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The origin and nature of ultrahigh-energy cosmic rays remains a mystery despite the great progress that
has been made in recent years mainly due to the observations performed by the Pierre Auger Observatory
and Telescope Array. In particular, the composition information of the cosmic rays as a function of the
energy appears to be crucial for the understanding of their origin. The best observables for primary mass
composition are the muon content of extensive air showers and the atmospheric depth of the shower
maximum development. In this work we present a novel method which allows us to use any type of
classification method to perform mass composition analyses based on the number of muons. The method
also provides the information of the mean values of this observable corresponding to different primary
particles. The analyses are based on numerical simulations of the showers but including experimental
uncertainties in the reconstruction of the energy and in the measurement of the number of muons. We also
study the impact of the use of different high-energy hadronic interaction models in the composition
analyses performed. The biases introduced by the use of different high-energy hadronic interaction models
to analyze the data obtained with the presented method are considerably reduced compared with those
obtained with classic statistical methods that use a single physical observable.
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I. INTRODUCTION

The cosmic-ray energy spectrum extends from below
109 to above 1020 eV. It can be approximated by a broken
power law with some spectral features: the knee at a few
1015 eV [1–5], a second knee at ∼1017 eV [6], the ankle at
∼5 × 1018 eV [7] and a suppression at ∼4 × 1019 eV [7,8].
Different experimental techniques have been used for the
observation of cosmic rays depending on the energy range
under consideration. Due to their low flux at energies
≳1015 eV, their detection can only be achieved by meas-
uring extensive air showers (EASs), cascades of billions of
secondary particles resulting from the interaction of the
primary cosmic rays with molecules of Earth’s atmosphere.
The EASs present three main components: the electromag-
netic one which is formed by electrons, positrons and
gamma rays, the muonic one which is formed by muons
and antimuons, and the hadronic one which is formed by
high-energy nucleons and other hadrons. The EASs consist
of a core of high-energy hadrons that continuously feed the
electromagnetic component, mainly through the decay of

neutral pions and eta particles. The muons are generated by
the decay of lower-energy charged pions and kaons.
The Pierre Auger Observatory [9] constructed in the

province of Mendoza, Argentina is at present the largest
observatory ever built for measuring ultrahigh-energy
cosmic rays (UHECRs, with energies ≳1018 eV). This
observatory combines arrays of surface detectors (water-
Cherenkov tanks) with fluorescence telescopes. Surface
detectors allow one to reconstruct the lateral development
of the showers by detecting secondary particles that reach
the ground. Fluorescence telescopes are used to study the
longitudinal development of the showers. The combination
of the two techniques into a hybrid observatory maximizes
the precision in the reconstruction of the EAS properties
and minimizes systematic errors. The Telescope Array
project [10], located in Utah, USA, is also a hybrid detector
that combines arrays of surface detectors with fluorescence
telescopes, allowing also the reconstruction of the EAS
properties with high precision. In this case the surface
detectors are composed of scintillator detection devices
housed inside metal clad containers.
The cosmic-ray origin still remains a mystery despite

great theoretical and experimental efforts made in recent*agustin.cobos@iteda.cnea.gov.ar
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years. Recent results suggest that the UHECR flux is
composed predominantly of hadronic primary particles
[11–13]. As charged particles, they suffer deflections in
cosmic magnetic fields and, then, their arrival directions do
not point back directly to their sources. Therefore, an
indirect search for their origin is necessary. In particular,
composition information appears to be crucial to find the
transition between the galactic and extragalactic compo-
nents of the cosmic rays and to elucidate the origin of the
suppression at the highest energies [14–17].
The two best indicators of primary mass composition are

the atmospheric depth corresponding to the maximum
shower development, Xmax, and the muon content of the
shower [17–20]. Primary mass composition analyses can
only be performed by comparing experimental data with
EAS simulations. These simulations are subject to large
systematic uncertainties because they are based on high-
energy hadronic interaction models (HEHIMs) that extra-
polate low-energy accelerator data to the highest energies.
The most used HEHIMs in the literature have been recently
updated by using data taken by the Large Hadron Collider
(LHC). These models (EPOS-LHC [21], SIBYLL2.3c [22] and
QGSJetII-04 [23]) are called post-LHC models.
Machine learning research studies algorithms and mod-

eling tools used to infer patterns from data. The better the
algorithm, the more accurate decisions and predictions will
become as it processes more data. In recent years, machine
learning has been used extensively in the physical sciences,
including particle and astroparticle physics [24–26]. For the
particular case of ultrahigh-energy cosmic-ray physics, the
performance of deep neural networks has been studied to
estimate Xmax and the muon content of EASs from the
signals in the water-Cherenkov detectors of the Pierre
Auger Observatory [27–29]. As mentioned before, the
main limitation for the composition determination is the
systematic uncertainties introduced by the use of different
HEHIMs. For this reason the machine learning techniques
are not used directly to determine the composition from
data at the detector level. Currently, these techniques are
used to determine parameters that are sensitive to primary
mass and then the composition can be inferred in sub-
sequent analyses.
In this work, we develop a method to perform primary

