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Arm locking is one of the key technologies to suppress the laser phase noise in spaced-based
gravitational waves observatories. Since arm locking was proposed, the phase margin criterion was always
used as the fundamental design strategy for the controller development. In this paper, we find that this
empirical method from engineering actually cannot guarantee the arm locking stability. Therefore, most of
the advanced arm locking controllers reported so far may have stability problems. After comprehensive
analysis of the single arm locking’s transient responses, strict analytical stability criterions are summarized
for the first time. These criterions are then generalized to dual arm locking, modified-dual arm locking, and
common arm locking, and special considerations for the design of arm locking controllers in different
architectures are also discussed. It is found that proportional integral controllers can easily meet our
stability criterions in most of the arm locking systems. Using a simple high gain proportional integral
controller, it is possible to suppress the laser phase noise by 5 orders of magnitude within the science band.
Our stability criterions can also be used in other feedback systems, where several modules with different
delays are connected in parallel.
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I. INTRODUCTION

The observation of gravitational waves (GWs) [1] has
opened a new window for humans to explore the unknown
universe. To overcome the limitations from seismic gravity-
gradient noise [2] in ground-based GW observatories,
several spaced-based GW observatory projects: LISA [3],
DECIGO [4], Taiji [5,6], and TianQin [6,7], have been
initiated world widely in the past two decades, aiming to
detect GWs in the frequency range from 0.1 mHz to 1 Hz
(science band).
Similar to the ground-based GW observatory, spaced-

based GW one is essentially a laser interferometer. For
example, Taiji constellation consists of three spacecrafts
oriented in an approximate equilateral triangle with 3 Gm
arm length. Each spacecraft is equipped with two continu-
ous wave (CW) lasers and coherent laser beams can be
exchanged through six inter-spacecraft links. Heterodyne
interferometry is employed at each spacecraft to extract the
phase difference between laser signals that travel different
link lengths. GWs will cause the three spacecraft to shift

slightly with respect to each other, which can be measured
from the phase error signals after heterodyne detection.
The scientific goal of these spaced-based GW observa-

tories is to achieve a strain sensitivity of 10−21=
ffiffiffiffiffiffi
Hz

p
in the

science band, which requires the frequency noise of the
CW lasers better than 10−6 Hz=

ffiffiffiffiffiffi
Hz

p
. However, even for

the most stable free-running CW lasers, there is still an 8 to
10 orders of magnitude gap to this extremely low noise
level. In order to meet the strict requirement above, three
techniques have been adopted [8]. The laser’s frequency is
first prestabilized to a fixed-length ultrastable optical cavity
using Pound-Drever-Hall (PDH) locking method [9]; then
the arm length of the constellation, which is much more
stable than the laser’s frequency in the science band, is used
as a reference to further reduce the laser’s phase noise, and
this is called arm locking technique [10–27]; finally, the
residual laser frequency noise can be canceled by time
delay interferometry (TDI) [28–32], with the help of virtual
delays introduced in data postprocessing.
As one of the crucial procedures in laser frequency noise

suppression, the performance of arm locking directly
determines the final detection sensitivity of the GWs.
Therefore, since this technique was firstly proposed in
[10], many efforts have been put into this field, both
theoretically [11–22] and experimentally [23–27]. At the
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beginning, single arm lockingwas first investigated due to its
simple structure [10–12]. Then dual arm locking was
proposed to put the first null of the controller out of the
science band [13], leading to a significant noise reduction in
the high frequency range of the science band (e.g., [0.1 Hz,
1 Hz]). Furthermore, modified dual arm locking is presented
[14] to solve the Doppler-induced frequency pulling prob-
lem, while maintaining the gain advantages of dual arm
locking. Recently, the optical frequency comb was also
introduced into arm locking [22], using optical frequency
division, all the intrinsic nulls of the single arm locking
sensor can be eliminated, resulting a good noise suppression
performance within the entire science band.
Although remarkable progress has been achieved for arm

locking in the past two decades, all the arm locking
controllers reported so far were optimized in the frequency
domain, based on the well famous phase margin criterion in
engineering. However, there is no rigorous mathematical
derivation to prove that this criterion is always valid.
Besides, because of the arm length delay, the transient
peaks arise during the locking start time can periodically
reinject into the system, which cannot be modeled by the
frequency domain analysis, as the latter can only provide
the system’s steady state response. [11] simply assumed
that these periodical transient peaks will decay to zero after
sufficiently long time, yet in fact this is not always true if
the controller was not carefully designed. To solve the
problems above, in this paper, a comprehensive transient
analysis of the arm locking controller will be given for the
first time. The evolution of those transient peaks will be
analytically derived. Based on these results, an exact
mathematical criterion for the stability of a general arm
locking controller will be presented.
The remaining of this paper will be organized as below:

In Sec. II, the transient response of single arm locking will
be first discussed, then a stability criterion for a general
single arm locking controller will be given. This criterion
will be generalized to dual arm locking, modified-dual arm
locking and common arm locking controllers in Secs. III,
IV, and V, respectively. Two controllers in literature were
also checked by our criterions in Sec. VI, before we
conclude in Sec. VII.

II. SINGLE ARM LOCKING

As single arm locking has the simplest feedback struc-
ture, we will first analyze its transient response. Fig. 1(a)

gives the diagram of single arm locking control system,
where φ0ðtÞ is the original laser phase noise in time
domain, φðtÞ is the laser phase noise after arm locking,
Φ0ðsÞ ¼ £fφ0ðtÞg and ΦðsÞ ¼ £fφðtÞg are the Laplace
transform of φ0ðtÞ and φðtÞ, respectively, τ is the round-trip
time for the laser in the arm (for Taiji, τ ≈ 20 s), andGðsÞ is
the transfer function of the controller.
Based on Fig. 1(a), the closed-loop transfer function can

be easily obtained as:

HCLðsÞ ¼
ΦðsÞ
Φ0ðsÞ

¼ 1

1þGðsÞð1 − e−sτÞ ð1Þ

HCLðsÞ is a transcendental function due to the item
1 − e−sτ in the denominator, making the transient analysis
complicate. To solve this problem, the block e−sτ can be
replaced by an external input ΦdðsÞ in Fig. 1(b), where
ΦdðsÞ ¼ ΦðsÞe−sτ. Then we have:

ΦðsÞ ¼ 1

1þ GðsÞΦ0ðsÞ þ
GðsÞ

1þ GðsÞΦdðsÞ ð2Þ

A. Integral controller

To further simplify the model, letGðsÞ ¼ g=s, where g is
the gain coefficient of the controller. Then Eq. (2) becomes:

ΦðsÞ ¼ s
sþ g

Φ0ðsÞ þ
g

sþ g
ΦdðsÞ ð3Þ

For stability analysis, we only need to investigate the
step response of this system. Therefore, let φ0ðtÞ ¼ uðtÞ,
where uðtÞ is the unit step function:

uðtÞ ¼
�
0; t ≤ 0−

1; t ≥ 0þ
ð4Þ

whose Laplace transform is 1=s. Denoting pðtÞ as the
corresponding time domain response of ΦðsÞ under input
signal uðtÞ and taking then the inverse Laplace transform
on both sides of Eq. (3), we have

pðtÞ ¼ e−gt þ g
Z

t

0

e−gξpðt − τ − ξÞdξ ð5Þ

Φ0(s) +-

G(s)

+-

e-sτ

Φ(s)

Φ0(s) +-

G(s)

Φ(s)

Φd(s)

+-

(a) (b)

FIG. 1. (a) Diagram of single arm locking control system; (b) an equivalent block diagram of single arm locking.
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Since pðtÞ ¼ 0 when t < 0, if 0 < t < τ, the integral item
in Eq. (5) is zero, therefore:

pðtÞ ¼ e−gt 0 < t < τ ð6Þ

If τ ≤ t < 2τ, substitute Eq. (6) into the integral item of
Eq. (5), we obtain:

pðtÞ ¼ e−gt þ gðt − τÞe−gðt−τÞ τ ≤ t < 2τ ð7Þ

Based on mathematical induction, for arbitrary integer
n ≥ 0, it can be easily derived:

pðtÞ ¼
Xn
k¼0

gk

k!
ðt − kτÞke−gðt−kτÞ; nτ ≤ t < ðnþ 1Þτ

ð8Þ

Figure 2 shows a typical pðtÞ with g ¼ 10 and τ ¼ 20 s.
It can be seen that the initial step response decays pretty fast
at the beginning, and the amplitude has been decreased to
4.54 × 10−5 at 1 second (inset of Fig. 2). However, a new

step response appears every ∼20 seconds. The peaks of
these step responses have a much slower damping speed
than the initial step response. After 1000 seconds, the step
response peak is still above 0.056.
In arm locking systems, usually e−gτ ≪ 1 (e.g., for

g ¼ 10, τ ¼ 20 s, e−gτ ¼ 1.384 × 10−87). Therefore, all
the items except the last one in the summation of
Eq. (8) are negligible. Then the nth step response can be
approximated by:

pðtÞ ≈ pnðt − nτÞ ¼ gn

n!
ðt − nτÞne−gðt−nτÞ;

nτ ≤ t < ðnþ 1Þτ ð9Þ

where

pnðtÞ ¼
gn

n!
tne−gt ð10Þ

Using Eq. (10), the 1st, 2nd, 5th, 10th, 20th, and 50th
step response can be plotted in the same time interval, as
shown in Fig. 3(a). Based on Eq. (3), the nth step response
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FIG. 2. The step response of a single arm locking system with GðsÞ ¼ 10=s and τ ¼ 20 s.
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FIG. 3. (a) pnðtÞ with different values of n; (b) pmaxðnÞ with different values of n.
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is the output signal of the ðn − 1Þth step response after
passing through the module with a transfer function of
g=ðsþ gÞ. The inherent lag of this transfer function causes
the peaks of those step responses in Fig. 3(a) continuously
shift to the right as n increases.
By letting pnðtÞ0 ¼ 0ðpnðtÞ0 is the derivative of pnðtÞÞ,

the maximum value of pnðtÞ can be easily obtained as

maxfpnðtÞg ¼ pmaxðnÞ ¼
nn

n!
e−n ð11Þ

Therefore, pmax is independent of the gain coefficient g.
pmax is plotted as a function of n in Fig. 3(b). Based on
Stirling’s approximation, for very large n,

pmaxðnÞ ≈
1ffiffiffiffiffiffiffiffi
2πn

p ð12Þ

If we want the step response peak to be decreased to 10−4, n
should be larger than 1.59 × 107. For Taiji this is equivalent
to 10 years. So, using a simple controller GðsÞ ¼ g=s, it is
very difficult to achieve a laser phase noise suppression
ratio better than 104.

B. Stability criterion

Now we consider the transient response of a single arm
locking system with a general controller given by:

GðsÞ ¼ g
BðsÞ
AðsÞ ð13Þ

where g is the gain coefficient, AðsÞ and BðsÞ are monic
polynomials of s with real coefficients. Defining

H0ðsÞ ¼
AðsÞ

AðsÞ þ g × BðsÞ ð14Þ

HðsÞ ¼ g × BðsÞ
AðsÞ þ g × BðsÞ ð15Þ

Based on the derivations in Appendix A, for arbitrary
integer n ≥ 0, the closed-loop transfer function can be
written as

HCLðsÞ ¼
Xn
k¼0

H0HðsÞke−skτ; nτ ≤ t < ðnþ 1Þτ ð16Þ

Equation (16) can be understood as: the inverse Laplace
transform of this equation holds when nτ ≤ t < ðnþ 1Þτ.
In the following of this paper, we will use this simplified
expression without explanation.
Suppose:

AðsÞþg×BðsÞ¼ ðs−p1Þq1ðs−p2Þq2 � � �ðs−prÞqr ð17Þ

where p1;…; pr are poles of H0ðsÞ and HðsÞ, and
q1;…; qr are natural numbers. Based on [33], H0ðsÞ and
HðsÞ are stable if all pi (i ¼ 1;…; r) have negative real
parts (i.e., they are all in the left-hand s-plane) and are
unstable otherwise.
To guarantee HCLðsÞ is stable, all the items on the right

side of Eq. (16) should be stable. Therefore, for arbitrary
integer n ≥ 1, H0ðsÞHðsÞn needs to be stable. Suppose
h0ðtÞ and hnðtÞ are the inverse Laplace transform of H0ðsÞ
and H0ðsÞHðsÞn, respectively. Then hnðtÞ can be regarded
as the output of the input signal h0ðtÞ after passing through
the filter HðsÞ n times.
Let s ¼ jω, where ω is the angular frequency. If there is

a frequency interval ½ω1;ω2�, and jHðjωÞj > 1 when
ω∈ ½ω1;ω2�, then the frequency components of h0ðtÞ
within ½ω1;ω2� will be amplified by HðsÞ. When
n → ∞, the amplitude of these frequency components will
go to infinity, thus cause the instability of HCLðsÞ.
On the other hand, if for arbitrary frequency ω,

jHðjωÞj≤1, then based on Eq. (15), we have jHðjωÞj<1
when ω → ∞, thus jHðjωÞj cannot always be 1. Suppose
½ω1;ω2� is the longest frequency interval in which
jHðjωÞj ¼ 1 is satisfied. Then if ω1 ≠ ω2, the derivative
of jHðjωÞj2 will be discontinuous at ωþ

1 and ω−
1 (as well as

ωþ
2 and ω−

2 ), which is not possible since both the numerator
and denominator of jHðjωÞj2 are polynomial of ω.
Therefore, jHðjωÞj ¼ 1 can only happen at a few isolated
frequencies. When h0ðtÞ passes throughHðsÞ, the amplitude
of those isolated frequency components of h0ðtÞ will keep
unchanged, while all the other frequency components will be
attenuated. When n → ∞, all the other frequency compo-
nents will be attenuated to zero, only those isolated fre-
quency components of h0ðtÞ are left in hnðtÞ. Due to the
stability of H0ðsÞ, we have h0ðtÞ ¼ 0 when t → ∞, which
means any single frequency component contribution to h0ðtÞ
is negligible (i.e., h0ðtÞ cannot be a DC signal, a sinusoidal
signal or a periodical signal). Therefore, hnðtÞ is also
negligible when n → ∞, and then HCLðsÞ is stable.
Based on the discussions above, the stability criterion for

a single arm locking controller can be summarized as:
(I) All the poles of HðsÞ have negative real parts:

ReðpiÞ < 0; i ¼ 1; 2 � � � ; r ð18aÞ

(II) The amplitude response ofHðsÞ is always not higher
than 1:

max
ω∈ ½−∞;þ∞�

jHðjωÞj ≤ 1 ð18bÞ

If criterion (18a) and (18b) are satisfied, Eq. (16) is
equivalent to Eq. (1) when n → ∞, which can be easily
justified by the summation formula of geometric series.
In practice, different design rules can be derived from

(18a) and (18b), depending on the specific forms of AðsÞ
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and BðsÞ. To start the controller design from the partial-
fraction expansion form, a practical design rule is given by
Theorem 1 in Appendix B.

C. Proportional Integral Controller

Suppose GðsÞ is a proportional integral (PI) controller
given by

GðsÞ ¼ g
sþ a
s

ð19Þ

Then

HðsÞ ¼ gsþ ga
ð1þ gÞsþ ga

ð20Þ

It can be easily verified that, as long as g > 0, a > 0, the
stability criterion (18a) and (18b) are automatically sat-
isfied. Since there is no limitation on g and a, large numbers
can be adopted to achieve high laser noise suppres-
sion ratio.
In an arm locking system, usually hnðtÞ decays to almost

zero within the time of τ, therefore, in Eq. (16), HCLðsÞ is
mainly determined by the last item in the summation. Then

based on Parseval’s theorem, the RMS value of the step
response of HCLðsÞ during the period of ½nτ; ðnþ 1Þτ� can
be defined as

FðnÞ ¼
�
1

τ

Z þ∞

−∞

����1s H0ðjωÞHðjωÞn
����
2

dω

�1
2 ð21Þ

We can use FðnÞ to investigate the decay rate of the
periodically appeared transient responses.
The relative value FðnÞ=Fð0Þ of two integral (I) con-

trollers and four PI controllers are compared and the results
are shown in Fig. 4(a). It can be seen that I controller gives
the higher decay rate, which is almost independent with g.
While the decay rate of PI controller is independent with a,
but slows down as g increases. Although the transient
responses of PI controllers decay slower, due to the high
suppression ratio provided by H0, the initial transient
response of a PI controller is much smaller than that of
an I controller with the same g value, as indicated by the
FðnÞ values in Fig. 4(b). With g ¼ 10000 and a ¼ 100, the
initial transient response peak of a PI controller is only
1 × 10−4 [Fig. 4(c)] and can be decreased to below 1 ×
10−5 after 1000 s. Utilizing its very low absolute transient
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response characteristics and high noise suppression ratio in
the frequency domain [Fig. 4(d)], the high gain PI con-
troller can serve as a candidate for arm locking system.
To further evaluate the performance of a high gain PI

controller in arm locking, a time domain MATLAB/
Simulink simulation is performed. The diagram is depicted
in Fig. 5. The reason for using a discrete delay element is to
guarantee that in the first 20 s (i.e., τ) the delay element can
output the real laser phase noise, which agrees with the
physical experiments, while continuous delay element can
only output zeros in the first 20 s due to software limitation.
Besides, since in real arm locking system the physically
measurable signal is the phase difference after phase
detector, in the simulation we also choose the phase
detector’s output to evaluate the locking performance.
The simulation is executed for 105 seconds. The phase

detector’s output signals for open loop and closed loop are
compared in Fig. 6(a). The RMS laser phase noise is
reduced from 1.31 × 105 rad (open loop) to 0.0282 rad
(close loop). In the upper part of Fig. 6(a), the closed-loop
results are zoomed in to show the details. Due to the good
transient response characteristics of the high gain PI

controller, the closed-loop results enter the steady state
almost as soon as the arm locking is started. The open-loop
and closed-loop phase noise spectral densities are presented
in Fig. 6(b). Except for those frequencies around the dead
zones of the interferometer (n=τ, i.e., 0.05 × n Hz), the
laser phase noise can be suppressed by more than 5 orders
within the full science band (0.1 mHz to 1 Hz).

