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This study aims to test the validity of general relativity (GR) on kiloparsec scales by employing a newly
compiled galaxy-scale strong gravitational lensing (SGL) sample. We utilize the distance sum rule within
the Friedmann-Lemaître-Robertson-Walker metric to obtain cosmology-independent constraints on both
the parametrized post-Newtonian parameter γPPN and the spatial curvature Ωk, which overcomes the
circularity problem induced by the presumption of a cosmological model grounded in GR. To calibrate the
distances in the SGL systems, we introduce a novel nonparametric approach, artificial neural network
(ANN), to reconstruct a smooth distance-redshift relation from the Pantheonþ sample of type Ia
supernovae. Our results show that γPPN ¼ 1.16þ0.15

−0.12 and Ωk ¼ 0.89þ1.97
−1.00 , indicating a spatially flat universe

with the conservation of GR (i.e., Ωk ¼ 0 and γPPN ¼ 1) is basically supported within 1σ confidence level.
Assuming a zero spatial curvature, we find γPPN ¼ 1.09þ0.11

−0.10 , representing an agreement with the prediction
of 1 from GR to a 9.6% precision. If we instead assume GR holds (i.e., γPPN ¼ 1), the curvature parameter
constraint can be further improved to be Ωk ¼ 0.11þ0.78

−0.47 . These resulting constraints demonstrate the
effectiveness of our method in testing GR on galactic scales by combining observations of strong lensing
and the distance-redshift relation reconstructed by ANN.

DOI: 10.1103/PhysRevD.109.043001

I. INTRODUCTION

As an important cornerstone of modern physics,
Einstein’s theory of general relativity (GR) has withstood
very strict tests (e.g., [1–4]). But testing GR at a much
higher precision is still a vital task, because any possible
violation of GR would have profound effects on our
understanding of fundamental physics. Within the para-
metrized post-Newtonian (PPN) formalism, GR predicts
that the PPN parameter γPPN which describes the amount of
space curvature produced per unit rest mass should be
exactly 1 [5]. Measuring γPPN therefore serves as a test of
the validity of GR on large scales. That is, any deviation
from γPPN ¼ 1 implies a possible violation of GR.
On solar system scales, the GR prediction for γPPN has

been confirmed with high accuracy. By measuring the
round-trip travel time of radar signals passing near the Sun,
the Cassini spacecraft yielded γPPN ¼ 1þ ð2.1� 2.3Þ ×
10−5 [6]. However, the extragalactic tests of GR are still
insufficient and much less precise. On galactic scales,
strong gravitational lensing (SGL), combined with stellar
kinematics in the lensing galaxy, provides an effective
way to test the validity of GR by constraining the PPN

parameter γPPN. The pioneering work by the authors of
Ref. [7] first utilized this approach and reported a result of
γPPN ¼ 0.98� 0.07 based on observations of 15 elliptical
lensing galaxies from the Sloan Lens ACS (SLACS)
Survey. Since then, numerous studies have been conducted
to test GR using different SGL samples [8–14]. In this
paper, we further explore the validity of GR by employing a
newly compiled SGL sample [15], which consists of 161
galaxy-scale strong lensing systems. This larger SGL
sample allows us to perform a more comprehensive
analysis and obtain further insights into the behavior of
gravity on galactic scales.
In practice, in order to constrain the PPN parameter γPPN

using SGL systems, one has to know a ratio of three angular
diameter distances (i.e., the distances from the observer to
the lens, Dl, the observer to the source, Ds, and the lens to
the source, Dls). In most previous works, the required
distance ratio is calculated within the context of the
standard ΛCDM cosmological model. However, ΛCDM
itself is established on the framework of GR, which leads
to a circularity problem in testing GR [13,14]. To circum-
vent this problem, we will introduce the distance sum rule
(DSR) in the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric. The two distances Dl and Ds can be
directly determined from observations of type Ia super-
novae (SNe Ia), but not the distance Dls. The DSR enables*jjwei@pmo.ac.cn
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us to convert Dls into a relationship with Dl, Ds, and the
spatial curvature Ωk. Based on the DSR in the FLRW
metric, cosmology-independent constraints on both γPPN
and Ωk can thus be obtained by combing observations of
strong lensing and SNe Ia [10,14].
Very recently, by employing the Gaussian process (GP)