mass composition analyses that allows us to significantly
reduce the systematic uncertainties introduced by the use of
HEHIMs to analyze the experimental data. This new
method makes use of the information provided by any
type of classification algorithm. In particular, the classifier
used in this work is a simple neural network. The parameter
sensitive to primary mass is the number of muons, focusing
on the relation between the mean values corresponding to
different HEHIMs. The analysis is performed for binary
mixtures of different theoretical values of proton abun-
dance. The studies are performed by using numerical
simulations, which include experimental uncertainties in

the reconstruction of the energy and in the number of
muons. It is worth mentioning that, although the analyses
are performed for binary mixtures, the method could be
extended to mixtures of more than two types of particles.

II. ANALYSIS

A. Development of the method

In this subsection we present a new method to determine
the primary mass composition of cosmic rays by using a
neural network. In a first stage we define and analyze
different variables obtained with the neural network in a
straightforward way in order to have a conceptual scaffold-
ing, then, we describe the method developed. As mentioned
in the previous section, the composition analysis is carried
out based on the number of observable muons and the
simplified case in which there are just two nuclear species,
A0 and A1, considered. The analysis is also carried out for a
fixed primary energy; therefore, all shower variables and
distribution functions defined hereafter will be referred to
as this fixed parameter. The dependence on this parameter
will be omitted for compactness of the notation. A detailed
description of the construction of the shower variables and
the functions defined here can be found in Sec. II B. A
Multilayer perceptron neural network is used with one
neuron in the input/output layers. Two hidden layers are
considered with 20 neurons for each one. The output
function is sigmoid type, where an output ¼ 0 (1) is
considered if the sigmoid output is ≤0.5 (>0.5).
Let be NμðA0;HMrefÞ and NμðA1;HMrefÞ the total

number of muons that reach the ground due to primaries
A0 and A1, corresponding to a reference HEHIM, HMref .
The neural network is subjected to the training process in
order to provide an output ¼ 0 or 1 when their input
variables correspond to NμðA0;HMrefÞ or NμðA1;HMrefÞ,
respectively. In other words, we train the neural network so
that it can recognize the primaries A0 (output ¼ 0) and A1

(output ¼ 1) from their Nμ values.
Let beNμðcA0

;HMÞ amuon number sample of sizeN of a
given HEHIM, HM, corresponding to a binary mixture of
primariesA0 andA1 with respective abundances cA0

and cA1
;

cA0
þ cA1

¼ 1. The estimator of the abundance cA0
,

cnnA0
ðHMÞ, obtained from the output of the neural network

when this sample is used, is given by the ratio between the
number of output ¼ 0 and the total number of events, N.
Figure 1 (top) shows the mean values of the proton
abundance estimator, hcnnp i, obtained directlywith the neural
network for different values of cp corresponding to binary
mixtures of proton and iron (A0 ¼ p,A1 ¼ Fe). The primary
energy corresponds to E ¼ 1018 eV and the size of the
samples is N ¼ 5000 (see Sec. II B for more details).
Experimental uncertainties have been included. For each
value of cp and for each HEHIM, 100 independent samples
were generated to obtain the hcnnp i values. As mentioned in
the previous section, the HEHIMs used are EPOS-LHC [21],
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SIBYLL2.3c [22] and QGSJetII-04 [23]. EPOS-LHC is used as
the reference model (HMref). Figure 1 (bottom) shows hcnnp i
values for the same cases of Fig. 1 (top) but for proton and
nitrogen mixtures (A1 ¼ nit).
Note in Fig. 1 that the error bars are smaller than

the marker size since, for the same primary abundance,
the standard deviation of the number of outputs ¼ 0
is very small even considering experimental uncertainties.
However, the neural network performance is relatively poor
and hence the misclassification rate is relatively high. This
can be seen from the fact that the estimator cnnp produces
biases even if HM ¼ HMref . This can be explained by
computing, after the training process, the efficiencies (also
called true positive rate) εAi

¼ εAi
ðHMrefÞ, defined only

for HMref as the quotient between the obtained number
of output = i due to primaries of type Ai and the total
number of primaries of type Ai used as input of the neural
network when this number tends to infinity; i ¼ 0, 1. Then,
given a sample NμðcA0

