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GstLAL is a stream-based matched-filtering search pipeline aiming at the prompt discovery of
gravitational waves from compact binary coalescences such as the mergers of black holes and neutron
stars. Over the past three observation runs by the LIGO, Virgo, and KAGRA Collaboration, the GstLAL
search pipeline has participated in several tens of gravitational wave discoveries. The fourth observing
run (O4) is set to begin in May 2023 and is expected to see the discovery of many new and interesting
gravitational wave signals which will inform our understanding of astrophysics and cosmology.
We describe the current configuration of the GstLAL low-latency search and show its readiness for
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the upcoming observation run by presenting its performance on a mock data challenge. The mock
data challenge includes 40 days of LIGO Hanford, LIGO Livingston, and Virgo strain data along
with an injection campaign in order to fully characterize the performance of the search. We find an
improved performance in terms of detection rate and significance estimation as compared to that
observed in the O3 online analysis. The improvements are attributed to several incremental advances in
the likelihood ratio ranking statistic computation and the method of background estimation.

DOI: 10.1103/PhysRevD.109.042008

I. INTRODUCTION

Since the first observing run (O1) of the LIGO Scientific,
Virgo, and KAGRA Collaboration (LVK), GstLAL, a
matched filtering based gravitational wave search pipe-
line [1], has participated in the discovery of groundbreak-
ing gravitational wave events. GstLAL was among the
search pipelines that made the first direct detection of
gravitational waves from a merging binary black hole
(BBH), known as GW150914 [2]. In the second observing
run (O2), GstLAL was the first pipeline to observe the
binary neutron star (BNS) merger known as GW170817,
whose discovery kickstarted the field of multimessenger
astronomy [3,4]. In the third observing run (O3), GstLAL
detected Oð10Þs of gravitational wave signals including
the first ever neutron star-black hole binary (NSBH)
mergers [5] and the very heavy BBH merger, GW190521,
which resulted in a remnant object in the intermediate mass
black hole (IMBH) mass region [6].
The GstLAL pipeline can be operated in one of two

configurations; a low-latency or “online” mode and an
“offline” mode. The online configuration of the GstLAL
analysis proceeds in near real time as strain data becomes
available from the interferometers [currently, LIGO
Hanford (H), LIGO Livingston (L), and Virgo (V)]. The
online analysis enables the prompt detection of gravita-
tional wave events, allowing for rapid communication to
the external community for electromagnetic follow-up. In
order to provide the best opportunities for multimessenger
astronomy, it is imperative that the low-latency analyses
perform optimally. This includes reliable signal recovery,
accuracy of source property estimation, and the ability of
the search to keep up with real-time data and provide results
as quickly as possible.
In contrast, the offline analysis proceeds on long time-

scales relative to the low-latency distribution of strain data.
The offline analysis can benefit from a fuller understanding
of the detector noise and the ability to rerank the signifi-
cance of candidates against the full asynchronous back-
ground estimate collected over the entire run duration.
Since the likelihood ratios and false alarm rates (FARs) of
the candidates are recomputed relative to the full back-
ground, it is also possible to make adjustments to the signal
model and mass model compared to what is used in the
online analysis [7]. All of these factors can contribute to

higher sensitivity, as quantified by the sensitive volume-
time hVTi, in the offline analysis.
In this paper, we will focus on the online configuration

and aim to characterize the GstLAL pipeline’s performance
toward the fourth observing run (O4). In Sec. II we will
describe the current configuration of the GstLAL online
analysis. Additionally, we describe the gravitational wave
low-latency test suite (gw-lts) software package as a
tool for monitoring the performance of gravitational wave
search pipelines in low latency. Then, in Sec. III we
demonstrate the performance of the pipeline by presenting
results from a mock data challenge (MDC). We will
conclude in Sec. IV with a description of ongoing develop-
ment towards O4.

II. SOFTWARE DESCRIPTION

A. GstLAL

The low-latency GstLAL inspiral workflow consists of
two broad stages; a setup stage where precomputed data
products are generated and stored on disk and a persistent
analysis stage where strain data is filtered in near real time
and candidate events are identified. We will give a brief
description of the current workflow and configuration
choices to be used in operating the GstLAL analysis during
O4. A diagram of the low-latency workflow is shown in
Fig. 1. For a more detailed description of the GstLAL
analysis methods as of the end of O1 and O2 see [1,8],
respectively. The GstLAL software package is described
in [9].
Before the GstLAL analysis is launched, the template

bank is first split into two halves in a process referred to as
“checkerboarding”. Each checkerboarded bank is con-
structed by taking alternating neighboring templates from
the full bank. The checkerboarded banks are redundant as
they cover the same parameter space while having unique
individual templates. The full O4 template bank includes
1.8 × 106 templates, meaning that each checkerboarded
bank has about 9 × 105 templates. The effectualness of the
checkerboarded banks is validated in [11]. With this
configuration the overall analysis can be split across two
independent computing sites which improves the robust-
ness of the analysis to upstream failures. According to the
low-latency online inspiral detection (LLOID) method, the
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checkerboarded template banks must then be split into
independent bins of waveforms, hereafter referred to as
background bins, as shown in Fig. 1. A full derivation and
motivation of the LLOID method, including the singular
value decomposition (SVD) and template time slicing, is
given by [10]. We first sort the template bank by the
orthogonal post-Newtonian (PN) phase terms μ1 and μ2.

These are linear combinations of the PN coefficients, ψ0,
ψ2, and ψ3, defined as follows [12]:

μ1 ¼ 0.974ψ0 þ 0.209ψ2 þ 0.0840ψ3;

μ2 ¼ −0.221ψ0 þ 0.823ψ2 þ 0.524ψ3: ð1Þ

Using these parameters to sort, we split the template bank
into sub-banks each with ∼500 templates. Each back-
ground bin is then constructed by grouping 2 sub-banks
together. When computing the decomposition, we require a
99.999% match between the reconstructed template wave-
forms and the initial physical waveforms. This value is
chosen by balancing the need for computational efficiency
with the need for accurately reconstructed waveforms. For
the checkerboarded O4 template bank in [11], this produces
∼1000 background bins.
As part of the background bank construction during the

setup stage of the analysis, the SVD waveforms are also
whitened. For the initial whitening before filtering has
begun, we use a reference power spectral density (PSD)
generated from several hours of O3 data. As the analysis
stage proceeds we rewhiten the SVD waveforms on a
weekly timescale using recent PSDs in order to account for
any long term changes to the detector characteristic noise.
As the analysis runs, the PSD is continuously tracked
using a fast Fourier transform (FFT) length of 4 seconds.
Such a short length of FFT in the whitening stage of
the pipeline reduces latency at the cost of a less accurate
PSD measurement which could potentially bring a loss in
sensitivity while filtering.
The low-latency analysis ingests strain data, as well as

data quality and interferometer state information from
frame files. Each frame includes 1 second of data. The
frames are distributed from the detectors via Apache Kafka,
an open source event streaming platform. After streaming
from the detector sites, frames are stored in shared memory
partitions, where they are accessed by the GstLAL analysis.
The frames are then processed in buffers 4096 bytes at a
time by each filtering job in the GstLAL pipeline as shown
in Fig. 1. In O4, the GstLAL pipeline will also ingest a
parallel stream of strain data including simulated compact
binary coalescence (CBC) signals injected into the data.
These injections will be based on the inferred astrophysical
distribution of sources based on the gravitational wave
transient catalog (GWTC-3) [13].
It is known that the LIGO and Virgo data are not “well-