method, Liu et al. [13] reconstructed a smooth distance-
redshift relation directly from SN Ia observation to calibrate
the distances in the SGL sample, however, with a grossly
underestimated error. GP allows for the reconstruction of
a function from a dataset without assuming a specific
model or parametrization, and it has been widely used in
cosmological researches [16–22]. In the GP analysis, the
errors in the observational data are assumed to follow a
Gaussian distribution [23]. However, the actual observa-
tions might not follow Gaussian distributions. This may
thus be a strong assumption for reconstructing a function
from observational data. Moreover, due to the sparsity and
scatter of data points at high redshifts, the GP reconstructed
function from SN Ia data exhibits strange oscillations with
large uncertainties. To address these concerns and ensure
the reliability of the reconstructed function, we employ
the artificial neural network (ANN) method, which is a
machine learning technique and has been proven to be a
“universal approximator” that can reconstruct a great variety
of functions [24,25]. Thanks to the powerful property of
neural networks, methods based on ANNs have been widely
used in regression and estimation tasks. In this work, we
will reconstruct the distance-redshift relation from SN Ia
data using the ANN method, utilizing a code developed
in Ref. [26].
This paper is organized as follows: in Sec. II, we introduce

the methodology and observations used for testing GR on
galactic scales. Cosmology-independent constraints on γPPN
andΩk are shown in Sec. III. In Sec. IV, wemake a summary
and end with some discussions.

II. METHODOLOGY AND DATA

In the weak-field limit, the metric of space-time can be
characterized as

ds2 ¼ c2dt2
�
1 −

2GM
c2r

�
− dr2

�
1þ 2γPPNGM

c2r

�
− r2dΩ2;

ð1Þ
where γPPN is the PPN parameter, M is the mass of the
central object, and Ω is the angle in the invariant orbital
plane. In the framework of GR, γPPN is equal to unity.

A. Gravitational lensing theory

The main idea of testing the validity of GR via SGL
systems is that the mass enclosed within the Einstein radius
derived separately from the gravitational theory and the
dynamical theory should be equivalent, i.e., Mgrl

E ¼ Mdyn
E .

From the theory of gravitational lensing [27], the Einstein

angle θE reflecting the angular separations between multi-
ple images is related to the gravitational mass Mgrl

E ,

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γPPN

2

r �
4GMgrl

E

c2
Dls

DlDs

�1=2

; ð2Þ

where Dl, Ds, and Dls are, respectively, the angular
diameter distances from the observer to the lens, the
observer to the source, and the lens to the source. By
introducing the Einstein radius RE ¼ DlθE, Eq. (2) can be
rearranged as

GMgrl
E

RE
¼ 2

1þ γPPN

c2

4

Ds

Dls
θE: ð3Þ

To estimate the dynamical mass Mdyn
E from the spectro-

scopic measurement of the lens velocity dispersion, one
must first set a mass distribution model for the lensing
galaxy. Here we use the common mass model with power-
law density profiles [15,28]:

ρðrÞ ¼ ρ0

�
r
r0

�
−α

νðrÞ ¼ ν0

�
r
r0

�
−δ

βðrÞ ¼ 1 − σ2t =σ2r ; ð4Þ

where r is defined as the spherical radial coordinate from
the lens center, ρðrÞ is the total (including luminous and
dark matter) mass density distribution, and νðrÞ represents
the distribution of luminous density. The parameter βðrÞ
describes the anisotropy of the stellar velocity dispersion,
where σt and σr are the velocity dispersions in the
tangential and radial directions, respectively. In the liter-
ature, β is always assumed to be independent of r (e.g.,
[28,29]). Following previous studies [7,9,10,13–15], we set
a Gaussian prior β ¼ 0.18� 0.13, informed by the con-
straint from a well-studied sample of elliptical galaxies
[30]. That is, β will be marginalized using a Gaussian prior
of β ¼ 0.18� 0.13 over the 2σ range of ½−0.08; 0.44�.
Also, α and δ are the power-law indices of the total mass
density profile and the luminosity density profile, respec-
tively. It has been confirmed in previous works [15,31] that
α is significantly related with the lens redshift zl and the
surface mass density of the lensing galaxy. Therefore, we
treat the parametrized model of α as [15]

α ¼ α0 þ αzzl þ αs log10 Σ̃; ð5Þ
where α0, αz, and αs are arbitrary constants. Here Σ̃ stands
for the normalized surface mass density, and is expressed as

