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This paper investigates the impact of a lack of knowledge of instrumental noise on the characterization of
stochastic gravitational wave backgrounds with the Laser Interferometer Space Antenna (LISA). We focus
on constraints on modeled backgrounds that represent the possible backgrounds from the mergers of binary
black holes of stellar origin, from primordial black hole generation, from nonstandard inflation, and from
sound wave production during cosmic fluid phase transitions. We use splines to model generic, slowly
varying, uncertainties in the auto- and cross-spectral densities of the LISA time delay interferometry
channels. We find that allowing for noise knowledge uncertainty in this way leads to 1–2 orders of
magnitude degradation in our ability to constrain stochastic backgrounds and a corresponding increase in
the background energy density required for a confident detection. We also find that, to avoid this
degradation, the LISA noise would have to be known at the subpercent level, which is unlikely to be
achievable in practice.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is part of
the European Space Agency (ESA) Cosmic Vision program
and is due to be launched in the mid-2030s. LISAwill be the
first observatory in space to study gravitationalwaves (GWs)
at millihertz frequencies. It will consist of a constellation of
three satellites forming a quasiequilateral triangle and con-
tinuously exchanging laser beams [1]. LISA is expected to
observe a large variety of sources, such as galactic binaries
(GBs), massive black hole binaries [2], stellar-origin black
hole binaries [3–5], extreme-mass-ratio inspirals [6], and
possibly stochastic backgrounds arising from astrophysical
and cosmological processes [7].
When considering the science that can be done with

LISA, it is typical to assume a known model for the
instrumental noise in the detector data channels. However,
these noise levels will not be known in practice. This is also
true for ground-based gravitational wave detectors, but in
that context spectral density estimation is easier because
signals are rare and short-lived, allowing the spectral
density to be estimated from data in the vicinity of observed

events. LISA signals, by contrast, are typically long-lived,
which means that noise and signal properties must be
simultaneously estimated by fitting a suitable model. While
such methods and models are still under development, it is
expected that the characterization of deterministic signals
will not be significantly affected by lack of instrumental
noise knowledge (see Appendix B 4). The case of stochas-
tic GW backgrounds (SGWBs) is different, however, as
these are intrinsically of the same character as the stochastic
instrumental noise. Searches for stochastic signals in
ground-based interferometers rely on the cross-correlation
of data from independent detectors [8]. This would be
possible only if there is another space-based interferometer
in operation concurrently, such as Taiji [9], but this is not
certain at the moment. In the case of ground-based
detectors like LIGO, cross-correlating different detectors
can be advantageous, as it helps to retrieve the common
gravitational wave signal and isolate it from the indepen-
dent noise sources in each detector [10]. However, for
space-based detectors like LISA, the instrumental noise in
one channel can be correlated with the instrumental noise in
another channel, making it challenging to find completely
independent or orthogonal channels [11]. As a result, our
paper focuses on addressing the specific challenges asso-
ciated with distinguishing between the stochastic instru-
mental noise and a stochastic gravitational wave signal in
the context of LISA. We do this using the Fisher matrix
formalism [12–14].
One approach is to use a model for the instrumental

noise. It is possible to derive analytical models that describe
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how different known noise sources propagate into the
LISA data stream. However, not all noise sources will
be known in advance, so we will not be able to strictly rely
on the models, as we cannot perform full tests and
directly measure the noise. In the LISA-Pathfinder (LPF)
mission [15] for instance, it was seen that the analytical
models could not fully explain the measured noise at low
frequency. The LISA hardware should be similar to LPF, at
least for the gravitational reference sensor (GRS), apart
from some small changes to accommodate the GRS in the
LISA movable optical subassembly [1]. Therefore, when
we plan for LISA data analysis, we must be prepared for
uncertainty in the noise models.
The goal of this paper is to assess the impact of lacking a

noise model for LISA in the parameter estimation of
SGWBs. We consider four different models of cosmologi-
cal and astrophysical SGWBs: a power law to model
signals from stellar-origin binary black hole inspirals, a
Gaussian bump to model a background from primordial
black hole generation, a power law with running to model
background from nonstandard inflation, and, finally, a first-
order phase transition model, representing GW production
from sound waves in the cosmic fluid generated by
colliding phase transition bubbles [7].
For each model, we investigate the SGWB parameter

measurement precision using the Fisher matrix formalism.
We explore how such precision varies as a function of the
background energy density with and without the inclusion
of instrumental noise uncertainties.
We represent our lack of knowledge of the LISA instru-

mental noise by multiplying a set of reference auto- and
cross-spectral densities with cubic splines. For the reference
spectral densities we use the noise model from [1], which
includes only the so-called secondary noises [16], the test
mass (TM) acceleration and optical metrology noise (OMS).
This noise model assumes that the laser noise [17], clock
noise [18], and tilt to length coupling [19,20] have been
suppressed by the initial noise reduction pipeline [21,22].
To represent the fact that we will have some amount of
information from noise modeling before launch, we place a
Gaussian prior on theweights of the cubic spline. By varying
the Gaussian variance, we explore the effect of having more
or less knowledge of the noise.
Several previous studies have tackled the problem of