behaved” and include transient and non-Gaussian noise
components known as glitches. These glitches can be
mistaken for astrophysical signals, especially high-mass
BBH templates which are short in duration within the
LIGO-Virgo frequency band. To mitigate the negative
effects of non-Gaussian data, the GstLAL pipeline gates
particularly glitchy whitened hðtÞ strain data using a
threshold on the amplitude of the data in units of standard
deviations. In gating the strain data, we must be careful to
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FIG. 1. The low-latency GstLAL inspiral analysis workflow.
The full template bank must first be decomposed into Oð1000Þ
independent background bins via the LLOID method of singular
value decomposition and time slicing [10]. The strain data is
transferred from the interferometer sites at LIGO Livingston,
LIGO Hanford, and Virgo to the computing clusters where it will
be read from disk by the GstLAL pipeline. Filtering, trigger
generation, and candidate ranking proceeds in parallel for each
background bin independently. These filtering and ranking jobs
are duplicated to process strain channels which include simulated
signals injected into the data. Background statistics are collected
independently in each background bin and asynchronously
marginalized over the full parameter space in order to inform
the FAR estimation. Candidate events are aggregated in time
across all background bins, using the maximum SNR or mini-
mum FAR as a metric for determining which candidates will be
uploaded to GraceDB. Finally, candidates passing the public alert
FAR threshold will be disseminated via GCN.
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balance the desire to reduce false positives (i.e., mistaking a
glitch for an astrophysical signal) with the desire to avoid
false negatives (i.e., mistaking an astrophysical signal for a
glitch). Since we know that signals from heavy mass CBC
systems (for example, IMBH binaries) with high ampli-
tudes and short durations tend to resemble glitches, we
want to be conservative with gating data while filtering
templates in this region of the parameter space. However,
for low-mass systems we can more aggressively gate with a
lower threshold since these signals typically have a smaller
amplitude and much longer duration. For this reason, we
choose a gate threshold which is linear in the chirp mass,

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
; ð2Þ

and calculate it for each background bin as follows [14]. We
first compute a gate ratio defined as

Rgate ¼
σmax − σmin

Mc;max −Mc;min
; ð3Þ

where we choose the minimum and maximum gate thresh-
olds, σmin and σmax as 15.0 and 100.0, respectively. TheMc
minimum and maximum are taken to be Mc;min ¼ 0.8 and
Mc;max ¼ 45.0. Then, the hðtÞ gate threshold is calculated
for each background bin as

σthr ¼ Rgate × ΔMc þ σmin: ð4Þ

Here, ΔMc is the difference between the maximumMc in
the given background bin and the Mc;min. This produces
gate thresholds ranging from∼15 for the smallest mass bins
to ∼325 for the largest mass bins.
In the O4 configuration, we choose a filtering stride of

0.25 seconds, meaning that the matched filter output is
computed in stretches of 0.25 seconds at a time. The small
stride is chosen to reduce latency in the filtering stage.
Triggers are defined by peaks in the signal-to-noise (SNR)
time series output by the matched filtering which pass a
threshold of 4.0. The GstLAL analysis has allowed for
single detector candidates since O2 and will continue to do
so in O4. However, when calculating the likelihood ratio of
single detector candidates we apply a penalty to down rank
their significance. This is a tunable parameter and the
value to be used in O4 will be discussed in more detail in
Sec. III B. Coincident candidates include triggers from the
same template in at least two detectors. We require that the
end times of coincident triggers be within 0.005 seconds of
each other after accounting for the light travel time between
detectors. Together, the coincidence threshold and the
requirement that triggers across detectors ring up the same
template provide a strong signal consistency test for
candidate events.

The GstLAL pipeline uses the likelihood ratio as a
ranking statistic to assign significance to gravitational wave
candidates [15,16]. Recent improvements to the likelihood
ratio computation towards O4 are given in [7]. These
include an upgraded analytic SNR-ξ2 signal model and a
method for removing signal contamination from the back-
ground which is also described in [17]. The background
noise in each detector is estimated by collecting ranking
statistic data from single-detector triggers observed in
coincident time. We exclude triggers from times when
only one detector is operating since these triggers may be
astrophysical signals. These background estimations are
cumulative and “snapshotted” to disk every 4 hours. The
filtering jobs which process injection strain data do not
collect their own background estimations. This is because
the high rate of injected signals in the data would
contaminate the background and corrupt the statistics used
for the FAR estimation. Instead, these injection filtering
jobs use a copy of the background statistics collected by the
corresponding noninjection filtering job which processes
the same background bin.
While the pipeline is designed to run persistently, there is

need to take the analysis down periodically. We remove
each of our analyses for a short period of time on a weekly
timescale with a staggered schedule so that at least one of
the checkerboarded analyses is always observing. When an
analysis is relaunched after this weekly downtime, we
compress the background ranking statistic data by remov-
ing any values in the horizon distance history that differ
fractionally from their neighbors by less than 0.003. This
compression reduces the file size and memory use of the
pipeline, which would otherwise grow without bounds over
the duration of the observing period.
For FAR estimation, the ranking statistic data is mar-

ginalized by adding counts from the SNR-ξ2 background
distributions collected in each background bin. The histo-
grams are marginalized over in a continuous loop, taking
several hours to complete each iteration. The marginaliza-
tion is cumulative in time so that as the run proceeds, we
collect more and more background counts. To account for
the two redundant checkerboarded analyses, we apply a
FAR trials factor of 2 to each trigger.
Gravitational wave events passing a FAR threshold of

one per hour will be uploaded to the gravitational wave
candidate event database (GraceDB) [18]. Because the
GstLAL pipeline filters the strain data in ∼1000 indepen-
dent background bins, it is not only possible but highly
probable that there will be multiple triggers associated with
each physical gravitational wave candidate. The number of
triggers per candidate could range from a few for quieter
signals to several tens for louder signals. In order to reduce
the number of calls made to GraceDB we aggregate these
triggers in time across background bins by the maximum
SNR and only upload the current best candidate. In this
aggregation stage, triggers from different background bins

BECCA EWING et al. PHYS. REV. D 109, 042008 (2024)

042008-4



are grouped into candidates using a coincidence window
defined by rounding tend − dt down to the nearest half
second and rounding tend þ dt up to the nearest half second.
Here, tend is the end time of the trigger and dt ¼ 0.2
seconds. The first trigger received by the aggregator for a
given candidate is uploaded to GraceDB immediately. Any
subsequent triggers for the same candidate which are found
with higher SNR are uploaded with a 4 second geometric
wait time. That is, after the first upload, the second upload
will not be made until 4 seconds later, the third upload until
42 seconds later, and so on. The aggregation stage of the
pipeline is illustrated in Fig. 1.
Finally, the GstLAL pipeline calculates a probability of

astrophysical origin, or pðastroÞ, for each event uploaded to
GraceDB. The pðastroÞ is a measure of the event’s signifi-
cance, and as we also compute the probability that the event
originates from each CBC source class (BNS, NSBH, or
BBH) it gives an indication of the likelihood that an event
will have an electromagnetic counterpart. Therefore, the
pðastroÞ is an important quantity to help astronomers
determine when to follow up gravitational wave candidates.
More information about the GstLAL pipeline’s computa-
tion of pðastroÞ can be found in [19].