Σ̃ ¼ ðσ0=100 km s−1Þ2
Reff=10 h−1 kpc , where σ0 is the observed velocity

dispersion, Reff is the lensing galaxy’s half-light radius,
and h ¼ H0=ð100 km s−1Mpc−1Þ is the reduced Hubble
constant.
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Following thewell-known radial Jeans equation in spheri-
cal coordinate [32], the radial velocity dispersion of the
luminous matter σr in early-type lens galaxies takes the form

σ2rðrÞ ¼
G
R∞
r dr0r02β−2νðr0ÞMðr0Þ

r2βνðrÞ ; ð6Þ

where MðrÞ is the total mass included within a sphere with
radius r,

MðrÞ ¼
Z

r

0

dr04πr02ρðr0Þ ¼ 4π
ρ0
r−α0

r3−α

3 − α
: ð7Þ

The dynamical mass Mdyn
E enclosed within a cylinder of

radius equal to the Einstein radius RE can be written as [15]

Mdyn
E ¼ 2π3=2

R3−α
E

3 − α

Γðα−1
2
Þ

Γðα
2
Þ

ρ0
r−α0

; ð8Þ

where ΓðxÞ is Euler’s Gamma function. By combining
Eqs. (7) and (8), we get the relation betweenMðrÞ andMdyn

E :

MðrÞ ¼ 2ffiffiffi
π

p 1

λðαÞ
�

r
RE

�
3−α

Mdyn
E ; ð9Þ

where λðαÞ ¼ Γðα−1
2
Þ=Γðα

2
Þ. By substituting Eqs. (4) and (9)

into Eq. (6), we obtain

σ2rðrÞ ¼
2ffiffiffi
π

p GMdyn
E

RE

1

ξ − 2β

1

λðαÞ
�

r
RE

�
2−α

; ð10Þ

where ξ ¼ αþ δ − 2.
The actual velocity dispersion of the lensing galaxy is the

component of luminosity-weighted average along the line
of sight and measured over the effective spectroscopic
aperture RA, which can be expressed as (see Ref. [15] for
more details)

σ20ð≤ RAÞ ¼
c2

2
ffiffiffi
π

p 2

1þ γPPN

Ds

Dls
θEFðα; δ; βÞ

�
RA

RE

�
2−α

;

ð11Þ
where

Fðα; δ; βÞ ¼ 3 − δ

ðξ − 2βÞð3 − ξÞ
λðξÞ − βλðξþ 2Þ

λðαÞλðδÞ : ð12Þ

The theoretical value of the velocity dispersion inside the
radius Reff=2 can then be calculated by [28]

σth0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2
ffiffiffi
π

p 2

1þ γPPN

Ds

Dls
θEFðα; δ; βÞ

�
θeff
2θE

�
2−α

s
; ð13Þ

where θeff ¼ Reff=Dl denotes the effective angular radius of
the lensing galaxy.
Based on the spectroscopic data, one can measure the

luminosity-weighted average of the line-of-sight velocity

dispersion σap within the circular aperture with the angular
radius θap. In practice, σap should be normalized to the
velocity dispersion within the typical physical aperture with
a radius Reff=2,

σobs0 ¼ σap½θeff=ð2θapÞ�η; ð14Þ
where the value of the correction factor is taken as η ¼
−0.066� 0.035 [33]. Then, the total uncertainty of σobs0 can
be obtained by

ðΔσSGL0 Þ2 ¼ ðΔσstat0 Þ2 þ ðΔσAC0 Þ2 þ ðΔσsys0 Þ2; ð15Þ
where Δσstat0 is the statistical error propagated from the
measurement error of σap, and ΔσAC0 is the aperture-
correction-induced error propagated from the uncertainty
of η. The systematic error due to the extra mass contribution
from the outer matters of the lensing galaxy along the line
of sight, Δσsys0 , is taken as an uncertainty of ∼3% to the
velocity dispersion [34].
Once we know the ratio of the angular diameter distances

Ds=Dls, the constraints on the PPN parameter γPPN can be
derived by comparing the observational and theoretical
values of the velocity dispersions [see Eqs. (13) and (14)].
Conventionally, the distance ratio Ds=Dls is calculated
within the standard ΛCDM cosmological model [9,10].
However,ΛCDM itself is built on the framework of GR and
this leads to a circularity problem [13,14]. To avoid this
problem, we will use a cosmological-model-independent
method which is based upon the sum rule of distances in the
FLRW metric to constrain γPPN.