detecting a SGWB with LISA and distinguishing it from
the noise, but these have used different methods than the
one we employ in this paper. In [23] it was shown that
SGWB reconstruction was possible for generic SGWB
models if the LISA instrumental noise can be represented
by just two parameters, representing the level of TM and
OMS noise, assumed equal for all arms of the interferom-
eter. The authors of [11,24] allowed the TM and OMS
noises to differ from arm to arm but still assumed that these
noises had a known spectral shape as a function of
frequency. In [25] an arbitrary noise shape was allowed,

described by a spline, but using a simplified noise model
for the single link. Finally, [16] derived an upper bound on
the detectable SGWB amplitude when being agnostic on
both the signal and noise shape and discussed limitations of
the utility of the null channel for distinguishing between
instrumental noise and a stochastic GW background.
The paper is organized as follows: In Sec. II, we introduce

the general data model that we use in the analysis, and we
describe the Fisher matrix formalism that will be used for
this work. In Sec. II C, we describe the spline model that we
use to represent the uncertainties in the power spectral
density (PSD) and cross-spectral density (CSD) of the
instrumental noise. In Sec. II D, we give the analytical noise
model for a single LISA link that is used as the reference
model and the corresponding PSDs and CSDs for the time
delay interferometry (TDI) channelsA,E, and ζ. In Sec. II E,
we describe how a stochastic signal appears in the three TDI
channels and their cross-correlations, while in Sec. II F, we
describe the models for the cosmological and astrophysical
SGWBs that we use in this paper. In Sec. III A, we showhow
well we can estimate the parameters of the different SGWB
models when we allow for uncertainty in our knowledge of
the instrumental noise. For each model, we compare the
precision of parameter estimation to that when noise knowl-
edge is perfect and show how the parameter precisions vary
as a function of the background energy density,Ω, evaluated
at 1 mHz. In Sec. III B, we show how the results change as
we vary our priors uncertainty on the instrumental noise.We
conclude our results in Sec. III C by showing how well the
signal, noise, and galactic foreground can be reconstructed
for a power law SGWBbackground. Section IV summarizes
our conclusions and future perspectives.

II. METHODS

A. Likelihood

We assume that the output of a gravitational wave
detector, sðtÞ, is expressed as a linear combination of a
signal, hðtjμ⃗Þ, determined by a finite set of (unknown)
parameters μ⃗ and instrumental noise nðtÞ. If we ignore the
presence of calibration errors [26], the content of a single
data stream, i.e., one output channel from one detector, can
be written in the frequency domain as

s̃ðfÞ ¼ h̃ðfjμ⃗Þ þ ñðfÞ; ð1Þ

where the tilde indicates the Fourier transform. The like-
lihood for the observed data can be written as pðs̃ðfÞjμ⃗Þ ¼
pðñðfÞ ¼ s̃ðfÞ − h̃ðfjμ⃗ÞÞ. In a gravitational wave context,
it is usual to further assume that the instrumental noise
follows a Gaussian distribution characterized by a one-
sided PSD, SnðfÞ, defined such that

E½ñ�ðfÞñðf0Þ� ¼ 1

2
SnðfÞδðf − f0Þ; ð2Þ
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for f; f0 > 0, where the expectation value E is taken over
the data-generating process. The delta function in the
previous equation implies that different frequencies are
not correlated.
In reality, the noise model is not known perfectly and

could vary from the assumption above in several ways. For
example, the PSD might have a different shape from the
reference one [27], the probability distribution of the noise
might not be Gaussian, or the noise might not be stationary,
leading to correlations between frequencies.
In this work, we will continue to assume that the noise is

Gaussian and stationary, but we will allow the power
spectral density to vary using a parametrized spectral
density SnðfÞ → Snðfjλ⃗Þ, described by parameters λ⃗.
Then the log-likelihood depends on both sets of parameters,
μ⃗ and λ⃗, and can be written as

l ≔ lnpðs̃jμ⃗; λ⃗Þ ¼ −
Xn
k¼1

ln

�
2π

Snðfkjλ⃗Þ
4Δf

�

−
1

2

Xn
k¼1

js̃ðfkÞ − h̃ðfkjμ⃗Þj2
1

4Δf Snðfkjλ⃗Þ
; ð3Þ

where the sum is performed over n frequencies and
ñðfkÞ ¼ s̃ðfkÞ − h̃ðfkjμ⃗Þ are the discrete Fourier compo-
nent at frequency fk ¼ kΔf, of the data minus signal
model. The frequency bin width Δf is related to the total
observation time as T ¼ 1=Δf. The first term does not
include the 1=2 factor, because the real and imaginary parts
of ñðfkÞ are independent random variables. This follows
from the fact that, for a real-time series, ñ�ðfÞ ¼ ñð−fÞ,
which combined with Eq. (2) means that hñðfÞñðf0Þi ¼ 0
for f; f0 > 0. This allows Eq. (2) to be rewritten as

hRe½ñðfkÞ�2i¼ hIm½ñðfkÞ�2i¼
hjñðfkÞj2i

2
¼ Snðfkjλ⃗Þ

4Δf
ð4Þ

for a discrete set of frequencies.
Stochastic gravitational wave backgrounds are not deter-

ministic signals and can be treated on the same footing as
the instrumental noise by defining the total variance at
frequency fk as

