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The spin orientations of spinning binary black hole (BBH) mergers detected by ground-based
gravitational wave detectors such as LIGO and Virgo can provide important clues about the formation
of such binaries. However, these spin tilts, i.e., the angles between the spin vector of each black hole and the
binary’s orbital angular momentum vector, can change due to precessional effects as the black holes evolve
from a large separation to their merger. The tilts inferred at a frequency in the sensitive band of the detectors
by comparing the signal with theoretical waveforms can thus be significantly different from the tilts when
the binary originally formed. These tilts at the binary’s formation are well approximated in many scenarios
by evolving the BBH backward in time to a formally infinite separation. Using the tilts at infinite separation
also places all binaries on an equal footing in analyzing their population properties. In this paper, we
perform parameter estimation for simulated BBHs and investigate the differences between the tilts one
infers directly close to merger and those obtained by evolving back to infinite separation. We select
simulated observations such that their configurations show particularly large differences in their
orientations close to merger and at infinity. While these differences may be buried in the statistical noise
for current detections, we show that in future plus-era (Aþ and Virgoþ) detectors, they can be easily
distinguished in some cases. We also consider the tilts at infinity for BBHs in various spin morphologies
and at the endpoint of the up-down instability. In particular, we find that we are able to easily identify the
up-down instability cases as such from the tilts at infinity.

DOI: 10.1103/PhysRevD.109.043002

I. INTRODUCTION

The detection of ∼90 compact object mergers involving
black holes and neutron stars as gravitational wave (GW)
events by the Advanced LIGO [1] and Advanced Virgo [2]
detectors over the course of three observing runs [3] has
ushered in the new era of GW astrophysics. A majority of
these detections are mergers of binary black hole (BBH)
systems. The GW signal for a given BBH carries informa-
tion about the intrinsic properties of the system, such as the
masses, spins, and orbital eccentricity. While at current
detector sensitivities we are unable to precisely determine
these properties for any given BBH, a combined catalog of

these events makes it possible to study the population
properties of BBHs, estimate their local merger rate, and
provides clues as to how they could have formed [4].
For a precessing BBH system, the orientations of the

spin vectors of the two black holes in the binary are
parameters of considerable interest, in particular these spin
vectors’ misalignment with the binary’s (Newtonian)
orbital angular momentum, L⃗. These spin tilts, denoted
by θ1 (θ2), are defined as the angle between L⃗ and the spin
vector of the primary (secondary) black hole. The spin tilts
range from 0 to π, corresponding to orientations that range
from aligned to antialigned with L⃗. In addition to these spin
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tilts, the relative angle between the orbital plane angles ϕ1;2

made by the two spin vectors, ϕ12 ≔ ϕ2 − ϕ1, is also
crucial to provide a complete description of the (orbit-
averaged) precessional dynamics of a BBH (for an illus-
tration of these angles, see, e.g., Fig. 1 in [5]). Values for all
these spin angles are given in radians throughout this text,
unless specified otherwise.
Well constrained spin orientations may prove to be the

smoking gun for distinguishing between the two most well-
known formation scenarios for BBHs [6–9]. In the isolated
formation scenario (as outlined in [10]), component stars in
a field binary collapse separately to form black holes. Mass
transfer between the two components and tidal interactions
both tend to align the component spins with the binary’s
orbital angular momentum [11] (see also [12] for an
overview of these mechanisms), and hence isolated
BBHs are generally expected to have small tilt angles.
However, large misalignments may still be obtained in this
scenario through asymmetric natal supernova kicks in the
formation of the second compact object [13]. Alternatively,
black holes in a dense stellar environment may form a binary
through many-body interactions in the dynamical formation
scenario (see, e.g., [10]). Since these encounters are sto-
chastic, BBHs formed through this channel are expected to
have an isotropic spin distribution. BBHs can also form
dynamically when embedded in the disks of active galactic
nuclei powered by the inflow of matter into the central
galactic supermassive black hole (e.g., [10]). Although the
modeling of these systems has significant uncertainties,
a simple calculation finds that spin-orbit interactions within
the disk can drive black hole spin misalignments as large as
≳60° [14]. An increasing number of GW observations may
make it possible to distinguish aligned and isotropic spin
distributions from a population of detected BBHs. The
current detections in GWTC-3 already show a stronger
preference for an isotropic spin tilt distribution in the
population compared to previous catalogs [4].
However, the current sensitivities of the LIGO-Virgo

detectors in their third observing run (O3) do not allow one
to obtain strong constraints on the tilts for individual
events. With planned improvements in the sensitivity of
these detectors, this picture could change. The upcoming
fourth observing run (O4) of advanced LIGO and advanced
Virgo will see these detectors achieve their design sensi-
tivities. This will be followed by a further set of upgrades
[15] leading to the plus-era of ground-based detectors
(Aþ=AdVþ).1 A recent study by Knee et al. [18] found
that spin tilts could be constrained to within a few tens of
degrees for loud events in plus-era detectors.
Traditionally, inferred spin tilts have been reported at a

fiducial detector-frame reference frequency, fref (20 Hz for

most detections in GWTC-2 [19]), typically chosen to be
the lowest frequency used in the data analysis. This
quantity may change across different events, and also
between observing runs that have different detector sensi-
tivities. Furthermore, the detector-frame fref cannot be an
adequate common choice for all events, since binaries with
varying masses, spins, and redshifts will be at different
stages of their evolution when they reach the reference
frequency. This creates problems when analyzing proper-
ties such as spin orientations at a population level.
A proposed solution for this is to evolve all binaries to
formally infinite separation to place them on the same
footing [20]. Indeed, in GWTC-2.1 [21] and GWTC-3 [3],
the tilts are reported at infinite separation. An alternative
proposal is to use a fixed dimensionless frequency or time
near the merger for this purpose [22,23], which has the
advantage of also considering the in-plane spin compo-
nents, which are not well defined at infinite separation.
However, we choose for our reference point to compute the
tilts at infinity since they have also been shown to be a good
approximation to the tilt orientations at binary formation
in many binary formation scenarios, as discussed in [24].
The term “binary formation” here refers to the formation

of the second black hole in the isolated formation channel,
after which the binary’s evolution is governed purely by
vacuum general relativity, and thus the spin evolution we
consider is applicable. Prior to this, both objects’ spins can
be reoriented, both toward alignment through the same
mass transfer and tidal processes discussed before, as well
as toward misalignment from the supernova that forms the
second black hole. These effects are both discussed in,
e.g., [25]. For dynamical formation, we consider the
binary’s formation to be after its last significant interaction
with a third body (and after the formation of the second
black hole), after which it can be treated as isolated to a
good approximation. All these effects prior to formation of
the second black hole are accounted for in population
synthesis calculations. The tilts at infinity approach thus
takes BBH spin orientations closer to the output of these
calculations. However, as discussed in [24], for some
dynamical formation scenarios the binary will never
become isolated to a good approximation when it is well
separated, and thus the tilts at infinity are not a good
approximation to the tilts at any part of its evolution. This is
notably the case for active galactic nucleus channel, where
the binary interacts with the disk for a large part of its
evolution (see, e.g., [26]), as well as channels where the
merging binary remains bound to a sufficiently close third
body through merger (see, e.g., [27] for examples of such
formation scenarios, though we have not assessed whether
these specific formation scenarios have a portion of the
evolution where the tilts would be well approximated by the
tilts at infinity).
In this paper, we investigate how the inferred distribu-

tions of spin tilts can differ at fref and infinity. We first

1While KAGRA [16] joined the O3 observing run and will be
part of O4 and beyond, we do not consider it in this study owing
to the significant uncertainties in its plus-era sensitivity (see [17]).
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determine the spin angles at the reference frequency that
give particularly large differences in the tilts at these two
points, for a set of masses and spin magnitudes. We then
perform parameter estimation on simulated GW signals
with these parameters using the anticipated Aþ=AdVþ
sensitivity. This provides posterior probability distributions
for the binaries’ parameters, including their spin angles at
fref . We then evolve the posterior samples to infinite
separation to obtain the tilts at infinity. For this purpose,
we use a hybrid framework that combines orbit-averaged
evolution close to merger with precession-averaged evo-
lution at large binary separation. See [24] for a compre-
hensive description of the hybrid evolution code.
We find that entire spin tilt posterior distributions can

show large variations when evolved to infinite separation
for BBHs detected in the Aþ=AdVþ era, but the largest
deviations are seen only for a subset of BBHs that have
comparable masses and high spin magnitudes. For the
majority of the parameter space considered in this paper,
the distributions are not easily distinguishable even when
considering binaries whose spin orientations are selected to
obtain large differences.
We also study the behavior of the tilts at infinity for BBHs

exhibiting specific types of precessional dynamics. The first
consists of binaries in the C, L0, and Lπ precessional spin
morphologies introduced in [28,29]. Specifically, we use the
results from [5], which reports the capability of distinguish-
ing these morphologies through parameter estimation in
plus-era detections. In our work, we explore the behavior
of the tilts at infinity for these cases, and find that their
posteriors differ significantly from the posteriors at fref for
some cases. The second involves binaries whose spin
configuration at the reference frequency is the endpoint of
the up-down instability calculated by [30] (see also [31–33]
for studies of the up-down instability in general). We find
that we are indeed able to recover the expected up-down tilt
configurations at infinite separation, in agreement with the
very recent study in [34].
The rest of the paper is organized as follows: In Sec. II,

we describe the optimization scheme that determines the
BBH spin configurations that show the largest individual
tilt differences at fref and infinity. Using results from this,
we outline our simulated observations in Sec. III, and
present the results of our parameter estimation in Sec. IV.
We conclude in Sec. V and give ancillary results in two
appendices: Appendix A discusses the extreme sensitivity
to input parameters we find in some cases and gives the
parameters to the accuracy required to reproduce those
results, while Appendix B gives tables with detailed
parameter estimation results.