B. Distance sum rule

In a homogeneous and isotropic space, the dimensionless
comoving distance dðzl; zsÞ≡ ðH0=cÞð1þ zsÞDAðzl; zsÞ
can be written as

dðzl; zsÞ ¼
1ffiffiffiffiffiffiffiffiffijΩkj

p sinn

� ffiffiffiffiffiffiffiffiffi
jΩkj

p Z
zs

zl

dz0

Eðz0Þ
�
; ð16Þ

whereΩk denotes the spatial curvature density parameter at
the present time and EðzÞ ¼ HðzÞ=H0 is the dimensionless
expansion rate. Also, sinnðxÞ is sinhðxÞ when Ωk > 0, x
when Ωk ¼ 0, and sinðxÞ when Ωk < 0. By applying the
notations dðzÞ≡ dð0; zÞ, dls ≡ dðzl; zsÞ, dl ≡ dð0; zlÞ, and
ds ≡ dð0; zsÞ, one can derive a sum rule of distances along
the null geodesics of the FLRW metric as [35–37]

dls
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ωkd2l

q
−
dl
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ωkd2s

q
: ð17Þ

This relation provides a cosmology-independent probe to
test both the spatial curvature and the FLRW metric. The
validity of the FLRWmetric can be tested by comparing the
derived Ωk from the three distances (dl, ds, and dls) for any
two pairs of (zl, zs).
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With Eq. (17), the distance ratio Ds=Dls
1 in Eq. (13) is

only related to the curvature parameter Ωk and the
dimensionless distances dl and ds. If independent mea-
surements of dl and ds are given, we can put constraints on
both γPPN andΩk from Eqs. (13) and (17) without assuming
any specific cosmological model.

C. Artificial neural network

To calibrate the distances dl and ds of the SGL systems
[i.e., the distances dl and ds on the right side of Eq. (17)],
we use a new nonparametric approach, ANN, to reconstruct
a smooth distance-redshift relation dðzÞ from SN Ia
observation.
ANNs possess several desirable properties, including

high-level abstraction of neural input-output transforma-
tion, the ability to generalize from learned instances to new
unseen data, adaptability, self-learning, fault tolerance, and
nonlinearity [38]. According to the universal approxima-
tion theorem [24,39], ANNs can function as universal
function approximators to simulate arbitrary input-output
relationships using multilayer feedforward networks with a
sufficient number of hidden units. Therefore, we can input
the redshift z into the neural network, with the correspond-
ing comoving distance dðzÞ and its associated error σdðzÞ as
the desired outputs. Once the network has been trained
using the Pantheonþ sample, we will obtain an approxi-
mate function capable of predicting both dðzÞ and its error
σdðzÞ at any given redshift z.
The authors of Ref. [26] have developed a Python code for

the reconstruction of functions from observational data
employing an ANN. They have substantiated the reliability
of these reconstructed functions by estimating cosmologi-
cal parameters through the utilization of the reconstructed
Hubble parameter HðzÞ and the luminosity distanceDLðzÞ,
in direct comparison with observational data. In our study,
we will employ this code to reconstruct the distance-
redshift relation.
The general structure of an ANN consists of an input

layer, one or more hidden layers, and an output layer. The
basic units of these layers are referred to as neurons, which
serve as both linear transformation units and nonlinear
activation functions for the input vector. In accordance with
Ref. [26], we employ the exponential linear unit as our
chosen activation function, as defined by its form in [40]:

fðxÞ ¼
�
x x > 0

αðex − 1Þ x ≤ 0;
ð18Þ

where the hyperparameter α is set to 1.
The network is trained by minimizing a loss function,

which quantitatively measures the discrepancy between the

ground truth and predicted values. In this analysis, we
adopt the mean absolute error (MAE), also known as the L1
loss function, as our choice of loss function. The linear
weights and biases within the network are optimized using
the backpropagation algorithm. We employ the Adam
optimizer [41], a gradient-based optimization technique,
to iteratively update the network parameters during train-
ing. This choice of optimizer also contributes to faster
convergence. After multiple iterations, the network param-
eters are adjusted to minimize the loss. We have determined
that a sufficient number of iterations for training conver-
gence is reached when the loss no longer decreases, which
we set to be 3 × 105. Batch normalization [42] is a
technique designed to stabilize the distribution of inputs
within each layer, allowing for higher learning rates and
reduced sensitivity to initialization.
To determine the optimal network model, we train the

