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We introduce a novel method to generate a bank of gravitational-waveform templates of binary black
hole (BBH) mergers for matched-filter searches in LIGO, Virgo, and Kagra data. We derive a novel
expression for the metric approximation to the distance between templates, which is suitable for
precessing BBHs and/or systems with higher-order modes (HM) imprints and we use it to meaningfully
define a template probability density across the parameter space. We employ a masked autoregressive
normalizing flow model which can be conveniently trained to quickly reproduce the target probability
distribution and sample templates from it. Thanks to the normalizing flow, our code takes a few hours to
produce random template banks with millions of templates, making it particularly suitable for high-
dimensional spaces, such as those associated to precession, eccentricity and/or HM. After validating the
performance of our method, we generate a bank for precessing black holes and a bank for aligned-spin
binaries with HMs: with only 5% of the injections with fitting factor below the target of 0.97, we show
that both banks cover satisfactorily the space. Our publicly released code MBANK will enable searches
of high-dimensional regions of BBH signal space, hitherto unfeasible due to the prohibitive cost of
bank generation.
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I. INTRODUCTION

As gravitational-wave (GW) astronomy enters a mature
state, the accessible parameter space of binary black hole
(BBH) mergers in LIGO [1] and Virgo [2] data continues to
grow. Besides standard aligned-spin GW searches for stellar-
mass BBH mergers [3–6], there are GW searches targeting
the parameter space of subsolar mass black holes (BH)
[7–9], primordial BHs [10], eccentric binaries [9,11–16],
and intermediate-mass BHs (IMBH) [17–19]. Moreover,
there is a growing interest in GW searches for more complex
binaries, such as those with precession [20–26] or higher-
order mode (HMs) content [21,27–30].
GW searches for signals from compact binary mergers

traditionally utilize the method of matched-filtering with a
template bank of model waveforms [31–36]. An optimal
template bank is composed of the smallest number of
templates that guarantees that only a small fraction of
signal-to-noise ratio from GW signals is missed due to the
discreteness of the template bank [37].
One widely used approach to bank generation—the

stochasticmethod [38–40]—consists of randomly scattering

templates in a defined parameter space with a rejection
technique [23,41–43]. A proposed template is included in
the bank only if its distance (or mismatch) with all the
proposed templates in the bank is larger than the user-
defined threshold. While this approach has proven to be very
powerful, it does not scale well with (i) the number of
templates and, most importantly, and (ii) with the number of
dimensions of the parameter space.
Handling a large number of templates can have a large

impact on computing time and memory, because for every
new proposal, a waveform needs to be generated and
stored and many expensive match calculations need to be
performed. Furthermore, the sheer number of dimensions
can have an even more catastrophic impact on the bank
generation cost. Indeed, at every iteration the stochastic
algorithm computes the distance between Np ∼ rD pairs of
templates within a given radius r. It is clear how the
number of match computations diverges for large dimen-
sional spaces.
As the BBH searches grow in complexity due to the

inclusion of more physical effects and hence more dimen-
sions, the stochastic approach struggles to produce template
banks in a feasible amount of time. This poses the challenge
of finding a viable alternative for template bank generation,*s.schmidt@uu.nl
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which is able to deliver large banks in a high-dimensional
parameter space, such as those associated with precession,
eccentricity, and HMs.
Revitalizing a pioneering line of research in bank

generation [37,44–47], there has recently been increasing
attention on metric template placement [48–51]. Such
methods rely on approximating the distance (or mismatch)
between two waveforms with a bilinear form, called metric.
Although the metric is only approximate, it allows for a
faster template placing, which may overcome some of the
major limitations of the standard stochastic placement
algorithm.
Historically, the metric was first employed to place

templates on a lattice [37,44,52]. However, constructing
lattice-based template banks has proven to be challenging
due to the difficulties in obtaining coordinate transformation
which avoids varying metric components. To overcome
such difficulties, a different metric placement method,
called random, was introduced [45] soon after. Random
template banks are designed to cover the region of interest
with randomly sampled templates, without any control of
the template spacing. Moreover, they are not designed to
cover the whole space but only a large fraction η < 1 of it
(i.e., any point in space is covered with probability η).
The strength of the method is twofold: on the one hand,

since no distance between templates is computed, the
template placement is tremendously fast and memory
efficient; on the other hand, by only covering a fraction
of the space, the number of templates remains under
control. Moreover, the cost does not increase for an
increasing number of dimensions. While this may seem
suboptimal with respect to a lattice, in [45,53,54] it is
argued that for high-dimensional spaces, random template
banks outperform even the best known lattice in terms of
coverage (at a fixed number of templates), effectively
beating the “curse of dimensionality.”
Generating a random template banks requires the ability

to effectively sample templates “uniformly” across the
parameter space. Traditionally, due to the high dimension-
ality of the space, expensive sampling techniques, such as
Markov Chain Monte Carlo, must be used. This poses a
serious limitation to the range of applicability of the method.
Without a fast sampling method, the speed up promised by
the new method is washed away by the cost of a large
number of metric evaluations.
In this work, we address the challenges described above

by covering high-dimensional spaces with random template
banks. As a first step, we derive a novel expression for the
metric, which is suitable for generic precessing and/or HM
waveforms. In doing so, we drop several symmetry
assumptions that enters the standard metric computation.
The metric is then expressed in terms of the gradients of the
waveform. Second, to enable a fast template sampling, we
employ machine learning and train a normalizing flow
model to efficiently sample templates from the parameter

space. While the first innovation delivers an accurate
distribution for the templates throughout the space, the
use of a normalizing flow allow us to generate random
template banks in a few hours (including the training time).
The combination of a new metric expression and the

normalizing flow model, applied to the random template
placement algorithm, makes our method particularly well-
suited for dealing with high-dimensional (> 4D) parameter
spaces, such as those associated with precessing or eccen-
tric searches. Our method is implemented in an open-
source, production-ready, PYTHON package MBANK [55],
available on GitHub1 and on the PyPI repository.2

The rest of this paper is devoted to the presentation and
description of our methods and software package. In Sec. II
we present the details of our bank generation algorithm. In
Sec. III we assess the accuracy of our template placing
method in all its parts. Furthermore, we reproduce two
banks available in the literature [21,56] created with
independent codes: this will be the topic of Sec. IV. To
demonstrate the capabilities of MBANK, in Sec. V, we
present two large banks covering “exotic” regions of
parameter space: a precessing bank and an IMBH bank
with HM content. We also discuss some possible further
applications of our normalizing flow model, including a
study of the size of the precessing neutron star-black hole
(NSBH) parameter space. Finally, in Sec. VI we discuss
some possible future development of our work and gather
some final remarks in Sec. VII.
Throughout the paper we will use the term “standard” to

refer to the searches for circularized, aligned-spin BBHs
without imprints of HMs, currently conducted by the LIGO-
Virgo-KAGRA collaboration.

II. METHODS

When searching for a BBH signal in GW data,
it is customary to use a frequentist detection statistic
[21,24,57,58], which models the detector output to be
composed of gaussian noise nðtÞ and possibly a known
GW signal hðtÞ. Given some observed data sðtÞ, the
detection statistic Λ is a measure of the log probability
ratio between the signal hypothesis nþ h and the noise
hypothesis n:

Λ ¼ log
pðsjnþ hÞ
pðsjnÞ : ð1Þ

For interferometric GW observatories such as LIGO and
Virgo, the observed signal takes the following form:

hðtÞ ¼ Fþðδ; α;ΨÞhþðt; θÞ þ F×ðδ; α;ΨÞh×ðt; θÞ ð2Þ

1https://github.com/stefanoschmidt1995/mbank.
2The package is distributed under the name GW-MBANK.
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The functions Fþ; F×, also called antenna patterns, denote
the interferometer response to the two polarizations of a
GW. They depend on the sky location, parameterized by
right ascension α and declination δ, and on the polarization
angle Ψ. For a BBH system, the two polarizations hþ; h×
depend on two BH masses (m1, m2), two 3-dimensional
spins (s1, s2), the inclination angle ι, the reference phase φ,
the luminosity distance of the source DL, the eccentricity e
of the orbit and the mean periastron anomaly a [59].
Under the assumption of Gaussian noise, we can write

down an explicit model for the likelihood and, after
maximizing over an overall amplitude factor, Eq. (1)
becomes [24,57,58]:

Λ ¼ ðℜhsjhiÞ2
hhjhi ¼ ðsjĥÞ2 ð3Þ

where we introduced a complex scalar product between two
vectors a, b:

hajbi ¼ 4

Z
fmax

fmin

df
ã�ðfÞb̃ðfÞ
SnðfÞ

ð4Þ

and the integral extends in a suitable frequency range
½fmin; fmax�. In this context, SnðfÞ is the frequency domain
autocorrelation function of the noise, also called power
spectral density (PSD) and ˜ denotes the Fourier transform.
For ease of notation, we define ðajbÞ ¼ ℜhajbi and
â ¼ a

ðajaÞ.
For any given observation time, a search aims to

maximize the detection statistic Λ with respect to all the
parameters of the signal model. This maximized quantity is
also called signal-to-noise ratio (SNR). Depending on
symmetry assumptions on the polarizations, one is able
to maximize analytically over some (nuisance) parameters.
For the other quantities, a brute force approach is required,
where the maximized Λ is evaluated at each time on a large
set of signal models, called a template bank [42,60].
Regardless of the nature of the signal, one is always able
to maximize Λ over sky-location (angles α and δ), polari-
zation angle Ψ and luminosity distance DL, which enters as
an overall amplitude scaling.
The computation of the SNR as a function of time for a

single template is known as matched filtering and has been
implemented successfully as the first stage of several
pipelines to search for GW signals [34,61–68]. Modern
pipelines can easily performmatched filtering on millions of
templates and use the aggregated information to produce
lists of GW candidates, ranked by their false alarm
probability of occurrence in a noise only model.
For a circular nonprecessing signal with no HM, it holds

h̃þ ∝ ih̃× and the maximization of Eq. (3) over the nuisance
parameters yields [58]:

maxΛ ¼
����hsjĥþi

����2 ¼ ðsjĥþÞ2 þ ðsjĥ×Þ2 ð5Þ

In this simple case, maxΛ only depends on the two BH
masses m1, m2 and the two z-components of the spins
s1z; s2z (4 quantities).
For the general case, where no particular symmetry is

available, one obtains a different expression [21,69,70]:

maxΛ¼ ðsjĥþÞ2þðsjĥ×Þ2− 2ðĥþjĥ×Þðsjĥ×ÞðsjĥþÞ
1− ðĥþjĥ×Þ2

ð6Þ

In this case, maxΛ depends on 12 parameters: they are the
two BH massesm1,m2, the two three-dimensional spins s1,
s2, the inclination angle ι, the reference phase φ and the
eccentricity parameters e, a. Unlike the “standard” case, an
analytical maximization does not remove the dependence
of ι and φ, entering in hþ; h×. Depending on the scope of a
matched-filter search, a pipeline can use either Eq. (5) or (6)
to filter the interferometer data with a template.
For the purpose of template placement, it is useful

to think of the parameter space of BBH signals as a
D-dimensional manifold BD, embedded in a large 12
dimensional manifold B. Each point of the manifold
corresponds to a GW signal. The number of dimensions
D depends on the BBH variables under consideration. As
the parameters that do not enter the interesting space can
be freely neglected (i.e., set to 0 or to a meaningful
constant value), the manifold BD is effectively a lower
dimensional projection of the large manifold B.
To place templates on BD, it is standard to equip the

manifold with a distance (called mismatch), which also
naturally defines a volume element at every point in space.
The volume element defines the “uniform” probability
distribution according to the metric. A random template
bank will be populated by templates drawn from such
distribution, until a certain coverage is reached. For this
reason, our primary concern is to sample from the manifold
and to check for coverage. To effectively do so, we rely on
the three steps below:
(1) Construction of a metric approximation of the match

between templates. This makes BD a Riemannian
manifold with a volume element.