II. SPIN TILTS WITH LARGEST DIFFERENCES
AT f ref AND INFINITY

Reference [24] found very small deviation in tilt poste-
riors at infinity for GWTC-3 events with evidence for

precession: the distributions were indistinguishable within
statistical uncertainties at O3 detector sensitivities. As the
detectors’ sensitivities improve in the plus-era, we may
start seeing significant differences in the posteriors at the
reference frequency and at infinite separation. The goal
here is to characterize for which binaries these deviations
are most significant. In other words, for a BBH with a
given value of total mass (M), mass ratio (q ¼ m2=m1,
where m1 ≥ m2 are the individual masses), and spin
magnitudes ðχ1; χ2Þ, what spin tilt configuration (charac-
terized by θ1; θ2;ϕ12) shows the maximum change from
fref to infinity? Further, what is the dependence of the
difference between the tilts at the reference frequency
and at infinite separation on the binary’s masses and
spin magnitudes?
We measure the difference between the spin tilts at fref

and infinity using the following quantity, δ, which denotes
the root mean square deviation in the cosines of primary
and secondary spin tilt:

δ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos θ∞1 − cos θref1 Þ2 þ ðcos θ∞2 − cos θref2 Þ2

q
: ð1Þ

To start with, we checked how the spin angles changed
for some individual cases. By choosing 1000 binaries with
random masses, spins, and tilt angles and then for each
binary evolving the tilts to infinity while varying ϕ12, we
found that the value of δ is always maximized when ϕ12 at
fref is either close to 0 or to π (denoting the in-plane spin
vectors pointing in the same or opposite directions).
However, we observe a slight preference for ϕ12 ≃ π in
binaries for which θref1 > θref2 gives the maximum of δ, and
for ϕ12 ≃ 0 otherwise, i.e., if θref2 > θref1 . If we solely use
the precession-averaged evolution in computing the tilts at
infinity, this maximization occurs when ϕ12 is exactly
either 0 or π. With the hybrid evolution, δ is maximized at
values slightly greater than 0 or slightly less than π
(differences in δ values are at most ∼0.3), especially
for high total mass binaries with large spin magnitudes—
making this presumably an effect of higher post-
Newtonian (PN) terms used in the orbit-averaged part
of the hybrid evolution. For cases where δ is maximized
close to π, we compared the maximum function value
with that at ϕ12 ¼ π, and found that the difference is less
than 1% for binaries with spin magnitudes χ1;2 of at least
0.5 that we are interested in. We thus restrict to consid-
ering either ϕ12 ¼ 0 or π, reducing the dimensionality of
the search for optimized spin configurations to only the
two tilt angles.
Since the hybrid evolution can take as much as ∼30 s

for close to equal-mass binaries [24], we use the SciPy [35]
implementation of the Nelder-Mead optimization algorithm
[36] to maximize δ quickly and efficiently across a wide
range of intrinsic binary parameters. To avoid settling on a
local minimum, for each binary configuration, we run this
algorithm using five random starting points, and take the
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ðθ1; θ2Þ combination that attains the maximum δ value
among these as the optimized binary tilt configuration.
The optimization is performed with ϕ12 fixed to either 0 or
π, and we choose the ϕ12 value that gives the larger δ. In
summary, our optimization code returns the spin angles
fθref1 ; θref2 ;ϕref

12g that give the maximum difference in spin
tilts between a given reference frequency and infinity (as
measured using δ), for a given set of fM; q; χ1; χ2g.
With this optimization code, we studied what binary

configuration at fref leads to the largest δ value (also
referred to as the “peak tilt configuration” for a given
binary), which in turn helped us choose the spin angles for
our simulated BBH injections. We started with a wide-
ranging set of BBHs having a fixed total mass of M ¼
60M⊙ and fref ¼ 20 Hz, but mass ratio q varying in the
range of [0.1, 0.9] in increments of 0.1, as well as an
additional case of q ¼ 0.99, which takes us close to the
q ¼ 1 (equal mass) limit where the tilts at infinity are not
well defined (as discussed in, e.g., [24]). We took the
component spin magnitudes ðχ1; χ2Þ varying similarly but
independently between [0.1, 0.9] with an additional value
of 0.99 corresponding to an almost maximally spinning
black hole. We computed spin tilt configurations with the
largest δ for these cases. In addition to getting spin tilt
configurations, we also checked what kind of systems show
particularly large δ values.
We found that the largest tilt differences are obtained

for binaries which are close to the up-down configuration
at fref , where the primary (secondary) tilt is aligned
(antialigned) with the binary’s orbital angular momentum
L⃗. Among all BBHs, the largest δ values are obtained for
BBHs with close-to-equal masses (q ∼ 1), and among
these, systems with larger spin magnitudes give larger δ.
The maximum value of δ (2.39) was obtained for a binary
with almost equal masses (q ¼ 0.99) and almost max-
imally equal spins (χ1 ¼ χ2 ¼ 0.99), with the spin tilts at
fref being cos θref1 ¼ 0.99 and cos θref2 ¼ −1.0, which at
infinity precess to cos θ∞1 ¼ −0.69 and cos θ∞2 ¼ 0.78.2

On the other hand, binaries with unequal masses (q ≤ 0.5)
have δ values less than 0.61 regardless of spin magni-
tudes. These binaries also have larger in-plane compo-
nents of their optimized tilts, with cos θref1 ∈ ½−0.06; 0.48�
and cos θref2 ∈ ½−0.2; 0.22�. The minimum value of δ
(0.027) was obtained for the binary with the most
lopsided masses (q ¼ 0.1), low and equal spins (χ1 ¼
χ2 ¼ 0.1), and in-plane spins at fref . In summary, higher δ
values are obtained for binaries with higher q (more equal
masses) regardless of their spin magnitudes, while for a
given mass ratio, δ is maximized for BBHs that have
higher spins.

III. SIMULATED GW SIGNALS AND PARAMETER
ESTIMATION SETUP

Having explored differences in spin tilts optimized for
various individual BBHs, we use the results of the
optimization analysis in the previous section to study the
effect of spin evolution on the entire posterior distributions
of such binaries in the plus era of detectors. We select a set
of BBH systems to simulate in the Advanced LIGO and
Advanced Virgo detectors with Aþ and AdVþ sensitivity
having the following properties: three different (redshifted)
total mass values, M∈ f50; 100; 200gM⊙, three mass
ratios, q∈ f1=1.1; 1=3; 1=8g, and two dimensionless spin
magnitudes, χ1; χ2 ∈ f0.5; 0.95g. The component black
holes in a given binary could have either equal spins or
unequal spins, giving a total of 36 simulated events. We
pick moderate to large values for the component spins to
increase the difference between the tilts at the reference
frequency and infinity.
For each of these 36 binaries, values of fθ1; θ2;ϕ12g at

fref are obtained using our optimization scheme as
described in Sec. II. We find that having the in-plane spins
pointing in the same direction (i.e., ϕ12 ¼ 0) at the
reference frequency give the largest deviation in the tilts
(as measured by δ) in all cases. However, the maximum δ
values for ϕ12 ¼ π are not very different than those
obtained for ϕ12 ¼ 0 in most cases except for q ¼ 1=1.1
binaries. For binaries with more unequal mass ratios, the
difference in δ does not exceed ∼6%, and lies within 2% for
most cases. For the q ¼ 1=1.1 cases, the minimum and
maximum differences in δ are 0.04 (2.4%) and 0.69 (47%),
respectively.
We observed that for ϕ12 ¼ 0, the tilts at infinity have a

very sensitive dependence on the exact tilt values at fref
when using the hybrid evolution code—even small changes
in the tilts at fref (or other binary parameters) give
significant differences in the tilts at infinity. This sensitivity
is seen most prominently for the comparable-mass binaries
with smaller spins that give tilts at infinity close to the
unstable up-down configuration—see Appendix A for
more details. In those cases, using the tilts output by the
optimization to their full 16 decimal place precision gives
tilts at infinity that are very close to the up-down spin
configuration, but one obtains significantly different results
when rounding off the inputs (e.g., we see a move toward
in-plane tilts by ∼0.5 even when rounding off to 6 decimal
places). For the other cases we consider, the change in the
tilts at infinity is commensurate with the number of decimal
places truncated in the input.
One also finds that the results with the truncated tilt

values are closer to those obtained when using the tilts with
the full accuracy but using only the precession-averaged
evolution, or the hybrid evolution with either a different PN
approximant or only lower-order PN spin terms in the orbit-
averaged evolution. In particular, one finds that using the
2.5 and 2PN spin terms in the orbit-averaged evolution