D. High-Order Controllers

In Eq. (13), AðsÞ and BðsÞ can be denoted by

AðsÞ ¼ sm þ am−1sm−1 þ � � � a0 ð22Þ

BðsÞ ¼ sl þ bl−1sl−1 þ � � � b0 ð23Þ

Now we consider high-order controllers when m ≥ 2 or
l ≥ 2 in Eq. (23) and (24). If criterion (18a) and (18b) are
satisfied, the stable form of the closed-loop transfer
function is

Phase 
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G(s)

τ

FIG. 5. Simulink diagram of single arm locking with PI controller, τ ¼ 20 s, GðsÞ ¼ 10000ðsþ 100Þ=s.
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HCLðsÞ ¼
AðsÞ

AðsÞ þ g × BðsÞð1 − e−sτÞ ð24Þ

The low frequency limit of Eq. (24) is

lim
s→0

HCLðsÞ ¼
AðsÞ

AðsÞ þ g × BðsÞ × sτ
ð25Þ

If a0 ≠ 0, this limit is equal to 1. Therefore, to achieve high
noise suppression ratio at low frequencies, a0 must be zero.
If ai ¼ 0ði ¼ 0; 1;…; k − 1Þ, ak ≠ 0,

lim
s→0

HCLðsÞ ¼
ak

ak þ gτb0
ð26Þ

High noise suppression ratio requires:

gτb0 ≫ ak ð27Þ

Suppose m ¼ 2 and l ¼ 2, GðsÞ is given by

GðsÞ ¼ g
s2 þ bsþ c
s2 þ as

ð28Þ

Then

HðsÞ ¼ gs2 þ gbsþ gc
ð1þ gÞs2 þ ðaþ gbÞsþ gc

ð29Þ

To meet criterion (18b), the following condition needs to be
satisfied:

j−gω2 þ gbjωþ gcj2 ≤ j−ð1þ gÞω2 þ ðaþ gbÞjωþ gcj2
ð30Þ

(30) can be simplified as

a2 þ 2gab ≥ 2gc ð31Þ
On the other hand, to guarantee high noise suppression
ratio at low frequencies, we need

gτc ≫ a ð32Þ
We choose three sets of parameters: fa; b; c; gg ¼

f1; 10000; 10000; 100g; f1; 1000; 1000; 1000g and {1, 100,
100, 10000}, all of which can meet (31), (32) and criterion
(18a) simultaneously. The transient characteristics of these
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three controllers are also analyzed using FðnÞ function and
compared with that of a PI controller with g ¼ 10000 and
a ¼ 100. Although the 2nd-order controllers can give faster
decay rate [Fig. 7(a)], their initial FðnÞ values are much
higher than that of the PI controller [Fig. 7(b)], which is
attributed to the lower noise suppression ratio of their H0.
With the same gainvalue g ¼ 10000, the step response peaks
of the 2nd-order controller also decay slower than that of the
PI controller [Fig. 7(c) and Fig. 4(c)]. Therefore, although the
four controllers have almost the same closed-loop amplitude
response [Fig. 7(d)], their real performances in an arm
locking system could be pretty different.
For example, the 2nd-order controller with g ¼ 10000 is

simulated in time domain using the same setup of Fig. 5.
During the whole 105 s simulation time, the peak-to-peak
closed-loop phase noise value continuously decreases
(Fig. 8(a), upper part), which means the system has not
entered the steady state yet. This imperfect transient
response results in a little worse noise suppression ratio
in Fig. 8(b), compared with the results in Fig. 6(b).
Generally, any high-order controllers can be designed by

following the similar procedures like (28) to (32). Based on
our experiences so far, large value of g is necessary to
reduce the initial value of FðnÞ, and as a result to improve

the transient response performance. On the other hand, the
higher order the controller is, the more difficult to meet
criterion (18b) using large g values. With same g value, PI
controller can provide the better time domain performance
than other high-order controllers we have tested in single
arm locking. And this is also applicable for other arm
locking architectures, therefore, we will focus on PI
controller in the following sections.

III. DUAL ARM LOCKING

The inherent dead zones around the frequencies of n=τ
limit the laser phase noise suppression performance of
single arm locking. To resolve this issue, dual arm locking
was proposed [13] to push the first dead zone frequency,
1=τ, out of the science band. In this section, we will discuss
the transient stability of dual arm locking controller.
The diagram of dual arm locking control system is given

in Fig. 9(a). τ2 and τ3ðτ2 > τ3Þ are the round-trip time
between spacecraft 1 and 2, and spacecraft 1 and 3,
respectively. GðsÞ is the controller defined by the general
form in Eq. (13). HþðsÞ and H−ðsÞ are dual arm locking
sensors. Based on this diagram, the closed-loop transfer
function of dual arm locking is

Frequency (Hz)
10-5

Ph
as

e 
no

is
e 

sp
ec

tr
al

 d
en

si
ty

 
(r

ad
/√

H
z 

)

106

10-6

10-4

10-2

100

102

104

Time (s)
2 4 6 8

(a) (b)

-2

0

2

-2

-6

4

6
-5

-8

)dar(
esion

esahpresaL

108

×105

7.5

20

×104

open loop
closed loop

open loop
closed loop

0 10 10-3 10-2 10-1 1 1010-4

FIG. 8. Single arm locking simulation results using 2nd-order controller (a ¼ 1, b ¼ 100, c ¼ 100, g ¼ 10000). (a) Laser phase noise
after phase detector in time domain; (b) laser phase noise spectral density.

(b)(a)

FIG. 9. (a) Diagram of dual arm locking control system; (b) an equivalent block diagram of dual arm locking.

ZHANG, LI, WANG, ZHAO, MA, FANG, and XIN PHYS. REV. D 109, 042006 (2024)

042006-8



HCLðsÞ ¼
ΦðsÞ
Φ0ðsÞ

¼ 1

1þ GðsÞð1 − e−sτ2ÞðHþðsÞ þH−ðsÞÞ þGðsÞð1 − e−sτ3ÞðHþðsÞ −H−ðsÞÞ
ð33Þ

To make it easier to analyze the transient response, the two delay elements can be replaced by two external input signals
Φd2ðsÞ and Φd3ðsÞ in Fig. 9(b), where

Φd2ðsÞ ¼ ΦðsÞe−sτ2 ð34Þ

Φd3ðsÞ ¼ ΦðsÞe−sτ3 ð35Þ

Based on the diagram of Fig. 9(b), we have

ΦðsÞ ¼ 1

1þ 2HþG
Φ0ðsÞ þ

ðHþ þH−ÞG
1þ 2HþG

Φd2ðsÞ þ
ðHþ −H−ÞG
1þ 2HþG

Φd3ðsÞ ð36Þ

Using similar derivations as Eq. (A2)–(A5) in Appendix A, it can be obtained:

ΦðsÞ ¼
�

1

1þ 2HþG

Xn
k¼0

�
Hþ þH−
1þ 2HþG

Ge−sτ2 þ Hþ −H−
1þ 2HþG

Ge−sτ3
�k�

Φ0ðsÞ; nτ2 ≤ t < mτ2 þ lτ3 ð37Þ

where mτ2 þ lτ3 is the minimum value that is larger than nτ2, for arbitrary non-negative integers m and l.