(2) Training of a normalizing flow model to sample
from the manifold.

(3) Placing the templates by sampling from the normal-
izing flow model and checking for coverage,
following [50].

The rest of this section details the steps above.

A. The metric

The definition of a metric on the manifold BD provides a
fast-to-compute approximation to the mismatch (distance)
between templates and an estimation of the volume element
at each point in the space.
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Given two points of the manifold θ1, θ2, we define the
overlap Oðθ1; θ2; tÞ between normalized templates as:

Oðθ1; θ2; tÞ ¼
1

1 − ĥþ×ðθ2Þ2
fðĥþðθ1Þeiftjĥþðθ2ÞÞ2

þ ðĥþðθ1Þeiftjĥ×ðθ2ÞÞ2
− 2hþ×ðθ2Þðĥþðθ1Þeiftjĥ×ðθ2ÞÞ
× ðĥþðθ1Þeiftjĥþðθ2ÞÞg ð7Þ

where ĥþðθÞeift is the plus polarization ĥþðθÞ translated by
a constant time shift t and ĥþ×ðθÞ ¼ ðĥþðθÞjĥ×ðθÞÞ. The
overlap amounts to the fraction of SNR recovered when
filtering a signal s ¼ hþðθ1Þ with a template evaluated at a
point θ2 using Eq. (6).
In Eq. (7), we choose to compare the hþ polarization of

the first template with both polarizations of the second
template. We are forced to make such arbitrary choice by
the fact that in general Eq. (6) does depend on Fþ; F×. This
creates an asymmetry between signal and template. Thus, if
we do not want the overlap to depend on two arbitrary
combination coefficients, an arbitrary choice for the signal
s is needed. Of course, any linear combination of hþðθ1Þ
and h×ðθ1Þ works but we set s ¼ hþðθ1Þ for computational
convenience. Numerical studies show that replacing hþðθ1Þ
with any linear combination does not have a large impact
on the metric definition below.
In the case of a “standard” search, hþ× ¼ 0 and h̃× ¼

ih̃þ, hence the overlap simplifies to:

Oðθ1; θ2; tÞ ¼ jhĥþðθ1Þeiftjĥþðθ2Þij2: ð8Þ

Note that, since Eq. (5) is symmetric3 between signal and
template, the expression for the overlap in the standard case
is also symmetric. This means that an arbitrary choice on
the signal composition is no longer needed, as was the case
for Eq. (7).
While all the literature available [37,44–46,48,50,51]

relies on the expression in Eq. (8) to derive the metric
and addresses only the standard case, we tackle the
general case.
Closely following [44], can maximize the overlap Eq. (7)

with respect to the time shift t to obtain the match
Mðθ1; θ2Þ between templates evaluated at different points
of the manifold:

Mðθ1; θ2Þ ¼ max
t
Oðθ1; θ2; tÞ: ð9Þ

The match has values in [0, 1] and trivially Mðθi; θiÞ ¼ 1.

Even though in general the match is not symmetric
and does not satisfy triangular inequality, we can use it
to introduce a distance d between two points on the
D-manifold BD:

d2ðθ1; θ2Þ ≔ 1 −Mðθ1; θ2Þ: ð10Þ

The distance d can then by approximated locally by a
bilinear form dM:

d2Mðθ1; θ2Þ ≔ MijðθÞΔθiΔθj ≃ 1 −Mðθ1; θ2Þ: ð11Þ

The bilinear form dM is represented by a D-dimensional
square matrix MijðθÞ, defined at each point of the
manifold.
We identifyMijðθÞ to be the quadratic term of the Taylor

expansion of dMðθ þ Δθ; θÞ around Δθ ≃ 0:

MijðθÞ ¼ −
1

2

�
Hij −

HtiHtj

Htt

�
ð12Þ

whereHðθÞ is the Hessian of the overlap in Eq. (7), aDþ 1
square matrix. Note that the metric is positive definite (i.e.,
has positive eigenvalues).
A convenient expression for H in terms of the gradients

of the waveform is presented in Appendix A, with the full
expression given in Eqs. (A6)–(A8). While identifying the
metric with the Hessian is well motivated and yields
reliable results, other definitions for Mij are possible; this
is briefly discussed in Appendix B.
For most of the waveformmodels available, the gradients

can be evaluated with finite difference methods. For a
limited number of machine-learning based models [71–75],
the gradients are available analytically.
Equipped with the metric from Eq. (12), the manifold BD

becomes a Riemannian manifold with line element:

ds2 ¼ MijðθÞdθidθj: ð13Þ

We can then use standard results from differential geometry
to compute distances and volumes. In particular, the
volume of a subset T of the manifold can be computed as:

VolðT Þ ¼
Z
T
dDθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθÞ

p
ð14Þ

where detMðθÞ is the determinant of the matrix MijðθÞ,
also denoted as jMj. Moreover, we introduce the uniform
probability measure, such that pðVÞ ∝ VolðVÞ for any
V ⊆ BD. The measure has the following probability dis-
tribution function (PDF):

pðθÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθÞ

p
: ð15Þ

3Indeed, for a standard signal s ∝ hþ, hence ŝ ¼ ĥþ, and
Eq. (5) does not depend on the antenna patterns functions, if s is
normalized.
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Samples from the uniform distribution tend to have a
“uniform” (i.e., constant) spacing, computed with the
metric distance. Owing to this feature, the uniform dis-
tribution is a natural candidate to draw templates from.

B. Sampling from the manifold

To generate a random template bank, we need to sample
points on the manifold BD from Eq. (15). A simple way to
do so is by means of a Markov Chain Monte Carlo
(MCMC). However, this turns out to be unfeasibly
expensive, since to obtain a single sample, the metric
must be evaluated tens of times. For instance, to produce a
bank with Oð106Þ templates, Oð107Þ metric evaluations
are required.
To speed up the sampling, we introduce a normalizing

flow model. As we will show below, in order to train the
model Oð105Þ metric evaluations are sufficient: this is a
small fraction of the metric evaluations needed to run a
MCMC. Once trained, the normalizing flow model pro-
duces high quality samples from Eq. (15) in a small amount
of time, effectively providing templates to populate a
random template bank.
A normalizing flow model [76–79] is a machine learning

model widely used to reproduce and/or parametrize com-
plicated probability distributions. Mathematically, a flow is
an invertible parametric function ϕW which is trained to
map samples θ from an arbitrary probability distribution
pðθÞ to samples x from a multivariate standard normal
distribution N ðxj0; 1Þ. The space of the x is sometimes
referred to as latent space. The parameters W of the flow
are set in such a way that:

x ¼ ϕWðθÞ ∼N ðxj0; 1Þ if θ ∼ pðθÞ ð16Þ

In other words, a normalizing flow defines a parametric
representation of a generic probability distribution pðθÞ,
obtained by change of variables

pflow
W ðθÞ ¼ N ðϕWðθÞj0; 1Þj det JϕW

ðθÞj ð17Þ

where JϕW
is the Jacobian of the flow transformation ϕW .

Sampling from pflow
W can then be easily done by sampling

x ∼N ðxj0; 1Þ and obtaining θ from the inverse flow
transformation: θ ¼ ϕ−1

W ðxÞ. Thus, given a target distribu-
tion, both the problems of sampling and of density
estimation become tractable thanks to the normalizing flow
model.
The flow transformation ϕW is built by composing nlayers

simple (invertible) transformations, each called a layer. Of
course, depending on the application, a variety of options
are available in the literature. We build a layer by
concatenating a linear transformation and a masked autor-
egressive layer [80–82] with nhidden hidden features. A
masked autoregressive layer implements the following
transformation:

TMADEðθÞ ¼ aðθÞθ þ bðθÞ ð18Þ

where the coefficients aðθÞ, bðθÞ are computed by
(masked) autoencoders with nhidden hidden features.
In our case, the target probability distribution has support

in the rectangle ½θmin; θmax�, while the base distribution of
the flow (a Gaussian) has support in RD. We implement the
change of support explicitly by introducing the following
transformation T0ðθÞ∶½θmin; θmax� → RD as the first layer of
the flow:

T0ðθÞ ¼ 0.5 log
1þ y
1− y

with y¼ 2θ− θmin − θmax

θmax − θmin
ð19Þ

where the fraction above is intended as element-
wise division.4 This transformation maps the rectangle
½θmin; θmax� into the plane. Then the remaining trans-
formations only need to implement a change in probability
density and not in the support of the distribution, making
the loss function optimization easier.
The flow probability distribution pflow

W ðθÞ is trained to
closely reproduce a given probability distribution ptargetðθÞ.
During the training, the weights W of the flow are set by
minimizing a loss function LϕðWÞ, which measures the
discrepancy between ptarget and pflow

W . The minimization is
performed by gradient descent. In our case, ptarget ∝ffiffiffiffiffiffiffiffiffiffiffi
detM

p
, with an unset normalization.