2Assuming the effective spin is exactly conserved, δ is at most
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
, which approaches its maximum value of 2

ffiffiffi
2

p
≃ 2.83

as q → 1.
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gives hybrid evolution results for the tilts at infinity that
are successively closer to the only precession-averaged
evolution. However, if one redoes the optimization in the
ϕ12 ¼ 0 cases using a different PN approximant or only
lower-order PN spin terms in the orbit-averaged evolution,
one finds slightly different values of the tilts (differences
of at most ∼0.03) that give the same extreme sensitivity to
the input parameters when using those settings for the
orbit-averaged evolution. In all these cases, we find that
the orbit-averaged evolution goes through the unstable up-
down configuration, which explains the extreme sensi-
tivity to the input parameters. (This instability is discussed
further in Sec. IV B.)
In summary, for each PN order or approximant used in

the hybrid evolution, the peak tilt configuration when
ϕ12 ¼ 0 shows unstable behavior that is very sensitive to
input parameters, due to passing through the unstable up-
down configuration during the orbit-averaged evolution.
(See Sec. IV B for further discussion about the up-down
instability, at the endpoint of which the spin vectors are
collinear with ϕ12 ¼ 0). This sensitivity is not seen in tilt
configurations where ϕ12 is set to π, though these con-
figurations give ∼45% smaller values of δ in the cases
where there is hypersensitive behavior for ϕ12 ¼ 0, even
though they give values of δ that differ by at most ∼6% in
other cases.
Owing to this hypersensitive behavior, we present results

using both ϕ12 ¼ 0; π for comparable mass binaries. For
unequal mass binaries, we use the optimized configuration
at ϕ12 ¼ 0 only when the resulting value δ obtained is
higher by 2% or more compared to the corresponding case
with ϕ12 ¼ π. The final set of injected parameters is given
in Appendix B.
The data for all binaries was simulated using the

IMRPhenomXPHM [37] waveform model (which includes
precession and higher-order modes) with zero noise, and
analyzed using the Aþ=AdVþ noise curves [15] (using the
more sensitive AdVþ noise curve) to compute the like-
lihood. These injections of binary signals into plus-era
detectors were made at a fixed luminosity distance of
400 Mpc (a choice motivated by the distance estimate of
GW150914 [38], though it is on the lower side of the
distances measured for GWTC-3 events) and at an incli-
nation angle of 60°. Other extrinsic properties such as the
sky locations, coalescence phase, and polarization angle of
the signal were chosen randomly and kept fixed for all
events as follows: {right ascension: 5.285, declination:
0.908, polarization angle: 3.989, coalescence phase:
2.658}, all in radians. The simulation geocentric merger
GPS time was set at 1257995721.214 seconds.
The reference frequency fref was chosen to be the same

as the low-frequency cutoff, which was selected according
to the total mass to be 15 Hz for the 50M⊙ case, and 10 Hz
for the 100M⊙ and 200M⊙ cases so as to keep a computa-
tionally feasible number of cycles in the signal while

ensuring a negligible contribution to the signal-to-noise
ratio (SNR) from frequencies below the cutoff. Similarly,
we considered the SNR contribution from higher-order
modes while determining the sampling frequency for our
simulated signals so as to keep the signal duration short and
reduce the computational cost of the parameter estimation.
The corresponding Nyquist frequencies for the f50; 100;
200gM⊙ simulations were f1024; 512; 256g Hz respec-
tively. A roll-off factor of 0.875 was applied to these
before setting the high-frequency cutoffs to account for the
effects of a window function (as discussed in Appendix E
of [3]). Given that the injections are analyzed using plus-era
noise curves [15] at the same luminosity distance, the SNR
ranges for the 50M⊙, 100M⊙, and 200M⊙ cases are [47,
89], [54, 148], and [87, 272], respectively. The variation in
SNR comes primarily from the differences in the mass
ratio, and whether the spins are aligned or antialigned with
the orbital angular momentum—quantities which dictate
the number of cycles in the sensitive band.
All these injections were recovered using the

IMRPhenomXPHM waveform model and the standard publicly
available Parallel Bilby [39,40] inference code with the
DYNESTY nested sampler [41], with the “nact” parameter
[42] set to 50. Following the LVK parameter estimation
analyses [3], we choose priors that are uniform in redshifted
component masses and isotropic spin orientations. We
assume a uniform distribution of sources in time and
comoving volume (with the exception that we use the
Euclidean distance prior as opposed to a cosmological one
in [3]).
The parameter estimation analysis gives us the posterior

distributions of binary’s masses and spin parameters at fref .
We compute the posterior distribution of tilts at infinity by
evolving these distributions to infinite separation using our
hybrid orbit + precession-averaged evolution code [24].
In the next section, we examine the differences in tilt
posteriors at fref and infinity and characterize the BBH
parameters that show the maximum differences.
In addition to the above mentioned injections, we also

consider the parameter estimation results from the study
of precessional morphologies in [5], which use both
IMRPhenomXPHM and the numerical relativity surrogate
model NRSur7dq4 [43]. These injections involve two total
masses M ¼ f20; 75gM⊙ with a fixed mass ratio of
q ¼ 1=1.2, and three equal spin magnitudes χ1 ¼ χ2 ¼
f0.25; 0.75; 0.95g with a fixed SNR of 89 and an inclina-
tion angle of 60° in the same plus-era LIGO-Virgo network
we consider in this paper. While [5] also considers some
SNR 22 cases, we do not consider these here. Additionally,
we analyze a set of four injections using the up-down
instability endpoint tilt angles given in [30], which consist
of binaries having total mass M∈ f20; 50; 100; 200gM⊙
with close-to-equal masses ðq ¼ 1=1.1Þ and high spins
ðχ1 ¼ χ2 ¼ 0.95Þ.
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IV. RESULTS

The high SNR signals in plus-era detectorswill givemuch
tighter constraints on the individual tilts of black holes in our
injections set than for any of the events in GWTC-3, as was
already noted in [18]. For brevity, we present the injected
binary parameters as well as the medians and 90% credible
intervals (CIs) of the recovered parameters in Appendix B.
Here we discuss some specific observations we made from
our parameter estimation analysis. The most well-
constrained spin tilts we obtain are for the binary having
{M ¼ 200M⊙; q ¼ 1=1.1; χ1 ¼ χ2 ¼ 0.95}, with the 90%
CI for θ1 and θ2 having widths of 1.5° and 1.6°, respec-
tively. On average, the widths of the 90% CI of the
recovered spin tilts in our simulations are 15.8° (θ1) and
42.8° (θ2), which are significantly better than
GWTC-3 events. For example, GW200129_065458, an
event with median SNR of 27 that shows some evidence
for precession [3] has 90% spin tilt CIs of 76.14° (θ1) and
118.15° (θ2).
With these tighter constraints, we observe that for some

binaries, their tilt posteriors show significant deviations
when evolved to infinity. The differences in tilt posteriors at
fref and infinity for our injection set are shown as violin
plots in Figs. 1–3.
The degree to which the tilt distributions differ can be

quantified by the max ΔQ parameter used in [24]. If two
distributions labeled I and II are to be compared, maxΔQ is
defined by

maxΔQ≔maxðjQI
5−QII

5 j; jQI
50−QII

50j; jQI
95−QII

95jÞ; ð2Þ

where QY
n is the n% quantile of the Yth distribution. Thus,

maxΔQ is the maximum absolute shift among the 5%,
50%, and 95% quantiles of the two distributions (i.e., the
differences in the median and the 90% credible interval
around it). To account for the different detector sensitivities
and consequently better constraints on tilts, we modify this
quantity by dividing it by the width of the 90% CI at
infinity (Δ90) of each posterior distribution. The largest
ðmaxΔQÞ=Δ90 values seen in the GWTC-3 catalog so
far are 0.1 (0.08) for cos θ1 (cos θ2) in the event
GW191109_010717. For GW190521, the primary (secon-
dary) tilt ðmaxΔQÞ=Δ90 values are 0.09 (0.06). For
comparison, Fig. 4 shows the ðmaxΔQÞ=Δ90 values for
our injections ordered by their mass ratio.
We summarize the results from these plots (Figs. 1–3) by

considering the effects of the various binary parameters that
impact these spin tilt posterior differences:

Effect of mass ratio: We observe that the binary mass
ratio plays the dominant role in determining the
deviation in tilt posteriors. The largest differences,
where the 90% CIs are disjoint, are seen in close-to-
equal-mass (q ¼ 1=1.1) cases with ϕ12 ¼ π. These
binaries also have the highest ðmaxΔQÞ=Δ90 values.
Binaries having ϕ12 ¼ 0 and comparable masses, on
the other hand, show smaller deviations in their tilt
posteriors, in spite of the individual tilts at infinity
corresponding to their injected tilt values giving larger
δ values than their ϕ12 ¼ π counterparts. This is
because of two factors: First, we see that the spin
tilts for binaries with ϕ12 ¼ π are more tightly con-
strained due to greater spin-induced modulations.

FIG. 1. Violin plot showing the spin tilt distributions at fref and infinity for various binary configurations having a total mass of 50M⊙.
The horizontal lines on each violin represent bounds of the 90% CI of the distribution, while the crosses represent the injected tilt values
at either fref or infinity. Note that for injections close to the aligned and antialigned configuration, the posteriors rail against the prior
boundary of cos θ ¼ �1.
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Second, the issue of sensitivity to the initial tilt values
outlined in Sec. III leads to individual spin tilt posterior
samples evolving to considerably different tilts at
infinity compared to those given by the precise injected
optimized tilt configuration, even if the samples’
parameters are close to the injected values. For exam-
ple, this is seen in the fM ¼ 200M⊙; q ¼ 1=1.1;
χ1 ¼ χ2 ¼ 0.5g binary with ϕ12 ¼ 0 in Fig. 3, where
the injected tilts at infinity are entirely outside the
evolved posterior distributions. As discussed in

Appendix A, one obtains tilts at infinity that are closer
to the posteriors when using fewer decimal places for
the injected parameters, though still lying in the tails of
the distributions. As a result, the deviation seen in tilt
distributions as well as the ðmaxΔQÞ=Δ90 values for
these cases are slightly lower than comparable mass
binaries with ϕ12 ¼ π. These differences are still larger
than binaries with the intermediate mass ratio
(q ¼ 1=3), while more unequal mass (q ¼ 1=8) bina-
ries have significant overlaps in their posteriors at fref

FIG. 2. Violin plot showing the spin tilt distributions at fref and infinity for various binary configurations having a total mass of
100M⊙. For more details, refer to the caption of Fig. 1.