network using 1701 SNe Ia from the Pantheonþ sample
(more on this below) and assess the fitting effect through
K-fold cross-validation [43]. In K-fold cross-validation,
the training set is divided into k smaller sets, with k-1
folds used as training data for model training, and the
remaining fold used for validation. This process is
repeated k times, with each fold serving as the validation
data once. The final performance of the model is deter-
mined by averaging the performance across these k
iterations. This approach is particularly useful when the
number of samples available for learning is insufficient to
split into traditional train, validation, and test sets, as is the
case in our analysis. Additionally, it helps mitigate issues
arising from the randomness in data partitioning. As a
general guideline, we have selected k ¼ 10 for our cross-
validation procedure and have utilized the mean squared
error (MSE) as the metric for validating the performance
of the model.
Through our experimentation, we have found that the

network model with a single hidden layer comprising 4096
neurons and without batch normalization yields the best
results. We conduct comparisons with models having vary-
ing numbers of hidden layers, and we observe diminished
performance as the number of hidden layers increased,
accompanied by increased computational resource consump-
tion. Regarding the number of neurons in the hidden layer,
we observe negligible impact on the results, as reflected by
the final MSE values consistently hovering around 0.0042,
regardless of whether the number of neuronswas set to 1024,
2048, 4096, or 8192. Importantly, the final MSE value with
4096 neurons was slightly smaller compared to the other
three configurations, and as a result, we select this configu-
ration. The validation values for implementing batch nor-
malization or not implementing it is 0.0049 or 0.0042,
respectively.
Subsequently, we will employ the optimal network

model, as described above, to reconstruct our distance-
redshift curve.

1Note that Ds=Dls is actually equal to the dimensionless
distance ratio ds=dls.
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D. Supernova data

In order to reconstruct the distance function dðzÞ, we
choose the latest combined sample of SNe Ia called
Pantheonþ [44], which consists of 1701 light curves of
1550 SNe Ia, covering the redshift range 0.001 < z < 2.3.
For each SN Ia, the distance modulus μ is related to the
luminosity distance DL by

μðzÞ ¼ 5log10

�
DLðzÞ
Mpc

�
þ 25; ð19Þ

and the observed distance modulus is

μobsðzÞ ¼ mBðzÞ þ κ · X1 − ω · C −MB; ð20Þ
where mB is the rest-frame B band peak magnitude, X1 and
C, respectively, represent the time stretch of light curve
and the SN color at maximum brightness, and MB is the
absolute B-band magnitude. Through the “BEAMS with
Bias Corrections” method [45], the two nuisance param-
eters κ and ω can be calibrated to zero. Then, the observed
distance modulus can be simplified as

μobsðzÞ ¼ mcorrðzÞ −MB; ð21Þ
where mcorr is the corrected apparent magnitude. The
absolute magnitude MB is exactly degenerate with the
Hubble constantH0. Once the value ofMB orH0 is known,
the luminosity distancesDLðzÞ can be obtained from SNe Ia.
In this work, we adopt H0 ¼ 70 km s−1Mpc−1 to

normalize the SN Ia DLðzÞ data as the observational
dðzÞ. That is, dðzÞ ¼ ðH0=cÞDLðzÞ=ð1þ zÞ. Note that
the choice of H0 has no impact on our results, since the
required distance ratio Ds=Dls [see Eq. (13)] is completely
independent ofH0. Having obtained the dataset of dðzÞ, we
adopt ANN to reconstruct the distance function dðzÞ, and
the results are shown in Fig. 1. The black line represents the
reconstructed function of dðzÞ, and the shaded region is the
corresponding 1σ confidence level.