;HMrefÞ, the normalized numbers of
output ¼ i due to primaries of type Aj, nAj

ðiÞ ¼ NAj
ðiÞ=N,

can be expressed by the following equations:

nA0
ð0Þ ¼ cA0

εA0
; ð1Þ

nA0
ð1Þ ¼ cA0

ð1 − εA0
Þ; ð2Þ

nA1
ð1Þ ¼ cA1

εA1
; ð3Þ

nA1
ð0Þ ¼ cA1

ð1 − εA1
Þ ð4Þ

and the estimator cnnA0
ðHMrefÞ will be expressed by the

normalized number of output ¼ 0, i.e. by the sum of
Eqs. (1) and (4)

cnnA0
ðHMrefÞ ¼ cA0

εA0
þ cA1

ð1 − εA1
Þ: ð5Þ

Taking into account that cA0
does not depend on εA0

or εA1
,

from Eq. (5) one can see that cnnA0
ðHMrefÞ is equal to cA0

only if εA0
¼ εA1

¼ 1.
The effect of assuming a given HEHIM as the true one

(HMref) whereas the real one is another (HM) can be
studied by replacing cnnA0

ðHMrefÞ with cnnA0
ðHMÞ in Eq. (5).

In this way, the test samples are generated with HM
but the neural network is trained—and the εAi

’s are
calculated—with HMref . Taking into account that cA1

¼
1 − cA0

and solving for cA0
from Eq. (5) with the mentioned

replacement, the estimator cnnεA0
¼ cnnεA0

ðcnnA0
; εA0

; εA1
Þ can be

defined as

cnnεA0
¼ cnnA0

ðHMÞ þ εA1
− 1

εA0
þ εA1

− 1
: ð6Þ

Figure 2 shows the mean values hcnnεp i as a function
of cp obtained from Eq. (6) for the same samples of Fig. 1.
It can be seen that cnnεA0

does not produce biases when
HM ¼ HMref . By comparing the top and bottom panels of
Fig. 2, one can see that the magnitudes of the biases
corresponding to the proton-nitrogen mixtures are greater
than those of the proton-iron mixtures; this is due to the
decrease in the merit factor between the primary distribu-
tions of the former mixtures [see Eq. (A1) of Appendix A].
For the same reason, the magnitudes of the biases for the
proton-helium mixtures are even larger (not shown). It is
worth mentioning that the absolute values of the biases
obtained with Eq. (6) are of similar order of magnitude
to those obtained with other methods that use Xmax or
the number of muons as observables (see for instance
Refs. [20,30–32]).
In order to introduce the method developed in this work,

we first characterize the Nμ distributions corresponding to
different primary particles. The produced number of muons
increases with a small power of the mass number and
almost linearly with the primary energy. This behavior can
be explained in terms of the Heitler-Matthews model of
hadronic air showers [33], which predicts that the mean
value of the total number of muons produced in a shower is

FIG. 1. Mean value of proton abundance estimator, hcnnp i, as a
function of cp obtained directly with the neural network used in
this work for proton-iron (top) and proton-nitrogen (bottom)
binary mixtures. The primary energy is E ¼ 1018 eV. The size of
the samples is N ¼ 5000. For each value of cp and for each
HEHIM, 100 independent samples were generated taking into
account experimental uncertainties (see Sec. II B for more de-
tails). The HEHIMs used are EPOS-LHC [21], SIBYLL2.3c [22] and
QGSJetII-04 [23]. EPOS-LHC is used as the reference model
(HMref ). The error bars are smaller than the marker size. The dash
line corresponds to hcnnp i ¼ cp.
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hNμiðE;AÞ ¼ A½E=ðAξcÞ�β, where ξc is the critical energy
at which charged pions decay into muons. This prediction
relies on the superposition model in which a primary
nucleus of mass number A and energy E is considered
as the A independent nucleus of energy E=A each. The
Heitler-Matthews model predicts quite well the functional
dependence of the mean number of muons at the shower
maximum development with A and E. Simulations with
post-LHC HEHIMs show that β ≃ 0.915–0.928 [34,35].
Figure 3 shows the Nμ histograms obtained from simu-
lations corresponding to different HEHIMs for proton (top)
and iron (bottom). The mean values of Nμ between
SIBYLL2.3c and EPOS-LHC are related by a factor ∼1.043
and ∼1.033 for proton and iron, respectively. For the case
of QGSJetII-04 and EPOS-LHC, these factors are ∼0.930 and
∼0.939. Doing the same analysis with any primary Ai, one
can state that the numerical factor between the Nμ mean
values of two HEHIMs is almost independent of the
primary type, with differences less than 1%. The same
conclusions can be made for the numerical relationship
between the Nμ standard deviations of two HEHIMs.
Moreover, these conclusions are not affected when
experimental uncertainties are taken into account since
they are estimated, for any primary Ai, as proportional to
the mean values of NμðAiÞ [36,37]. Figure 4 shows the Nμ

histograms for the same cases as Fig. 3 but with the Nμ

values of SIBYLL2.3c and QGSJetII-04 divided by the

aforementioned factors. As expected, a better match is
seen between the histograms than those shown in Fig. 3.
The method presented in this work is based on one

assumption:
(I) The number of muons corresponding to a HEHIM

differs by a scale factor from that of another HEHIM.
According to this assumption, the random variables

of two hadronic models HM and HMref , corresponding
to any primary Ai, will satisfy NμðHM; AiÞ ¼ ð1þ γoÞ×
NμðHMref ; AiÞ, where 1þ γo is the scale factor, being
γo ¼ γoðHM;HMrefÞ > −1. Note that from assumption (I)
the value of β is the same for any HEHIM and, for a given
primary, the shape of the Nμ distribution is the same
regardless of the HEHIM considered.
After the training process, we now use as inputs the