Depending on the nature of the data, several loss
functions are available. If samples from the target distribu-
tion are available, the loss function is defined as the forward
Kullback–Leibler (KL) divergence between the target dis-
tribution ptargetðθÞ and the one defined by the flow in
Eq. (17):

LKL
ϕ ðWÞ ¼ −EptargetðθÞ½logpflow

W � þ const ð20Þ

where the expected value is computed using empirical
samples from ptargetðθÞ to provide a Monte-Carlo estimation
of the loss function.
In our situation however, we do not have access to such

samples (indeed, we are training the flow precisely to avoid
sampling) but we are only able to evaluate ptarget up to a
constant scaling factor. For this reason, we treat the training
as a regression problem, rather than a density estimation
problem, and we use the following loss function:

4Note that the inverse T−1
0 of the transformation takes a simple

form: 1
2
½tanhðT0ðθÞÞðθmax − θminÞ þ θmax þ θmin�, where again

the multiplication is intended as element-wise.
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LϕðWÞ¼ 1

N

XN
i¼1

ðlogpflow
W ðθiÞ− logptargetðθiÞÞ2

¼ 1

N

XN
i¼1

�
logpflow

W ðθiÞ− log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMðθiÞj

p
þC

�
2 ð21Þ

where the sum runs on a dataset of N points:

fðθi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMðθiÞj

p
ÞgNi¼1 ð22Þ

Our experiments show that N ≃ 5 × 105 is adequate in
most cases.
In Eq. (21), C is a trainable constant, which sets the

normalization of ptarget ¼ e−C
ffiffiffiffiffiffiffijMjp

on the domain of
interest. Although not strictly needed, it can have a large
impact on the flow performance, since it constrains the
values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijMðθÞjp
to a scale which is easier to learn by

the normalizing flow. Some heuristics suggest initializing
the constant to the 90th percentile of the values log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijMðθÞjp
stored in the dataset. As shown in Appendix C, the constant
can be used to compute (an approximation to) the volume of
the parameter space V in Eq. (14).
The values of θi in Eq. (21) are obtained by sampling the

masses m1, m2 from

pðMc; ηÞ ∝ M10=3
c η8=5 ð23Þ

whereMc ¼ ðm1m2Þ3=5
ðm1þm2Þ1=5 is the chirp mass and η ¼ m1m2

ðm1þm2Þ2 is
the symmetric mass ratio. All other quantities are sampled
from a uniform distribution in the coordinates.
Equation (23) defines a flat distribution on the chirptime

parameters τ0 and τ3 [52]. Indeed, it can be shown that for a
nonspinning binaries, the metric expressed in the chirptime
coordinates is approximately flat [31,32], and that Eq. (23)
represents a first order approximation to the true metric.
Sampling from Eq. (23), ensures a high quality training set,
where the distribution of the training points is reasonably
close to the target distribution.5

During the training we halve the learning rate each time
the validation loss does not improve more than a given
threshold after a given number of iterations. This procedure
finds local minima better in the loss function. We also apply
early stopping, to avoid useless gradient descent iterations.
The training of the normalizing flow usually takes

Oð30 minutesÞ. On the other hand, from one to a few
hours are needed to generate a dataset of Oð105Þ points,
depending on the dimensionality of the manifold and on the
waveform approximant. This is the bulk of the cost of

generating a template bank: the random template placing
takes only a few minutes.

C. Random template placing

As customary, the input parameter controlling the average
spacing and number of templates is theminimal matchMM.
It is defined as the minimum tolerable match that a random
signal (inside the relevant parameter space) must have with
its nearest templates in the bank. Of course, during the
template placement, we only consider the match between
templates on the same manifold, while the quantity can be
used also to compare waveforms on different manifolds.
To generate our random template bank, following [45],

we add random templates to the bank until a satisfactory
coverage is achieved. The coverage is checked using a
procedure that closely matches [50]. The templates are
sampled from the normalizing flow in Eq. (17), which, as
discussed above, is trained to target Eq. (15). This choice
makes sure that the templates are spread as “uniformly as
possible” across the manifold.
One point of the space θ is said to be covered by the bank

if there is at least one template θT in the bank, whose
squared metric distance (mismatch) as given in Eq. (11) is
at most 1 −MM or:

d2Mðθ; θTÞ < 1 −MM: ð24Þ

The covering fraction η̂ of a given region T of the
parameter space is then defined as the fraction of volume
covered by the bank:

η̂ðT Þ ¼ 1

VolðT Þ
Z
T
dDθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθiÞ

p
cðθÞ ð25Þ

where cðθÞ is an indicator function:

cðθÞ ¼
�
1 if θ is covered by the bank

0 otherwise.
ð26Þ

We do not require that the space is fully covered but we
only require that it is covered with probability η. This
means that we terminate the bank construction when the
covering fraction η̂ ≥ η.
To provide a sensible estimate of the covering fraction η̂,

we perform a Monte Carlo estimation of the integral in
Eq. (25) [50]:

η̂ðT Þ ≃ 1

Nlivepoints

X
i

cðθiÞ ð27Þ

where the Nlivepoints samples θi ∼ pflow are sampled from
the normalizing flow and are called livepoints. Note that in
Eq. (27), we do not compute volumes using the volume

5Indeed more samples are present at low chirp mass, which is
where the metric determinant tends to have larger values due to
longer waveforms (for a constant starting frequency). Hence, a
consistent bias in the low mass region is largely penalized in the
loss function due to more samples in the dataset at low mass.

SCHMIDT, GADRE, and CAUDILL PHYS. REV. D 109, 042005 (2024)

042005-6



element
ffiffiffiffiffiffiffiffiffiffiffi
detM

p
itself but rather its normalizing flow

approximation.
In practice, while the templates are being added to the

bank, the distance between each livepoint is computed. If
the ith livepoint is close enough to the newly added
template, it will be removed from the set of livepoints
and a running estimate of η̂ðT Þ will be updated. The
estimation of the covering fraction η̂ has standard deviation
([50], Appendix A):

ση̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

Nlivepoints − 1

s
ð28Þ

which suggests using a large number of livepoints for better
estimation. In [50], the authors typically choose η ¼ 0.9
and Nlivepoints ¼ 2000.
Since the method does not check for distances between

templates, it can overcover the space (as also reported in
[45,50]), especially for a low number of dimensions.
Despite this, it is very fast and provides a reliable bank
at a cheap computational and memory cost. Moreover, as
argued in [45,53,54], for a large number of dimensions, the
banks generated by the random method provide close to
optimal performance.
As a final remark, we note that for the purpose of

computing the covering fraction, the templates do not need
to be stored, which enables the algorithm to run with a very
low memory footprint. As exemplified in Sec. V C, this
allows to study the number of templates required to cover a
particular region of the parameter space, providing invalu-
able pieces of information useful to plan a GW search.

III. VALIDATION

In this section, we assess the performance of the two key
ingredients of our template bank generation algorithm,
namely the normalizing flow model and the random
placement algorithm. Our goal is to understand the limi-
tations of our algorithm as well as to make an informed
choice of the various hyperparameters that impact the
quality of the template bank.
We will consider different manifolds, which will be

named with a string that lists the manifold coordinates.
The coordinates are grouped by mass coordinates, spin
coordinates, (eventual) eccentricity coordinates (i.e., e
and a) and (eventual) angles coordinates (i.e., ι and φ).
Consequently, a string has the format Masses_Spin1_
Spin2_Eccentricity_Angles.
Valid options for the mass coordinates are m1m2 which

uses m1 and m2 as coordinates, Mq which uses total mass
M ¼ m1 þm2 and mass ratio q ¼ m1=m2 > 1, and logMq
which uses log10M instead ofM. Similarly, other variables
are listed by their names. The manifold with spin label chi
uses the effective spin parameter

χeff ¼
m1s1z þm2s2z

m1 þm2

ð29Þ

as coordinate. Since χeff is degenerate in the two spins,
we choose to set s1z ¼ s2z ¼ χeff and all the other spin
components to 0.
If more than one spin coordinate is given for a given BH,

the spin vector s will be parametrized in spherical coor-
dinates with magnitude s∈ ½0; 1Þ and angles θ∈ ½−π; π� and
φ∈ ½0; π� as follows:

sx ¼ s sin θ cosϕ ð30Þ

sy ¼ s sin θ sin ϕ ð31Þ

sz ¼ s cos θ: ð32Þ

Note that the angle θ controls the amount of precession.
With θ ¼ 0;�π the spin has only a z component (i.e., is
aligned with the orbital angular momentum), while for
θ ¼ �π=2 there is maximal precession, as the spin vector
only has an in-plane component.

A. Normalizing flow validation

To study the accuracy of the normalizing flow model in
reproducing

ffiffiffiffiffiffiffijMjp
, we consider five manifolds. The mani-

folds are listed in Table I, together with the region of the
parameter space they cover. We also report the waveform
approximant used as well as the frequency range where the
metric is computed. The manifolds were chosen to have a
variety of number of dimensions D and to cover a broad
ranges of physical scenarios (nonspinning, aligned-spins,
precession, HM, and eccentric orbits).
For each manifold we generate a dataset of 3 × 105 points

and we compute the (log) value of the PDF in Eq. (15). We
then train a normalizing flow model on each of the datasets.
The architecture of each flow is also reported in Table I.
Figure 1 shows a histogram with the accuracy of the

normalizing flow reconstruction of the PDF on each
manifold. This is quantified by log10

pflow

ptrue, which measures
the logarithmic ratio between the two PDFs.
Overall, the accuracy of the flow is (almost) always

contained within one order of magnitude. Whether a similar
error is acceptable for the purpose of template placement
needs to be checked on a case-by-case basis with an
injection study, as discussed in Sec. IV.
We note that all histograms are well-centered around

0, showing that the flow does not have a systematic
bias. Moreover, the accuracy tends to be higher for low-
dimensional manifolds. Indeed, low dimensional mani-
folds present an easier learning task for the flow.
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The manifold logMq_s1xyz_s2z_iota shows the
largest spread in accuracy, as it is the largest dimensional
manifold being considered. Note that it parameterizes a
huge parameter space, which cannot be realistically covered
by a template bank. Hence, as a realistic bank will
necessarily cover a subset of the manifold, a flow trained
on that smaller parameter space will most certainly show
better accuracy, due to an easier regression task.
Finally, we see that the flow trained on the eccentric

manifold m1m2_chi_e has remarkably good perfor-
mance. This can be explained by the fact that the approx-
imant EccentricFD [85] used is analytical. This ensures
very smooth behavior across the parameter space, which
can be easier for the normalizing flow model to learn.

B. Template placement performance

As already stated, the template placement method in use
closely matches the one introduced in [50]. The main
novelty introduced here is sampling with the normalizing
flow as opposed to rejection sampling.
For the random placement method, there are two

parameters to tune that affect the final bank size. They
are the number of livepoints Nlivepoints and the covering
fraction η. The authors of [50] make an extensive inves-
tigation on how the bank size depends on such quantities
and we do not repeat such in-depth studies here.
We limit ourselves to examining the convergence of the

template number Ntemplates as a function of Nlivepoints (see
[50], Fig. 4 (right)) in the case of manifolds with precessing
and HM signals. For the study, we chose the manifolds
m1m2_nonspinning, Mq_s1xz and logMq_s1z_
s2z_iota introduced in Sec. III A (see also Table I).
The second manifold covers a precessing parameter space,
while the metric on the latter manifold is computed with an
HM approximant [86].
We present our results in Fig. 2, where the number of

templates is computed with a covering fraction η ¼ 0.9
with varying Nlivepoints. In all cases the number of templates
converges to a constant value as Nlivepoints increases.
Already ∼ 500 livepoints are enough to provide an accurate
estimation of the bank size. Our results are consistent with
the findings of [50], which we further extend to higher-
dimensional manifolds.