E. Strong-lensing data

Recently, the authors of Ref. [15] compiled a galaxy-scale
SGL sample including 161 systems with stellar velocity dis-
persion measurements, which is assembled with strict selec-
tion criteria tomeet the assumption of spherical symmetry on
the lens mass model. The observational information for each
SGL system are listed in theAppendix ofRef. [15], including
the lens redshift zl, the source redshift zs, the Einstein angle
θE, the central velocity dispersion of the lensing galaxy σap,
the spectroscopic aperture angular radius θap, and the half-
light angular radius of the lensing galaxy θeff.
By fitting the two-dimensional power-law luminosity

profile convolved with the instrumental point spread
function to the high-resolution Hubble Space Telescope
imaging data over a circle of radius θeff=2 centered on the
lensing galaxies, the authors of Ref. [15] measured the

slopes of the luminosity density profile δ for the 130
lensing galaxies in the full sample. They showed that δ
should be treated as an observable for each lens in order to
get an unbiased estimate of the cosmological parameterΩm.
Therefore, the SGL sample we adopt here is the truncated
sample of 130 SGL systems with δ measurements, for
which the redshift ranges of lenses and sources are
0.0624 ≤ zl ≤ 0.7224 and 0.1970 ≤ zs ≤ 2.8324, respec-
tively. In this work, we use the reconstructed distance
function dðzÞ from Pantheonþ SNe Ia to calibrate the
distances dl and ds of the SGL systems. However, the SN Ia
catalog extends only to z ¼ 2.3. As such, we shall employ
only a subset of the SGL sample that overlaps with the SN
Ia data for the calibration. Thus, only 120 SGL systems
with zs ≤ 2.3 are available in our analysis.

F. The likelihood function

By using the Python Markov chain Monte Carlo module
EMCEE [46] to maximize the likelihood function L, we
simultaneously place limits on the PPN parameter γPPN,
the curvature parameter Ωk, and the lens model parameters
(α0, αz, and αs). The likelihood function is defined as

L ¼
Y120
i¼1

1ffiffiffiffiffiffi
2π

p
Δσtot0;i

exp

�
−
1

2

�
σth0;i − σobs0;i

Δσtot0;i

�2�
; ð22Þ

where the variance

ðΔσtot0 Þ2 ¼ ðΔσSGL0 Þ2 þ ðΔσSN0 Þ2 ð23Þ
is given in terms of the total uncertainty ΔσSGL0 derived
from the SGL observation [Eq. (15)] and the propagated
uncertainty ΔσSN0 derived from the distance calibration by
SNe Ia. With Eq. (13), the propagated uncertaintyΔσSN0 can
be estimated as

FIG. 1. Reconstruction of the dimensionless comoving distance
dðzÞ from Pantheonþ SNe Ia using ANN. The shaded area is
the 1σ confidence level of the reconstruction. The blue dots with
error bars represent the observational data.
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ΔσSN0 ¼ σth0
ΔDr

2Dr
; ð24Þ

where Dr is a convenient notation for the distance ratio in
Eq. (13), i.e., Dr ≡Ds=Dls ¼ ds=dls, and its uncertainty is
ΔDr. With the reconstructed distance function dðzÞ, as well
as its 1σ uncertainty ΔdðzÞ, from the SN Ia data, we can
calibrate the distances (dl and ds) and their corresponding
uncertainties (Δdl andΔds) for each SGL system. Thus, the

uncertainty ΔDr of the distance ratio can be easily derived
from Eq. (17), i.e.,

ðΔDrÞ2 ¼ D4
r

0
B@ Ωkdlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þΩkd2l

q −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ωkd2s

p
ds

1
CA

2

ðΔdlÞ2

þD4
r

�
dl

d2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ωkd2s

p �
2

ðΔdsÞ2: ð25Þ

FIG. 2. 1D marginalized probability distributions and 2D 1 − 2σ confidence contours for the PPN parameter γPPN, the cosmic
curvature Ωk, and the lens model parameters (α0, αz, and αs). The dashed lines represent γPPN ¼ 1 and Ωk ¼ 0, corresponding to a flat
universe with the validity of GR.
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III. RESULTS

The 1D marginalized probability distributions and 2D
plots of the 1 − 2σ confidence regions for the PPN
parameter γPPN, the cosmic curvature Ωk, and the lens
model parameters (α0, αz, and αs), constrained by 120 SGL
systems, are presented in Fig. 2, and the best-fitting results

are listed in Table I. These contours show that at the 1σ
confidence level, the inferred parameter values are γPPN ¼
1.16þ0.15

−0.12 , Ωk ¼ 0.89þ1.97
−1.00 , α0 ¼ 1.2þ0.15

−0.15 , αz ¼ −0.37þ0.22
−0.26 ,

and αs ¼ 0.70þ0.10
−0.09 . We find that the measured γPPN is

consistent with the prediction of γPPN ¼ 1 from GR, and its
constraint accuracy is about 11.6%. While Ωk is weakly
constrained, it is still compatible with zero spatial curvature
within the 1σ confidence level. We also find that the
inferred αz and αs separately deviate from zero at ∼2σ
and ∼8σ levels, confirming the previous finding that the
total mass density slope α strongly depends on both the lens
redshift and the surface mass density [15].
We further explore the scenario of adopting a of

flatness, i.e., Ωk ¼ 0. For this scenario, as shown in
Fig. 3 and Table I, the marginalized distribution gives

TABLE I. Constraint results for all parameters with different
priors.