Stðfkjθ⃗; λ⃗Þ ¼ SGWðfkjθ⃗Þ þ Snðfkjλ⃗Þ: ð5Þ

If we assume that all the deterministic sources have been
correctly subtracted from the data stream s, the log-likelihood
becomes

lðθ⃗; λ⃗Þ ¼ −
Xn
k¼1

ln

�
Tπ

Stðfkjθ⃗; λ⃗Þ
2

�

−
1

2

Xn
k¼1

js̃ðfkÞj2
T
4
Stðfkjθ⃗; λ⃗Þ

: ð6Þ

The derivation of this likelihood can be found in
Appendix A.

B. Fisher matrix

We are interested in understanding the impact of noise
knowledge uncertainties on the parameter measurement
precision of SGWB. The Fisher information matrix pro-
vides a lower bound on the covariance of an unbiased
estimator of the model parameters and provides a good
approximation to the precision of parameter estimation in
the high signal-to-noise ratio limit. We will therefore use it
to quantify our ability to measure both the noise parameters
λ⃗ and the background parameters θ⃗.
In a general context, the Fisher matrix is defined by

Γij ¼ E

�
∂l
∂υi

∂l
∂υj

�
¼ −E

�
∂
2l

∂υi∂υj

�
; ð7Þ

where the expectation value E is taken over the probability
density of the likelihood, which defines the data-generation
process or the noise distribution. The partial derivatives are
taken with respect to the parameters υ⃗ on which the
likelihood depends. We want to compute the Fisher matrix
on the extended parameter space υ⃗ ¼ fθ⃗; λ⃗g.
It can be shown that the expectation value of the product

between the derivative of the log-likelihood for determin-
istic and stochastic parameters is zero. Therefore, at the
level of the Fisher matrix approximation it can be shown
that the estimation of the noise and deterministic signal
parameters is independent (see Appendix B 4).
For SGWBs, we can compute the Fisher matrix in the

continuous frequency domain as

Γij ¼ T
Z

∞

0

ðΣ−1Þlr
∂Σrp

∂υi
ðΣ−1Þpm

∂Σml

∂υj
df ð8Þ

with

Σðfjυ⃗ ¼ fθ⃗; λ⃗gÞ ¼ 1

2

0
BB@

SAAt SAEt SAζt

SAE�t SEEt SEζt

SAζ�t SEζ�t Sζζt

1
CCA; ð9Þ

where each element of the matrix can be written as a sum of
an instrumental noise component and a stochastic gravita-
tional wave component as indicated in Eq. (5). A complete
derivation of this formula can be found in Appendix B.
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Prior knowledge of the noise can be incorporated by
imposing a prior on the instrumental parameters λ⃗. When
doing numerical marginalization, any prior can be imposed.
However, if we approximate the likelihood using a
Gaussian distribution, by setting the covariance matrix
equal to the inverse of the Fisher matrix, it is convenient to
use Gaussian priors. This allows one to use the conjugacy
properties of Gaussian distributions and obtain a closed-
form expression for the posterior distribution on the
parameters, as another Gaussian distribution. This property
allows us to explore the measurement precision very
efficiently over a wide range of backgrounds and instru-
mental parameters, as also demonstrated in [26] in the
context of understanding the impact of LISA calibration
uncertainties. For the background parameters, we assume a
Gaussian prior with infinite variance, so that we do not
place any constraints on their range. For the instrumental
parameters, we assume a normal prior with zero mean and
covariance given by ðΘλλÞ−1. This is a flexible prior choice,
since it permits us to describe a range of noise knowledge
scenarios: from totally unknown instrumental noise
(Θ ¼ 0) to perfectly known instrumental noise (Θ → ∞).
The posterior covariance is then given by the inverse of the
modified Fisher matrix:

Γ ¼
�

Γθθ Γθλ

ðΓθλÞ⊺ Γλλ þ Θλλ

�
: ð10Þ

The diagonal elements of the inverse of this matrix
provide estimates for the precision with which the corre-
sponding parameters can be measured. The estimated
precision of measurement of the SGWB parameters
accounting for noise model uncertainty is, thus, given by
the diagonal elements of the matrix:

σθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½ðΓθθ − ΓθλðΓλλ þ ΘλλÞ−1ðΓθλÞ⊺Þ−1�

q
: ð11Þ

Note that in the limit in which the instrumental noise
parameters are perfectly known and the measurement
precision of the SGWB parameters is given by σθ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½ðΓθθÞ−1�

p
.