B. GW low-latency test suite

The gw-lts software is designed to provide consis-
tency checks and real-time feedback on the reliability of
science outputs of gravitational wave search pipelines. By
using simulated signals injected in the strain data, we can
compare the pipeline performance to what is expected.
The test suite requires a source of truth for the signals

that are present in the data. For this, we rely on an injection
set on disk which defines all of the injections, including all
intrinsic and extrinsic parameters, and the global position-
ing system (GPS) times at which they appear in the strain
data. Using a live estimate of the PSD and the injected
signal’s sky location we can compute the expected SNR.
For information about recovered events, GraceDB is taken as
the source of truth. The IGWN-ALERT software package is a
messaging system built on Apache Kafka which sends
notifications of GraceDB state changes to subscribed users.
The test suite subscribes to notifications from IGWN-ALERT

which are sent for any new or updated event on GraceDB.
The injections are then matched with recovered alerts in
low latency by finding coincidences within a small Δt
which we take to be �1 seconds. This time window was
chosen to be very small compared to a typical injection rate
to avoid erroneous coincidences.
Once an injected signal is matched with a recovered

event, the information is passed to an arbitrary number of
independent jobs via Apache Kafka. The jobs compute
metrics associated with the injection recovery such as the
hVTi, accuracy of source classification and sky localiza-
tion, and accuracy of point estimates of the source intrinsic

parameters. The gw-lts capabilities are described in
further detail in Sec. III.
All of the metrics computed by the gw-lts are stored

with InfluxDB, which is an open source platform for storing
and querying time series data. We use the data visualization
tool Grafana to display the data in real time in online
dashboards. With this infrastructure, we are able to track
changes in the performance of the analysis on the timescale
of seconds. Additionally, from the Influx database we are
able to keep an archival record of the performance metrics.

III. MOCK DATA CHALLENGE RESULTS

To demonstrate the performance of the GstLAL analysis
and our readiness for O4, we participated in a MDC
consisting of a forty day stretch of HLV O3 strain data
taken from January 5, 2020 15:59:42 to February 14, 2020
15:59:42 UTC and replayed so as to be analyzed in a low-
latency configuration. The MDC also provided a set of
identical strain channels with injected BNS, NSBH, and
BBH signals. Details of the injection distributions used in
the MDC can be found in [20]. Injected signals were placed
in the strain data at a rate of one per ∼40 seconds, leading
to a total of 5 × 104 total injections throughout the MDC
duration.
In this section we seek to quantify the performance of the

GstLAL pipeline in its latest configuration. We will first
show the recovery of known gravitational wave events in
the MDC data, as well as highlight any potential retraction
level events. We will then detail the results of the MDC
injection campaign. Finally, we present the stability and
performance of the pipeline in terms of its uptime and
latency.

A. Gravitational wave events

There are nine gravitational wave events in the duration
of the MDC replay data which were previously published
as significant candidates in GWTC-3 [21]. These are
described throughout the remainder of this section and
summarized in Table I, comparing the GstLAL pipeline’s
recovery of the signal in O3 to that in the MDC.We recover
all of the nine candidates at the 1 per hour FAR threshold
for uploading to GraceDB. Of these, three were found with
high significance by GstLAL in the O3 online analysis.
Two were found with marginal or subthreshold significance
online but with high significance offline. The remaining
four candidates were found by GstLAL only in the offline
analysis. The recovery of all previously published candi-
dates shows that the pipeline is performing with at least the
same capability as in O3.
Figure 2 shows the count of observed candidates versus

inverse false alarm rate (IFAR). The expected background
counts are calculated using an estimated livetime which is
equal to the wall clock time from the first to the last
candidate. Additionally, we apply a trials factor of 2 to the
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FARs since we only include candidates from one of the
checkerboarded analyses. Figure 2 shows the nine known
gravitational wave events recovered in the MDC. The
candidate IFAR statistics agree with the expected counts
from noise at lower IFAR and diverge due to the presence
of signals at higher IFAR.
GW200112155838 was a BBH candidate observed in

LIGO Livingston data as a single detector candidate with
chirp mass 35.37M⊙ in O3 and 33.37M⊙ in the MDC. In
the MDC, we recover the event with a comparable SNR as
that observed in O3, however in the MDC the FAR is
significantly lower.
GW200115042309 was the first confident NSBH detec-

tion found in O3. The event was found as a coincident
trigger in LIGO Hanford and LIGO Livingston data. The

SNR recovery, FAR estimation, and chirp mass estimation
are all equivalent in the MDC to what was observed in O3.
GW200129065458 was a BBH and the loudest gravi-

tational wave signal in the duration of the MDC with O3
SNR ¼ 26.61. The event was recovered well below the
public alert FAR threshold in both O3 and the MDC.
GW200128022011 and GW200202154313 are both

BBH candidates found by GstLAL in the O3 online
analysis with low significance. Both candidates were found
with FAR above the O3 public alert threshold of 1.2 per
year, where a trials factor corresponding to the number of
operating pipelines has been applied. Later, during the
offline analysis they were recovered as significant candi-
dates and included in GWTC-3 [21]. In the MDC we
recover both candidates with significantly lower FARs,
both well below the public alert threshold. Therefore, if
similar events occur during O4, we can expect to recover
them as significant public alerts.
GW200208130117 was not recovered by GstLAL in the

O3 online analysis, however it was found in the offline
analysis by GstLAL as a highly significant candidate [21].
As recovered in the MDC, this event is a BBH candidate
with chirp mass 34.50M⊙ and a much lower FAR than what
was found in either the O3 online or offline analyses.
GW200208222617 was only recovered by GstLAL as a

subthreshold candidate in the O3 offline analysis, and its
inclusion as a significant candidate in GWTC-3 was due to
its recovery by other CBC pipelines [21]. The GstLAL
pipeline did not recover this event in O3 online. In the
MDC the event was recovered with low significance at
SNR ¼ 8.00 and FAR ¼ 2.02 × 103 per year.
GW200209085452 and GW200210092254 were not

recovered by GstLAL in the O3 online analysis, however
they were found in the offline analysis by GstLAL.
GW200209085452 was recovered in the MDC as a

TABLE I. Gravitational wave candidates from January 5, 2020 15:59:42 to February 14, 2020 15:59:42 UTC as recovered by the
GstLAL pipeline during the O3 online analysis and during the MDC. The instruments provided are those which participated in the event,
that is, contributed a trigger with SNR > 4.0. Here, the SNR is the recovered network SNR, FAR is the false alarm rate in inverse years,
and pðastroÞ is the probability of astrophysical origin. The two low-significance candidates identified with FAR above the public alert
threshold in the O3 online analysis are indicated with FAR > 1.2 per year. We note that this FAR threshold is after a trials factor
corresponding to the number of operating pipelines has been applied. The last four candidates in the table were not recovered by GstLAL
in the O3 online analysis.