IV. COMPARISON WITH OTHER BANK
GENERATION METHODS

We compare the output of MBANK with two banks
available in the literature, generated with two different
methods. The first bank is a nonspinning HM bank [21],
covering the high mass region of the BBH parameter space.

FIG. 1. Study of the accuracy for several normalizing flow,
trained on different manifolds. For each manifold, we compute
the logarithmic ration log10

pflow

ptrue between the PDF computed by
the flow and the true one. We use 40000 test points from the
validation set of each manifold. Details on the manifold consid-
ered are reported in Table I.

TABLE I. Details of the manifold considered for the validation
of the normalizing flow model in Fig. 1. For each manifold, we
report the variables being sampled together with their ranges. We
also list the frequency range considered, the waveform approx-
imant used, the number of dimensions D of the manifold as well
as the number of hidden features for each layer of the flow.

Parameter space D Architecture

m1m2_nonspinning m1; m2 ∈ ½1; 200�M⊙ 2 60 60 30
q∈ ½1; 30�

f∈ ½15; 1024� Hz
IMRPhenomD [83]

Mq_s1xz M∈ ½25; 100�M⊙ 4 70 70
q∈ ½1; 5�

s1 ∈ ½0; 0.99�
θ1 ∈ ½0; π�

f∈ ½15; 1024� Hz
IMRPhenomXP [84]

m1m2_chi_e m1; m2 ∈ ½1; 50�M⊙ 4 60 60 60
q∈ ½1; 20�

χeff ∈ ½−0.99; 0.99�
e∈ ½0; 0.5�

f∈ ½10; 1024� Hz
EccentricFD [85]

logMq_s1z_s2z_
iota (with HM)

m1; m2 ∈ ½50; 300�M⊙ 5 20 60 60
M∈ ½100; 400�M⊙

q∈ ½1; 10�
s1z; s2z ∈ ½−0.99; 0.99�

ι∈ ½0; π�
f∈ ½10; 1024� Hz

IMRPhenomXP [84]

logMq_s1xyz_
s2z_iota

m1; m2 ∈ ½1; 100�M⊙ 7 100 60 60 60
M∈ ½2; 150�M⊙

q∈ ½1; 20�
s1 ∈ ½0; 0.99�
θ1 ∈ ½−π; π�
ϕ1 ∈ ½0; π�

s2z ∈ ½−0.99; 0.99�
ι∈ ½0; π�

f∈ ½15; 1024� Hz
IMRPhenomXHM [86]
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The bank was generated using the stochastic placement
algorithm, as implemented in the code SBANK [40]. The
second bank is the aligned-spin bank [56] currently in use
by the GstLAL pipeline [64,66] for the fourth observing
run (O4) of the LIGO-Virgo-Kagra collaboration. It was
generated using the MANIFOLD [51] metric template place-
ment algorithm called and covers a very wide mass range in
the BNS and BBH parameter space. Both banks have a
minimal match MM requirement of 0.97.
In much of what follows we will measure the coverage

of a bank. To do so, we randomly extract a number of
simulated signals and, for each of them, we compute the
maximum match with the templates of the bank. The latter
quantity is called fitting factor FF which, for a simulated
signal characterized by orbital parameters θ, it is defined as:

FFðθÞ ¼ max
θ0 ∈ bank

Mðθ; θ0Þ ð33Þ

Clearly, the match is computed using Eq. (6).
Borrowing the jargon of GW searches, we call injections

the simulations for which we evaluate the fitting factor. In a
real search, such signals would be added to the interfer-
ometer’s data (i.e., injected) to measure the performance of
the pipeline: the fitting factor measures the fraction of SNR
lost due to the discreteness of the template bank.

A. A nonspinning HM template bank

The nonspinning HM bank described in [21] covers
systems with total mass M in the range ½50; 400�M⊙ and
mass ratio q∈ ½1; 10�. It also includes the inclination angle
ι and reference phase φ of the system, both covering
the whole possible spectrum of values ι∈ ½0; π� and
φ∈ ½0; 2π�. The authors use the analytical “zero-detuning
high power” PSD [87] and consider a low frequency cutoff
fmin ¼ 10 Hz.
As already noted, they use the state-of-the-art code

SBANK [39,40]. The method is very accurate and known
to provide effective coverage with a low number of

templates. Of course, this comes at a large up-front
computational cost to construct the bank.
To reproduce this bank, we place templates on the

manifold logMq_nonspinning_iotaphi, with coor-
dinates log10M, q, ι and φ. We use the same PSD and
coordinate ranges as the original bank. We refer to our bank
as “HM bank.” We train a normalizing flow model with 4
layers with 60, 60, 60, 10 hidden features respectively and
we choose Nlivepoints ¼ 2000 and a covering fraction
η ¼ 0.8. Our bank has 58932 templates and took a few
hours to generate; the original bank is reported to have
20500 templates. All information is summarized in Table II.
We perform an injection study, drawing 105 signals uni-
formly sampled in logM; q; cos ι and φ. The results of such
study are reported in Figs. 3 and 4.
First we note that our bank successfully covers the

parameter space, with only 1% of injections found with
fitting factor below 0.97 and less than 1% with fitting factor

FIG. 2. Validation of the random template placement algorithm.
For three of the manifolds introduced in Table I, we plot the
number the number of templates Ntemplates of a random template
bank as a function of the number of livepoints Nlivepoints used to
estimate the covering fraction. For each template bank, we set
η ¼ 0.9 and MM ¼ 0.97.

TABLE II. Details of the two banks available in the literature
that we reproduce with our code. For each bank, we indicate the
parameter space considered and the approximant used. We also
compare the number of templates of the banks obtained with the
different methods.

Size

Parameter space Original MBANK

HM bank [21] M∈ ½50; 400�M⊙ 20500 58932
q∈ ½1; 10�
ι∈ ½0; π�
φ∈ ½0; 2π�

IMRPhenomXHM [86]
“All-sky” bank [56] m1; m2 ∈ ½1; 200�M⊙ 1.8 × 106 1.3 × 106

q∈ ½1; 20�
χeff ∈ ½−0.99; 0.99�
IMRPhenomD [83]

FIG. 3. Fitting factor studies for the two template banks
introduced in Sec. IV. As discussed in Sec. IVA and IV B
respectively, “HM bank” is designed to reproduce [21] and
targets high mass non-spinning systems with HM content, while
the “All-sky bank” bank covers aligned-spin systems (without
HM) over a broad mass range, following [56]. We report the
cumulative histogram of the fitting factors of 105 injections
samples across the parameter space.
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below 0.96. The coverage of the bank is similar to that of
[21]. In Fig. 4, we observe that the coverage is uniform
across the space, i.e., we do not see regions where the fitting
factor is significantly different from the others.
Comparing the number of templates, it is striking that

our bank has almost three times more templates than the
original template bank. As no template rejection is done
during the random bank construction, there is no control
over templates being too close to each other. For this
reason, an over-coverage of the space is inherent to the
random template placement and is also reported in [45,50].
This problem can be addressed in future work, as discussed
in Sec. VI.

B. An “all-sky” template bank

The aligned-spin bank (with no HMs) introduced in [56]
covers a broad mass range, with systems with component
masses m1; m2 ∈ ½1; 200�M⊙. The spins of the two objects
are constrained to be equal to each other,6 s1z ¼ s2z ¼ χeff ,
spanning the range ½−0.99; 0.99�. The authors set an upper
limit to the mass ratio q < 20. Moreover, for objects with
component mass m < 3M⊙, they limit χeff in the range
½−0.05; 0.05�.7 The authors use the Advanced LIGO O4
Design PSD (with 190 Mpc range) [89] and consider a low
frequency cutoff fmin ¼ 10 Hz.
The comparison with [56] is particularly interesting,

since the bank is also produced with a metric template
placement, implemented in the MANIFOLD code [51].
MANIFOLD uses a geometric approach, where the parameter
space is iteratively split into (hyper)rectangles along the
coordinates, until the volume of each rectangle reaches a
sufficiently small value that it can be covered by a single
template.

As summarized in Table II, we construct a bank to cover
the parameter space used in [56] over the manifold
m1m2_chi, sampling the coordinates m1, m2, and χeff .
We may refer to our bank as the “all-sky” bank. To
produce our “all-sky” bank, we trained three different
normalizing flows in different regions of the parameter
space. A first normalizing flow covers the BBH region
with m1 ∈ ½3; 200�M⊙, with χeff ∈ ½−0.99; 0.99�. A second
one covers the BNS region, covering the manifold,
ðm1;m2;χeffÞ∈ ½1;3�M⊙× ½1;3�M⊙× ½−0.05;0.05�. A third
normalizing flow specializes in the high mass region,
characterized by m1; m2 ∈ ½100; 200�M⊙. Indeed, at high
masses, the template density is so low that hardly any
livepoint is sampled, which results in dramatic under-
coverage. An appropriate coverage is enforced by the third
normalizing flow, which places Oð3000Þ templates in the
region as opposed to zero templates placed by the
first flow. The additional coverage at high masses is
manifest in Fig. 5, as discontinuity in the fitting factor
for m1; m2 > 100M⊙.
All the three normalizing flow models are made of 5

layers of 10 hidden features each. Three templates banks
are generated using each normalizing flow and they are
merged together afterward. For the template placement we
set Nlivepoints ¼ 2000 and covering fraction η ¼ 0.95. The
resulting bank has 1326805 templates.
The bank generation took around three hours, with most

of the computing time spent on the dataset generation (i.e.,
on expensive metric computation). If needed, the dataset
generation can be easily parallelized using MBANK, hence
reducing significantly the bank generation time. Relying
on parallel execution, [56] reported a generation time of
minutes.
To validate our bank, we generate an injection set with

105 injections, with the logarithm of the masses uniformly
sampled. Results of our injections studies are reported in
Figs. 3 and 5. Note that our injection set is different from
the ones used in [56].

FIG. 4. Validation of the “HM bank,” generated with our code
and designed to reproduced [21]. For each two dimensional bin,
we report the median fitting factor of 105 injections covering the
parameter space, as described in the text.

FIG. 5. Validation of the “All-sky bank,” generated with our
code and designed to reproduced [56]. For each two dimensional
bin, we report the median fitting factor of 105 injections covering
the parameter space, as described in the text.

6This choice reduces the dimension of the manifold, without
compromising the template bank accuracy.