C. Modeling noise knowledge uncertainties

To model noise uncertainties, we allow the PSD and
CSD of the instrumental channels to deviate from the
design specification. However, we assume that such devia-
tions vary smoothly over a relatively wide range of
frequencies and model the noise uncertainties as fractional
deviations from the design PSD or CSD that are described
by natural cubic splines. We write the PSD of the
instrumental noise in each channel as

Snðfjλ⃗Þ ¼ SdesðfÞ10Cðfjλ⃗Þ; ð12Þ

where Cðfjλ⃗Þ is a natural cubic spline in log 10ðfÞ. The
parameters λ⃗ specify the values of the spline at the knots. In
this study, we use knots evenly spaced in log10ðfÞ between
log10ðfÞ ¼ −4 and log10ðfÞ ¼ 0, and we fix the number of
knots to 13. Noise curves corresponding to this model, with
the weights at each knot drawn randomly from a log10ðfÞ ∼
U½−1; 1� distribution, are shown in Fig. 1. The figure
illustrates the kind of noise variations that this model can
capture. We note that the model can capture only noise
variations that change smoothly as a function of frequency,
but this is in accordance with the behavior of the excess
noise [28] that was observed in the LPF data. In LPF, the
transient noise variations were identified as glitches and
fitted with an ad hoc exponential model [29]. As calibration
and performance noise model studies for LISA become
more advanced, we will have a better idea of what kind of
features to include, but, for the moment, we will use
the type of noise fluctuations observed in LPF as a
reference.
Furthermore, it is noteworthy that the prior choice we

have made allows for an approximate one order of
magnitude variation in the PSD. This decision is influenced
by experimental observations, in which the measurement
noise is generally seen to fluctuate within a factor of �2
compared to the model. It is also informed by measure-
ments on LISA-Pathfinder, where the measured noise could
be accounted for only within a factor of 2 by the individual
noise components measured on board [30]. When evalu-
ating the Fisher matrix, we consistently perform the
analysis at the reference point, where the weights of the
spline are zero. In other words, this is the point where
the PSD is equal to the reference value as illustrated
in Fig. 2.

FIG. 1. Deviations from the design power spectral density
obtained using the cubic spline model, with λi ∼U½−1; 1�,
and with knots equally spaced between log10ðfÞ ¼ −4 and
log10ðfÞ ¼ 0. The plot shows the ratio of the total PSD and
the design one for different parameter realizations λi.
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Figure 3 illustrates that, in the case of unequal but
constant arm length, the CSDs are smaller at low frequen-
cies by between 1 and 3 orders of magnitude when
compared to the PSDs shown in Fig. 2. However, this
assumes that the TM and OMS noise for each single-link
measurement have the same spectral density. It was shown
in [11] that, when the LISA response is constructed with
unequal values of the six TM and six OMS noise terms, the
CSD can be much larger and becomes comparable to
the PSD.
We want to adopt a model for the noise that allows for

unexpected and unmodeled noise components and for
variations in the spectral densities of the TM and OMS
noise in each single-link measurement to be unequal. To do
so, we cannot use the CSD of three unequal but fixed-
length arms with equal TM and OMS noise levels as a
reference, as the CSD is unusually suppressed under those

assumptions. Instead, we adopt the following model for
the CSD1:

ℜfSnðfjλ⃗Þg¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sdes;iðfÞSdes;jðfÞ

q
σR10

Cðfjλ⃗Þ

ℑfSnðfjλ⃗Þg¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sdes;iðfÞSdes;jðfÞ

q
σI10

Cðfjλ⃗Þ; ð13Þ

where Re stands for the real part and Im for the imaginary
part. The indices i and j run over the number of detectors or
channels with i ≠ j. We have introduced the factors σI and
σR to scale the amplitude of the CSD relative to the
geometric mean of the PSDs.
This model allows for larger CSD variations than those

in the case of equal noise terms (as in Fig. 3). This is
consistent with the results presented in [11]. We choose the
value of σI according to Fig. 3 where the imaginary
component is about 1–2 orders of magnitude smaller than
the real components at low frequencies. The value of σR
was chosen accordingly to what is reported in [11] in case
of unequal TMs and OMS noise terms where the real part of
the CSD is 1% of the PSD. Thus, in the analysis we fixed
σR ¼ 0.1 and σI ¼ 0.8σR. For completeness, we have also
run several tests changing the value of both factors, and we
have observed that varying these choices for σI and σR does
not significantly change the conclusions.
It is important to state that our model is not completely

general, since we are imposing a certain amount of
smoothness in the PSD variation, and, consequently, in
the CSD, when we specify the number and spacing of the
knots. Thus, we are not able to fit all possible noise
scenarios. In particular, this model does not attempt to
reproduce the zeros of the TDI transfer functions faithfully.
This will become important above f ∼ 0.05 Hz, but this
should not affect our results as the SGWBs we consider do
not have much power at those frequencies, as can be seen
from Fig. 6. Other models could be considered, for
example, by imposing the spline variations at the level
of the noise in individual laser links (generalizing the
approach taken in [25]), before applying the TDI transfer
function. This should be explored in the future, but this
would increase the number of parameters further so we
might expect there to be additional degeneracies, which
would lead to practical difficulties in fitting noise and

FIG. 2. Reference amplitude spectral density for the time delay
interferometry channels A, E, and ζ considering only test mass
acceleration and optical metrology noise and assuming a con-
stellation of three fixed unequal arm lengths.