O3 Online MDC

Name Inst SNR FAR (yrs−1) pðastroÞ Inst SNR FAR (yrs−1) pðastroÞ
GW200112_155838 L1 18.79 4.05 × 10−4 >0.99 L1 18.46 1.01 × 10−7 >0.99
GW200115_042309 H1L1 11.42 6.61 × 10−4 >0.99 H1L1 11.48 2.55 × 10−4 >0.99
GW200128_022011 � � � � � � >1.2 � � � H1L1 9.98 1.44 × 10−4 >0.99
GW200129_065458 H1L1V1 26.61 2.11 × 10−24 >0.99 H1L1V1 26.30 1.78 × 10−17 >0.99
GW200202_154313 � � � � � � >1.2 � � � H1L1 11.09 1.69 × 10−2 >0.99
GW200208_130117 � � � � � � � � � � � � H1L1 10.56 4.92 × 10−5 >0.99
GW200208_222617 � � � � � � � � � � � � H1L1 8.00 2.02 × 103 0.48
GW200209_085452 � � � � � � � � � � � � H1L1 9.96 1.20 >0.99
GW200210_092254 � � � � � � � � � � � � H1L1 9.28 3.64 × 103 0.27

FIG. 2. Count of observed candidates vs IFAR in days. The
dashed line is an estimation of the expected number of back-
ground counts, assuming a FAR threshold of 1 × 104 per day. The
one, two, and three σ error regions are indicated by the shaded
regions.
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significant candidate, although with a FAR of 1.20 per year
it is less significant than in the O3 offline analysis. This
event is a BBH candidate with chirp mass ¼ 39.45M⊙
found in LIGO Hanford and LIGO Livingston data.
GW200210_092254 was found as a subthreshold candidate
in the MDC with FAR ¼ 3.64 × 103 per year. If astro-
physical, the event would be an NSBH candidate with chirp
mass ¼ 7.89M⊙. GW200210_092254 was considered as a
highly significant candidate in GWTC-3 due to its recovery
by other pipelines, however the GstLAL trigger for this
candidate had a pðastroÞ below the threshold of 0.50 and on
its own would be considered marginal. We note that the
candidate was recovered with a higher FAR and a
lower pðastroÞ in the MDC than in the O3 offline analysis.
Still, the recovery of these candidates in the MDC,
even at subthreshold significance which is the case for
GW200210_092254, demonstrates an improvement over
the O3 online sensitivity.
The improved performance of the GstLAL pipeline in

the MDC as compared to the O3 online analysis can
be attributed to a number of incremental improvements
made to the likelihood ratio ranking statistic and back-
ground estimation. [7] describes an improved signal model
and [17] introduces a new method for a time-dependent
background wherein contamination is reduced by removing
signals counts from the background SNR − ξ2 histograms.
Each of these changes have introduced a small improve-
ment to the hVTi which, when combined, leads to a
noticeable increase in sensitivity and corresponding num-
ber of detected events.

B. Retractions

In O3, there were 23 public gravitational wave candi-
dates which were subsequently determined to be terrestrial
in origin and thus retracted. Of these, GstLAL contributed
to 15. In O4, we hope to significantly reduce the number of
retractions produced by the GstLAL pipeline. Four of the
23 retractions took place during the stretch of data covered
by the MDC. These are S200106au, S200106av, S200108v,
and S200116ah [22–24].
GstLAL did not upload triggers for S200106au and

S200106av during O3. In the MDC, these events would
have occurred at a time before the pipeline had collected
sufficient background to begin ranking candidates, and thus
we did not upload triggers for these events. The retractions
S200108v and S200116ah were GstLAL-only candidates
in O3, both being found as single detector candidates in
LIGO Livingston. Again, the time corresponding to
S200108v would have been early enough in the MDC
cycle that the pipeline was not ranking or uploading
triggers yet, so we cannot make any comparison to our
performance in O3 for this retraction. Finally, we did not
produce any trigger below the 1 per hour FAR threshold for
uploading to GraceDB corresponding to S200116ah in the
MDC, despite the analysis being fully burned in and

operating in a stable state. This means that a similar noise
event in O4 may not lead to a spurious candidate and
subsequent retraction. However, there is insufficient data
within the MDC to infer any changes in performance in
terms of the rate of retractions.
In addition to the retracted candidates uploaded by

GstLAL in O3, for the purpose of the MDC we define a
“retraction level candidate” as any gravitational wave
candidate uploaded with a FAR less than one per year
which is not in the list of previously published candidates
discussed earlier in this section. Over the duration of the
MDC, we find one such retraction level candidate. This was
a single-detector candidate found in LIGO Livingston with
an SNR of 14.5 and a FAR of 1.67 per year which was low
enough to be counted as significant. The LIGO Livingston
data around the event time shows the clear presence of
scattering glitches, as shown in Fig. 3. Further evidence of
terrestrial origin for this candidate is that no coincident
triggers were recovered in LIGO Hanford or Virgo despite
both of these detectors operating normally at the time.
Candidates recovered in only a single detector are more
susceptible to uncertainty since they lack the strong signal
consistency test of coincidence in multiple detectors. For
this reason, there has been a penalty applied to the ranking
statistic of single detector candidates which down weights
their significance. In the O3 offline analysis and in the
MDC we used a singles penalty of 12 in log likelihood
ratio, however in order to reduce the number of similar
retraction level events in O4, we plan to increase the singles
penalty to 13. With this penalty applied, the retraction event
in the MDC would be down weighted and expected to be
recovered with a FAR greater than two per year.

C. Recovered injections

There were 5 × 104 simulated signals injected into the
five week duration of the MDC strain data. Of these, many
had component masses and spins outside the region of
parameter space covered by our template bank. In addition
to the injection parameters, the expected recovery of each

FIG. 3. Spectrogram of L1 hðtÞ data for �1 second around the
time of the retraction level candidate recovered in the MDC. This
candidate is expected to be terrestrial in origin due to the clear
presence of glitches in this data.
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injection is dependent on the set of interferometers pro-
ducing science quality data at the time of the injection.
During times when no interferometers are operating we of
course do not expect to recover any injections. We define
the decisive SNR as the SNR in the second most sensitive
interferometer during times when multiple interferometers
were observing, and the only available SNR otherwise. The
decisive SNR is a more informative measure of the loud-
ness of an injection than the network SNR since it wraps in
information about the set of operating interferometers.
While all injections have network SNR ≥ 4.0, we find
that many injections have decisive SNR < 4.0.
Fig. 4 shows the time series of decisive SNR for

all injections throughout the MDC. For the purpose of
this paper, we focus on injections whose parameters fall
inside our bank, that is injections with component masses
between 1.0M⊙ and 200M⊙, with total masses m1 þm2 <
400.0M⊙ and mass ratios q ¼ m1=m2 < 20. For objects
with mass < 3.0M⊙ the template bank restricts spins
perpendicular to the orbital plane jsi;zj < 0.05 and for
objects with mass > 3.0M⊙ allows jsi;zj < 0.99. We use
the effective precession spin, χp, defined in [25] as

χp ¼ maxða1 · s1; a2 · s2Þ
a1 ·m2

1

ð5Þ

to quantify the in-plane spin of injections. Here,

a1 ¼ 2þ 3=2q, a2 ¼ 2þ 3q=2, si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i;x þ s2i;y

q
and the

mass ratio q assumes m1 ≥ m2. Since the template bank
does not include any in-plane spins, we focus on injections
with χp < 1 × 10−3. However, we find that all injections
with one component mass < 3.0M⊙ have spins outside the
range of the bank, therefore we relax the spin conditions on
these components. The mass and spin restrictions that we
use are summarized in Table II. Finally, to account for the

fact that not all interferometers were providing science
quality data at all times, we highlight injections with an
estimated decisive SNR ≥ 8.0. These cuts leave a total of
1457 injections during the five week MDC. Of these, there
are 597 BBH, 482 BNS, and 378 NSBH injections.
The injected SNRs are not known in advance of the

MDC, but we estimate them using gw-lts. We calculate
the injected strain time series using the injection end time,
sky position, and other source intrinsic parameters assum-
ing an IMRPhenomPv2_NRTidalv2 waveform [26].
We use a running estimate of the detector PSDs and
estimate the SNR with a lower (upper) frequency cutoff
of 10.0 (1600.0) Hz. Figure 5 shows the recovered and
estimated injected SNR for each detector. If the template
bank did not have a sufficient minimal match, we may
expect to see systematically lower recovered SNRs than the
expected values. However, we find that the recovered SNR
generally aligns with the expected SNR. We note that the
figure shows a wider spread in the recovered SNRs for
LIGO Hanford than LIGO Livingston. This is likely due to
the greater sensitivity in LIGO Livingston such that

FIG. 4. Time-series of injected decisive SNR for injections with
component masses and spins within the O4 template bank. Dark
blue circles indicate injections that were recovered below a 2 per
day FAR threshold. Orange crosses and light blue markers
indicate injections not recovered below this FAR threshold,
where orange crosses are injections with decisive SNR > 8.0.
Times on the horizontal axis are GPS times shifted to the original
O3 epoch.