NμðA0;HMrefÞ and NμðA1;HMrefÞ values but multiplied
by different quantities 1þ γ ≥ 0, in order to obtain the
efficiencies εA0

ðγÞ and εA1
ðγÞ (see Sec. II B for more

details). Note that εA0
ðγ ¼ 0Þ and εA1

ðγ ¼ 0Þ correspond
to the efficiencies previously defined, i.e. when the NμðA0Þ
and NμðA1Þ variables of HMref are used.
Figure 5 (top) shows the εpðγÞ and εFeðγÞ values as

functions of γ after training the neural network with the
Nμðp;HMrefÞ and NμðFe;HMrefÞ (A0 ¼ p, A1 ¼ Fe). Note
that as the γ value increases (decreases), εpðγÞ decreases
(increases) approaching 0 (1). In the opposite direction,
εFeðγÞ increases (decreases) approaching 1 (0) as the values
of γ increase (decrease). The same behavior is observed
when the neural network is trained with other types of

FIG. 2. Mean value of proton abundance estimator, hcnnεp i, as a
function of cp obtained from Eq. (6) for proton-iron (top) and
proton-nitrogen (bottom) binary mixtures corresponding to the
same cases of Fig. 1. The error bars are smaller than the marker
size. The dash line corresponds to hcnnεp i ¼ cp.

FIG. 3. Nμ histograms corresponding to the HEHIMs used for
proton (top) and iron (bottom). The number of entries of each
histogram is 5000.
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primary particles as can be seen from Fig. 5 (bottom) where
εpðγÞ and εnitðγÞ, corresponding to proton and nitrogen
(A1 ¼ nit) are shown.
In a similar way, we use as inputs theNμðcA0

;HMÞ values
of the sample test mixture multiplied by different amounts
1þ γ, i.e. ð1þ γÞNμðcA0

;HMÞ, obtaining the neural
network estimator, cnnA0

ðHM; γÞ (see Sec. II B for more
details). Figures 6–8 show, respectively, the mean values,
hcnnp iðHM; γÞ delivered by the neural network for EPOS-LHC,
SIBYLL2.3c and QGSJetII-04 corresponding to proton-iron
(top) and proton-nitrogen (bottom) mixtures for the same
independent samples used in Fig. 1. The error bars are
included but are smaller than the marker size in most of the
cases. From Figs. 6–8 one can see that the cnnp ðγÞ’s have
similar behaviors for different HEHIMs, increasing
(decreasing) their values up to 1 (down to 0) as γ decreases
(increases). By comparing the top and bottom panels of
Figs. 6–8 one can also verify that the variations in the shapes
of the cnnp ðHM; γÞ curves and the separations between them
for different values of cp are more accentuated in the proton-
iron mixture than in the proton-nitrogen mixture; this is due
to the increase in the merit factor between the primary
distributions of the former mixture.
According to assumption (I) and Eq. (5), a general

expression for the cnnA0
ðHM; γÞ estimator provided by the

neural network can be established,

FIG. 4. Nμ histograms for the same cases of Fig. 3 but with the
Nμ values of SIBYLL2.3c and QGSJetII-04 multiplied by the
corresponding scaled factor (see text).

FIG. 6. Mean values, hcnnp iðHM; γÞ, as a function of γ provided
by the neural network for different values of cp corresponding to
proton-iron (top) and proton-nitrogen (bottom) binary mixtures.
The error bars are smaller than themarker size in most of the cases.
The HEHIM used corresponds to HM = EPOS-LHC with the same
mixture samples used in Fig. 1 (see Sec. II B for more details).