7This is motivated by astrophysical considerations. Objects
with masses smaller than 3M⊙ are likely to be neutron stars and
such objects are believed to develop only mild rotations [88].
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In Fig. 3, we see that ∼5% of the injections have a match
below 0.97. The low fitting factor injections are mostly
located around the low mass corners of the bank, clustered
on the low mass end of the BNS region and in the high spin
—low mass edge of the BBH region. Inside the template
bank and on the high mass end of the parameter space,
satisfactory coverage is achieved. Our results suggest that
MBANK struggles to accurately cover the “narrow” corners of
the parameter space. Nevertheless, this is a common problem
that has been observed with other placement methods as
well, and several strategies have been proposed to cope with
it. Within our framework, the simplest option would be to
extend the boundaries of the bank at low masses, thus
ensuring better coverage of the region of interest.
With slight variations depending on the region of

parameter space, [56] reports that 10% of BBH injections
have fitting factor smaller than ∼0.98, while for our bank
the 10th percentile is around 0.975. Even though it is hard
to compare the results directly due to different injection
sets, it seems fair to state that, compared to [56], our
template bank provides slightly worse injection recovery.
On the other hand, our template bank has 30% less
templates, matching the number of templates placed by
SBANK in the same region, as reported by [56]. With an
accurate treatment of the low mass corner, the coverage of
our template bank will easily match the one of [56], with a
comparable bank’s size.

V. NOVEL APPLICATIONS OF THE METHOD

Our template placement method allows for several
exciting applications in GW data analysis. Obviously,
the most straightforward application is the generation of
high-dimensional template banks, such as a precessing
and/or HM banks. While in principle it is possible to
generate these high-dimensional banks with a stochastic
placement method, very few of such banks have been
generated so far, mostly due to the enormous computa-
tional cost of choosing the right parameter space and of
computing the match between templates. Their generation
becomes feasible thanks to MBANK.
Besides efficient high-dimensional bank generation, our

method can be used for other purposes as well. These
include choosing the appropriate parameter space to cover
by forecasting the size of a bank or selecting the appro-
priate coordinates to cover a given region of binary
systems. Moreover, our normalizing flow could be used
as a proposal for a stochastic placement algorithm or to
create datasets for machine-learning applications in GW
data analysis.
In what follows, we generate a large precessing template

bank and a large aligned-spin HM bank. Additionally, we
provide a detailed discussion of other innovative applica-
tions of our code.

A. A precessing bank

1. Choosing the parameter space

The main difficulty in generating a precessing bank lies
in the huge size of the parameter space. As we show below,
a precessing bank can easily have billions of templates,
even when covering the mass range routinely explored by
“standard” searches. As current search pipelines can handle
only up to a few million templates, due to computational
cost limitations, the size of a bank sets very stringent
constraints in the selection of a suitable parameter space to
explore with a GW search.
Another difficulty, related to the first, arises from the

choice of the BBH coordinates to include in the bank, i.e.,
the choice of manifold. In principle, a precessing BBH
system is described by 10 parameters (two masses, six
spins, and two angles). However, not all of them are
important, as large changes in some parameters do not
result in large changes in the waveform morphology. Thus,
including them in the bank does not yield any obvious
improvement and, on the contrary, it may lead to vanishing
metric eigenvalues, which would degrade the metric
predictivity, hence the template placement. The latter point
is discussed with more details in Sec. V C.
Finally, a more technical complexity arises from the fact

that in high dimensional spaces, both the training of a
normalizing flow (see Sec. III A) and the template place-
ment become harder, hence possibly harming the quality of
the template bank.
All these difficulties imply that great care must be taken

when deciding both the parameter space and the BBH
variables to include in the bank. The choices are entangled,
since covering different manifolds with the same mass
range can produce banks of very different sizes. Roughly
speaking, choosing a lower dimensional submanifold
reduces the bank size, at the cost of a loss in the bank’s
ability to cover the high dimensional space.
To choose a manifold, we rely on the theory. In [70], the

authors find that the effect of the four in-plane spin
components (i.e., s1x; s1y; s2x; s2y) can be well approxi-
mated by a single precessing spin parameter χP assigned to
the x-component of the heavier object’s spin. Thus, a
generic precessing system is roughly equivalent to a system
with

s1 ¼ ðχP; 0; s1zÞ
s2 ¼ ð0; 0; s2zÞ

effectively creating an explicit mapping between a six
dimensional spin manifold to a three dimensional one. In a
later work [90], it is suggested that to capture the combined
effect of precession and HM, a two-dimensional spin
parameter χ⃗P is needed. In this case, the mapping
is between a six-dimensional spin manifold to a four-
dimensional one.
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Both works suggest that the in-plane components of the
spin on the lighter object (i.e., s2x; s2y) can be neglected,
reducing the dimensionality of the parameter space.
Moreover, since we are not currently concerned with
precession combined with HM,8 we can rely on the one-
dimensional effective spin mapping [70] to also neglect the
y-component of the spin of the heavier object, s1y.
We then consider only three out of six spin components,

s1x; s1z, and s2z, where all the effects of precession are
included in s1x. To obtain accurate coverage, we also need
to include the inclination ι in the manifold. Some inves-
tigations showed that the inclusion of the reference phase φ
yields a (almost) degenerate metric, which, by dramatically
undercovering the space, negatively affects the placement.
Luckily, as injection studies show that neglecting φ does
not harm the bank’s effectiveness, we can exclude φ from
the set of parameters. However, this might not be the case if
we include both precession and HMs.
To summarize, we find that the 6 variablesM, q, s1x, s1z,

s2z, and ι provide a sufficiently complete description of
waveforms in the precessing space. This claim is confirmed
by an injection study presented in Fig. 9, where we see that
more than 93% of the injections covering the 10 dimen-
sional precessing space have a fitting factor greater than the
minimal match target of 0.97. We note that a precessing
template bank with HMs will likely need to sample two
additional variables s1y and φ, hence increasing the
dimensionality to 8 [90].
Regarding the search parameter space, we are interested

to target BBHs where precession is stronger as such
systems are most likely to be missed by current searches
[22,25]. Precession is more visible for high mass ratio,
edge-on9 systems and for high values of spins [91].
Moreover, as more cycles are detectable, precession effects
will be stronger for longer signals due to the accumulation
of the phasing effects of precession. These considerations
suggest that very asymmetric, low mass systems, such as
the neutron star-black hole (NSBH) space, would be an

ideal target for a precessing bank. However, as shown
below in Sec. V C searching the full NSBH region is
unfeasible, as hundreds of millions of templates would be
needed.
For this reason, we restrict ourselves to a different, less

extreme, region of the parameter space. After several
investigations, made possible by the speed and flexibility
of our approach, we found that a parameter space with
component masses in the range ½8; 70�M⊙, with a mass
ratio cutoff of 6, produces a bank with a manageable size.
In this space, we obtain a precessing bank with ∼2millions
templates. Extending the parameter space to lower masses
(or higher mass ratios) results in much larger banks,
pushing the limits of current pipelines.
In closing, we stress again that the investigations above

are made possible by MBANK, since they rely on fast
template bank generation across a variety of manifolds and
ranges of coordinates.

2. Generating and validating the bank

As stated above, our precessing bank covers the manifold
logMq_s1xz_s2z_iota, with coordinates log10M,
q, s1, θ1, s2z, and ι. We consider BBHs with individual
masses between 8 and 70M⊙, with a maximum mass ratio
q ¼ 6. The other variables s1, θ1, s2z, and ι cover the
set ½0; 0.9� × ½−π; π� × ½−0.99; 0.99� × ½0; π�.
To compute the metric, we use the Advanced LIGO O4

sensitivity estimate [89] and we set a frequency range of
½15; 1024� Hz, employing the approximant IMRPhenomXP
[84]. We train a normalizing flow with 3 layers with 100,
100, and 60 hidden features respectively, using a dataset of
4 × 105 points. The flow performance after training is
reported in Fig. 6. To generate the bank, we use a minimal
match requirement of 0.97, with a covering fraction
η ¼ 0.95, estimated with 3000 livepoints. In a similar
way to what was done for the “all-sky” template bank,
we also train a normalizing flow to target the high total mass
region with M > 100M⊙. We use the latter to place
templates with the same covering fraction η ¼ 0.95, with
great benefits. The overall bank has 1605625 templates,
plotted in Fig. 16.

FIG. 6. Accuracy of the normalizing flow trained used to generate the precessing bank in Sec. VA. The accuracy is expressed in terms
of the logarithmic ratio between the template density PDF ptrue Eq. (15) and its approximation pflow given by the flow. The flow
accuracy is evaluated on 40000 test points.

8In such a space, the template banks would be unfeasibly large.
9An edge-on system is observed with inclination ι ≃ π=2.
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This bank generation took a few hours in total: ∼1 hour
for the dataset generation, ∼30 minutes for the training of
the flow and ∼5 minutes for the template placing. All the
steps above ran on a single core, using less than 4 GB of
memory. We highlight that our time and memory require-
ments are a fraction of those of a similar bank with the
state-of-the-art stochastic algorithm.
The template distribution reported in Fig. 16 shows a

spike in the template density for θ1 ¼ �π (close to the non-
precessing limit) in the high mass ratio and high s1 region.
Some investigations indicate that these are not artefacts
introduced by the normalizing flow. Whether the feature is
physical or is due to the behavior of the waveform
approximant in the nonprecessing limit remains an open
question which needs more inspection.
To study the performance of our template bank, we

generate two injections sets, with masses sampled uni-
formly in logm1 and logm2. The first set, labeled “full
precessing” has fully precessing injections (with two 3D
spins and varying φ). The second one, denoted as “on
manifold,” has injections lying on the manifold
logMq_s1xz_s2z_iota, hence covering a subset of
the “full precessing” set. The latter set is needed to asses the
coverage of the bank on the manifold on which the
templates lie and thus is a measure of the templates’

placement accuracy. On the other hand, the “full precess-
ing” injection set evaluates the ability of the bank to
recover a generic precessing signal, hence assessing the
quality of our choice of manifold. Clearly, this is the
injection set that is most relevant for designing the bank for
a fully precessing search.
We report the results of our study in Fig. 9, in the form of

a histogram of the fitting factors, and in Fig. 7, where we
study the dependency of the fitting factor across the
parameter space. Figure 8 reports the same fitting factor
study focused on the low q, low M region.
As is clear from Figs. 8 and 9, the random template

placement method fails for the low q, low M region, with
q ≤ 1.2 and M ≤ 20M⊙, where only ∼40% of the injec-
tions “on manifold” have a fitting factor higher than 0.97.
On the other hand, outside the low q, low M corner, the
template bank provides a good coverage: 97% of the
injections “on manifold” has a fitting factor large than 0.97.
The poor performance for low mass ratio and low

masses was also observed in the “all-sky” template bank
in Sec. IV B, although less severe. Such failure be
explained by two combined causes. First of all, as noted
above, the random method is unable to cover “sharp”
corners of the parameter space, due to the lack of
appropriate boundary treatment: this can (and does)
severely limit the bank’s ability to cover the space.
Moreover, we observe that for q → 1 the metric determi-
nant goes rapidly to 0, meaning that very few templates are
placed. This is shown in Fig. 10, where we plot jMj as a
function of q keeping constant all the other coordinates.10

The two effects combines together in the low q, low M
region, which is drastically undercovered. The same issue
is not observed anywhere else in the parameter space.
In principle, we could remedy the problem by extending

the covered region to lower masses and higher q: this would
make sure that the low q, lowM target region does not lie at
the boundaries of the bank anymore. However, the lack of
coverage in this region is not a major concern for the bank’s
effectiveness in a real search scenario. Indeed, precession

FIG. 7. Fitting factor study of the precessing bank, introduced in Sec. VA. For each bin, we color-code the median fitting factor of 105

injections sampled “on manifold,” as described in the text.