TABLE II. Restrictions on the masses (m1,m2, M, and q), spins
perpendicular to the orbital plane (s1;z and s2;z), and spins parallel
to the orbital plane (χp) of injections according to the O4 template
bank boundaries. The “–” in the first two rows indicates that we
make no restrictions on the spins for injections withmi < 3.0M⊙.
This relaxation is done because the template bank restricts NS
spins jsi;zj < 0.05, which would effectively remove most BNS
and NSBH injections from consideration.

m1 m2 M q js1;zj js2;zj jχpj
1,3 1,3 <6 < 0.33 � � � � � � � � �
3,200 1,3 <203 <20 � � � � � � � � �
3,200 3,200 < 400 <20 < 0.99 < 0.99 < 0.001

FIG. 5. Recovered and estimated injected SNR in each inter-
ferometer: LIGO Hanford (H), LIGO Livingston (L), and Virgo
(V). The black dashed line shows the diagonal and the gray
dashed lines show injected and recovered SNRs ¼ 4.0, the
threshold which defines a trigger.
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injections with low-recovered SNRs in LIGO Livingston
may be expected to have had even lower SNRs in LIGO
Hanford and thus not be recovered at the FAR threshold for
inclusion in the figure.
An injection is considered “found” if it is recovered by

the pipeline with a FAR passing some predetermined
threshold, and “missed” otherwise. We will quote most
results in the following sections with respect to a 2 per day
FAR threshold. At the time of writing, this is the threshold
expected to be used in O4 for sending public alerts [27].
However, the FARs of CBC signals will be subject to a
trials factor corresponding to the number of operating
pipelines, so the effective alert threshold will be lower.
We define the injection recovery efficiency as

found injections
ðfound injectionsþmissed injectionsÞ : ð6Þ

At the 2 per day FAR threshold the efficiency was
¼ 0.84 for all injections in the template bank. The
recovered injection efficiencies for each source class are
shown in Table III at four typical FAR thresholds. As is
expected, the efficiencies are better at more conservative
FAR thresholds. The analysis has the highest efficiency for
injections consistent with BNS sources, and the lowest
efficiency for NSBH sources. The injections in the MDC
included precession effects while the O4 GstLAL template
bank was constructed assuming only spins aligned with the
orbital angular momentum. Therefore, the relatively lower
NSBH recovery efficiency is expected as the precession
will have a more significant effect on the gravitational
waveform for binaries with more extreme mass ratios [28].
In future work, we may seek to quantify the efficacy of the
template bank in the precessing parameter space.
We would expect the pipeline to recover all injections

above some decisive SNR or network SNR threshold.
However, Fig. 4 shows that there are several very high SNR
missed injections throughout the duration of the MDC.
We find that most of the missed injections with decisive
SNR > 20.0 are high-mass BBH injections and a few are
high-mass ratio NSBH injections. This results in a decrease
of the BBH recovery efficiency as the injections increase in

SNR, which is contradictory to our expectations. These
injections are missed due to falling outside of the SNR-ξ2

signal region used in the likelihood ratio calculation. The
signal region is an analytic model which depends on the
allowed mismatch1 between recovered SNR time series and
the template waveform as part of the autocorrelation ξ2 test.
If the allowed mismatch range is too strict, it will result in a
narrow signal model which can exclude real signals. This
effect is exaggerated at high SNR where we expect larger
mismatches due to the discreteness of the template bank as
well as waveform systematics. In the MDC, we used a
mismatch range of 0.1–10%. The optimal mismatch range
in the signal model is an open area of study. See [7] for a
more detailed discussion.

1. Injection parameter recovery

In this section we will quantify the accuracy of point
estimates of the source intrinsic parameters made by
the GstLAL pipeline. These estimates simply come from
the template parameters of the trigger which rang up the
maximum SNR across background bins. An understanding
of the parameter accuracy obtained by search pipelines can
be useful to full parameter estimation efforts. For example,
the Bayesian inference library Bilby [29,30] relies on the
choice of prior probability distributions for intrinsic param-
eters. When parameters are well determined by the
searches, Bilby can use narrow distributions around those
values, otherwise more broad prior distributions must be
used. We present parameter accuracy results for the chirp
mass Mc, effective inspiral spin χeff , mass ratio q, and the
coalescence end time, tend. The χeff is a mass-weighted
combination of the component spins parallel to the orbital
angular momentum L̂, defined as

χeff ¼
ðm1s⃗1 þm2s⃗2Þ · L̂

m1 þm2

; ð7Þ

where we take L̂ to be in the z-direction. Both the injected
and recovered masses quoted in this paper are in the
detector frame. The error on a recovered parameter, λ is
defined as

error ¼ recovered λ − injected λ

injected λ
; ð8Þ

for all parameters except for the end time, where we simply
take the error as the difference between the recovered and
injected end times in milliseconds.

TABLE III. Injection efficiencies as defined in Eq. (6) com-
puted using four FAR thresholds to count “found” injections: one
per hour (the GraceDB upload threshold), two per day (the public
alert threshold), one per month, and two per year. Source
categories are defined in Table II and “ALL” combines injections
from the three source categories.

FAR BNS NSBH BBH ALL

2.78 × 10−4 Hz 0.95 0.77 0.87 0.87
2.31 × 10−5 Hz 0.95 0.71 0.84 0.84
3.85 × 10−7 Hz 0.89 0.65 0.77 0.78
3.16 × 10−8 Hz 0.86 0.62 0.71 0.74

1The “mismatch” can also mean the fractional loss in SNR due
to differences between the template parameters and the true
waveform. However, here we refer to the mismatch as defined
in [7] which is an unnormalized quantity, therefore retaining a
dependence on the SNR.
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It is well known that the chirp mass, Mc, is one of the
best measured parameters in gravitational wave detections,
however the recovered accuracy is highly dependent upon
the mass of the system. Injections with small Mc <
10–20M⊙ are recovered with very accurate Mc, but above
this level, the accuracy starts to fall off, as shown in Fig. 6.
For BNS injections, we find a mean Mc error 2.06 × 10−4

with a standard deviation of 8.33 × 10−4. Similarly, theMc
in the NSBH region is recovered very well with mean
−2.14 × 10−4 and standard deviation 6.26 × 10−3. The
BBH region has a higher Mc error over all, and addition-
ally a much larger spread in the error with mean
1.54 × 10−1 and standard deviation 4.53 × 10−1.
Histograms of the recoveredMc error for each source class
are shown in Fig. 7. The figure shows a skew in the recovered
Mc error for BBH injections toward more positive values,
i.e., we are more likely to overestimate theMc in this region
than to underestimate it. This skew is likely due to differences
in the injected waveforms compared to the waveforms used
to generate the template bank, however we leave a more in
depth investigation of this issue to future work.
Figure 8 and Fig. 9 are scatter plots of the injected and

recovered χeff and q, respectively. These plots show that
there is very little correlation between the injected and
recovered values of these parameters. The mean and
standard deviation on the recovered error for these param-
eters are given in Table IV.
A histogram of the difference between the injected and

recovered injection end times is given in Fig. 10. Table IV
shows the mean tend difference across all source classes and
detectors is 6.23 milliseconds with a standard deviation of
30.22milliseconds. The 90th percentile on jtendj is 25.6 mil-
liseconds and we recover every injection with a recovered
tend less than a second away from the injected value.
Figure 10 shows that for BNS and BBH injections, most of
the recovered end times fall within�50 milliseconds of the
true injected end time. For BNS injections, the mean tend

FIG. 6. Injected Mc for injections found with FAR <
2.31 × 10−5 Hz is shown on the horizontal axis. The vertical
axis shows the recovered Mc. The color bar is FAR.