FIG. 5. Top: efficiency values, εpðγÞ and εFeðγÞ, as functions
of γ after training the neural network with the Nμðp;HMrefÞ and
NμðFe;HMrefÞ values corresponding to proton and iron (A0 ¼ p,
A1 ¼ Fe). Bottom: εpðγÞ and εnitðγÞ values as functions of
γ after training the neural network with the Nμðp;HMrefÞ and
Nμðnit;HMrefÞ corresponding to proton and nitrogen (A0 ¼ p,
A1 ¼ nit).
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cnnA0
ðHM; γÞ ¼ FðcA0

; γ þ γoÞ; ð7Þ

where

FðcA0
; γ þ γoÞ ¼ −εA1

ðγ þ γoÞ þ 1

þ cA0
½εA0

ðγ þ γoÞ þ εA1
ðγ þ γoÞ − 1�:

ð8Þ

From the behavior of cnnA0
ðHM; γÞ observed in Figs. 6–8 and

taking into account assumption (I), it can be shown that (see
Appendix B) if L is a value of γ large enough to ensure that
cnnA0

ðHM; γÞ ≅ 0 for any HEHIM, HM, then

γoðcA0
Þ ¼

Z
L

−1
½FðcA0

; γÞ − cnnA0
ðHM; γÞ�dγ; ð9Þ

where FðcA0
; γÞ corresponds to FðcA0

; γ þ γoÞ when
γo ¼ 0. Therefore, from Eq. (9) one can express the
γoðcA0

Þ value as a function of cA0
. Finally, the estimator,

ĉA0
, is defined and obtained as the one that minimizes

SðcA0
Þ ¼ S1ðcA0

Þ þ S2ðcA0
Þ; ð10Þ

being

S1ðcA0
Þ¼

����
Xn
k¼1

½cnnA0
ðHM;γkÞ−FðcA0

;γkþγoðcA0
ÞÞ�

���� ð11Þ

and

S2ðcA0
Þ¼

�
1

n

Xn
k¼1

½cnnA0
ðHM;γkÞ−FðcA0

;γkþγoðcA0
ÞÞ�2

�
1=2

;

ð12Þ

where γ1 ¼ −1 and γn ¼ L.
Note that the method developed in this work allows us to

obtain the estimator γ̂o ¼ γ̂oðHM;HMrefÞ associated with
the relation between the mean values of NμðAiÞ corre-
sponding to HM and HMref . Note that once ĉA0

is found, the
corresponding estimator γ̂o is obtained by replacing in
Eq. (9) cA0

with ĉA0
and then, solving for γo. We define the

percentage bias δNAi
μ ½%� as

δNAi
μ ¼

�hN̂μiðAi;HMÞ
hNμiðAi;HMÞ − 1

�
100%; ð13Þ

where the estimator of NμðAi;HMÞ is given by
N̂μðAi;HMÞ ¼ ð1þ γ̂oÞhNμiðAi;HMrefÞ.

FIG. 7. Mean values, hcnnp iðHM; γÞ, as a function of γ provided
by the neural network for different values of cp corresponding to
proton-iron (top) and proton-nitrogen (bottom) binary mixtures.
The error bars are smaller than the marker size in most of the
cases. The HEHIM used corresponds to HM = SIBYLL2.3c with
the same mixture samples used in Fig. 1 (see Sec. II B for more
details).

FIG. 8. Mean values, hcnnp iðHM; γÞ, as a function of γ provided
by the neural network for different values of cp corresponding to
proton-iron (top) and proton-nitrogen (bottom) binary mixtures.
The error bars are smaller than the marker size in most of the
cases. The HEHIM used corresponds to HM = QGSJetII-04 with
the same mixture samples used in Fig. 1 (see Sec. II B for more
details).
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B. Numerical approach

In order to obtain the Nμ distributions considered
in this work, different EAS simulations were performed.
The shower library used is generated with CONEX2r6.40

[38–40]. The HEHIMs considered are EPOS-LHC [21],
SIBYLL2.3c [22] and QGSJetII-04 [23]. EPOS-LHC is used
as the reference model (HMref). The showers are simulated
for primary energy E ¼ 1018 eV. For each HEHIM, a set of
5000 EASs are generated for proton, helium, nitrogen and
iron. From each set of EASs obtained, a histogram of
each NμðAiÞ distribution is constructed. Nμ distributions of
proton (A0 ¼ p), helium (A1 ¼ He), nitrogen (A1 ¼ nit)
and iron (A1 ¼ Fe) are considered. Only muons with
energies greater than 1 GeV are taken into account. The
ground level is set at the sea level (CONEX2r6.40 default
ground level); however, the surface detector energy reso-
lution of Auger is used (see text below).
The simulations for the training process are performed

by using the ROOT package [41]. In this work a multi-
layer perceptron (mlp) neural network is used. The
TMultiLayerPerceptron ROOT class with one neuron in
the input/output layers and 20 neurons for each of the two
hidden layers considered is used. The output function is
sigmoid type, where an output ¼ 0 (1) is considered if the
sigmoid output is ≤0.5 (>0.5). The mlp is subjected to the
training process so that it provides an output ¼ 0 or 1 when
we use as input random values of Nμ generated from the
histogram of HMref corresponding to A0 or A1, respectively.
The number of these random NμðAi;HMrefÞ values gen-
erated for each type of primary Ai during the learning
process is equal to 106.
To obtain the efficiencies εAi