FIG. 3. Violin plot showing the spin tilt distributions at fref and infinity for various binary configurations having a total mass of
200M⊙. For more details, refer to the caption of Fig. 1.
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and infinity. The overlap of posteriors in the q ¼ 1=8
case is small (with disjoint 90% CIs) only for the
200M⊙ binary with χ1 ¼ χ2 ¼ 0.95.

Effect of spins: For binaries with a given mass ratio, the
largest difference in tilt posteriors is seen for binaries
with high primary spins, either in the equal spin
(χ1 ¼ χ2 ¼ 0.95) or unequal spin cases (χ1 ¼ 0.95,
χ2 ¼ 0.5). The recovery of spin tilts for the q ¼ 1=1.1
binaries is poorer when ϕ12 is set to 0 as opposed to
π. We also note that for some of these ϕ12 ¼ 0 cases,
the injected tilt values lie outside the 90% CI of their
recovered posteriors because of one or both individ-
ual in-plane spin components of either BH not being
well-constrained at fref in the parameter estimation.
Further, we observe that cases wherein the spin
magnitude (especially for the primary) is low have
their tilt posteriors at infinity deviating significantly
from the expected tilts at infinity computed using the
hybrid code, due to the same sensitive behavior
outlined in Sec. III.

Effect of total mass: As evident from the violin plots, all
trends seen in the mass ratio are consistent across
injections with varying total masses, while the spins
show slight differences as outlined above. Binaries with
higher masses give louder signals and hence have
better-constrained tilts, which leads to differences in
their posterior distributions at infinity being more
significant [as seen in the ðmaxΔQÞ=Δ90 trend in
Fig. 4]. Spin tilt posteriors of high-mass binaries also
show differences when evolved using the precession-
averaged and hybrid spin evolution approaches, as we
describe in detail in Sec. IVC.

Figure 5 summarizes our results for all injections by
comparing the medians of the cosines of the spin tilts at fref
and infinity. The error bars represent the 90% CI of the

posterior distributions. A majority of points either lie very
close to the cos θref1;2 ¼ cos θ∞1;2 line, or have it within their
90% CIs. Notably, all outliers away from this line have
smaller error bars and represent close-to-equal-mass bina-
ries. Among these, binaries with ϕ12 ¼ π at fref (unfilled
square markers) have their primary spins close to aligned

FIG. 4. The scaling of tilt differences in terms of ðmaxΔQÞ=Δ90 for simulated binaries that are grouped by mass ratio, q increasing
from unequal masses to the left, toward comparable masses to the right. Each binary is denoted by two markers which represent
individual BH spin magnitudes (χ): circles for moderate spins and diamonds for high spins. Unfilled markers represent q ¼ 1=1.1
binaries with ϕ12 ¼ π. Within each q-panel, the binaries are ordered by increasing total mass,M, with heavier binaries toward the right
also indicated by larger marker size. For a given q and M, the binaries are ordered by their primary spin magnitude. The dashed (solid)
horizontal lines indicate ðmaxΔQÞ=Δ90 for GW191109_010717 (GW190521), two GWTC-3 events representative of the largest
deviations in tilt posteriors at O3 sensitivities.

FIG. 5. Comparison of the medians of the cosines of the spin
tilts of the binaries at the reference frequency (horizontal axis)
with those at infinity (vertical axis). The error bars denote the
90% CIs. Unfilled markers represent q ¼ 1=1.1 binaries with
ϕ12 ¼ π. BBHs lying along the diagonal (cos θref ¼ cos θ∞) line
have very similar posterior tilt distributions at fref and infinity.
Cases where the error bars cross the diagonal line are ones where
the 90% CIs of the two distributions have significantly overlap.
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with L⃗, while their secondary spins are close to antialigned.
At infinity, both spins are instead in a more in-plane
configuration, being scattered around cos θ∞1;2 ≃ 0. In con-
trast, the spins for the ϕ12 ¼ 0 binaries (filled square
markers) move from closer to in-plane at fref toward the
aligned-antialigned configuration at infinity. Binaries with
unequal masses (q ¼ 1=8) have poor constraints on their
secondary spin tilts (e.g., the 90% CI for the M ¼ 50M⊙
binary with equal spins of χ ¼ 0.5 spans 107.4°), and hence
have larger error bars.
Finally, we studied the posterior distributions of the

effective spin χeff [44,45] and effective precession spin
parameter χp [46,47] for our binaries when evolved to
infinite separation. χeff is a conserved quantity in the 2PN
precession-averaged spin evolution equations, and is
approximately conserved in the hybrid evolution that uses
higher-PN terms in the orbit-averaged evolution (see [24]).
As expected, we do not see any significant deviations in
the χeff posteriors for our injections. When it comes to χp,
however, the picture is different. A majority of our
q ¼ 1=1.1 binaries show significant precession, and among
these, there are two distinct populations corresponding to
ϕ12 ¼ 0 or π. The ϕ12 ¼ π binaries, denoted by unfilled
square markers in Fig. 6, start from an antialigned con-
figuration at fref with small χp and transition toward more
in-plane spins at infinity giving large χp values there. The
ϕ12 ¼ 0 binaries on the other hand start with slightly higher

χp values at fref than at infinite separation. The difference in
χp is again not significant for more unequal mass binaries.

A. Different spin morphologies

Precessing BBHs can be classified into three different
morphologies according to the patterns traced by the black
hole spins over a precessional cycle. These are general-
izations of BBH spin-orbit resonances [48], previously
studied through their effects on GW evolution [23,49–52]
(see also work for eccentric binaries in [53]), that are
characterized using the effective potential formalism
described in [28,29]. Spin morphologies can be charac-
terized using the evolution of ϕ12 as: (i) The L0 morpho-
logy where ϕ12 librates around 0 (the two in-plane spin
components point roughly toward the same direction),
(ii) The Lπ morphology where ϕ12 librates around π
(the two in-plane spin components point roughly in
opposite directions), and (iii) the C morphology where
ϕ12 circulates over the whole range ½−π; π�. While all
systems are in the C morphology at infinite separation,
some transition into L0 or Lπ closer toward merger.
In [5], the authors showed that it will be possible to infer

the true morphology at the reference frequency with high
statistical confidence for a sufficiently loud GWevent using
Bayesian model selection. This inference is stronger if the
system did not recently undergo a transition between two
morphologies at the reference frequency (equivalent to
being far away from any of the boundaries between
morphologies in the binary’s parameter space). Here, we
take posterior samples from that study and evolve them
backward in time to see how the inferred tilt distributions
corresponding to a given morphology changewhen evolved
to infinity. For each combination of injected mass and
spins, the spin angles are chosen either to lie centrally in the
region of parameter space corresponding to each of the C,
L0, or Lπ morphologies, or to lie close to (and on either
side of) the C-L0 and C-Lπ morphology boundaries. For
binaries in the librating morphologies, the cases close to
the boundary between morphologies correspond to the
situations where the binary has been in the librating
morphology for only a short time before it reaches the
reference frequency. In all cases, these morphologies are
computed at the reference frequency of 20 Hz.
The behavior of the tilt distributions at the reference

frequency of 20 Hz and at infinity for these injections is
summarized as violin plots in Figs. 7 and 8 for BBHs with
total mass 20M⊙ and 75M⊙ respectively. The results shown
are for χ1 ¼ χ2 ¼ χ ¼ 0.95, 0.75. We do not present the
results for the χ ¼ 0.25 cases here because for these cases
the distributions at fref and infinity are broad and almost
identical regardless of the morphology, with only a small
deviation in the location of the peak seen in the C
central cases.
Describing the low mass (M ¼ 20M⊙) cases first, for

both moderate (χ ¼ 0.75) and high (χ ¼ 0.95) spins, we

FIG. 6. Comparison of the effective precession spin parameter
(χp) posterior distributions at fref (horizontal axis) and at infinity
(vertical axis). The error bars denote the 90% CIs. Marker styles
denote binaries with different mass ratios. Unfilled markers
represent q ¼ 1=1.1 binaries with ϕ12 ¼ π. Cases where the
error bars cross the diagonal line are ones where the 90% CIs of
the two distributions have significantly overlap.
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observe the largest deviations in tilt posteriors for binaries
in the C morphology at fref , followed by the L0 and Lπ
morphologies. The differences are particularly prominent
for injections within the central C region (where the
distributions are completely disjoint) and close to the
C-L0 boundary (where there are slight overlaps). Thus,

one can obtain significant differences in the posteriors at
infinity and the reference frequency even in cases that were
not specifically designed to obtain large differences.
Interestingly, for these cases the spins precess from an
antialigned configuration at infinity toward an in-plane one
at the reference frequency, the opposite of most of the cases

FIG. 7. Comparison of spin tilts at fref and infinity for tilt posteriors belonging to different spin morphologies for total mass
M ¼ 20M⊙. For each morphology, results for spin magnitudes ðχ1 ¼ χ2 ¼ χÞ 0.75 and 0.95 are presented side-by-side as indicated in
the upper panel.