FIG. 3. Real and imaginary part of the reference square root of
the cross-spectral density for the time delay interferometry
channels AE, Eζ, and Aζ considering only TM acceleration
and OMS noise and assuming a constellation of three fixed
unequal arm lengths.

1In principle, our model does not force the matrix to be positive
definite. We are forcing the reference spectral density matrix to be
positive definite, but, in principle, we could have a factor of 10
variation in the CSD while the PSD is unchanged. It does not
matter for the Fisher matrix, because this is a local approximation
and we are evaluating it at a point where the matrix is positive
definite. The CSD at the central point is 0.1 of its maximum
value, so in an open set around that point, it will be positive
definite, and, thus, all derivatives are well defined. The con-
clusion is that the model used here is fair for what we want to
demonstrate but would not be a suitable model to use when
analyzing the data.
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signal simultaneously. However, for the current study, the
model we use is adequate to represent generic, slowly
varying, fluctuations in the PSD and CSD.

D. Noise at the TDI input and outputs

In this section, we will describe the instrumental noise
model used to define the reference PSD in this work. The
LISA constellation is designed to have three identical
spacecraft positioned in a triangular formation, spaced
2.5 million km apart, and interconnected by six active laser
links. The orbital configuration aims for an equilateral
triangle, but celestial dynamics causes a change of the
arm lengths of approximately 1.5% over a year, along with
a relative drift of up to 10 m=s between satellites [1].
Consequently, the LISA interferometers experience unequal
and time-varying arm lengths, which leads to contamination
of the measurement channels by laser frequency noise. To
address this, a postprocessing technique known as TDI is
applied [31]. TDI involves combining raw phase meter data
on the ground by appropriately time shifting them and
creating an equivalent interferometer with equal arm lengths
that is insensitive to laser frequency noise. The initial
formulation of “first-generation TDI” was for a static
constellation [17], but “modified first-generation” combina-
tions were later identified in [32]. These combinations
consider a rigid rotation of the constellation around its center
of mass. Lastly, combinations accounting for relative veloc-
ities between spacecraft due to the orbital dynamics of the
LISA constellation, termed “second-generation TDI,” were
introduced in [33,34].
The standard second-generation TDI channels are the

Michelson interferometer channelsX, Y, and Z, from which
we form the more GW-sensitive channels A and E [35].
Together with the GW-sensitive channels, we consider a
null channel, the ζ channel [36], that is less sensitive to
GWs and can, in principle, be used as a noise monitor.
In the current work, we will assume that laser noise has

already been reduced; thus, we can work directly with the
first-generation TDI [37]. Indeed, as reported in [22,37], for
assessing the interaction of nonsuppressed factors, such as
gravitational wave signals and various secondary noise
sources, it is usual to use the assumption of first-generation
TDI. This choice is justified by the fact that, when our focus
is on reducing laser frequency noise (often by orders of
magnitude), the impact of slight discrepancies and dynamic
alterations in arm lengths becomes significant. However, in
the context of mitigating nonsuppressed effects and mod-
eling the instrument response to GWs, these mismatches
and changes introduce only small corrections to the
corresponding results.
We will also assume that all known calibrated and

measured instrumental noise sources have been subtracted,
such as the optical tilt-to-length cross-coupling to space-
craft motion and clock noise [19,38,39]. As mentioned
earlier, the primary sources of secondary noise, for which

we have neither a measurement for coherent subtraction nor
a high-precision a priori model [16], are the TM and OMS
noise components.
We represent the TM acceleration noise PSD of a single

TM by Sgij. To directly compare the OMS and TM
contributions, we can directly convert the acceleration
noise of a single TM to an equivalent displacement, whose
PSD is given by

Sdispgij ¼ Sgij=ð2πfÞ4; ð14Þ

where f is the Fourier frequency. We denote the time series
associated with this displacement as xgijðtÞ. We also define
the PSD of the OMS noise as SomsijðfÞ, and we denote the
time series of the single OMS as xmijðtÞ. All TDI combi-
nations can be constructed from a combination of single-
link TM to TM measurements. Such measurements are
represented by the intermediary variables [22]:

η̃NijðωÞ ¼ x̃ðωÞgjie−iωLji þ x̃ðωÞgij þ x̃ðωÞmij; ð15Þ

where η̃NijðωÞ is the noise in a single-link measurement, the
first index i indicates the spacecraft where the measurement
is performed at time t, the second index j indicates the
distant spacecraft from which light was emitted at time
t − τ, and ω ¼ 2πf. Equation (15) implies that each single-
link measurement contains TM noise terms from the distant
and local spacecraft, such that the TM noise appearing in
the measurements on the two ends of the same arm is
correlated (between the two links):

hη̃NijðωÞη̃NjiðωÞi ≠ 0: ð16Þ

From these measurements, it is possible to build any TDI
channels [17,40] and, therefore, the corresponding first-
generation orthogonal channels A1 and E1 [22,35,37] that
will be used in this work:

A1 ¼
Z1 − X1ffiffiffi

2
p ; E1 ¼

X1 − 2Y1 þ Z1ffiffiffi
6

p : ð17Þ

The X1 variable is defined as

X1 ¼ ðD13D31 − 1Þðη12 þD12η21Þ
þ ð1 −D12D21Þðη13 þD13η31Þ; ð18Þ

where the delays Dij correspond to a constant time shift
and, thus, in frequency toFfDijg ¼ e−iωLij . The Y1 and Z1

are given from X1 by cyclic permutations of the three
satellites. The fully symmetric channel ζ1 is defined by

ζ1 ¼ D12ðη31 − η32Þ þD23ðη12 − η13Þ
þD31ðη23 − η21Þ: ð19Þ
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The assumed model for the TM acceleration noise is [27]

Ehx̃gijðfÞx̃g�lmðf0Þi ¼
1

2
δilδjmδðf−f0ÞSgijðfÞ;

SgijðfÞ ¼
�
3× 10−15

m

s2
ffiffiffiffiffiffi
Hz

p
�

2

×

�
1þ

�
0.4 mHz

f

�
2
��

1þ
�

f
8 mHz

�
4
�
; ð20Þ

and for the OMS noise [27]

Ehx̃mijðfÞx̃m�
lm ðf0Þi ¼

1

2
δilδjmδðf − f0ÞSomsijðfÞ;

SomsijðfÞ ¼ ð15 pm=
ffiffiffiffiffiffi
Hz

p
Þ2 ×

�
1þ

�
2 mHz

f

�
4
�
: ð21Þ

This model assumes that individual noise components are
uncorrelated. In reality, the test masses in the same satellite
will share environmental noise, such as temperature fluc-
tuations, so this assumption might not hold. However, this
model serves as a reference one, and any variation is
captured by the flexible spline model previously presented.
As the LISA satellite constellation would ideally form an

equilateral triangle, we opted to address the arm-length
inequality by assuming that LISA experiences a small,
static distortion along any of the triangle’s normal modes,
as described in [36]. Reference [41] examines the impact of
these distortion modes and identifies which ones effectively
alter LISA in comparison to its nominal state. When
considering linear terms in the distortion, only the a mode,
bmode, and dilation mode (dmode) contribute to a change
in arm lengths. The dilation mode distorts LISA uniformly
in all directions, preserving the assumption of equal arm
lengths. On the other hand, the a mode and b mode
introduce a differential change between the arms while
maintaining the overall perimeter of the triangle at its
nominal value. Consequently, we focus solely on the a
mode and b mode, assuming these have amplitudes δa and
δb, while all other modes have zero amplitude.
One can then express the arm lengths Lij in terms of

these modes of the LISA triangle as

L12ðtÞ ¼ L

�
1þ 1

2
ð

ffiffiffi
3

p
δa − δbÞ

�
; ð22aÞ

L23ðtÞ ¼ Lð1þ δbÞ; ð22bÞ

L31ðtÞ ¼ L

�
1 −

1

2
ð

ffiffiffi
3

p
δa þ δbÞ

�
: ð22cÞ

The full expressions are rather long; thus, we give them in a
separateMathematica notebook file [42], and we plot them
in Figs. 2 and 3. The amplitude spectral density (ASD) and
CSDs are computed in terms of δa and δb. Indeed, while

L¼ ðL12 þL23 þL31Þ=3≈ 8.3 s is the average arm length,
the small parameters δa and δb are typically ∼0.005–0.009
for realistic ESA orbits2 [43].
We consider that the six test masses noise terms have the

same PSD as well as the six OMS noise terms, but this
suppresses the contribution in the CSD as visible in Fig. 3.
It was shown in [11] that if the levels of the noise terms
differ by 20%, then the CSD can be 10% of the PSD at low
frequencies and several tens of percent at high frequency.
This motivates the particular choice of flexible CSD model
that we introduced in Eq. (13), and it is illustrated in Fig. 4.