FIG. 8. Fitting factor study of the precessing bank of Sec. VA.
Unlike Fig. 7, here we focus on the low q, low M region, where
the random placement method fails. For each bin, we color-code
the median fitting factor of 5 × 104 injections sampled “on
manifold,” as described in the text.

10Although not reported here, the same behavior is observed
for “standard” signals.
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for q ∼ 1 has very little effect on the BBH waveform and a
precessing system with symmetric masses would likely be
detected by current aligned-spin searches.
In Fig. 7, we see that the coverage is rather uniform

across the parameter space. The median fitting factor
slightly drops for the high q high s1 corner of the parameter
space. As shown in Fig. 6, the flow performance degrades
in that undercovered corner of the space: the true template
density

ffiffiffiffiffiffiffijMjp
is underestimated by the normalizing flow,

which accordingly places less templates than optimal.

The fitting factor of the “full precessing” injection set is
fairly good, with only 7% of the injections (outside the
“low q, lowM” region) below the target match. This means
that the χP approximation that motivates our choice is
robust: the manifold logMq_s1xz_s2z_iota provides
a faithful low-dimensionality representation of the entire
precessing parameter space.

B. An aligned-spin HM bank

In a sense, aligned-spin HM template banks are easier to
generate than precessing ones, due to a smaller dimen-
sionality of the parameter space. Indeed, a generic
aligned-spin binary system with HMs is characterized
by 6 parameters (two masses, two spins and two angles
{φ) but, as for the non-HM case, the spin effects can be
easily parametrized with an effective spin parameter,
reducing the number of dimensions to 5. Note that here
we deal with one dimension more than in the nonspinning
HM bank produced in Sec. IVA. Despite less uncertainties
in the choice of manifold than in the precessing case, the
parameter space is very large and producing a template
bank of a feasible size still requires a careful choice of the
region to target.
We used MBANK to generate an HM aligned-spin bank,

covering the high mass region of the BBH parameter
space. High mass events are notoriously hard to detect
[92,93]. As they are very short, their morphology matches
closely non-Gaussian transient noise bursts, also called
glitches, [94–97]. In this scenario, a more realistic model
for the waveform can improve the detectability of such
signals, thanks to both an increase in recovered SNR and
to a more accurate signal-based veto [64,98]. Several
studies [27,69,99,100] confirmed this claim, finding that
failing to consider HMs in GW searches can lead to a large
sensitivity loss for large mass ratios q ≳ 4 and high masses
M ≳ 100M⊙ [91].
Consequently, our bank covers the manifold logMq_

chi_iotaphi, sampling log10M, q and χeff as well as
inclination and reference phase. We consider templates
with total mass M between 50M⊙ and 400M⊙ and a mass
ratio smaller than 7. The effective spin lies in range
½−0.99; 0.99� and, as usual, ι∈ ½0; π� and φ∈ ½−π; π�. We
use the Advanced LIGO O4 sensitivity estimate [89] and
we set a frequency range of ½10; 1024� Hz, with approx-
imant IMRPhenomXHM [86].
We generate a dataset with 4 × 105 points and train a

normalizing flow with 4 layers, each with nhidden ¼ 60
hidden features. The accuracy of the normalizing flow is
reported in Fig. 11. For the template placement, we use a
minimal match requirement of 0.97 and set a covering
fraction η ¼ 0.8, estimated with 10000 livepoints. The
overall bank gathers 2115299 templates, which are plotted
in Fig. 17. The bank generation took roughly the same time
as for the precessing bank.

FIG. 9. Cumulative fitting factor for the precessing bank
introduced in Sec. VA. The 105 injections “full precessing”
have isotropic spins, while the 3 × 105 precessing injections “on
manifold” are sampled on the manifold logMq_s1xz_
s2z_iota and they have s1y ¼ s2x ¼ s2y ¼ φ ¼ 0. For the
injections “on manifold,” we plot separately the low q, low M
corner, characterized by q ≤ 1.2 and M ≤ 20M⊙. The other two
histograms exclude this region.

FIG. 10. Determinant of the metric jMj as a function of mass
ration q for different values of s1. The metric is evaluated on the
manifold Mq_s1xz_s2z_iota, with M ¼ 10M⊙, θ1 ¼ π=2,
s2z ¼ −0.3, and ι ¼ π=2. It is manifest that in all cases, the metric
determinant vanishes while q → 1.
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We study the bank performance with 105 injections and
report their fitting factor in Figs. 12 and 13. Our injection
study shows that only ∼2% of the injections have a fitting
factor smaller than the target of 0.97, with a median fitting
factor of 0.99. We can conclude that the bank provides
good coverage of the parameter space. Moreover, the fitting
factor is rather constant across all the parameters space. As
was also the case for the HM bank introduced in Sec. IVA,
there are not regions which are undercovered by the
template banks. Also the accuracy of the normalizing flow
does not vary too much over the parameter space, showing
a bad performance only in the region with high total mass
and low mass ratio.

We note that, in order to achieve good performance in the
two HM banks presented in this work, we set a covering
fraction of only η ¼ 0.8. This is significantly lower than
what we used for the non-HM banks and also lower than
the recommended value of η ¼ 0.9 in [50]. This means that,
unlike the non-HM case, the metric match in Eq. (11)
underestimates the “true” match. In this scenario, the
covering fraction estimated with the livepoints (which
makes use of the metric) also underestimates the “true”
covering fraction. Therefore, a lower value of η is enough to
obtain an acceptable coverage. This is not the case for non-
HM banks. The reason why this happens only for HM
banks is currently not understood and requires more
investigation.

C. Other possible applications

The speed of the bank generation, together with the
flexibility of the flow in sampling from the parameter
space, allows for several novel applications of our work to
GW data analysis, besides producing high-dimensional
template banks. Without being exhaustive, we discuss
below some of the new possibilities.
a. Selecting the parameter space to target As already

discussed, the choice of the parameter space to target in GW
searches can be challenging, as it is hard to obtain a reliable
forcast of the number of templates needed for accurate
coverage. Moving toward high-dimensional template banks,

FIG. 11. Accuracy of the normalizing flow trained used to generate the aligned-spin HM bank of Sec. V B. The accuracy is expressed
in terms of the logarithmic ratio between the template density PDF ptrue Eq. (15) and its approximation pflow given by the flow. The flow
accuracy is evaluated on 40000 test points.

FIG. 12. Fitting factor study of the aligned-spin HM bank, introduced in Sec. V B. For each bin, we color-code the median fitting
factor of 105 injections sampled uniformly from the parameter space.

FIG. 13. Cumulative fitting factor for the aligned-spin HM
bank described in Sec. V B. The histogram is built upon 105

injections sampled from the manifold.
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the number of templates increases by orders of magnitude
and the standard stochastic approach suffers from memory
issues due to the storage of the waveforms needed for the
match calculation. This in turn makes it difficult to even
explore high-dimensional spaces, as the current algorithms
time-out by the time the bank reaches several million
templates.
Our method has a low memory footprint and this makes

possible to forecast the number of templates in a given
parameter space, providing invaluable information to
choose an appropriate target for the search. To do so,
the interested user might train a normalizing flow on a large
region of the parameter space and then place templates in a
subregion, without the need to store them. Sampling in a
subregion can be easily completed with the use of rejection
sampling.
A natural candidate to demonstrate the usefulness of

this technique is the precessing NSBH parameter space.
Indeed, due to the large mass asymmetry of NSBH
systems (i.e., high q), precession has a strong imprint
on the waveform, leading to a very large volume to cover
by a template bank. To study the number of templates
needed to cover the space, we train a normalizing flow
model on the manifold logMq_s1xz_iota11 for sys-
tems with masses m1 ∈ ½10; 60�M⊙ and m2 ∈ ½1; 3�M⊙,
with mass ratios q∈ ½3.3; 15�. The other coordinates s1,
θ1 and ι vary in set ½0; 0.9� × ½−π; π� × ½0; π�. As above, we
use the approximant IMRPhenomXP, in a frequency range
of [15,1024] Hz.
To study the parameter space size, we run our template

placement algorithm for varying maximum total massMmax
and we measure the number of templates needed to achieve
a covering fraction of η ¼ 0.9 for different minimal match
requirements. Since we do not store and validate the
template banks, there is no guarantee that the resulting
banks provide a satisfactory coverage. The procedure is just
meant to obtain an order of magnitude estimation of the
bank size.
As shown in Fig. 14, the precessing NSBH parameter

space is huge. With a minimal match requirement of 0.9,
around 100 million templates are needed to cover the full
space. Around half of the templates are in the low total
mass region withM∈ ½11; 15�M⊙. The numbers agree with
the investigations carried out in [26]. To cover the space
with a minimal match of 0.95, around five times more
templates are needed.
The magnitude of the precessing NSBH space makes it

nearly impossible to use traditional matched filtering
techniques to search for such signals. It thus becomes
compelling to either develop new search techniques [26] or
to improve the computational power available.

Thanks to our method, similar estimates can easily be
done for other regions of the BBH parameter space (e.g.
targeting eccentric BBHs), thus providing invaluable infor-
mation to plan future high-dimensional GW searches.
b. Manifold selection The metric eigenvalues and eigen-

vectors can give an interesting piece of information about
the relative importance of the coordinates of the manifold.
Let λi and vi be the ith eigenvalue and eigenvector
respectively of the metric Mij. We can think of each
eigenvector λi as a measure of the relative importance of
the eigenvector vi, which represents a linear combination of
the coordinates. We can then introduce the following
quantity for each coordinate j, which we call coordinate
importance:

I j ¼
				X

i

λiðviÞj
				 ð34Þ

where ðviÞj is the jth component of the ith eigenvector. It is
a weighted average over the projection of each eigenvector
along a given coordinate. Heuristically, an “important”
coordinate will give a larger contribution to the “important”
eigenvectors (i.e., with larger eigenvalues).
This quantity might be used to create a hierarchy among

the coordinates and, when choosing the manifold to cover,
it can offer a useful criteria to decide which quantities to
include in the bank. For example, in the manifold
logMq_s1xyz_s2z_iotaphi, the variable log10M
has an importance of 5 × 104, while variables q; s1; θ1
and s2z have importance two orders of magnitude less. This
implies that a template bank must include (besides the total
mass) all the variables q; s1; θ1, and s2z. On the other hand,
coordinates ϕ1 (controlling the magnitude of s1y) and the
angles ι and φ have an “importance” of one order of

FIG. 14. Study of the size of a template bank in the neutron
star-black hole parameter space. Each point refers to a template
bank on the manifold logMq_s1xz_iota, covering a
total mass range M∈ ½Mmin;Mmax�. The component masses are
limited to m1 ∈ ½10; 60�M⊙ and m2 ∈ ½1; 3�M⊙, with mass ratios
q∈ ½3.3; 15�. In the plot we report the number of templates
Ntemplates as a function of the maximum total mass Mmax, for
different minimal match requirements. The resulting banks are
huge, with tens of millions of templates, showing that a search for
precessing NSBH binaries is still prohibitively costly.