FIG. 8. Comparison of spin tilts at fref and infinity for tilt posteriors belonging to different spin morphologies for total mass
M ¼ 75M⊙. For each morphology, results for spin magnitudes ðχ1 ¼ χ2 ¼ χÞ 0.75 and 0.95 are presented side-by-side as indicated in
the upper panel. The particularly long violin tail for the primary tilt at infinity in the C-Lπ boundary χ ¼ 0.75 case is due to two outlying
posterior samples with cos θ∞1 ≃ 0.97.
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that we considered that give the maximum differences. At
the C-Lπ boundary, the posteriors have a greater overlap.
The L0 morphology posteriors show slight deviations
toward antialignment within the central part of the region,
and larger but opposite deviations toward an in-plane
configuration at the boundary. For the Lπ morphology,
binaries both within the region and near its boundary only
show very small deviations from fref to infinity.
We find that the spin tilt distributions for the high mass

(M ¼ 75M⊙) injections show similar trends as above. In
particular, we find notable differences in the posteriors for
injections with both spin magnitudes in the C central cases
as well as the C-L0 and L0 boundary cases. Binaries in the
central part of the L0 morphology show smaller shifts, from
antialignment toward in-plane spins. Interestingly, in the
C-Lπ boundary χ ¼ 0.95 case, the medians of the cos θ1
and cos θ2 distributions switch places when evolved from
fref to infinity. Overall, the Lπ morphology shows only small
shifts in the primary tilt distributions both within the central
region and its boundary with C, while the differences are
more pronounced in the better-constrained secondary tilts.
All of the above trends are stronger in the high spin
(χ ¼ 0.95) cases as compared to the χ ¼ 0.75 ones.
The availability of NRSur7dq4 [43] numerical relativity

surrogate evolution posterior samples for six of these
injections allowed us to test for any systematic effect of
the choice of fref on the hybrid evolution to infinity for
plus-era posteriors, by using the surrogate evolution to
evolve the binary backward within the range of validity of
the surrogate model. We already checked in [24] that there
is no significant effect from the surrogate evolution for the
GW190521 posteriors. Starting from fref ¼ 20 Hz, we
evolved the posteriors for these six binaries (with total
mass 75M⊙ and spin magnitudes χ ¼ f0.25; 0.75; 0.95g)
back to a time of 4200M before merger (corresponding
to transition frequencies of ∼14 Hz) using the surrogate
evolution, before switching to the hybrid evolution to
obtain the tilt posteriors at infinity.
We observed no significant differences between these

and posteriors computed using hybrid evolution from
20 Hz, with only very minute shifts in the posteriors in
the highly spinning cases. However, in the cases where
we have NRSur7dq4 results, there are also no significant
differences when using only the precession-averaged evo-
lution as opposed to the hybrid evolution, the posteriors of
which can differ for certain binaries as outlined later in
Sec. IV C. Thus, it is possible that we would find a larger
difference when using the surrogate evolution for other
binaries. Additionally, we see no systematic differences
when comparing the IMRPhenomXPHM and NRSur7dq4 poste-
riors at infinity for these six cases that cannot be attributed
to a difference in the two waveform posteriors at fref . The
posterior distributions of the tilts at infinity inferred using the
two waveform models generally agree well, with NRSur7dq4

results generally being somewhat better constrained and
showing small to moderate shifts in the positions of the
peaks. The largest difference is in the C-L0 boundary case
with χ ¼ 0.75, where the tilts at infinity distributions
inferred with NRSur7dq4 are notably better constrained
(particularly for the primary) and peak closer to the injected
values than those obtained with IMRPhenomXPHM.

B. Endpoints of the up-down instability

As discussed in, e.g., [30], the PN spin evolution
equations have four equilibrium, non-precessing solutions
corresponding to both the primary and secondary spin
vectors oriented exactly along the direction of L⃗. These
configurations are: up-up, down-down, down-up, and up-
down, where up (down) refers to the component spin being

aligned (antialigned) with L⃗. Out of these, the up-up, down-
down, and down-up configurations are stable equilibria, with
small tilt perturbations remaining close to alignment over the
course of spin evolution. The up-down configuration on the
other hand exhibits an instability that is present for binary
separations below a critical value. However, even after the
onset of instability, the spin vectors attain well-defined
endpoints such that they are oriented in the same direction
(so ϕude

12 ¼ 0) and with tilt angles given by [30]

cos θude1 ¼ cos θude2 ¼ χ1 − qχ2
χ1 þ qχ2

: ð3Þ

The endpoints thus depend only on the mass ratio and spin
magnitudes of the two component black holes. Here, we
study the spin tilt evolution of BBHs starting from these
endpoints to infinite separation.
Our injected tilts at fref were computed using Eq. (3),

and the injected value of ϕ12 was set to be 0. The other
binary parameters are given in Sec. III. We use a reference
frequency of 20 Hz, which is well above the frequency of
the onset of the up-down instability [see Eq. (21) in [30],
which gives the binary separation at onset of instability; the
corresponding Keplerian frequency is ∼10−2 Hz]. The
cosines of endpoint tilt angles cos θude1;2 are only exact in
the unphysical limit of zero separation and are obtained
using 2PN spin evolution equations. However, even when
starting at a reference frequency of 20 Hz, we find that
cosines of the injected tilts at infinity obtained with the
hybrid evolution (using 3PN spin evolution equations) are
very close to the exact up-down configuration (cos θ1 ¼ 1,
cos θ2 ¼ −1). Specifically, the cosines of the injected tilts
at infinity differ from the exact up-down configuration by at
most 1% (2%) for the 100; 200M⊙ (20; 50M⊙) cases.
Figure 9 shows the inferred tilt posteriors at fref and

infinity for all four cases. The tilt endpoints, which are
close to being in-plane at the reference frequency, move to
the up-down configuration at infinite separation. This
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shows that we would be able to identify such a binary as an
up-down instability configuration with high confidence
in the Aþ=AdVþ era. (See [34] for a complementary
study using the O4 sensitivity that also performs Bayesian
model selection.) The result also complements our pre-
vious results, where the tilts were often in an up-down

configuration at fref and were closer to in-plane at infinite
separation. The SNRs for the 20, 50, 100, and 200M⊙ cases
are 46, 98, 131, and 228 respectively. While the inferred
tilts are more well-constrained for the high-mass, high-SNR
binaries, the tilts at infinity clearly favor the up-down
configuration in all cases.

FIG. 9. Comparison of posterior distributions of tilts injected at the endpoints of the up-down instability at the reference frequency and
infinity. We find that all the posteriors of the tilts at infinity rail against the prior boundary of cos θ ¼ �1.

FIG. 10. Comparison of tilt posteriors at infinity computed using hybrid and precession-only evolution methods for theM ¼ 200M⊙,
q ¼ 1=1.1, χ1 ¼ χ2 ¼ 0.95, ϕ12 ¼ π case. We also show the tilt posteriors at fref to emphasize the large difference compared to both
calculations of the tilts at infinity. The dashed (dotted) vertical lines represent injected tilt values at fref (infinity, using hybrid evolution).
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C. Hybrid vs precession-averaged evolution

For certain binaries in our set of simulations as well
as the morphology injections, we observe significant
differences in tilt distributions at infinity computed using
two different spin evolution approaches: the purely
precession-averaged spin evolution and the hybrid orbit−
averagedþ precession−averaged evolution. Figure 10
illustrates this for one case that shows the largest deviation
in the median of the distributions, for the binary with
fM ¼ 200M⊙; q ¼ 1=1.1; χ1 ¼ χ2 ¼ 0.95;ϕ12 ¼ πg. As
discussed in [24], the precession-averaged evolution only
includes the leading PN spin-orbit and spin-spin effects
(i.e., up to 2PN) in the evolution, while the hybrid method
includes higher orders (up to 3PN in spin effects) in the
orbit-averaged evolution that is used close to merger. This
makes the hybrid evolution code more accurate, particu-
larly for high mass systems where the binary is already in
the strong-field regime at the reference frequency making
the lower-PN expressions (and the precession-averaged
approximation itself) insufficiently accurate to describe
the binary’s dynamics. Of course, we find even larger
differences between the hybrid evolution and precession-
averaged evolution for injected values in the cases with
very high sensitivity to the parameters discussed in Sec. III
and Appendix A. However, since this large difference
only occurs for very precise binary parameters, it does
not translate to a significant difference in the posteriors
obtained with the two different evolution methods.
For the injections with different spin morphologies, we

observe similar shifts in the hybrid and precession-only
distributions as above for the L0 boundary case with high
spins. Interestingly, these deviations are seen for both the
total mass (20M⊙, 75M⊙) injections, showing that it is
necessary to use hybrid evolution to get accurate results
even for lower-mass binaries, where one might not
expect the effects of the hybrid evolution to be as
significant. Besides a very slight deviation in the hybrid
and precession-averaged distributions at infinity for the
C-L0 morphology, the results of the two evolutions are
indistinguishable for all other morphologies. For injections
involving the endpoints of the up-down instability, we see
no differences between hybrid and precession-averaged
evolution.