FIG. 7. Recovered Mc error for injections found with
FAR < 2.31 × 10−5 Hz. The top panel shows injections in the
BNS range of the parameter space, the middle panel shows
NSBH detections, and the bottom panel shows BBH injections.
The σ value in each panel indicates the standard deviation on the
recovered Mc error.

FIG. 8. Injected χeff for injections found with FAR <
2.31 × 10−5 Hz is shown on the horizontal axis. The vertical
axis shows the recovered χeff . The color bar is FAR.
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difference is −0.90 milliseconds with a standard deviation
18.0. And for BBH injections, the mean tend difference is
6.03 milliseconds with a standard deviation 11.3. However,
for NSBH templates, there is a wider distribution, skewing
towards higher positive values of the end time difference,
with mean 18.7 milliseconds and standard deviation 59.3.
This is expected to be due to waveform systematics.

2. Search sensitivity

The comoving volume is defined as [31,32]

Vc ¼ 4πDH

Z
z

0

dz
ð1þ zÞD2

A

EðzÞ ; ð9Þ

with z as the redshift. DH is the Hubble distance, DA is
angular distance, and EðzÞ is the Hubble parameter.
Multiplying this quantity by an observation time gives
the surveyed spacetime volume. We compute the total
injected volume-time, hVTiinj, using the max redshift to
which injections were distributed and the time range over
which injections were placed. For the MDC this time range

is 3.456 × 106 seconds. With this quantity we can then
estimate the online hVTi in the MDC as

hVTi ¼ Nf × hVTiinj: ð10Þ

Here, Nf is the fraction of “found” injections out of the
total number of injections in the data. We independently
compute the hVTi for each source population. The max
redshifts of the injection distributions are z ¼ 0.15, 0.25,
and 1.9 for BNS, NSBH, and BBH respectively. Table V
gives the injected hVTi for each source class.

TABLE IV. Mean, X̄, standard deviation, σ, and the 50th, 75th,
and 90th percentiles on the recovered parameter error. The error is
defined as in Eq. (8) for all parameters except for the end time,
where we simply take the difference in milliseconds between the
recovered and injected values as the error. Results are computed
only including injections which were recovered below a FAR
threshold of two per day. The percentiles are computed for the
absolute value of each distribution.

X̄ σ P50 P75 P90

Mc 0.15 0.45 0.007 0.33 0.73
χeff 5.77 252 1.34 3.71 10.8
q 1.39 2.86 0.45 1.67 4.97
tend 6.23 30.22 3.8 9.78 25.6

FIG. 9. Injected mass ratio, q ¼ m1=m2, for injections found
with FAR < 2.31 × 10−5 Hz is shown on the horizontal axis. The
vertical axis shows the recovered mass ratio. The color bar
is FAR.

FIG. 10. Recovered end time accuracy in milliseconds of
injections recovered with FAR < 2.31 × 10−5 Hz. Results are
shown for each interferometer: LIGO Hanford (red), LIGO
Livingston (blue), and Virgo (purple). BNS injections are shown
in the upper panel, NSBH in the center, and BBH in the
lower panel.

TABLE V. Values of the hVTi in cubic gigaparsec-years mea-
sured at the end of the MDC using a FAR threshold of
2.31 × 10−5 Hz compared to the injected hVTi in each source class.
hVTi Gpc3 yrs BNS NSBH BBH

hVTiinj 1.08 × 10−1 4.34 × 10−1 29.1
hVTi 3.49 × 10−4 8.08 × 10−4 1.23 × 10−1
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Figure 11 shows the final hVTi in the MDC for each
source class using four different FAR thresholds to deter-
mine whether injections count as found. In Fig. 12, we
show the cumulative hVTi over the duration of the MDC
using different thresholds to count found injections. For
each source class, we find the highest hVTi by using a
threshold of network SNR ¼ 10.0 and the lowest hVTi
with a threshold of decisive SNR ¼ 8.0.

3. Sky localization and source classification

For efficient electromagnetic follow-up, it is vital that
accurate sky localizations and source classifications are
provided to the public in low latency. The sky localization
information informs where electromagnetic observers
should search on the sky to find coincident events. The
accuracy and precision of sky localization information can
have a direct impact on the time it takes to identify a
counterpart, especially for narrow field of view telescopes.
Sky localizations are produced in low latency for all events
on GraceDB using Bayestar [33,34]. The sky localization
calculation depends on the SNR time series around the
coalescence time of the event. These are uploaded to GraceDB

by the search pipelines as part of the event metadata. Since
the potential for bright electromagnetic counterparts is
highly dependent on the nature of the binary source, it is
also important to provide accurate source classification so
that observers may make informed decisions about when to
follow up gravitational wave events. The probability that a
gravitational wave candidate is astrophysical in origin is the
pðastroÞ, computed by GstLAL using the multicomponent
FGMC formalism [19,35,36]. We use a population model
with a Salpeter distribution for the source componentmasses
m1, m2 given by [37]

pðm1; m2Þ ∝
m−2.35

1

m1 −mmin
; ð11Þ

with mmin ¼ 0.8M⊙ and a uniform distribution in compo-
nent spins, s1;z, s2;z. The pðastroÞ is further divided into the
probability that a gravitational wave candidate originates
from a BNS, NSBH, or BBH as

pðastroÞ ¼ 1 − pðTerrestrialÞ
¼ pðBNSÞ þ pðNSBHÞ þ pðBBHÞ: ð12Þ

For this purpose, we use a cutoff of 3.0M⊙ as the maximum
neutron star mass to define the BNS, NSBH, and BBH
regions. In this section, we will briefly summarize the
accuracy of the Bayestar skymaps as well as the FGMC
pðastroÞ for injections recovered by GstLAL during the
MDC. Detailed information about recent developments to
the FGMC pðastroÞ calculation and a comparison between
offline and online pðastroÞ results for GstLAL events is
given in [19].

FIG. 11. hVTi in each source class at the end of the MDC at
four different FAR thresholds; 2 per year, 1 per month, 2 per day,
and 1 per hour. BNS hVTi is shown in light blue, NSBH hVTi in
dark blue, and BBH hVTi in green.