Priors γPPN Ωk α0 αz αs

None 1.16þ0.15
−0.12 0.89þ1.97

−1.00 1.20þ0.15
−0.15 −0.37þ0.22

−0.26 0.70þ0.10
−0.09

Ωk ¼ 0 1.09þ0.11
−0.10 1.22þ0.14

−0.14 −0.20þ0.11
−0.11 0.67þ0.09

−0.09
γPPN ¼ 1 0.12þ0.78

−0.47 1.10þ0.11
−0.12 −0.20þ0.15

−0.16 0.74þ0.08
−0.08

FIG. 3. Same as Fig. 2, except now for the scenario with a prior of Ωk ¼ 0. The dashed line represents γPPN ¼ 1 predicted by GR.
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γPPN ¼ 1.09þ0.11
−0.10 , representing a precision of 9.6%, in good

agreement with the prediction of GR. If instead we adopt a
prior of γPPN ¼ 1 (i.e., assuming GR holds) and allowΩk to
be a free parameter, the resulting constraints on Ωk and the
lens model parameters are displayed in Fig. 4 and Table I.
The marginalized Ωk constraint is Ωk ¼ 0.12þ0.78

−0.47 , consis-
tent with a spatially flat universe. The comparison among
lines 1–3 of Table I suggests that different choices of priors
have little effect on the lens model parameters (α0, αz,
and αs).
From Figs. 2–4, we can see that there is a strongly

squeezed relation between α0 and αs. This seems to indicate
that to some extent one can replace αs by mass density
independent α0, but not entirely. This may also imply that

the adopted parametrization for the total mass density slope
α [Eq. (5)] is not the most compatible lens model. Never-
theless, it is worth pointing out that besides the dependence
of α on lens redshift and surface mass density, other
unexplored but important dependencies may also be found
in the future that can result in a more accurate phenomeno-
logical model for lensing galaxies [15], thereby providing
more reliable constraints on the PPN parameter γPPN.

IV. CONCLUSION AND DISCUSSIONS

Galaxy-scale SGL systems, combined with stellar veloc-
ity dispersion measurements of lensing galaxies, provide a
powerful probe to test the validity of GR by constraining
the PPN parameter γPPN on kiloparsec scales. Testing GR in

FIG. 4. Same as Fig. 2, except now for the scenario with a prior of γPPN ¼ 1. The dashed line represents a spatially flat universe.

JING-YU RAN and JUN-JIE WEI PHYS. REV. D 109, 043001 (2024)

043001-8



this manner, however, it is necessary to know the angular
diameter distances between the observer, lens, and source.
Conventionally, the required distances are calculated within
the standard ΛCDM cosmological model. Such distance
calculations would involve a circularity problem in testing
GR, since ΛCDM itself is established on the framework
of GR. In this paper, in order to address the circularity
problem, we have employed the DSR in the FLRW metric
to estimate not only γPPN but also the spatial curvature
Ωk independently of any specific cosmological model.
To calibrate the distances of the SGL systems, we have
introduced a new nonparametric approach for reconstructing
the distance-redshift relation from the Pantheonþ SN Ia
sample using an ANN, which has no assumptions about the
observational data and is a completely data-driven approach.
By combining 120 well-selected SGL systems with the

reconstructed distance function from 1701 data points of
SNe Ia, we have obtained simultaneous estimates of γPPN
andΩk without any specific assumptions about the contents
of the universe or the theory of gravity. Our results show
that γPPN ¼ 1.16þ0.15

−0.12 and Ωk ¼ 0.89þ1.97
−1.00 . The measured

γPPN is in good agreement with the prediction of GR with
11.6% accuracy. If we use flatness as a prior (i.e., Ωk ¼ 0),
we infer that γPPN ¼ 1.09þ0.11