V. CONCLUSIONS

Binary black hole spin tilts can serve as proxies to
determine and distinguish between different formation
channels of such systems [6–9]. However, the tilts close
to the binary’s merger (where they are traditionally esti-
mated in gravitational wave data analysis) can differ
significantly from those at formation, which are well
approximated by the tilts at infinite separation in many
cases—see [24]. The latest LVK analyses [3,21] quote the
tilts at infinity, though the tilts are sufficiently uncertain that

there is not a significant different between the tilts at the
reference frequency close to merger and at infinity, as
discussed in [24]. However, plus-era detectors [15] promise
to constrain the tilts well enough (at least for events with
high enough SNR) that the inferred posteriors on these
parameters will be significantly different when evolved
back in time to infinite separation in many cases. In this
paper, we determined what kinds of BBH configurations
will show the largest difference in spin tilts between the
reference frequency and at infinite separation. Further, we
performed an injection study to explore the evolution of the
inferred spin tilt posteriors to infinite separation for such
binaries.
We found that BBHs with more equal masses regardless

of their spin magnitudes and for a given mass ratio BBHs
that have higher spins show large differences in tilts at the
reference frequency and infinity. We then simulated GW
signals in the LIGO and Virgo detectors with Aþ=AdVþ
sensitivity (and zero noise). These injections have three
total masses {50M⊙, 100M⊙, 200M⊙}, three mass ratios
(1=1.1, 1=3, 1=8), and two spin magnitudes (0.5, 0.95). The
spin angles θ1, θ2, ϕ12 at fref for each of these injections
were chosen to give the maximum difference in tilts at the
reference frequency and infinite separation. We used the
IMRPhenomXPHM waveform model [37] to create the injec-
tions as well as for the recovery template in our parameter
estimation. We evolve the posterior samples from the
reference frequency to infinity using our hybrid evolution
code [24] to obtain the inferred tilts at infinity. We found
that for the majority of our injections the 90% CIs of tilt
posteriors at the reference frequency and infinite separation
overlap, though there are still noticeable shifts in most
cases. However, in some cases the 90% CIs are completely
disjoint and there are even cases where the two distributions
are very well separated. This is particularly the case when
the BBHs are highly symmetric in mass (q ¼ 1=1.1) and
spin magnitudes (χ1 ¼ χ2) as well as spinning very fast
(χ1; χ2 ¼ 0.95).
We also considered the results in [5], which performed

parameter estimation on simulated injections that lie in
various precessional morphologies, and explored the behav-
ior at infinite separation. We observed significant differences
in tilt posteriors for some of these cases even though they had
not been selected specifically for large tilt differences.
Finally, we injected BBHs at the endpoint of the up-down
instability at 20 Hz and found that we indeed recover tilt
posteriors at infinite separation that clearly prefer the up-
down configuration of cos θ1 ¼ 1, cos θ2 ¼ −1.
These differences between the tilts at the reference

frequency and infinity will be even more important for
third-generation ground-based detectors such as Cosmic
Explorer [54] and Einstein Telescope [55], where both tilts
at the reference frequency may be measured with 90%
credible intervals of 0.02 for some comparable-mass
binaries [56] (we only obtain such accuracy for the primary

INFERRING SPIN TILTS OF BINARY BLACK HOLES AT … PHYS. REV. D 109, 043002 (2024)

043002-13



tilt in the q ¼ 1=8 case, while the best accuracy obtained in
the q ¼ 1=1.1 cases is 0.06). The same is true for space-
based detectors such as LISA [57], where the tilts at the
reference frequency may be measured with 90% credible
intervals with widths of 0.003 (for the primary tilt) in some
cases [58]. In these cases, it will likely be important to
improve upon the accuracy of the PN evolution, as we have
started to do by using the surrogate spin evolution in its
region of availability before switching to the hybrid
evolution. The change in the posteriors due to using
surrogate evolution is barely discernible even for the case
of high spin binaries and the plus-era posteriors we
consider, but could prove to be significant in other cases
or in third-generation detectors. In particular, Ref. [24]
finds that individual samples can have differences in the
cosines of the tilts as large as ∼1 due to the surrogate
evolution.
There are also possibilities for improving the speed of

the calculation, either by creating a surrogate model or by
averaging the tilts at infinity over a cycle of oscillations, as
discussed in [24], and/or using the more efficient orbit-
averaged evolution given in [59]. There is also an improved
precession-averaged formalism given in [60] that might
improve efficiency and/or accuracy in some cases, particu-
larly for close-to-equal-mass binaries. Finally, while the
current calculation is only applicable to binary black holes,
since the precession-averaged evolution is restricted to this
case (it is only applicable to the case where both objects
have black hole spin-induced quadrupoles), there is recent
work [61] that should allow one to extend the precession-
averaged evolution to binaries involving neutron stars.
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APPENDIX A: SENSITIVITY TO INPUTS

In this section, we provide details that describe the
sensitivity to precise input values when evolving the tilt
configurations optimized for large differences between the
tilts at the reference frequency and at infinity in some cases
where ϕ12 ¼ 0. We give the precise input parameters for
these cases in Table I. We use theM ¼ 200M⊙, q ¼ 1=1.1,
χ1 ¼ χ2 ¼ 0.5 binary to illustrate this effect. Using the
default settings of the hybrid evolution code (3PN-order
spin terms and SpinTaylorT5 approximant [71]), and
setting ϕ12 ¼ 0, the optimization code returns tilts of
θref1 ¼ 1.8081591435948825, θref2 ¼1.2010486593621947
at fref ¼ 10 Hz. For these precise inputs, the expected
tilts at infinity given by the hybrid code, again with
default settings, are (rounded to three decimal digits):
{θ∞1 ¼ 0.007, θ∞2 ¼ 3.134}, very close to the exact up-
down configuration.3 Since the up-down configuration is
unstable, this instability presumably explains the sensitivity
to the input parameters. For instance, when the input tilts
are rounded off to 6 decimal places: {θref1 ¼ 1.808159,
θref2 ¼ 1.201049}, the hybrid evolution output gives
{θ∞1 ¼ 0.471, θ∞2 ¼ 2.647}. With further rounding off to
just one decimal place: {θref1 ¼ 1.8, θref2 ¼ 1.2}, the output
becomes {θ∞1 ¼ 0.671, θ∞2 ¼ 2.437}. We have checked
that the results with the full accuracy of the inputs are not
changed significantly when using more stringent settings
such as smaller sampling intervals used in interpolating the
final output of orbit-averaged evolution, or making small
changes in the transition frequency which switches from
orbit to precession-averaged evolution, though as men-
tioned above, they are apparently sensitive to different
floating-point operation ordering.
Additionally, we also checked the effect of tightening the

tolerance settings of the integrator used in the orbit-averaged
evolution by two orders of magnitude. The tilts at infinity for
the same case as above with these settings are {θ∞1 ¼ 0.349,
θ∞2 ¼ 2.775} (rounded to three decimal places). Even
though these results are notably different from the close-
to-up-down configuration found with the looser tolerance,
they still have a significant sensitivity to the precise input
values. In particular, the results when truncating to six
decimal places are the same as with the looser default
tolerance to the number of decimal places quoted above.
We also find that with the tighter tolerance, one obtains

3Exactly how close this output is to the up-down configuration
may change somewhat (by as much as 0.07 in our checks) with
the software version(s) used, presumably due to different orders
of floating-point operations therein.
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tilts at infinity that are even closer to the up-down configu-
ration with a small perturbation of the initial values
(obtained by performing the optimization with the tighter
integrator tolerance), i.e., {θref1 ¼ 1.8081591424304095,
θref2 ¼ 1.2010486608642275} gives {θ∞1 ¼ 0.003, θ∞2 ¼
3.138}. However, the magnitudes of the differences in the
cosines of these tilts at infinity and the ones obtained with the
looser tolerance are ∼2 × 10−5, well below the ∼10−4
accuracy of the hybrid evolution due to the choice of the
transition frequency shown in Fig. 6 of [24].
Thus, the parameter estimation results in this paper will

only have negligible differences due to using the tighter
tolerance, since the injected parameters would only differ
past the seventh decimal place, and the individual samples
are not close enough to the unstable point for the different
tolerance to cause significant differences: The largest
difference in the cosines of the tilts at infinity samples is
< 10−6. We also checked that tightening the integrator
tolerance or using a higher-order integration method in the
precession-averaged part of the hybrid evolution did not
lead to significant differences in the results—the maximum
difference between the cosines of the tilts at infinity
(considering both tilts) is 2.4 × 10−7. When studying these
particular unstable cases, it would likely be worthwhile to
use arbitrary precision for the orbit-averaged evolu-
tion. However, as discussed above, such refinements to
the hybrid evolution are not expected to be necessary
for parameter estimation applications, even for third-
generation or space-based GW detectors (see the expected
measurement accuracies given in Sec. V).

This sensitivity of the tilts at infinity to the input values
in these cases is present for all input parameters, not just
restricted the input tilts. For instance, when the mass ratio
is changed from q ¼ 0.9090909090909091 (the decimal
approximation to q ¼ 1=1.1we used) to q ¼ 0.9, the tilts at
infinity change to {θ∞1 ¼ 0.740, θ∞2 ¼ 2.379}. This sensi-
tivity also extends to the precise values of conversion
quantities used in generating the input parameters, such as
the solar mass in SI units (used to convert component
masses). The value of the solar mass used in our evolu-
tions is 1M⊙ ¼ 1.9884099021470415 × 1030 kg, which
should be used to reproduce our results.4 Using only the
precession-averaged evolution with the untruncated tilt
inputs also gives tilts at infinity values of {θ∞1 ¼ 0.702,
θ∞2 ¼ 2.399} which are closer to the results obtained with
truncated inputs. When using spin terms only to 2.5PN
(2PN), the tilts at infinity obtained are {θ∞1 ¼0.673ð0.687Þ,
θ∞2 ¼ 2.434ð2.416Þ}, showing how these approach the
values from only precession-averaged evolution more
closely as one reduces the spin order. Similarly, keeping
the 3PN spin terms but changing the approximant to
SpinTaylorT1 (SpinTaylorT4) gives tilts at infinity of
{θ∞1 ¼ 0.641ð0.574Þ, θ∞2 ¼ 2.467ð2.539Þ}.
Further, as mentioned in Sec. III, we get slightly

different peak tilt configurations when running the opti-
mization code using a different approximant in the hybrid
evolution, but the hypersensitive behavior outlined above is
also seen for these configurations. For example, when
optimizing using SpinTaylorT4 and 3PN spin terms for
the same binary, the peak tilt configuration is {θref1 ¼
1.8712719865486664, θref2 ¼ 1.1278607980431046}, giv-
ing tilts at infinity of {θ∞1 ¼ 0.153, θ∞2 ¼ 2.980}. Using
2.5PN spin terms with the SpinTaylorT5 approximant also
gives very similar results. When optimized using the
default SpinTaylorT5 but with 2PN spin terms on the other
hand, the optimum tilt configuration becomes {θref1 ¼
1.7862445760631980, θref2 ¼ 1.2290171723775418} with
tilts at infinity of {θ∞1 ¼ 0.009, θ∞2 ¼ 3.131}.