FIG. 12. The plot shows the cumulative hVTi time-series
over the duration of the MDC for each source class; BNS in light
blue (top panel), NSBH in dark blue (middle panel), and
BBH in green (bottom panel). The hVTi is calculated using three
different thresholds for counting “found” injections: FAR <
2.31 × 10−5 Hz (dot markers), network SNR > 10.0 (dashed
line), and decisive SNR > 8.0 (dotted line).
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To quantify the sky localization performance we will
consider the skymap searched area and searched proba-
bility. The searched area is given in square degrees and
represents the area within the credible region containing the
injection’s true source location. This gives an indication of
the accuracy of the skymaps. The searched area can be
interpreted as the sky area an electromagnetic observer
would have to tile before reaching the true injection
sky location assuming they start at the highest probability
sky position given by the skymap. Therefore, a smaller
searched area is desirable as it means an observer could
find the injection with minimal telescope pointings. The
searched probability is similarly the probability within the
credible region containing the injection’s true sky location.
We aim to find 90% of injections within the 90% credible
region of the true source location. If the searched proba-
bility P-P plot lies off the diagonal, we can make the
interpretation that there is an inconsistency in the sky
localizations, i.e., they may be accurate but lack precision,
or vice versa.
Figure 13 shows the cumulative distribution function of

the searched area for all injections recovered by GstLAL
with FAR less than two per day. We find that the 90th
percentile of searched area is 3910 deg2. This is about 19%
of one hemisphere of the sky. Since we know that injections
recovered in coincidence by two or three interferometers
will have more accurate sky localizations, we give statistics
on the searched areas by coincidence type in Table VI.
Fig. 14 shows the cumulative distribution function of the
searched probabilities. We find that the 50th, 75th, and 90th
percentiles on the searched probability are 0.53, 0.79, and
0.93, respectively. The CDF lies very near to the diagonal,
indicating that Bayestar is producing well-calibrated sky
localizations.
We will briefly discuss the performance of the pðastroÞ

in the MDC using the Sankey diagram in Fig. 15. The
diagram is read from left to right. The width of each source

band on the left corresponds to Nsource, the number of
recovered events in each source class: BNS, NSBH, BBH,
and terrestrial. The terrestrial events are any candidates
uploaded to GraceDB which do not coincide in time with an
injection. The width of each band on the right is the sum of
recovered pðsourceÞ. This diagram gives an indication of
the relative misclassification between sources.
For BNS injections, we find that pðBNSÞ accounts for

90.3% of the recovered probabilities, while pðNSBHÞ
accounts for 9.7%. The recovered BBH and terrestrial
probabilities of BNS injections are negligible. This indi-
cates that BNS signals were most commonly mistaken as
NSBH. For NSBH injections, we find pðNSBHÞ is 64.1%
of the recovered pðastroÞ, pðBBHÞ makes up 33.8%, and
pðBNSÞ makes up just 2.10%. There is a significant
amount of misclassification between BNS and NSBH
signals. However, the misclassification is asymmetrical
with very few NSBH injections being assigned high
pðBNSÞ whereas many more BNS injections are assigned
a high pðNSBHÞ. The large proportion of NSBH signals
assigned high pðBBHÞ is even more concerning as these
represent potentially electromagnetically bright signals
which might not be followed up by astronomers due to
the apparent high probability of originating from a BBH
merger. This misclassification is an ongoing area of study
and corrections to the pðastroÞ calculation which mitigate

FIG. 13. Cumulative distribution function of sky-map searched
area (deg2) for injections recovered with FAR less than two
per day.

TABLE VI. 50th, 75th, and 90th percentiles on the searched
area of injections of each coincidence type recovered with FAR
less than two per day. Values are given in deg2.

P50 P75 P90

ALL 271 1080 3910
1 IFO 3150 10,400 18,400
2 IFO 301 893 2470
3 IFO 31.9 140 357

FIG. 14. Cumulative distribution function of skymap searched
probability for injections recovered with FAR less than two
per day.
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this effect are discussed in [19]. The pðastroÞ calculation
performs very well for BBH classification, with 100%
recovered pðBBHÞ.

4. Latency performance

Figure 16 shows a histogram of the upload latency for all
recovered injections on GraceDB. The upload latency is
defined as the difference between the time the event appears
on GraceDB and the event coalescence time. The distribution
is bimodal as a result of the built-in 4 second geometric
wait time between uploads, discussed in Sec. II A. The first
peak in the upload latency distribution is at 8–9 seconds
and the second peak is at 13–14 seconds. This shows that
the GstLAL pipeline is able to keep up with filtering data in
real time and regularly produce gravitational wave candi-
dates within Oð10Þ seconds of the coalescence time.

The 4 second wait time in the event aggregation is
implemented in order to reduce the total number of uploads
by waiting a long enough time to collect many triggers
across background bins before making an upload. Even
though there is no built-in wait time for the first event
upload, subsequent uploads are necessarily delayed by this
method. If an event with FAR below the alert threshold
comes after the first upload it can be delayed by at least
4 seconds. Figure 17 shows the cumulative distribution of
upload latency for the first events above and below the alert
threshold for each superevent in the MDC. We find that the
low FAR event uploads are significantly delayed by the
event aggregation process. After identifying this issue in
the MDC we plan to make changes to the aggregation
scheme in order to reduce the latency of alert quality
uploads before the start of O4.

IV. CONCLUSION

GstLAL is a matched-filtering based gravitational wave
search pipeline, which is operated in a low-latency con-
figuration in order to identify signals within seconds of
their arrival. We have introduced the gw-lts software as a
useful auxiliary tool for characterizing the performance of
such an analysis in real time. We have presented the
performance of the GstLAL pipeline on a mock data
challenge consisting of 40 days HLV data from O3 along
with an injection campaign of simulated BNS, NSBH, and
BBH signals.
Within the MDC data we recover nine previously

published gravitational wave candidates at the one per
hour FAR threshold. As only five of these were identified
by the GstLAL pipeline in low latency in O3, we have
demonstrated an improvement in the pipeline’s signal
recovery. We attribute this improvement to several incre-
mental updates to the likelihood ratio computation [7] and

FIG. 15. Sankey diagram showing pðastroÞ classification of
events uploaded to GraceDB during the MDC with FAR less than
two per day. Events with an end time within �1 second of an
injection are classified as either BNS, NSBH, or BBH using a
neutron star mass boundary of 3.0M⊙. Events that do not
correspond in time with an injection are all classified as
terrestrial.

FIG. 16. Upload latency, defined as the difference between the
GPS time of upload to GraceDB and the event coalescence time, in
seconds.

FIG. 17. Cumulative distribution of event upload latencies. The
orange (blue) curve shows the distribution of latencies for the first
event uploaded with FAR higher (lower) than the public alert
threshold. The dashed lines show the location of the 90th
percentile for each distribution.
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the new method of removing signals from the background
as introduced in [17]. During the MDC, we find only one
candidate which, if uploaded during O4, would likely be
retracted. The candidate is identified in only a single
detector and we expect that increasing the penalty applied
to single detector candidates in the likelihood ratio would
reduce our recovery of such spurious signals in the future.
We have detailed the results of the injection campaign
including efficiency of signal recovery across the parameter
space, accuracy of estimated parameters, search sensitivity,
sky localization and source classification accuracy, and
typical latencies.
The configuration and performance of the GstLAL

pipeline as described in Sec. III is a close approximation
to what will be used in the fourth observing run of the LVK
Collaboration. However, since the conclusion of the MDC
used in this paper, work has been ongoing and several areas
for possible improvements have been identified. These
changes in configuration and the corresponding improve-
ments in performance are given in the Appendix.
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APPENDIX: GstLAL PERFORMANCE WITH
UPDATED O4 CONFIGURATION