Defining

τ̄ ¼ τ2 þ τ3
2

ð38Þ

Δτ ¼ τ2 − τ3
2

ð39Þ

H0;dualðsÞ ¼
1

1þ 2HþðsÞGðsÞ
ð40Þ

HdualðsÞ ¼
Hþ þH−
1þ 2HþG

Ge−sΔτ þ Hþ −H−
1þ 2HþG

GesΔτ ð41Þ

Based on (37)–(41), the closed-loop transfer function
becomes

HCLðsÞ ¼ H0;dual

Xn
k¼0

Hk
duale

−skτ̄; nτ2 ≤ t < mτ2 þ lτ3

ð42Þ

Similar to the analysis of single arm locking, the stability
criterion for a dual arm locking controller can be summa-
rized as:

(I) All the poles of HdualðsÞ have negative real parts:

Reðpi;dualÞ < 0; i ¼ 1; 2 � � � ; r ð43aÞ

(II) The amplitude response of HdualðsÞ is always not
higher than 1:

max
ω∈ ½−∞;þ∞�

jHdualðjωÞj ≤ 1 ð43bÞ

As an example, let τ̄ ¼ 20 s, Δτ ¼ 0.1 s and

HþðsÞ ¼ 1 ð44Þ

H−ðsÞ ¼
1

sΔτ
2πf0

sþ 2πf0
ð45Þ

If a high gain PI controller with g ¼ 10000 and a ¼ 100 is
used for GðsÞ, criterion (43b) requires f0 < 0.49 Hz.
Dual arm locking with a PI controller is also simulated in

time domain by Simulink using the diagram of Fig. 10. A
switch consists of a step function and a multiply function is
added to turn on the τ3 arm after 25 s, so as to make the
locking start smoothly. The laser phase noise at the sensor
output (the physically measurable signal) for open loop and
closed loop are compared in Fig. 11(a). The RMS laser
phase noise is reduced from 4.87 × 108 rad (open loop) to
0.246 rad (close loop). The transient response peaks
continue to decay throughout the entire simulation time,
from ∼5.5 rad at the beginning (Fig. 11(a) inset) to about
∼0.04 rad at 105 s (Fig. 11(a) upper part). The spectral
density of the phase noise data from 5 × 104 s to 105 s are
calculated and shown in Fig. 11(b). The laser phase noise is
suppressed by more than 8 orders of magnitude at 0.1 mHz,
and between 4 and 5 orders around 1 Hz. The n=τ̄ peaks
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have been perfectly eliminated by the dual arm locking
sensors.

IV. MODIFIED-DUAL ARM LOCKING

Our stability criterion can also be applied to modified-
dual arm locking, which is proposed to handle the Doppler
frequency pulling problem [14]. In modified-dual arm
locking, HþðsÞ and H−ðsÞ in Fig. 9(a) are replaced by

HMþðsÞ ¼ ½FCðsÞ þ FDðsÞ�HþðsÞ ð46Þ

HM−ðsÞ ¼ FDðsÞH−ðsÞ ð47Þ

where FCðsÞ and FDðsÞ are two specifically designed
filters, FCðsÞ dominates at low frequencies, while FDðsÞ
dominates at high frequencies. Then the closed-loop trans-
fer function in Eq. (42) needs to be modified to

HCLðsÞ ¼ H0;M

Xn
k¼0

Hk
Me

−skτ̄; nτ2 ≤ t < mτ2 þ lτ3

ð48Þ

where

H0;MðsÞ ¼
1

1þ 2HMþðsÞGðsÞ
ð49Þ

HMðsÞ¼
HMþþHM−
1þ2HMþG

Ge−sΔτþHMþ−HM−
1þ2HMþG

GesΔτ ð50Þ

The stability criterion for this modified-dual arm locking
controller is:

(I) All the poles of HMðsÞ have negative real parts:

Reðpi;MÞ < 0; i ¼ 1; 2 � � � ; r ð51aÞ

H-(s)

G(s)

Switch

τ2

τ3

Sensor 
output

Closed-loop 
output

FIG. 10. Simulink diagram of dual arm locking with a PI controller, Δτ ¼ 0.1 s, f0 ¼ 0.48 Hz, GðsÞ ¼ 10000ðsþ 100Þ=s.
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(II) The amplitude response of HMðsÞ is always not
higher than 1:

max
ω∈ ½−∞;þ∞�

jHMðjωÞj ≤ 1 ð51bÞ

It is quite challenging to design FCðsÞ and FDðsÞ that
can satisfy criterion (51a) and (51b) simultaneously. Here
we only provide a note during the design. In an arm locking
system, usually G ≫ 1, thus the roots of FCðsÞ þ FDðsÞ ¼
0 should be very close to the poles ofHMðsÞ. To meet (51a),
we need to first guarantee that all roots of FCðsÞ þ
FDðsÞ ¼ 0 have negative real parts. Assume FCðsÞ is an
n-order low pass filter (LPF) and FDðsÞ is an m-order high
pass filter (HPF):

FCðsÞ ¼
Yn
k¼1

gLk
sþ pLk

ð52Þ

FDðsÞ ¼
Ym
k¼1

gHks
sþ pHk

ð53Þ

Then FCðsÞ þ FDðsÞ ¼ 0 is equivalent to

Yn
k¼1

gLk
Ym
k¼1

ðsþ pHkÞ þ sm
Ym
k¼1

gHk

Yn
k¼1

ðsþ pLkÞ ¼ 0 ð54Þ

If n ≥ 2, smþn−1 item is missing in Eq. (54), based on
Theorem 2 of Appendix C, some roots of Eq. (54) would
not have negative real parts. Therefore, to meet criterion
(51a) with a high gain controller, FCðsÞ can only be a first
order LPF:

FCðsÞ ¼
ga

sþ 2πfa
ð55Þ

However, our numerical calculation shows that it is difficult
to meet criterion (51b) if FCðsÞ is a first order LPF. Similar
to [14], FDðsÞ is defined as a fourth order HPF:

FDðsÞ ¼
gbgcgdge

ðsþ 2πfbÞðsþ 2πfcÞðsþ 2πfdÞðsþ 2πfeÞ
ð56Þ

We still let τ̄ ¼ 20 s, Δτ ¼ 0.1 s, and use the high gain
PI controller (g ¼ 10000, a ¼ 100) as GðsÞ. Table I gives
an example of filter parameters, with which criterion (51a)
is satisfied, while jHMjmax ¼ 1þ 1.539 × 10−5, is very
close to 1.
Figure 12 gives a general dual arm locking system with

Doppler frequency errors ΔvD2 and ΔvD3. Based on this
diagram, we have:

ΦðsÞ ¼ 1

HD
Φ0ðsÞ −HvþðΔv2 þ Δv3Þ −Hv−ðΔv2 − Δv3Þ

ð57Þ

where

HD ¼ 1þ ð2 − e−sτ2 − e−sτ3ÞHMþG

þ ðe−sτ3 − e−sτ2ÞHM−G ð58Þ

Hvþ ¼ HMþG
HD

ð59Þ

Hv− ¼ HM−G
HD

ð60Þ

Figure 13 gives the amplitude response of HvþðsÞ and
Hv−ðsÞ. It can be seen that HvþðsÞ dominates at low
frequencies below 10−6 Hz (Doppler shift oscillation
frequency is at ∼10−7 Hz). And at low frequency limit,
HvþðsÞ approximates to 1=ðs2τ̄Þ. So, the Doppler fre-
quency pulling rate is about 1=2τ̄, which meets expect-
ations of modified-dual arm locking.
Using the diagram of Fig. 14, modified-dual arm locking

is also simulated in time domain over 105 s by Simulink.
The results are given in Fig. 15. The sensor output is still
used as the evaluation metrics. Since the modified-dual arm
sensor we use can amplify the laser phase noise by more
than 100 times, to make the comparison more objective, we
compare the sensor output of closed-loop with the original

TABLE I. The filter parameters of a modified-dual arm locking
sensor.

Pole frequency Gain

fa ¼ 0 Hz ga ¼ 3.3
fb ¼ 0.9 μHz gb ¼ 1
fc ¼ 0.9 μHz gc ¼ 1
fd ¼ 0.9 μHz gd ¼ 1
fe ¼ 0.9 μHz ge ¼ 1 FIG. 12. Diagram of dual arm locking system with Doppler

frequency errors.
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laser phase noise in Fig. 15. The RMS laser phase noise is
reduced from 4.37 × 107 rad (original laser phase noise) to
0.0691 rad (closed loop sensor output). The transient
response peaks decay from ∼4.5 rad at the beginning
(Fig. 15(a) inset) to about ∼0.04 rad at 105 s (Fig. 15(a)
upper part). In Fig. 15(b). The laser phase noise at the
sensor output is suppressed by ∼8 orders of magnitude at
0.1 mHz, and ∼4 orders around 1 Hz, relative to the original
laser phase noise.

V. COMMON ARM LOCKING CONTROLLER

The basic idea of modified-dual arm locking is to
combine the advantages of low Doppler pulling rate of
common arm locking and flat noise suppression in science
band of dual arm locking. If we only need large noise
suppression ratio in science band as well as low Doppler
pulling rate, common arm locking itself may be enough.
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Common arm locking can be obtained by setting
HþðsÞ ¼ 1 and H−ðsÞ ¼ 0 in Fig. 9. Therefore, Eq. (42)
can be rewritten as

HCLðsÞ¼H0;C

Xn
k¼0

Hk
Ce

−skτ̄; nτ2≤ t<mτ2þ lτ3 ð61Þ

where

H0;CðsÞ ¼
1

1þ 2GðsÞ ð62Þ

HCðsÞ ¼
GðsÞ

1þ 2GðsÞ ðe
−sΔτ þ esΔτÞ ð63Þ

Then the stability criterion for a common arm locking
controller can be obtained:

(I) All the poles of HCðsÞ have negative real parts:

Reðpi;CÞ < 0; i ¼ 1; 2 � � � ; r ð64aÞ

(II) The amplitude response of HCðsÞ is always not
higher than 1:

G(s)

Closed-loop 
output

τ2

τ3
Switch

Sensor 
output

FIG. 16. Simulink diagram of common arm locking with PI controller, GðsÞ ¼ 10000ðsþ 100Þ=s.
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max
ω∈ ½−∞;þ∞�

jHCðjωÞj ≤ 1 ð64bÞ

It can be verified that the stability criterion (64a)
and (64b) are automatically satisfied for a PI controller.
the diagram of Fig. 16 is used to evaluate the performance
of common arm locking with a high gain PI controller.
The sensor output for open loop and closed loop are
compared in Fig. 17. The RMS laser phase noise is reduced

from 1.085 × 106 rad (open loop) to 0.362 rad (closed loop).
The transient response peaks decay from ∼36 rad at the
beginning (Fig. 17(a) inset) to about ∼0.24 rad at 105 s
(Fig. 17(a) upper part). Except for the residual peaks around
0.05Hz and 0.1Hz, the laser phase noise suppression radio is
between 104–107 within the science band.
To further compare the transient response of dual arm,

modified-dual arm and common arm locking, the same input
laser phase noise is used in the diagram of Fig. 10 and 14,
and 16, respectively, and the output data at the closed-loop
output port of each setup is recorded. For short-term results in
Fig. 18(a), the three transient responses coincide in the first
25 s because τ3 arm is turned off. After 25 s, the dual arm
responses quickly decay to zero due its inherent differential
characteristics. While the other two cases decay very slowly
due to the common arm contribution. For long-term results
shown in Fig. 18(b), the common arm has the lowest decay
rate while the other two cases are almost equal. However,
there is an additional long-term fluctuation imposed on the
modified-dual arm locking’s results, comparedwith dual arm
case. This drift is actually caused by the larger than 1 part in
jHMj, which can accumulate to be a huge value after
sufficiently long time and then break the locking.
HPFs were used in [14,20,21] to decouple the Doppler

frequency noise at ∼10−7 Hz. However, our calculations
showed that HPFs higher than order 2 may break the
stability conditions (43b), (51b) and (64b). One possible
solution to solve this problem is to increase the Doppler
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frequency estimation accuracy with emerging new tech-
nologies [34,35]. If a real time Doppler frequency estima-
tion at ∼10−7 Hz is performed, the residual Doppler
frequency error after estimation is still at 10−7 Hz. With
the help of low order HPFs, it is only necessary to guarantee
that the in-loop Doppler frequency pulling will not exceed
the tuning range of the laser PZT (or the frequency shifter
modulator), and the Doppler frequency pulling can be
filtered out by out-of-loop high order HPFs, which do not
affect the system’s stability.