11We neglect any spin on the lighter object, a neutron star. This
is physically motivated by the fact that a NS is expected to have
low or no spins.
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magnitude less than all the other quantities. As a conse-
quence, the latter three play a smaller role in covering the
space and they can be possibly ignored (or perhaps only
one of them can be included).
Of course, this line of reasoning is heuristic and whether

a manifold is suitable or not to cover the space must be
checked by means of an injection study. However, the study
of the relative importance between coordinates can give an
educated guess on the manifold to cover and serve as a
starting point for the trial and error process of manifold
selection.
c. A proposal for the stochastic template placement Our

normalizing flow finds an obvious application within a
stochastic placement algorithm. According to the stochastic
algorithm, template proposals are randomly drawn from an
analytical PDF, which is specifically design to approximate
Eq. (15) in the non-spinning case. A good proposal is
crucial to reduce the template rejection rate, hence reducing
the overall run time.
The normalizing flow is a natural candidate for a

proposal distribution, since it goes beyond the nonspinning
BBH approximation, allowing for more physics to be
considered. Implementing a normalizing flow within the
stochastic algorithm will most likely provide a computa-
tional benefit, due to a more efficient proposal.
d. Generating datasets for machine learning applica-

tions The recent years have seen a burst of machine
learning application to GW data analysis, covering all
fields of the analysis of compact binary systems from
waveform modeling [72–75] to GW searches [101–104]
and parameter estimation [105–109].
For all these applications, it is crucial to have high

quality datasets of waveforms for training purposes. The
goodness and the applicability of the model strongly relies
on the distribution of waveforms in the dataset and
substantial time is often spent in tuning the dataset
composition to achieve optimal performance. The wave-
forms in such datasets can be sampled using our normal-
izing flow model, thus covering the space accurately. In
many cases this may prove beneficial.

VI. FUTURE PROSPECTS

Clearly, our work can be improved and expanded in
several directions. In this section, we discuss some possible
advancements.
a. Introducing a new metric As shown in Appendix B,

the Hessian of the match (with which we identify the
metric) does not always approximate the behavior of the
true match in a neighborhood of a point. For instance, on
the manifold Mq_s1xyz, consider the ellipse E0, centered
on θ0 ¼ ð10M⊙; 7; 0.6; 2; 2Þ of all the points θ with metric
match with the center higher than 0.97. It turns out that only
∼50% of the points inside E0 have a match higher than
0.97. The situation gets worse for smaller mass ratio, when

the metric determinant vanishes, and it can significantly
vary among different manifolds.
While this hasn’t affected (too much) the effectiveness of

our template bank, the failure of the metric approximation
is concerning and can negatively influence the placement,
especially in presence of a parameter with a small impact
on the waveform. The interested reader is encouraged to
read Appendix B.
b. Exploring different flow architectures In this work,

we only considered masked autoregressive layers for our
normalizing flow architecture. Of course, other choices are
available in the literature and could possibly improve the
flow accuracy. Further work should implement some of
these and assess the (possible) gain in accuracy. Possible
transformations include coupling layers [110,111] or
residual flows [112,113].
As discussed in Sec. II B, it is very beneficial to use a

transformation like Eq. (19) as the first layer of the
normalizing flow. Future work can find a different trans-
formation offering better performance.
c. Estimating the covering fraction with importance

sampling An accurate evaluation of the covering fraction
in Eq. (25) is crucial to providing a realistic estimation of
the template number and hence good coverage. Currently
we estimate the covering fraction by using the approxi-
mation to the volume element given by the normalizing
flow. We can increase the accuracy by computing the
integral in Eq. (25) with importance sampling:

η̂ðT Þ ≃ 1P
iwi

X
i

cðθiÞwi ð35Þ

where the livepoints are sampled from the flow and are

weighted with weights wi ¼
ffiffiffiffiffiffiffiffiffiffiffi
jMðθiÞj

p
pflowðθiÞ . The weights make

sure that we evaluate the unapproximated version of the
integral, i.e., using the true volume element and not its flow
approximation.
In a practical application, it is wise to prevent the

weights to grow indefinitely, as this can negatively impact
the estimation of the covering fraction. For this reason,
we clip the weights to a maximum value of W:

wi ¼ min

� ffiffiffiffiffiffiffiffiffiffiffi
jMðθiÞj

p
pflowðθiÞ ;Wmax

�
. The tuning of Wmax deserves

more attention, as it can really impact the bank
performance.
Some tests have shown that importance sampling deliv-

ers larger banks, thus with better coverage but with an
increased variance in the number of templates. However, in
some occasions, one or a few livepoints can dominate the
sum (i.e., have very large weight), making the covering
fraction computation less robust in case of flow inaccur-
acies. More work is required to treat such cases and
successfully implement this new feature.
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d. Exploring different placement methods While the
random template placement method in use has proven its
efficacy, other alternatives are certainly possible. A differ-
ent placement method is appealing to reduce the bank size
without degrading its performance, as random template
banks tend to place more templates than needed.
First, one could use the metric to reject templates that are

too close to each other. This would be a variation of the
stochastic algorithm, where distances are computed with
the metric and not with the true match. While this may
prove unfeasibly slow in some cases, it can still be
computationally more efficient than with the brute force
match computation. As a compromise, a random template
bank with low covering fraction and minimal match might
be given as starting point for the iteration (i.e., a seed bank).
One could also devise alternative strategies to sample

from the flow latent space, such as using quasi Montecarlo
sampling or even setting points on a lattice. Since the
coordinates of the templates will be correlated with each
other, we cannot compute iteratively the covering fraction
as described in Sec. II C. For this reason the suitable bank
size needs to be computed with other methods, before
selecting the templates.
Regardless of the placement method, the templates in a

bank may still not be placed optimally, creating over
(under)-dense regions. This is especially true for the
random method used here. For this reason, it may be
beneficial to add a postprocessing step to move or remove
some templates [114].
e. Encoding the metric into the flow? A fascinating path

to explore is to encode information about the metric Mij
inside the flow transformation. So far, the normalizing flow
ϕW is trained in such a way that the determinant of the
Jacobian det JϕW

matches the determinant of the metric.

Thus, among the DðD−1Þ
2

free components of JϕW
, only one

of them is constrained during the training. This leaves a lot
of degeneracy in JϕW

. One could break such degeneracy by
imposing the additional constraint that the Jacobian of the
flow matches the metric Mij:

ðJϕW
Þij ≃Mij: ð36Þ

Such constraint should be imposed by introducing a
suitable loss function. The approach would involve a much
harder optimization problem and it remains to be assessed
whether the flow has enough representation power to solve
such problem.
A flow trained in this way would create an isometry (i.e.,

distance preserving transformation) between the latent
space and the physical space. According to differential
geometry, this is not possible, unless the Mij has zero
curvature, which is not the case in general. A possible way
out could be to embed the manifold of signals in an higher
dimensional flat manifold, which would guarantee the
existence of a solution.

As outlined, there are many open questions and issues to
solve, which require significant work. The reward however
would be huge: the flow would parameterize a distance
preserving (and not only volume preserving) transforma-
tion, which can be used for high dimensional fast stochastic
placement or even geometric placement—the holy grail of
bank generation.

VII. FINAL REMARKS

We present a novel method to generate template banks
covering a high-dimensional manifold of (possibly) pre-
cessing/HM/eccentric BBH signals.
Key to our method is the metric Mij and the derived

volume element
ffiffiffiffiffiffiffijMjp

. The latter defines the number of
templates that should cover an infinitesimal volume and can
be seen as a probability measure on the space. We derive
here for the first time an expression for the metric suitable
for precessing and/or HM signals (see Appendix A). The
metric is written in terms of the gradients of the waveform
polarizations and is numerically stable.
To sample the templates, we introduce a novel normal-

izing flow model, which serves the twofold purpose of
sampling from the space and providing a fast-to-compute
approximation to

ffiffiffiffiffiffiffijMjp
. Once we are able to sample from

the space, we place templates using the random algorithm,
which is fast and suitable to cover high-dimensional spaces.
This comes at the price of a larger bank than would be
produced with the state-of-the-art stochastic algorithm,
although the over-coverage becomes less severe as the
number of dimensions, and correspondingly the overall size
of the bank, increases.
We validate our code by evaluating the normalizing flow

accuracy and the robustness of the random placement.
Moreover, with a few hours of computation, we were able
to reproduce two template banks existing in the literature
obtained with independent codes—a nonspinning HM
bank [21] and an aligned-spin bank [56].
To demonstrate the capabilities of our code, we generate

two large template banks covering systems for which no or
little searches have been performed: a precessing bank
gathering 1.6 million templates (Sec. VA) and an aligned-
spin HM bank formed by 2.1 million templates (Sec. V B).
We show that the two banks satisfactorily cover the space.
They were both produced in a matter of hours, with
minimal CPU and memory usage. We also discuss other
possible applications of our method, including the opti-
mization of the template proposal of the stochastic algo-
rithm, the selection of a suitable parameter space for a GW
search and the generation of datasets of waveforms for the
training of machine learning models.
Our code is publicly available as a package MBANK [55]

and comes with a large number of tools to simplify the bank
generation and validation.
As a final remark, we stress that our work will enable the

GW community to run searches on novel regions of the
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BBH parameter space. Being able to generate a high
dimensional bank in a few hours, the computational cost
of searching new regions of the parameter space will be
dominated by the actual cost of the analysis rather than the
cost of prior steps. This will allow for optimal resource
allocation to search for signatures of precession, eccen-
tricity and/or HMs, hopefully leading to exciting physics
discoveries.
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APPENDIX A: DETAILS OF THE METRIC
COMPUTATION

In this appendix we report the details of the derivation of
Eq. (12), as well as the computation of the HessianH of the
overlap in Eq. (7) in terms of the gradients of the waveform
hðθÞ. In what follows, we define ðh1jh2Þ and ½h1jh2� to be
the real and imaginary part, respectively, of hh1jh2i.
We begin by expanding the quantity Mðθ þ Δθ; θÞ for

Δθ around 0. Since Mðθ þ Δθ; θÞ has a maximum for
Δθ ¼ 0, the leading term is quadratic in Δθ. We obtain:

Mðθ þ Δθ; θÞ ¼ max
Δt

Oðθ þ Δθ; θ;ΔtÞ

¼ max
Δt

�
1þ 1

2
½∂ijOΔθiΔθj

þ 2∂itOΔθiΔtþ ∂ttOðΔtÞ2�



¼ 1þ 1

2

�
∂ijO −

∂itO∂jtO
∂ttO

�
ΔθiΔθj ðA1Þ

where all the derivatives are evaluated at Δθ ¼ Δt ¼ 0 and
the explicit time maximization yields Δt ¼ − ∂itOΔθi

∂ttO
.