In this section, we demonstrate the performance
of the GstLAL pipeline using an updated configuration.
The improved performance in this updated run are attrib-
uted to the following areas of development, which pro-
ceeded after the conclusion of the MDC presented in
Sec. III.
The analytic SNR-ξ2 signal model used in the likelihood

ratio ranking statistic has now been tuned to use a more
optimal allowed mismatch region, which is wider for the
high SNR region of parameter space. This change is
expected to improve the recovery efficiency for very loud
signals.
The presence of non-Gaussian noise transients, known as

glitches, in the strain data has long been a problem for
gravitational wave searches. Integrated data quality (iDQ)
is a machine-learning based algorithm used to assign
probabilities of the presence of a glitch in a segment of
strain data [46]. In the O3 offline analysis, iDQ was
incorporated into the GstLAL ranking statistic as a means
of reducing the significance of candidates found during
particularly glitchy stretches of data. Although it is no
longer used in the ranking statistic, it is now possible to use
iDQ state information as a gate on the strain data, so that
segments of data with a high glitch probability will be
excluded from the filtering. This should mitigate the
negative effects of non-Gaussian data and is expected to
result in fewer retraction level candidates and an improved
hVTi. Although the iDQ gate was used in the MDC
analysis presented here, the feature is still under develop-
ment and is not planned for use in the O4 production
configuration.
As mentioned in Sec. III C 3, the pðastroÞ performance

in the BNS and NSBH region of the parameter space was
sub-optimal in the MDC, with a significant amount of
misclassification between the two source types, as well as
NSBH misclassification as BBH. It is imperative that
sources including a neutron star are not falsely classified
as BBHs since this may discourage astronomers from
following up these potentially electromagnetically bright
signals. Since the conclusion of the MDC analysis pre-
sented in this paper, work has been ongoing toward
improving the pðastroÞ source classification. This effort
is discussed in more detail in [19].
Finally, as discussed in Sec. III C 4, we have made

improvements to the event aggregation method to ensure
that events with FAR below the public alert threshold will
be uploaded with as little latency as possible. By adjusting
the geometric cadence factor in the aggregator and remov-
ing the wait time for these low FAR events we expect a
reduction in the latency of these uploads by up to several
seconds.
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We reanalyze the final two weeks of the MDC data using
the updated pipeline configuration in order to demonstrate
the effect on the pipeline performance. The “initial run”
presented in Sec. III was analyzed from March 15, 2023 to
March 28, 2023 and the “updated run” was analyzed from
April 24, 2023 to May 7, 2023. These runs correspond
to identical stretches of O3 replay data with the same
injections present in each.
Figure 18 shows the decisive SNR time-series for all

injections within the two week span. There are several high
SNR injections missed by the initial analysis (upper panel)
but found in the updated analysis (lower panel). This

indicates an improvement as a result of the widened
mismatch region of the SNR-ξ2 signal model. Table VII
compares the injection efficiencies between the two runs.
For the BNS and NSBH regions the efficiency is compa-
rable, while there is a 6% improvement in the BBH
efficiency from 0.84 in the initial run to 0.90 in the updated
run.
Figure 19 and Fig. 20 show the improvements in event

upload latency between the two runs. The histogram in
Fig. 19 shows that upload latencies for the updated run are
shifted slightly lower overall with respect to the initial run,
while the lower edge remains the same. This is expected as
the improvements focused on lowering the latency of
subsequent uploads by reducing the geometric cadence
factor from 4 seconds to 2 seconds. Figure 20 shows a

FIG. 18. Time series of injected decisive SNR for injectionswith
component masses and spins within the O4 template bank in the
initial run, March 15, 2023 to March 28, 2023 (upper panel) and
updated run April 24, 2023 to May 7, 2023 (lower panel). Dark
blue circles indicate injections that were recovered below a 2 per
day FAR threshold. Orange crosses and light blue points indicate
injections not recovered below this FAR threshold, where orange
crosses are injections with decisive SNR> 8.0. Times on the
horizontal axis are GPS times shifted to the original O3 epoch.

FIG. 19. Histogram of event upload latencies for the initial run
(orange) and updated run (blue).

FIG. 20. Cumulative distribution of event upload latencies for
the initial run (solid lines) and updated run (dashed lines). The
orange (blue) curves show the distribution of latencies for the first
event uploaded with FAR higher (lower) than the public alert
threshold. The 90th percentile on the upload latency of high FAR
candidates in the initial (updated) run is 10.30 (9.86) seconds.
The 90th percentile on the upload latency of low FAR candidates
in the initial (updated) run is 14.58 (12.04) seconds.

TABLE VII. Injection efficiencies as defined in Eq. (6) com-
puted using a FAR threshold of 2.31 × 10−5 Hz to count “found”
injections. The “initial run” is the same as presented in Sec. III
and the “updated run” uses the configuration improvements
described in this section. Source categories are defined in Table II
and “ALL” combines injections from the three source categories.

BNS NSBH BBH ALL

Initial run 0.95 0.71 0.84 0.84
Updated run 0.93 0.72 0.90 0.86
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similar improvement in upload latency for events below the
public alert threshold. We find a 2.54 second reduction in
the 90th percentile on upload latency for events with FAR
below the public alert threshold, from 14.58 seconds in the
initial run to 12.04 seconds in the updated run. This
indicates a significant improvement in the latency of
alert-quality candidates.
Figure 21 is a Sankey diagram showing the pðastroÞ

classification performance in the updated run. The initial
results showed a significant amount of misclassification
between BNS and NSBH as well as between NSBH and
BBH injections. Here we find 20.2% of recovered BNS
being classified as NSBH and only 6.83% of recovered
NSBH being classified as BBH. While the updated run
shows more confusion between BNS and NSBH, we see
that the confusion between NSBH and BBH is signifi-
cantly reduced. This is considered as an overall improve-
ment, since the classification more accurately indicates
whether a source may be electromagnetically bright,
which is more likely the case for BNS and NSBH mergers
as opposed to BBH. The reason for this improvement is as
follows.

Throughout the pðastroÞ calculation, misclassification of
sources are assumed to be the result of Gaussian noise
fluctuations causing a gravitational wave signal to match
better with templates that are further away in parameter
space than the one that would recover it in the absence of
noise [19,47]. In the initial run, this probability of template
migration was estimated while making several simplistic
assumptions some of which were later found to be inaccu-
rate. In particular, the geometry of the template bank was
modeled as a four-dimensional unit sphere and the observed
SNR assumed to be a single Gaussian distributed real
number [47]. In reality however, the geometry of the bank
is sufficiently more complex than that of a spherical surface.
Furthermore, due to the two-phase matched filtering proc-
ess, the observed SNR is actually a complex number whose
real and imaginary parts can be thought of as independent
Gaussians. Marginalizing over the unknown signal phase
leads to the absolute value of the SNR having a distribution
that is broader than the Gaussian of [47].
Both of these ambiguities can cause an underestimation

of misclassification by the model of Ref. [47], leading to
the pðastroÞ calculation confidently classifying, e.g., an
NSBH as a BBH even at low SNR. A detailed remodeling
of the misclassification with realistic noise distributions and
accurate representations of template bank geometry is
beyond the scope of this paper and is part of an ongoing
investigation.
Hence, to avoid strongly misclassifying potential electro-

magnetically bright sources, we instead construct a pessi-
mistic model of noise induced template migration by
assuming that the noise degrees of freedom are entirely
contained in the signal manifold [19]. Implementing this
model in the updated run leads to a significant improve-
ment in the classification of simulated sources that have the
potential to be electromagnetically bright. Further improve-
ments in classification are expected to result upon changing
the population model in Eq. (11) with the true distribution
of source parameters [19].
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