VI. OTHER CONTROLLERS

Since all the arm locking controllers reported so far were
designed using the phase margin criterion, it is also
interesting to test these controllers with the new criterions
we just proposed.
The first one is a single arm controller given by Table 1

of [19]. Since it is designed for the Taiji project, let
τ ¼ 20 s. The characteristic equation of HðsÞ defined by
Eq. (17) can be written as

X7
k¼0

cksk ¼ 0 ð65Þ

The coefficients ckðk ¼ 0;…; 7Þ and the roots of Eq. (65)
are given in Table II in Appendix D. Since all the roots have
negative real parts, criterion (18a) is satisfied.
The amplitude response of HðsÞ is shown in Fig. 19.

Since jHjmax ¼ 1.0007 > 1, criterion (18b) is not satisfied.
Thus, this controller is transient instable.
To confirm our conclusion, the diagram of Fig. 20 is used

to simulate the step response of this controller in a single
arm locking system. The results are given in Fig. 21.
Because jHjmax is very close to 1, in the first ∼800 s, the
transient responses decrease with time. Then the greater
than 1 part of HðsÞ will build up by the power of HðsÞn, so
as to increase the transient response. In the whole simu-
lation time of 2 × 105 s, the maximum value of the step
response is larger than 2 (twice of the input level), thus this
controller cannot be used to suppression laser phase noise.
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The second controller is a modified-dual arm controller
from [20]. To be consistent with [20], let τ̄ ¼ 16.6 s,
Δτ ¼ 0.062 s. HMþ and HM− in Eq. (50) are given by
Eq. (21) and (22) of [20], and GðsÞ is given by Eq. (31) of
[20]. The characteristic equation ofHMðsÞ can be written as

X28
k¼0

cksk ¼ 0 ð66Þ

where ckðk ¼ 0;…; 28Þ are given by Table III in
Appendix D. The roots of this equation piði ¼ 1;…; 28Þ
are also shown in Table III. Since Reðp27Þ > 0,
Reðp28Þ > 0, criterion (51a) is not satisfied.
The amplitude response of HMðsÞ is shown in Fig. 22. It

can be seen that jHMjmax ¼ 1.8173 > 1, so criterion (51b)
is also not satisfied. Therefore, the modified-dual arm
locking sensors and controller of [20] are instable.
To verify our statement, the diagram of Fig. 23 is used to

simulate the step response of the modified-dual arm locking
system of [20]. The results are shown in Fig. 24. It can be
seen that the response becomes divergent after 2000 s, and
after 105 s, the response is larger than 1 (input level).
Both of the two examples above indicate that phase

margin criterion cannot guarantee the stability of an arm
locking system. Actually, phase margin criterion is an
empirical method in engineering, there is no evidence that it
works for all feedback systems. The criterions we propose
in this paper is based on rigorous mathematical derivation,
they are applicable for any feedback systems with parallel
delay modules.

VII. CONCLUSION

In conclusion, a comprehensive transient analysis is
carried out for arm locking systems. Analytical stability
criterions for single arm locking controllers are given by
rigorous mathematical derivation. These criterions can be
extended to general arm locking architectures, such as dual
arm locking, modified-dual arm locking, and common arm
locking. Using these criterions, the design rules for

different kinds of arm locking systems are provided. In most
cases, PI controller can automatically meet these stability
criterions, and the preliminary simulation results in time
domain show that a high gain PI controller may be enough to
suppress the laser phase noise by 5 orders of magnitude
within the science band. To keep the system stable, it would
be better to filter out other noise sources, such as Doppler
pulling, at out of the loop rather than in the loop, so as to let
the controller focus on the laser noise suppression task. Then
with a large tuning range optical frequency shifter to cover all
the in-loop Doppler pulling, dual-arm locking architecture
could be directly applied to GW observatories.
With our stability criterions and Simulink verifications,

we also find that the widely-used phase margin criterion
cannot guarantee the arm locking stability, which means
most of arm locking controllers reported so far may have
potential instability. Therefore, our work is significant in
terms of the arm locking design strategies. Besides, the
stability criterions in this paper can also be used in other
feedback systems, where several modules with different
delays are connected in parallel.
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APPENDIX A: THE TRANSIENT RESPONSE OF
A GENERAL SINGLE ARM LOCKING SYSTEM

Suppose the controller of a single arm locking system is
given by Eq. (13), Substitute Eq. (13) into Eq. (2),

ΦðsÞ ¼ AðsÞ
AðsÞ þ g × BðsÞΦ0ðsÞ

þ g × BðsÞ
AðsÞ þ g × BðsÞ £fφðt − τÞg ðA1Þ
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FIG. 24. Step response of the modified-dual arm locking system from [20].
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Since φðtÞ ¼ 0 when t < 0, if 0 < t < τ, we have

φðtÞ ¼ £−1
�

AðsÞ
AðsÞ þ g × BðsÞ

�
⊗ φ0ðtÞ 0 < t < τ ðA2Þ

For simplicity, Eq. (A2) can be rewritten in s domain as

ΦðsÞ ¼ AðsÞ
AðsÞ þ g × BðsÞΦ0ðsÞ 0 < t < τ ðA3Þ

Equation (A3) can be understood as: the inverse Laplace transform of this equation holds when 0 < t < τ. If τ ≤ t < 2τ,
substitute Eq. (A3) into Eq. (A1), it can be obtained:

ΦðsÞ ¼ AðsÞ
AðsÞ þ g × BðsÞΦ0ðsÞ þ

g × BðsÞ
AðsÞ þ g × BðsÞ

AðsÞ
AðsÞ þ g × BðsÞΦ0ðsÞe−sτ τ ≤ t < 2τ ðA4Þ

Based on mathematical induction, for arbitrary integer n ≥ 0, it can be derived:

ΦðsÞ ¼
�

AðsÞ
AðsÞ þ g × BðsÞ

Xn
k¼0

�
g × BðsÞ

AðsÞ þ g × BðsÞ
�
k
e−skτ

�
Φ0ðsÞ; nτ ≤ t < ðnþ 1Þτ ðA5Þ

So, the closed-loop transfer function is

HCLðsÞ ¼
AðsÞ

AðsÞ þ g × BðsÞ
Xn
k¼0

�
g × BðsÞ

AðsÞ þ g × BðsÞ
�
k
e−skτ; nτ ≤ t < ðnþ 1Þτ ðA6Þ

APPENDIX B: A DESIGN RULE FOR SINGLE ARM LOCKING CONTROLLERS
WITH PARTIAL-FRACTION EXPANSION

Based on Eq. (17), HðsÞ in Eq. (15) can be written in the form of partial-fraction expansion as

HðsÞ ¼ C0 þ
C11

s − p1

þ C12

ðs − p1Þ2
þ ...

C1q1

ðs − p1Þq1
þ C21

s − p2

þ ...
C2q2

ðs − p2Þq2
þ ...

Crqr

ðs − prÞqr
ðB1Þ

where C0, Cikði ¼ 1; 2;…; r; k ¼ 1; 2;…; qiÞ are constant coefficients.
Theorem 1. If piði ¼ 1; 2;…; rÞ are negative real numbers, and C0, Cik are non-negative real numbers

ði ¼ 1; 2;…; r; k ¼ 1; 2;…; qiÞ, then HCLðsÞ in Eq. (16) is stable if and only if the following condition is satisfied:

C0 þ
C11

−p1

þ C12

ð−p1Þ2
þ ...

C1q1

ð−p1Þq1
þ C21

−p2

þ ...
C2q2

ð−p2Þq2
þ ...

Crqr

ð−prÞqr
≤ 1 ðB2Þ

Proof. Suppose HCLðsÞ is stable, then criterion (18b) should be satisfied. Let s ¼ j0, based on (18b) and (B1),

jHðj0Þj ¼
����C0 þ

C11

−p1

þ C12

ð−p1Þ2
þ ...

C1q1

ð−p1Þq1
þ C21

−p2

þ ...
C2q2

ð−p2Þq2
þ ...

Crqr

ð−prÞqr
���� ≤ 1 ðB3Þ

Since pi < 0ði ¼ 1; 2;…; rÞ, C0 ≥ 0; Cik ≥ 0ði ¼ 1; 2;…; r; k ¼ 1; 2;…; qiÞ, the absolute value symbol in (B3) can be
removed, and then (B2) is obtained.
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On the other hand, based on (B1), for arbitrary frequency ω,

jHðjωÞj ¼
����C0 þ

C11

jω − p1

þ C12

ðjω − p1Þ2
þ ...

C1q1

ðjω − p1Þq1
þ C21

jω − p2

þ ...
C2q2

ðjω − p2Þq2
þ ...

Crqr

ðjω − prÞqr
����

≤ jC0jþ
���� C11

jω − p1

����þ
���� C12

ðjω − p1Þ2
����þ ...

���� C1q1

ðjω − p1Þq1
����þ

���� C21

jω − p2

����þ ...

���� C2q2

ðjω − p2Þq2
����þ ...

���� Crqr

ðjω − prÞqr
���� ðB4Þ

Because pi < 0ði ¼ 1; 2;…; rÞ, C0 ≥ 0; Cik ≥ 0ði ¼ 1; 2;…; r; k ¼ 1; 2;…; qiÞ, (B4) can be simplified as

jHðjωÞj ≤ C0 þ
C11

−p1

þ C12

ð−p1Þ2
þ ...

C1q1

ð−p1Þq1
þ C21

−p2

þ ...
C2q2

ð−p2Þq2
þ ...

Crqr

ð−prÞqr
ðB5Þ

If (B2) is satisfied, based on (B5), criterion (18b) is satisfied. Since piði ¼ 1; 2;…; rÞ are negative real numbers, criterion
(18a) is also satisfied, so HCLðsÞ is stable.
Condition (B2) is a practical design rule if we start the controller design from the partial-fraction expansion form

in Eq. (B1).

APPENDIX C: ROOTS DISCRIMINANT FOR HIGH-ORDER EQUATIONS

Theorem 2. (C1) is an equation of degree n in variable x:

xn þ an−1xn−1 þ � � � þ a1xþ a0 ¼ 0 ðC1Þ

where akðk ¼ 0; 1;…; n − 1Þ are real coefficients. If all the roots of (C1) have negative real parts,
then ak > 0ðk ¼ 0; 1;…; n − 1Þ.
Proof. Suppose (C1) have m real roots rkðk ¼ 1;…; mÞ and l ð¼ ðn −mÞ=2Þ pairs of complex roots

pk � iqkðk ¼ 1;…; lÞ, then:

xn þ an−1xn−1 þ � � � þ a1xþ a0 ¼
Yl
k¼1

ðx2 þ bkxþ ckÞ
Ym
k¼1

ðxþ dkÞ ðC2Þ

If rk < 0ðk ¼ 1;…; mÞ, pk < 0ðk ¼ 1;…; lÞ, then bk ¼ −2pk > 0, ck ¼ p2
k þ q2k > 0ðk ¼ 1;…; lÞ, dk ¼ −rk > 0,

(k ¼ 1;…; m). Expanding the right side of (C2), we have ak > 0ðk ¼ 0; 1;…; n − 1Þ.

APPENDIX D: CALCULATED PARAMETERS OF CONTROLLERS FROM LITERATURE

TABLE II. The coefficients and roots of the characteristic equation of HðsÞ from [19].

Coefficients Roots

c0 ¼ 1 p1 ¼ −280.3664
c1 ¼ 111.11 p2 ¼ −29.4497
c2 ¼ 3553.211 p3 ¼ −2.9798
c3 ¼ 91232.421 p4 ¼ −0.2925
c4 ¼ 304230.291 p5 ¼ −0.0136þ 0.0288i
c5 ¼ 102122.201 p6 ¼ −0.0136 − 0.0288i
c6 ¼ 3444.4 p7 ¼ −0.0124
c7 ¼ 11
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