APPENDIX B: TABULATED RESULTS

Here we give the values for the injected intrinsic
parameters for our simulations with the spin angles chosen
to maximize the difference between the tilts at infinity and
the reference frequency (as outlined in Sec. III). We also
show the median and 90% CI bounds of their recovered
posteriors along with the median and 90% CI bounds for
the spin tilt posteriors at infinity. Specifically, Table II
provides these for equal-spin binaries and Table III for
unequal spin binaries.

TABLE I. The tilts at fref to 16 decimal places for the 12
comparable mass (q ¼ 0.9090909090909091 ≃ 1=1.1) cases
with ϕ12 ¼ 0 for which the output of tilts at infinity using hybrid
evolution is hypersensitive to the input parameters. Specifically,
this gives the cases for which there is a difference of greater than
0.01 in either of the tilts at infinity when comparing the values
obtained using the values given here for the tilts at fref and those
obtained after first rounding the tilts at fref to two decimal places,
as in Tables II and III. These differences in the cases given here
range from 0.06 to 0.70.

MðM⊙Þ χ1 χ2 θref1 θref2

50 0.5 0.5 1.8061875622062771 1.2040619984276995
50 0.5 0.95 2.1901356745982299 1.6547753106912710
50 0.95 0.95 1.8453795275676992 1.1595409673747283
50 0.95 0.5 1.4023374949509382 0.7349404682555843
100 0.5 0.5 1.8295586677990303 1.1769010782793288
100 0.5 0.95 2.2116349548106866 1.6445107009602780
100 0.95 0.95 1.8475321288385302 1.1568255975485275
100 0.95 0.5 1.3528117893583296 0.8760247525344458
200 0.5 0.5 1.8081591435948825 1.2010486593621947
200 0.5 0.95 2.2505268577289996 1.6262244552266782
200 0.95 0.95 1.8503377465477728 1.1529704131721257
200 0.95 0.5 1.3794912619875150 0.8012609687138224

4The value for this quantity in LALSuite [65] (MSUN_SI) has
recently been updated to a slightly different value.
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TABLE II. Injected and recovered parameters for equal-spin injections. Rows marked by a (†) have the injected value of ϕ12 set to 0,
while it is π for the unmarked cases.

Injected Recovered

q χ1 χ2 θref1 θref2 MðM⊙Þ q χ1 χ2 θref1 θref2 θ∞1 θ∞2

M ¼ 50M⊙

1=8 0.5 0.5 1.41 1.65 50.1þ1.2
−1.1 0.125þ0.006

−0.006 0.50þ0.02
−0.01 0.27þ0.47

−0.24 1.42þ0.06
−0.05 1.55þ0.91

−0.97 1.42þ0.05
−0.05 1.49þ0.95

−0.93

1=8 0.95 0.95 1.27 1.73 50.0þ1.0
−1.1 0.125þ0.006

−0.005 0.94þ0.02
−0.02 0.72þ0.24

−0.50 1.27þ0.03
−0.03 1.76þ0.42

−0.44 1.28þ0.03
−0.03 1.59þ0.47

−0.43

1=3 0.5 0.5 1.36 1.71 50.20þ0.95
−0.85 0.33þ0.02

−0.02 0.49þ0.03
−0.03 0.55þ0.20

−0.18 1.31þ0.11
−0.10 1.86þ0.35

−0.36 1.35þ0.11
−0.11 1.73þ0.36

−0.34
†1=3 0.95 0.95 1.28 1.52 49.89þ0.64

−0.64 0.34þ0.01
−0.01 0.94þ0.02

−0.02 0.93þ0.05
−0.10 1.26þ0.04

−0.04 1.60þ0.14
−0.13 1.16þ0.04

−0.04 1.90þ0.13
−0.12

†1=1.1 0.5 0.5 1.81 1.20 49.91þ0.14
−0.13 0.95þ0.05

−0.06 0.24þ0.51
−0.20 0.64þ0.28

−0.52 1.60þ0.92
−0.67 1.50þ0.40

−0.42 1.1þ1.3
−0.7 1.70þ0.88

−0.32

1=1.1 0.5 0.5 0.54 2.60 49.94þ0.21
−0.15 0.89þ0.03

−0.05 0.54þ0.09
−0.09 0.57þ0.15

−0.14 0.57þ0.56
−0.35 2.65þ0.30

−0.58 1.40þ0.15
−0.12 1.74þ0.14

−0.23
†1=1.1 0.95 0.95 1.85 1.16 49.99þ0.13

−0.11 0.92þ0.06
−0.03 0.91þ0.07

−0.10 0.93þ0.05
−0.11 1.80þ0.09

−0.14 1.21þ0.14
−0.09 0.65þ0.15

−0.17 2.40þ0.20
−0.17

1=1.1 0.95 0.95 0.35 2.81 50.02þ0.12
−0.11 0.912þ0.011

−0.006 0.94þ0.04
−0.06 0.94þ0.05

−0.09 0.31þ0.09
−0.09 2.82þ0.09

−0.10 1.64þ0.03
−0.03 1.40þ0.03

−0.04

M ¼ 100M⊙

1=8 0.5 0.5 1.36 1.67 100.2þ1.1
−1.1 0.124þ0.003

−0.003 0.94þ0.01
−0.01 0.86þ0.12

−0.23 1.36þ0.02
−0.02 1.63þ0.21

−0.27 1.39þ0.02
−0.02 1.38þ0.21

−0.27
1=8 0.95 0.95 1.18 1.76 99.94þ0.97

−0.95 0.125þ0.002
−0.002 0.942þ0.007

−0.009 0.89þ0.09
−0.19 1.18þ0.02

−0.02 1.82þ0.19
−0.20 1.21þ0.02

−0.02 1.57þ0.20
−0.20

1=3 0.5 0.5 1.30 1.74 100.17þ0.84
−0.86 0.330þ0.009

−0.008 0.48þ0.02
−0.02 0.40þ0.16

−0.16 1.29þ0.08
−0.07 1.79þ0.38

−0.38 1.33þ0.08
−0.08 1.63þ0.38

−0.37
†1=3 0.95 0.95 1.24 1.52 100.01þ0.61

−0.64 0.332þ0.007
−0.006 0.95þ0.01

−0.01 0.94þ0.05
−0.07 1.24þ0.03

−0.03 1.55þ0.10
−0.11 1.12þ0.04

−0.03 1.89þ0.10
−0.12

†1=1.1 0.5 0.5 1.83 1.18 99.96þ0.41
−0.46 0.91þ0.03

−0.03 0.36þ0.25
−0.24 0.62þ0.30

−0.29 1.86þ0.75
−0.17 1.30þ0.13

−0.24 1.04þ0.93
−0.24 1.86þ0.39

−0.40

1=1.1 0.5 0.5 0.55 2.59 100.09þ0.53
−0.71 0.91þ0.01

−0.02 0.50þ0.05
−0.07 0.51þ0.06

−0.06 0.55þ0.15
−0.13 2.55þ0.13

−0.18 1.53þ0.09
−0.10 1.52þ0.14

−0.09
†1=1.1 0.95 0.95 1.85 1.16 99.87þ0.43

−0.42 0.91þ0.02
−0.02 0.95þ0.04

−0.06 0.95þ0.04
−0.07 1.84þ0.05

−0.06 1.18þ0.07
−0.06 0.70þ0.12

−0.11 2.42þ0.10
−0.09

1=1.1 0.95 0.95 0.36 2.89 100.01þ0.43
−0.43 0.911þ0.006

−0.004 0.93þ0.04
−0.04 0.95þ0.03

−0.05 0.28þ0.10
−0.10 2.91þ0.08

−0.09 1.70þ0.02
−0.02 1.37þ0.03

−0.03

M ¼ 200M⊙

1=8 0.5 0.5 1.30 1.68 199.8þ2.5
−2.4 0.125þ0.003

−0.003 0.50þ0.02
−0.02 0.44þ0.24

−0.26 1.31þ0.04
−0.04 1.67þ0.69

−0.68 1.32þ0.05
−0.04 1.52þ0.70

−0.67

1=8 0.95 0.95 1.18 1.76 199.73þ0.75
−0.80 0.125þ0.001

−0.001 0.946þ0.004
−0.005 0.91þ0.07

−0.11 1.18þ0.01
−0.01 1.85þ0.16

−0.15 1.21þ0.01
−0.01 1.54þ0.16

−0.15
†1=3 0.5 0.5 1.38 1.53 199.6þ1.3

−1.4 0.334þ0.008
−0.008 0.50þ0.03

−0.03 0.48þ0.16
−0.13 1.42þ0.10

−0.09 1.42þ0.37
−0.50 1.36þ0.11

−0.10 1.63þ0.37
−0.51

†1=3 0.95 0.95 1.16 1.50 200.1þ1.2
−1.1 0.334þ0.005

−0.004 0.951þ0.010
−0.008 0.93þ0.05

−0.07 1.16þ0.02
−0.02 1.51þ0.07

−0.09 1.01þ0.03
−0.03 1.94þ0.07

−0.09
†1=1.1 0.5 0.5 1.81 1.20 200.2þ1.1

−1.1 0.91þ0.02
−0.02 0.41þ0.39

−0.26 0.64þ0.32
−0.42 1.86þ0.47

−0.18 1.29þ0.13
−0.56 1.11þ0.38

−0.34 1.83þ0.47
−0.30

1=1.1 0.5 0.5 0.55 2.60 199.9þ1.1
−1.1 0.91þ0.01

−0.01 0.47þ0.06
−0.07 0.50þ0.06

−0.06 0.41þ0.28
−0.25 2.65þ0.24

−0.20 1.45þ0.09
−0.14 1.64þ0.17

−0.10
†1=1.1 0.95 0.95 1.85 1.15 199.93þ0.98

−0.93 0.91þ0.02
−0.01 0.95þ0.03

−0.04 0.95þ0.04
−0.05 1.84þ0.03

−0.03 1.18þ0.04
−0.04 0.67þ0.10

−0.08 2.46þ0.07
−0.08

1=1.1 0.95 0.95 0.31 3.04 200.6þ1.0
−1.1 0.910þ0.007

−0.005 0.94þ0.04
−0.05 0.96þ0.03

−0.05 0.20þ0.12
−0.14 3.02þ0.08

−0.13 1.69þ0.03
−0.04 1.38þ0.04

−0.03

TABLE III. Injected and recovered parameters for unequal-spin injections. Rows marked by a (†) have the injected value of ϕ12 set to
0, while it is π for the unmarked cases.

