter and vector mediator, a similar expression has
been considered in Ref. [6].
We plot the thermally averaged cross section in Fig. 1(a).

At low temperatures, such that x > 100, both hσviLOþNLO
and hσviBW approach the zero-temperature limit

hσviT¼0 ¼
α2

π

ð1 − ΔÞ3
M2Δ2

: ð31Þ

Moreover, as seen in Fig. 1(b), the dark matter density
evolution obtained from Eq. (30) is relatively well approxi-
mated by including the next-to-leading-order correction of
Eq. (29). The zero-temperature and narrow-width approx-
imations fail almost by an order of magnitude in the final
relic density.
The accuracy of the fixed-order calculation also depends

on how close the dark matter mass is to half of the mediator
mass. The relic density as a function of −Δ is shown in
Fig. 2(a). For large values of −Δ, the off-shell mediator
exchanges are important, and the leading-order narrow-
width approximation fails. For smaller −Δ values, on the
other hand, the narrow-width approximation may be
accurate if −Δ ≫ γ. Then, the zero-temperature approxi-
mation becomes insufficient, as it does not include the
resonance. Our next-to-leading-order calculation smoothly
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interpolates the two limiting cases for the range of values
considered.
In Fig. 2(b), we plot the relic density over the entropy

density as a function of γ. The accuracy of the next-to-
leading-order calculation decreases as γ approaches the
value of −Δ. In that case, the near-threshold region is more
important, and the summation of the Dyson series becomes
necessary.
Before we summarize, let us comment on the relation of

the present work to the existing literature. In Ref. [9],
thermal field theory has been used to derive similar fixed-
order approximations within the scalar singlet dark matter

model. At the leading order, the thermally averaged cross
section in Eq. (28) is analogous to Eq. (B.7) in Ref. [9].
However, explicit multiplication by the branching ratio
seems to have been omitted. In our opinion, this is a
consequence of a specific choice of parameters due to the
experimental constraints requiring a very weak dark matter
coupling. The branching ratio of the Higgs boson decaying
into standard-model particles is therefore approximately
equal to unity. At the next-to-leading order, not all results
were shown explicitly in Ref. [9], but some of the features,
such as regularization of the second-order poles by princi-
pal value derivatives, are mentioned.

(a) (b)

FIG. 1. Thermally averaged annihilation cross section as a function of x at the leading order (dashed black line), combined leading and
next-to-leading order (solid black line), and the Breit-Wigner approximation (thick red line) usingM ¼ 100 TeV, Δ ¼ −0.2, γ ¼ 0.01,
and α ¼ 0.1 is shown in panel (a). In panel (b), the evolution of the dark matter number density over the entropy density is plotted for the
same cases. The dotted line corresponds to the zero-temperature cross section in Eq. (31).

(a) (b)

FIG. 2. Dark matter relic density over the entropy density forM ¼ 100 TeV and α ¼ 0.1 calculated at x ¼ 104 as a function of Δ with
γ ¼ 0.01 (a) or as a function of γ with Δ ¼ −0.2 (b). The lines correspond to different cross section approximations as in Fig. 1.
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V. SUMMARY

In this work, we studied the accuracy of a unitarity-based
perturbative approach to resonant dark matter annihilation.
Using the holomorphic cutting rules, we derived an approxi-
mation for the off-shell mediator exchanges. These usually
lead to a singularity in the s-channel diagram squared.
Following our previous work in Ref. [14], we have shown
that the singularity disappears when all contributions of the
given perturbative order are properly included. Therefore,
unless the resonance occurs near the on-shell production
threshold, the summation of the Dyson series, producing a
finite mediator width, is unnecessary.
We have solved the Boltzmann equation for the dark

matter relic density numerically. The next-to-leading-order
corrections, combined with the on-shell mediator produc-
tion representing the leading-order result, were compared
to the annihilation with the Breit-Wigner cross section.
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APPENDIX: BOLTZMANN EQUATIONS
INCLUDING DECAYS AND ANNIHILATIONS

At the lowest order, the Boltzmann equations for the χ
and ϕ particle densities receive contributions from decays
and inverse decays. Throughout this work, we used the
single Boltzmann equation for two-to-two processes only.
In this appendix, we argue that it is an accurate approxi-
mation for the resonant annihilation freeze-out.
To simplify the notation, let us denote the ϕ → φφ

branching ratio in Eq. (12) as B, the branching ratio of the
ϕ → χχ decay as 1 − B, and the leading-order thermally
averaged decay width of ϕ as hΓi. Then, we can write

xH
dYχ

dx
¼ 2ð1 − BÞhΓi

�
Yϕ −

�
Yχ

Yχ;eq

�
2

Yϕ;eq

	
ðA1Þ

xH
dYϕ

dx
¼ −ð1 − BÞhΓi

�
Yϕ −

�
Yχ

Yχ;eq

�
2

Yϕ;eq

	

− BhΓiðYϕ − Yϕ;eqÞ ðA2Þ

where the factor of 2 in Eq. (A1) compensates for the final-
state symmetry factor in hΓi. Multiplying Eq. (A2) by
2ð1 − BÞ and adding it to Eq. (A1), we obtain

xH
dYχ

dx
þ 2ð1 − BÞxH dYϕ

dx

¼ −2ð1 − BÞBhΓiYϕ;eq

��
Yχ

Yχ;eq

�
2

− 1

	
: ðA3Þ

As ϕ is more than twice as heavy as χ, if both these particle
species were in thermal equilibrium until a relatively large
value of x, we get

Yϕ ≃ Yχ exp
n
−2x

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
þ x

o
ðA4Þ

before the decoupling. Therefore, the abundance of ϕ is
suppressed by several orders of magnitude compared to that
of χ. This suppression cannot be overcome by early
decoupling of ϕ, as both Eqs. (A1) and (A2) share the
same ϕ ↔ χχ part. We may thus introduce

Y ¼ Yχ þ 2ð1 − BÞYϕ ðA5Þ

and rewrite Eq. (A3) in terms of Y ≈ Yχ , while neglecting
contributions of theOðYϕ=YχÞ order on the right-hand side.
The procedure results in Eq. (23) with thermally averaged
cross section written as

hσviLO ¼ 2ð1 − BÞB hΓiYϕ;eq

sY2
χ;eq

ðA6Þ

equal to the expression in Eq. (28), including the multi-
plication by the branching ratio of Eq. (12).
At higher orders, annihilations through off-shell ϕ

exchanges also contribute to the density evolution of χ
particles. However, they immediately lead to the desired
form of Eq. (23), which, to high precision, accounts for
both inverse decays and two-particle annihilations.
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