−0.10 , representing a precision of
9.6%. If we instead assume the conservation of GR (i.e.,
γPPN ¼ 1) and allow Ωk to be a free parameter, we find
Ωk ¼ 0.12þ0.78

−0.47 . The measured Ωk is consistent with zero
spatial curvature, suggesting that there is no significant
deviation from a flat universe.
In the literature, the authors of Ref. [7] used 15 SLACS

lenses to give a result of γPPN ¼ 0.98� 0.07, based on
priors on galaxy structure from local observations and the
assumption of a ΛCDM model with density parameters
(Ωm, ΩΛÞ ¼ ð0.3; 0.7Þ. Utilizing a sample of 80 SGL
systems, Ref. [10] obtained the constraint accuracy of
the PPN parameter γPPN to be 25% under the assumption of
ΛCDM with parameters taken from Planck observations.
Within the same context of ΛCDM, Ref. [11] concluded
that γPPN ¼ 0.97� 0.09 (representing a precision of 9.3%)
by analyzing the nearby lens ESO 325-G004. Through the
reanalysis of four time-delay lenses, Ref. [12] obtained
simultaneous constraints of γPPN and the Hubble constant
H0 for flat ΛCDM, yielding γPPN ¼ 0.87þ0.19

−0.17 (representing
a precision of 21%) and H0 ¼ 73.65þ1.95−2.26 km s−1 Mpc−1.
Within a flat FLRW metric, Ref. [13] used 120 lenses
to achieve a model-independent estimate of γPPN ¼
1.065þ0.064

−0.074 (representing a precision of 6.5%) by employ-
ing the GP method to reconstruct the SN distances. As
a further refinement, Ref. [14] removed the flatness
assumption and implemented the DSR to obtain model-
independent constraints of γPPN ¼ 1.11þ0.11

−0.09 (representing a
precision of 9.0%) and Ωk ¼ 0.48þ1.09

−0.71 . Note that in
Ref. [14] the distances of the SGL systems were determined
by fitting a third-order polynomial to the SN Ia data.
Unlike the polynomial fit that relies on the assumed

parametrization, the ANN used in this work is a completely
data-driven approach that could reconstruct a function from
various data without assuming a parametrization of the
function. Moreover, unlike the GP method that relies on the
assumption of Gaussian distributions for the observational
random variables, the ANN method has no assumptions
about the data. More importantly, compared to previous
results, our work yielded comparable resulting constraints
on γPPN, which indicates the effectiveness of data-driven
modeling based on the ANN.
Note that the dataset used here is roughly 10 times larger

than that used by the authors of Ref. [7]. Yet the results
obtained are almost the same level of accuracy. We attribute
the absence of significantly enhanced accuracy to three
primary reasons. (i) Reference [7] modeled the probability
distribution of the total mass density slope α as a Gaussian
prior of α ¼ 1.93� 0.08. But, Ref. [10] highlighted that
the most substantial source of systematic error on γPPN is the
scatter of α. That is, without the Gaussian prior on α,
the systematic error on γPPN would be much larger. Our
worse γPPN accuracy appears to be due to the fact that Ref. [7]
set a very narrow Gaussian prior on α, while we consider the
dependence of α on lens redshift and surface mass density
[see Eq. (5)] and adopt wide flat priors on the free parameters
α0, αz and αs. (ii) Compared to our sample [28,47,48], the
sample employed in Ref. [7] exhibits notably higher accu-
racy in velocity dispersion measurements. (iii) Reference [7]
assumed ΛCDM with specific cosmological parameters to
compute distances Ds and Dls, thereby lacking the uncer-
tainty derived from distance calibration.
Looking forward, the forthcoming Large Synoptic Survey

Telescope (LSST) survey, with its excellent operation per-
formance, holds great promise for detecting a large number
of lenses, potentially reaching up to 120,000 in the most
optimistic scenario [49]. By setting a prior on the curvature
parameter −0.007 < Ωk < 0.006, Ref. [10] showed that
53,000 simulated LSST strong lensing data would set a
stringent constraint of γPPN ¼ 1.000þ0.0009

−0.0011 , reaching a pre-
cision of 10−3 ∼ 10−4. Similarly, the authors of Ref. [50]
performed a robust extragalactic test of GR using a well-
defined sample of 5,000 simulated strong lenses from LSST,
yielding an accuracy of 0.5%. In brief, much more severe
constraints on both γPPN and Ωk, as discussed in this work,
can be expected with the help of future lens surveys.
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