ðγÞ, new NμðAi;HMrefÞ
values for each primary Ai were generated. In order to
include experimental uncertainties each generated value is
then randomly fluctuated. For this, it is assumed that
measurements of primary energy and of the number of
muons follow Gaussian distributions centered at the true
value, with widths given by the detector resolution. An
average relative energy resolution of 13.1% is considered.
This value corresponds to the surface detector’s energy
resolution of Auger for E ¼ 1018 eV [42], which treats
the energy bin independently and also takes account of the
effect of the migration of events between bins [36].
The relative errors of the reconstructed number of muons
are extracted from Ref. [37] which correspond to ≃12.5 and
9.5% for proton and iron, respectively. For the case of
helium and nitrogen, the same relative error value as
for proton is used in order to be conservative. Each
value is then multiplied by a certain amount 1þ γ. The
ð1þ γÞNμðAi;HMrefÞ obtained is used as input of the mlp.
This process is repeated 106 times for each primary type Ai
and each value of γ used. The corresponding efficiencies
εAi

ðγÞ are finally calculated as the quotient between the
obtained number of output = i and the total number of

ð1þ γÞNμðAi;HMrefÞ, i.e. 106, used as input of the mlp.
The process described in this paragraph to obtain the εAi

ðγÞ
is done for γ values ranging from −1 to 10 in steps of 0.01
as can be partially seen in Fig. 5.
The simulations performed for the estimator of the

proton abundance obtained by the mlp, cnnp ðHM; γÞ, are
also performed by using the ROOT package. The values of
cp considered range between 0.0 and 1.0 in steps of 0.1. For
each value of cp, the number of events, Np, due to proton-
induced air showers is obtained by sampling a binomial
distribution function, BðN; cpÞ, where N ¼ 5000 is the
total number of events. The number of events due to the
other primary A1 (iron, nitrogen or helium) is calculated as
NA1

¼ N − Np. In order to analyze the impact of the
differences between HEHIMs on composition analyses,
EPOS-LHC, SIBYLL2.3c and QGSJetII-04 are used to generate
the event samples from their NμðAiÞ histograms and
including also experimental uncertainties in the measure-
ment of Nμ as described before. The values of the sample
Nμðcp;HMÞ are multiplied by a certain amount 1þ γ and
used as inputs of the mlp. The estimator cnnp ðHM; γÞ
obtained by the mlp is finally calculated as the ratio
between the number of outputs ¼ 0 and the total number
of outputs (i.e. N) corresponding to each sample. The
cnnp ðHM; γÞ is computed for γ values ranging from −1 to 20
in steps of 0.01. For each value of cp, 100 independent
samples (i.e. the number of iterations) are generated to
obtain the distribution of cnnp ðHM; γÞ corresponding to
EPOS-LHC, SIBYLL2.3c and QGSJetII-04. The mean value
of the cnnp ðHM; γÞ, hcnnp iðHM; γÞ, and its standard deviation
are also calculated as can be seen in Figs. 6–8. Once the
εA0

ðγÞ, εA1
ðγÞ and cnnp ðHM; γÞ functions are obtained, ĉp are

γ̂0 are computed as described in Sec. II A. For the integral
of Eq. (9) a limit L ¼ 20 is used. The values of cp used to
minimize Eq. (10) range from −0.03 to 1.03.

III. RESULTS AND DISCUSSION

A. Results of the ĉp estimator

The top and middle panels of Fig. 9 show hĉpi as a
function of cp for the proton-iron and proton-nitrogen
mixtures, respectively. One can see that the method does
not produce biases when HM ¼ HMref . For HM ≠ HMref,
the absolute values of the biases are less than 0.05 in most
cases, showing a marked improvement compared to the
results shown in Fig. 2 obtained with Eq. (6). The cost to
pay with respect to Eq. (6) is an increase in the error bars in
some cases. The bottom panel of Fig. 9 shows ĉp as a
function of cp for proton-helium mixture samples. One can
see again the absence of biases for the HM ¼ HMref case.
From Fig. 9 it can be surprisingly seen that the magnitudes
of the biases for different types of mixtures are smaller
when the merit factor corresponding to their primary
components decreases. This means, for example, that the
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improvement obtained for the proton-helium mixtures is
greater than that obtained for the proton-iron mixtures. It is
concluded that the method presented in this work is slightly
dependent on the HEHIM used for composition determi-
nation, implying an improvement compared to classical
methods where the Xmax or the number of muons are used
as the physical observable (see for instance Refs. [20,30]).
This improvement is quantified in the following subsection.

B. Results for the estimator of hNμi
As mentioned in Sec. II A, the method presented in this

work not only provides the estimators of the primary
abundances but also the estimators of the hNμiðAiÞ values.
Figures 10–12 show the biases δNp

μ (top) and δNA1
μ

FIG. 9. Mean value, hĉpi, of the proton abundance estimator as
a function of cp computed with the method presented in this
work for proton-iron (top), proton-nitrogen (middle) and proton-
helium (bottom) mixture samples. The dash line corresponds to
hĉpi ¼ cp.