E. Signal transfer function

The detector response to a stochastic background can be
computed by expressing a GW signal as a superposition of
plane waves and by assuming that the LISA constellation
has static arm lengths and it is in a flat background
spacetime. Following [11], it is possible to show that the
component of the single-link measurement ηijðtÞ due to a
GW is given by

ηGWij ðtÞ¼ i
Z

∞

−∞

�
f
fij

e2πifðt−LijÞ

×
Z �

e−2πifk̂·x⃗i
X
A

ξAijðf;k̂Þh̃Aðf;k̂Þ
�
dΩk̂

�
df; ð23Þ

where i stands for imaginary component, fij ¼ ð2πLijÞ−1,
x⃗i denotes the position of satellite i, A ¼ þ;× denotes the
GW polarization, h̃Aðf; k̂Þ is the Fourier transform of the

FIG. 4. Real and imaginary part of splines-square root cross-
spectral density for the time delay interferometry channels AE,
Eζ, and Aζ considering test mass acceleration and optical
metrology noise assuming a constellation of three fixed unequal
arm lengths. This is the CSD model adopted in the analysis of this
paper. The expression can be found in Eq. (13).

2Note that the case δa ¼ δb ¼ 0 corresponds to the equal-arm
LISA scenario. In the paper, we used δa ¼ −0.005 and
δb ¼ 0.009.
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GW signal, f is the GW frequency, k̂ is the outward vector
in the direction of the incoming GW, and dΩk̂ is the
infinitesimal solid angle. The above expression quantifies
the fractional frequency shift due to a superposition of
plane waves coming from different directions k̂.
The term ξAij projects the incoming wave with polariza-

tion A onto the detector, and its functional dependence is
given by

ξAijðf; k̂Þ ¼ e−2πifk̂·L⃗ijMijðf; k̂ÞGAðk̂; l̂ijÞ; ð24Þ

where

Mijðf; k̂Þ≡ eπifLijð1þk̂·l̂ijÞsincðπfLijð1þ k̂ · l̂ijÞÞ ð25Þ

and

GAðk̂; l̂ijÞ≡ l̂aijl̂
b
ij

2
eAabðk̂Þ; ð26Þ

where l̂ij ¼ ðx⃗j − x⃗iÞ=jx⃗j − x⃗ij is a unit vector pointing
from spacecraft i to j and eAabðk̂Þ denotes the GW
polarization tensors.
For a homogeneous, isotropic, and nonchiral, stochastic

background, the GW signal is specified only statistically.
We assume the SGWB can be described as a Gaussian,
homogeneous, isotropic, and nonchiral background [11]
with zero mean and second moment given, respectively, by

hh̃Aðf; k̂Þh̃�Bðf0; k̂0Þi ¼ δðf − f0Þδðk̂ − k̂0ÞδAB
PAB
h ðfÞ
16π

and

hh̃Aðf; k̂Þh̃Bðf0; k̂0Þi ¼ 0:

Homogeneity and isotropy implies that PAB
h ðfÞ is diagonal,

whereas the nonchirality implies P××
h ¼ Pþþ

h , so that we
can define Ph ≔

P
A PAA

h . For a Gaussian background, the
second moment completely specifies the distribution. We
then characterize the response of the individual links to a
stochastic background statistically:

hη̃GWij η̃GWmn i ¼
1

2
Sη;GWij;mnðfÞδðf − f0Þ; ð27Þ

where spectral densities for the link measurements are
given by

Sη;GWij;mnðfÞ

¼ f2

fijfmn
e−2πifðLij−LmnÞ

X
A

PAA
h ðfÞϒA

ij;mnðfÞ; ð28Þ

with

ϒA
ij;mnðfÞ ¼

Z
dΩk̂

4π
e−2πifk̂·ðx⃗i−x⃗mÞξAijðf; k̂ÞξAmnðf; k̂Þ�: ð29Þ

The power spectral densities of the signal in the TDI
variables described in Sec. II D can then be computed from

hŨðfÞṼ�ðf0Þi ¼ 1

2
SGWUV ðfÞδðf − f0Þ;

SGWUV ðfÞ ¼
X

ij;mn∈ I

cUijðfÞcV�mnðfÞSη;GWij;mnðfÞ; ð30Þ

where Ũ and Ṽ denote any two TDI variables, which in our
case are TDI A, E, and ζ, and I ¼ f12; 13; 23; 21; 31; 32g
denotes the set of pairs of indices that define the six
intersatellite links. The coefficients cUij=mn map the single-
link measurements onto the TDI variable U. Refer to
the Mathematica code for the computation of such
coefficients [42].
Note that, considering each polarization of the SGWB

contributes equally to the background, i.e., P××
h ¼ Pþþ

h ,
we can rewrite Eq. (30) as a product of the SGWB spectral
density PhðfÞ and a transfer function T GWðfÞ which
takes into account the LISA detector response, i.e.,
SGWUV ðfÞ ¼ T GWðfÞPhðfÞ.
SGWUV ðfÞ would correspond to the first term on the right-

hand side of Eq. (5). The transfer functions for the three
TDI channels and their cross-correlation are shown
in Fig. 5.