Injected Recovered

q χ1 χ2 θref1 θref2 MðM⊙Þ q χ1 χ2 θref1 θref2 θ∞1 θ∞2

M ¼ 50M⊙

1=8 0.5 0.95 1.40 1.67 49.9þ1.2
−1.2 0.125þ0.006

−0.006 0.50þ0.02
−0.01 0.60þ0.34

−0.51 1.41þ0.06
−0.05 1.65þ0.59

−0.69 1.42þ0.05
−0.05 1.54þ0.65

−0.64

1=8 0.95 0.5 1.28 1.72 50.1þ1.1
−1.2 0.124þ0.006

−0.005 0.94þ0.02
−0.02 0.32þ0.45

−0.29 1.27þ0.03
−0.03 1.74þ0.83

−0.99 1.28þ0.03
−0.03 1.61þ0.91

−0.93

1=3 0.5 0.95 1.32 1.76 50.13þ0.88
−0.82 0.33þ0.02

−0.02 0.48þ0.03
−0.03 0.91þ0.07

−0.16 1.28þ0.11
−0.11 1.84þ0.20

−0.19 1.37þ0.12
−0.11 1.69þ0.20

−0.19

1=3 0.95 0.5 1.18 1.80 50.11þ0.51
−0.47 0.33þ0.01

−0.01 0.93þ0.02
−0.02 0.56þ0.13

−0.13 1.16þ0.03
−0.03 1.83þ0.17

−0.18 1.22þ0.04
−0.04 1.55þ0.17

−0.18
†1=1.1 0.5 0.95 2.19 1.65 49.99þ0.20

−0.18 0.91þ0.08
−0.06 0.55þ0.32

−0.17 0.80þ0.16
−0.37 1.91þ0.26

−0.27 1.83þ0.29
−0.23 1.05þ0.57

−0.61 2.65þ0.31
−0.33

(Table continued)
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TABLE III. (Continued)

Injected Recovered

q χ1 χ2 θref1 θref2 MðM⊙Þ q χ1 χ2 θref1 θref2 θ∞1 θ∞2

1=1.1 0.5 0.95 0.39 2.74 49.96þ0.13
−0.13 0.91þ0.01

−0.01 0.54þ0.07
−0.07 0.94þ0.04

−0.08 0.47þ0.31
−0.26 2.87þ0.15

−0.17 1.89þ0.08
−0.06 1.78þ0.04

−0.06
†1=1.1 0.95 0.5 1.40 0.73 49.92þ0.13

−0.11 0.92þ0.06
−0.05 0.73þ0.21

−0.25 0.70þ0.24
−0.23 1.34þ0.18

−0.19 1.05þ0.23
−0.26 0.53þ0.25

−0.27 1.79þ0.62
−0.31

1=1.1 0.95 0.5 0.37 2.81 49.93þ0.09
−0.09 0.90þ0.01

−0.01 0.94þ0.04
−0.05 0.57þ0.09

−0.07 0.23þ0.19
−0.14 2.79þ0.19

−0.27 1.30þ0.04
−0.03 1.21þ0.09

−0.11

M ¼ 100M⊙

1=8 0.5 0.95 1.37 1.68 99.9þ1.4
−1.4 0.125þ0.003

−0.003 0.50þ0.01
−0.01 0.83þ0.14

−0.21 1.37þ0.04
−0.04 1.77þ0.31

−0.27 1.34þ0.04
−0.03 1.89þ0.30

−0.27
1=8 0.95 0.5 1.19 1.75 100.07þ0.91

−0.92 0.125þ0.002
−0.002 0.945þ0.008

−0.008 0.53þ0.26
−0.28 1.19þ0.02

−0.02 1.78þ0.36
−0.34 1.20þ0.02

−0.02 1.55þ0.36
−0.32

1=3 0.5 0.95 1.28 1.79 100.08þ0.81
−0.80 0.330þ0.009

−0.009 0.49þ0.03
−0.03 0.91þ0.08

−0.12 1.28þ0.08
−0.10 1.83þ0.23

−0.18 1.38þ0.08
−0.10 1.66þ0.23

−0.17
†1=3 0.95 0.5 1.23 1.46 100.08þ0.60

−0.60 0.330þ0.007
−0.007 0.95þ0.01

−0.01 0.50þ0.10
−0.11 1.22þ0.03

−0.03 1.60þ0.24
−0.23 1.15þ0.03

−0.03 1.98þ0.24
−0.23

†1=1.1 0.5 0.95 2.21 1.64 100.08þ0.85
−0.83 0.90þ0.03

−0.03 0.73þ0.24
−0.24 0.66þ0.30

−0.34 1.96þ0.24
−0.14 1.70þ0.23

−0.12 1.41þ0.28
−0.61 2.54þ0.28

−0.26

1=1.1 0.5 0.95 0.34 2.73 100.41þ0.46
−0.55 0.905þ0.010

−0.010 0.58þ0.06
−0.09 0.92þ0.06

−0.05 0.57þ0.30
−0.31 2.74þ0.14

−0.08 1.95þ0.07
−0.07 1.68þ0.03

−0.05
†1=1.1 0.95 0.5 1.35 0.88 99.79þ0.44

−0.45 0.91þ0.03
−0.03 0.77þ0.19

−0.22 0.68þ0.26
−0.21 1.27þ0.10

−0.16 1.14þ0.16
−0.21 0.38þ0.22

−0.23 1.94þ0.63
−0.35

1=1.1 0.95 0.5 0.37 2.88 99.77þ0.34
−0.34 0.915þ0.008

−0.008 0.90þ0.04
−0.05 0.51þ0.05

−0.05 0.17þ0.22
−0.12 2.87þ0.19

−0.30 1.29þ0.04
−0.03 1.16þ0.06

−0.10

M ¼ 200M⊙

1=8 0.5 0.95 1.37 1.68 200.2þ3.4
−3.3 0.125þ0.004

−0.004 0.50þ0.02
−0.02 0.87þ0.11

−0.19 1.37þ0.06
−0.05 1.66þ0.34

−0.38 1.40þ0.06
−0.05 1.50þ0.34

−0.37

1=8 0.95 0.5 1.37 1.68 199.5þ1.2
−1.2 0.125þ0.002

−0.002 0.947þ0.007
−0.008 0.44þ0.14

−0.14 1.37þ0.02
−0.02 1.78þ0.41

−0.44 1.38þ0.02
−0.02 1.47þ0.41

−0.44
†1=3 0.5 0.95 1.41 1.58 199.9þ1.3

−1.3 0.335þ0.008
−0.007 0.51þ0.03

−0.02 0.88þ0.10
−0.14 1.45þ0.09

−0.07 1.50þ0.16
−0.24 1.33þ0.10

−0.07 1.72þ0.17
−0.24

†1=3 0.95 0.5 1.15 1.43 200.07þ1.00
−0.99 0.333þ0.006

−0.006 0.95þ0.02
−0.01 0.47þ0.11

−0.09 1.15þ0.03
−0.03 1.43þ0.20

−0.28 1.08þ0.04
−0.04 1.85þ0.20

−0.29
†1=1.1 0.5 0.95 2.25 1.63 200.1þ1.3

−1.3 0.91þ0.02
−0.02 0.75þ0.22

−0.26 0.64þ0.31
−0.32 1.99þ0.23

−0.11 1.68þ0.17
−0.10 1.43þ0.26

−0.64 2.54þ0.24
−0.21

1=1.1 0.5 0.95 0.29 2.73 200.3þ1.4
−1.3 0.911þ0.007

−0.007 0.52þ0.03
−0.03 0.93þ0.05

−0.07 0.25þ0.18
−0.13 2.84þ0.20

−0.14 1.93þ0.06
−0.05 1.72þ0.04

−0.04
†1=1.1 0.95 0.5 1.38 0.80 199.8þ1.1

−1.1 0.91þ0.01
−0.01 0.84þ0.14

−0.28 0.64þ0.29
−0.16 1.34þ0.06

−0.13 1.02þ0.20
−0.24 0.49þ0.17

−0.23 2.01þ0.44
−0.41

1=1.1 0.95 0.5 0.37 2.88 200.2þ1.1
−1.1 0.905þ0.008

−0.009 0.93þ0.04
−0.05 0.52þ0.04

−0.03 0.28þ0.15
−0.20 2.84þ0.20

−0.24 1.29þ0.05
−0.05 1.18þ0.11

−0.12
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