FIG. 10. Biases δNp
μ (top) and δNFe

μ (bottom) as functions of cp
obtained from Eq. (13) corresponding to proton-iron mixtures for
the three HEHIMs used in this work.

FIG. 11. Biases δNp
μ (top) and δNnit

μ (bottom) as functions of cp
obtained from Eq. (13) corresponding to proton-nitrogen mix-
tures for the three HEHIMs used in this work.
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(bottom) as functions of cp corresponding to proton-iron,
proton-nitrogen and proton-helium mixtures, respectively.
According to the definition of δNAi

μ given in Eq. (13), the
differences between the estimated and the true number of
muons are ≲2% in most cases, being negligible when
HM ¼ HMref . It can also be seen that the results obtained
for the proton-nitrogen mixtures are better than those
obtained for the proton-iron mixtures. And the results of
the proton-helium mixtures are in turn better than those of
the proton-nitrogen mixtures, with differences between the
estimated and the true number of muons smaller than 1%. It
is worth mentioning that the implication of the biases
shown in this subsection on the primary abundance shown
in Fig. 9 is in good agreement with the results obtained in
Ref. [20] where a study of the proton abundance biases as a
function of the relative differences between the number of
muons was done—also for binary mixture samples—by
using a maximum likelihood method. One could therefore
conclude that the percentage biases in the number of muons
obtained with the presented method are ≲2% or, in other
words, the primary abundance biases obtained in this work
are comparable to the biases that would be obtained with
classical methods (for example, maximum likelihood) in a
hypothetical situation in which the differences between the
number of muons of different HEHIMs were ≲2%.

C. Discussion

As commented in Sec. I, machine learning has been used
in the physical sciences, including particle and astroparticle

physics. The large amount of events collected by the
experiments of these fields has allowed the exploitation
of machine learning techniques that require vast amounts
of data to build and train a model. As an example, in
Ref. [27] it was presented a method to reconstruct Xmax
from the signal traces induced in the water-Cherenkov
detectors. This method is based on a deep neural network,
whose architecture and optimization was specifically
developed for the measurement conditions at the Pierre
Auger Observatory. In this case each signal trace is
characterized by many machine-learned features. The net-
work parameters for forming these observables to charac-
terize the signal traces and for combining all available
information are adjusted in a training procedure. In a
similar way, the work of Ref. [28] presented a machine
learning method to extract the muon signal with the time
integral of the muon trace. Generalizing this idea, in
Ref. [29] a deep learning algorithm was used for the
estimation of the muon contribution to the signal recorded
in each time trace bin.
In this work, instead of developing a suitable architecture

for the machine learning process, we have presented a
method that allows us to extract information about the
composition of UHECR with a simple classifier. Here, a
multilayer perceptron neural network was used. The
method is based on one assumption, called assumption
(I), that consists of linking the Nμ values of two HEHIMs
by a single scale factor, γo, regardless of the primary
particle in question. We have shown that the method has a
low dependency on the HEHIM used as an experimental
sample despite the poor performance of the neural network
observed in Fig. 1. This was possible thanks to the degree
of accuracy of assumption (I) discussed and verified in
Sec. II A. Hence, the method has also the ability of
obtaining automatically the estimator of the mean value
of Nμ corresponding to any HEHIM. It should be note that
Eq. (9) constitutes an important tool since it simplifies the
computational architecture—and reduces computation
time—expressing γo as a function of cA0

, disregarding a
sweep on the γo variable. It is worth mentioning that the
approach presented in this work uses machine learning but
instead of the event-by-event technique a finite sample of
Nμ is finally needed, just like with classical statistical
methods. As can be seen from Eqs. (9)–(12) and from
the technique described in Sec. II A to obtain the functions
cnnA0

ðHM; γÞ, the method only needs a relatively low
mathematical level since the main mathematical power lies
in the optimization associated with the learning and training
processes of the neural network.
The method has achieved satisfactory results despite

using only one physical observable, Nμ. The hybrid feature
of the Pierre Auger Observatory could improve the per-
formance of the classifier by using as inputs more than one
type of variable, as for example, the signal traces induced in
the water-Cherenkov detectors. Furthermore, this type of