From Eq. (A1), we can read the expression for the metric
in Eq. (12) recognizing in the derivatives ∂∂OjΔθ;Δt¼0 the
components of the Hessian matrix H of the overlap.
We now compute the Hessian H of the overlap in terms

of the gradients of the normalized waveforms. For nota-
tional convenience, we set hþðθ1Þeift ¼ s, we drop any
dependence on θ2 and we understand μ ¼ i; t. We have:

∂μO ¼ 1

O
1

1 − ĥ2þ×

½ð∂μŝjĥþÞðŝjĥþÞ þ ð∂μŝjĥ×Þðŝjĥ×Þ

−ð∂μŝjĥþÞðŝjĥ×Þhþ× − ð∂μŝjĥ×ÞðŝjĥþÞhþ×� ðA2Þ

Differentiating another time, after some rearrangements,
we get:

Htt ¼ −ðĥþjĥþf2Þ þ
1

1 − ĥ2þ×

½ĥ×jĥþf�2 ðA3Þ

Hti ¼ ½ĥþj∂iĥþf� −
1

1 − ĥ2þ×

ðĥ×j∂iĥþÞ½ĥ×jĥþf� ðA4Þ

Hij ¼ ðĥþj∂i∂jĥþÞ þ
1

1 − ĥ2þ×

ðĥ×j∂iĥþÞðĥ×j∂jĥþÞ ðA5Þ

To move further, we express the normalized waveform
derivatives in terms of the unnormalized ones:

ðiÞ ∂ihhjhi ¼ h∂ihjhi þ hhj∂ihi ¼ 2ðhj∂ihÞ

ðiiÞ ∂iĥ ¼ 1

ðhjhÞ3=2 ½ðhjhÞ∂ih − ðhj∂ihÞh�

ðiiiÞ ∂tĥ ¼ ifĥ ¼ if
h

ðhjhÞ1=2

ðivÞ ∂i∂jĥ ¼ 1

ðhjhÞ1=2 ∂ijhþ 3
1

ðhjhÞ5=2 ðhj∂ihÞðhj∂jhÞh −
1

ðhjhÞ3=2 ½ðhj∂ijhÞhþ ð∂ihj∂jhÞhþ 2ðhj∂ðihÞ∂jÞh�

where AðijÞ ¼ 1
2
ðAij þ AjiÞ denotes symmetrization.
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Plugging this into the Eqs. (A3)–(A5), we get:

Htt ¼ −
1

hþþ
ðhþjf2hþÞ þ

1

1 − ĥ2þ×

1

hþþh××
½h×jfhþ�2 ðA6Þ

Hti ¼ −
1

hþþ
ðhþjf∂ihþÞ −

1

1 − ĥ2þ×

1

hþþh××
½h×jfhþ�ðh×j∂ihþÞ þ

ĥþ×

1 − ĥ2þ×

1

h3=2þþh
1=2
××

½h×jfhþ�ðhþj∂ihþÞ ðA7Þ

Hij ¼ −
1

hþþ
ð∂ihþj∂jhþÞ þ

1

1 − ĥ2þ×

1

h2þþ
ðhþj∂ihþÞðhþj∂jhþÞ þ

1

1 − ĥ2þ×

1

hþþh××
ðh×j∂ihþÞðh×j∂jhþÞ

−
2ĥþ×

1 − ĥ2þ×

1

h3=2þþh
1=2
××

ðh×j∂ðihþÞðhþj∂jÞhþÞ ðA8Þ

where we defined h·� ¼ ðh·jh�Þ.

Such expressions, together with Eq. (12) fully specify
the metric. The gradients ∂ih of the waveform can be
computed with a finite difference scheme or analytically for
a number of surrogate waveform models [72–75].
The nonprecessing limit can be recovered by setting

h× ¼ ihþ and hþ× ¼ 0:

Htt ¼
1

h2þþ
ðhþjfhþÞ2 −

1

hþþ
ðhþjf2hþÞ ðA9Þ

Hti ¼
1

h2þþ
½hþj∂ihþ�ðhþjhþfÞ −

1

hþþ
½hþjf∂ihþ� ðA10Þ

Hij ¼
1

h2þþ
fðhþj∂ihþÞðhþj∂jhþÞ þ ½hþj∂ihþ�½hþj∂jhþ�g

−
1

hþþ
ð∂ihþj∂jhþÞ ðA11Þ

APPENDIX B: ALTERNATIVE DEFINITIONS
FOR THE METRIC

Throughout this paper, we identified the metric with the
Hessian of the overlap [see Eq. (12)]. While this is widely
used in the literature [44,45] and has been proven to
provide reliable template banks, it still has some undesir-
able properties. To show this, we compute the metric at
point θ0 ¼ ð20M⊙; 3; 0.7; 1.8Þ of manifold Mq_s1xz,
described in Sec. III A, and we compute its eigenvalues

αðiÞ and eigenvectors vðiÞ. We then compute the matchMðiÞ
ϵ

between θ0 and the point θðiÞϵ ¼ θ0 þ ϵvðiÞ, located at a
distance ϵ along ith eigenvector. Finally, we compute the

coefficient α of the Taylor expansion 1 −MðiÞ
ϵ ¼ αϵ2. α

corresponds to the ith eigenvalue and in principle, it should
be close to its value.
In Fig. 15, we plot the fitted relation between 1 −M and

ϵ for each eigenvector, as well as the one computed with the

metric. In the legend we report the α coefficient (dashed
blue line) and the eigenvalue of the metric (solid orange
line). The striking feature we note in Fig. 15 is that the
eigenvalue is consistently smaller than the fitted α coef-
ficient, sometimes by an order of magnitude. This means
that the Hessian, which is computed for ϵ → 0, is not able
to extrapolate the behavior of 1 −MðϵÞ even at modestly
large value of ϵ: the metric approximation to the match
loses its predictivity as a measure of distance. The problem
becomes more severe in high-dimensional manifolds. On
the other hand, since the banks generated with the Hessian
metric show nice coverage, one may argue that the volume
estimate provided by the Hessian is still accurate enough
for our purposes.

FIG. 15. For each eigenvector of the metric, we compute the
empirical relation between the mismatch 1 −M and the distance
ϵ of points along the eigenvector direction. The solid line shows
the relation predicted by the metric, while the dashed line shows a
parabolic fit. In the legend are reported the quadratic coefficients
of both lines.
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As a way out, we could redefine the matrix MijðθÞ to a
more suitable expression, departing from the Hessian. The
goodness of the metric expression may depend on the
application and on the range of validity of the approxima-
tion. The tensor field MijðθÞ can be computed through an
optimization problem, where we minimize the discrepancy
between the two quantities in Eq. (11), encoded into a loss
function. The loss function depends on the values of the
matrix elements M0

ij:

LθðM0
ijÞ¼

Z
fdðθ;θ0Þ<dtargetg

dDθ0½1−Mðθ;θ0Þ−M0
ijΔθiΔθj�2

ðB1Þ
where the integration extends on a D-ball with radius dtarget
centered around θ and dtarget is a tunable parameter, which
controls the validity of the approximation.
At any given point θ, the components MijðθÞ of the

metric are selected by minimizing the above loss:

MijðθÞ ¼ argmin
M0

ij

LθðM0
ijÞ: ðB2Þ

Although the minimization can be tackled with standard
techniques, it requires many evaluations of Eq. (10) and
the ability to sample from a “complex” set such as
fdðθ; θ0Þ < dtargetg.
While in most cases this may prove unfeasible, future

work could solve the problem in Eq. (B2) at a manageable
cost. This may be beneficial to many data analysis
applications, such as template placement and Fisher infor-
mation matrix studies. A number of alternative metric
expressions, coming from different heuristic optimization
strategies, are already available in MBANK, although not
fully validated.

APPENDIX C: COMPUTING THE VOLUME
OF THE PARAMETER SPACE

As the number of templates is proportional to the volume
of the parameter space [44], it can be useful to estimate the
volume of the parameter space. This can be useful to
forecast the size of a template bank. The volume can be
easily estimated by importance sampling and, as the
normalizing flow reproduces the volume element, it is a
convenient distribution to generate samples.
The volume of the parameter space BD is defined as:

V ¼
Z
BD

dDθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθÞ

p
ðC1Þ

¼
Z
Sflow

dDθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθÞ

p
IBD

ðθÞ ðC2Þ

where in the last equality we compute the integral on
the support of the flow Sflow ⊇ BD and we introduced the
indicator function IBD

which is non-zero only on the
manifold BD.
Equation (C2) can be numerically evaluated by impor-

tance sampling:

V ≃
1

N

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθiÞ

p
pflowðθiÞ

IBD
ðθiÞ ðC3Þ

with θi ∼ pflow. The normalizing flow ensures a low
variance in the volume estimation.
Equation (C3) involves several metric evaluations, which

has some computational cost. To further reduce the
computational cost, we can use the fact that, after the
training procedure, the flow approximates the volume
element as follows:

logpflow − log
ffiffiffiffiffiffiffi
jMj

p
þ C ≃ 0 ðC4Þ

where C is the trainable constant appearing in Eq. (21).

Hence we can replace
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detMðθiÞ

p
pflowðθiÞ in Eq. (C3) simply with eC.

The volume estimation is then reduced to computing the
fraction of the volume of Sflow covered by BD:

V ≃ eC
1

N

X
i

IBD
ðθiÞ ðC5Þ

where again θi ∼ pflow. The goodness of such approxima-
tion is closely related to the flow performance, as studied in
Sec. III A (see also Fig. 1).
Once an estimation of the volume is available, the

number of templates can be obtained by noting [44] that
in a lattice, given a minimal match MM, the average
spacing d between template is:

dðMMÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −MM

D

r
ðC6Þ

Hence, roughly speaking, the number of templates N
needed to cover the volume V is given by:

N ¼ V
dðMMÞD ðC7Þ
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FIG. 16. Corner plot with the templates of the precessing bank described in Sec. VA. Along the diagonals, we show the histogram of
the template number as a function of each coordinate.
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