FIG. 12. Biases δNp
μ (top) and δNHe

μ (bottom) as functions of cp
obtained from Eq. (13) corresponding to proton-helium mixtures
for the three HEHIMs used in this work.
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variable which is very close to the detector output
is particularly appropriate to exploit the capabilities of
the neural networks. However, exploring cosmic-ray
composition results with these multidimensional input
spaces would need a suitable and complex architecture
adapted for the measurement conditions at the Pierre Auger
Observatory, not to mention the need to introduce new
assumptions, similar to assumption (I), so that the results
are less dependent on the HEHIM used as experimental
sample.
Although the method should be extended to mixtures of

more than two types of particles, the binary case could be
applied in regions of the cosmic-ray energy spectrum where
the abundances of a third and fourth type of primary appear
to be negligible or null [30]. It is worth mentioning that
different mass composition methods that seem to have a
reduced dependence on the assumed HEHIM have been
developed in recent years. In Ref. [43], a method based on
parametrizations of the Xmax distributions obtained from
simulations is presented in which the normalization levels
of the mean value and the standard deviation of Xmax are
determined from experimental data. In this way, the
influence of HEHIMs on composition analyses is reduced.
In Ref. [44], a method based on the correlation between
Xmax and the number of muons in air showers is described.
The purpose of this method is to determine whether the
mass composition is pure or mixed. A similar method
is used by Auger to study the composition in the ankle
region [45]. The results obtained in this case are robust with
respect to the details of the hadronic interactions and to
experimental systematic uncertainties. Therefore, it is
expected that a combination of the method presented in
this work with the other method based on the Xmax
observable can be developed in order to further reduce
the dependence of the composition analyses on HEHIMs.
Following the same goal, a promising alternative would be
the development of a composition method, similar to the
one presented here, but using as input the observable Xmax
and some assumption “analogous to assumption (I)” that
links the Xmax of different HEHIMs. Once the robustness of
the method has been verified, the next step would be its
generalization by using both observables, Nμ and Xmax,
with the corresponding assumptions (probably correlated)
in order to obtain even less hadronic-model-dependent
results than those obtained in the present work. These
topics are under current research.

IV. CONCLUSIONS

In this work, we have presented a method to perform
mass composition analyses based on the Nμ observable.
The method processes the information provided by a
simple neural network (or from any type of classification
method) to obtain the abundance estimators of different
primary particles, providing at the same time, the estimators

of the mean values of their Nμ distributions. It is worth
mentioning that the approach presented only needs a
relatively low mathematical level and instead of using
the event-by-event technique, a finite sample of Nμ is
needed, just like with classical statistical methods.
We have also studied the impact of the use of different

high-energy hadronic interaction models in the composi-
tion analyses. The biases found are smaller than those
obtained with classic statistical methods that use a single
physical observable.
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APPENDIX A: MERIT FACTOR

The discrimination power of a given mass sensitive
parameter, q, can be assessed by the commonly used merit
factor, which is defined as

MFðqÞ ¼ hqiA1
− hqiA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½q�A1
þ Var½q�A0

q ; ðA1Þ

where Var½q�A is the variance of parameter q for the
primary type A. By using Nμ as the q parameter in
Eq. (A1) for E ¼ 1018 eV one can verify from simulations
that the merit factors between proton and iron are ≃2.2, 1.9
and 2.4 for EPOS-LHC, SIBYLL2.3c and QGSJetII-04, respec-
tively. For proton and nitrogen (proton and helium) the
merit factors decrease to ≃1.3, 1.1 and 1.4 (≃0.58, 0.54 and
0.64) for the respective HEHIMs mentioned.

APPENDIX B: PROOF OF EQ. (9)

In this appendix the proof of Eq. (9) is given under the
assumption (I). Figure 5 can be seen as a representative
example of how the efficiencies εA0

ðγÞ and εA1
ðγÞ behave as

functions of γ. Let L be any value of γ large enough to
ensure that for any HEHIM, HM, it is true that

εA0
ðLÞ ≅ εA0

ðLþ γoÞ ≅ 0; ðB1Þ

and

εA1
ðLÞ ≅ εA1

ðLþ γoÞ ≅ 1: ðB2Þ

Then, it can be easily seen that

Z
L

−1
εA0

ðγ þ γoÞdγ ¼
Z

L

−1
εA0

ðγÞdγ − γo ðB3Þ
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and

Z
L

−1
εA1

ðγ þ γoÞdγ ¼
Z

L

−1
εA1

ðγÞdγ þ γo: ðB4Þ

As stated in Eqs. (7) and (8) from assumption (I), the
cnnA0

ðHM; γÞ estimator can be expressed as

cnnA0
ðHM; γÞ ¼ −εA1

ðγ þ γoÞ þ 1þ cA0
½εA0

ðγ þ γoÞ
þ εA1

ðγ þ γoÞ − 1�: ðB5Þ

Integrating Eq. (B5) from −1 to L, replacing then with
Eqs. (B3) and (B4) and solving for γo, we finally have that

γoðcA0
Þ ¼

Z
L

−1
½FðcA0

; γÞ − cnnA0
ðHM; γÞ�dγ; ðB6Þ

where

FðcA0
;γÞ¼−εA1

ðγÞþ1þcA0
½εA0

ðγÞþεA1
ðγÞ−1�: ðB7Þ
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