F. SGWB signal models

There is a large variety of models for SGWBs that might
manifest in the LISA band [44]. In this work, we focus on
four models, which can be described by their energy
density h2ΩGW [45], which is a function of some param-
eters θ that vary depending on the model considered. The
fiducial parameters of the models are chosen to be
compatible with either physical phenomena or with direct
observational constraints from LIGO-VIRGO-KAGRA.
They are also chosen so that the signals are in the LISA
band, with the pivot frequency fixed to be in the middle of
the log-frequency range. This is an arbitrary choice, but it is
made so that the amplitude at this frequency is represen-
tative of the amplitude of the background where LISA is
most sensitive. In the first part of our analysis, we will vary
the amplitude to assess the degradation in the precision of
parameter estimation when including noise knowledge
uncertainty, across the full range of background models.
In the second part of our analysis, we will choose a fixed
value of the amplitude based on the SNR such that, given
the same SNR for all the models considered, we can
quantify what is the prior noise knowledge that we would
need to be able to estimate a certain model with sufficient
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precision. Nonetheless, we include reference values for the
amplitude to make a link to models described in the
literature. The notebook that we have used for running
all the analyses is available in [42] and can, therefore, be
tuned by the user for other research projects.
The four models used in our analysis are the following.
(i) Power law.

h2ΩGWðfÞ ≈ A

�
f
fp

�
n
; ð31Þ

where fp is the pivot frequency, defined as the
geometrical mean of the LISA frequency interval
(10−4 Hz, 0.1 Hz), fp¼ 3 mHz. The model param-
eters are the log amplitude A and slope n [46,47]. We
use reference values of n¼2=3 and A¼7.87×10−13,
representing a SGWB from stellar-origin black hole
binaries that have energy density at 1 mHz of
h2ΩGWð1mHzÞ¼3.78×10−13. This valuewas chosen
to be compatible with LIGO-VIRGO-KAGRA
constraints [46].

(ii) Gaussian bump.

h2ΩGW ¼ Ae−
1

2σ2
lnð f

fp
Þ2 ; ð32Þ

where fp is the pivot frequency as before. The model
parameters are the log amplitude A and width σ. We
use reference values of A ¼ 10−12.48 and σ ¼ 0.3
whose energy density at 1 mHz is h2ΩGWð1 mHzÞ ¼
4.05 × 10−16. This signal is chosen as a simpleway to
mimic the one that might arise from particle produc-
tion taking place for a limited number of e-folds
during inflation (as, for instance, required by some
models of primordial black hole generation) (see,
e.g., [48–50]).

(iii) Power law with running.

h2ΩGW ¼ A

�
f
fp

�
nþα lnð f

fp
Þ
; ð33Þ

where fp is the pivot frequency as before. The model
parameters are the log amplitude A the slope n, and
the running index α. We use reference values of
A ¼ 10−12.65, n ¼ 1, and α ¼ −0.1. This signal is
motivated by nonstandard inflationary models. For
example, gravitational wave generation can be
enhanced by sustained particle production during
inflation, leading to a power law stochastic GW
background, which would deviate from a simple
power law at a higher frequency when backreaction
kicks in (see, e.g., [51]). The energy density at
1 mHz is h2ΩGWð1 mHzÞ ¼ 6.61 × 10−14.

(iv) First-order phase transition (FOPT).

h2ΩGWðfÞ ¼ h2Ωp

�
f
fp

�
3
�

7

4þ 3ð f
fp
Þ2
�

n
; ð34Þ

where f ¼ 2 × 10−4 Hz (note this is different from
the reference frequency in the previous models). The
model parameters are the energy density h2Ωp and
spectral index n. We use reference values of A≡
h2Ωp ¼ 10−10 and n ¼ 7=2 whose energy density at
1 mHz is h2ΩGWð1 mHzÞ ¼ 2.59 × 10−12. This
signal is motivated by the production of sound
waves in the cosmic fluid from colliding phase
transition bubbles [52,53].

In our analysis, we also include the contribution to the
spectral density from the foreground of GBs.
We use the following model for the foreground [44].

FIG. 5. Upper panel: gravitational wave transfer functions
T GWðfÞ of the three time delay interferometry channels A, E,
and ζ assuming a constellation of three fixed unequal arm
lengths; lower panel: real and imaginary components of the
gravitational wave transfer functions T GWðfÞ of the time delay
interferometry channels AE, Eζ, and Aζ.
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(i) Foreground of galactic binaries.

SGBðfÞ ¼ AGB

�
f
Hz

�
−7
3

e−ðf=f1Þα

×
1

2

�
1þ tanh

�
fknee − f

f2

��
ð35Þ

with

f1 ¼ 10a1log10ðTÞþb1 ; fknee ¼ 10aklog10ðTÞþbk

setting A¼1.15×10−44; α¼1.56; a1¼−0.15; b1 ¼ −2.72;
ak ¼ −0.37; bk ¼ −2.49; f2 ¼ 6.7 × 10−4 Hz; and T is the
observation time. In reality, the foreground of galactic
binaries cannot be considered a stationary and isotropic
background. The reason is that this background is gen-
erated by an ensemble of binaries that are preferentially
distributed along the galactic plane. It is not stationary,
because LISA moves with respect to the Galactic Center.
For simplicity, we treat the galactic binary foreground as
stationary and isotropic here so that it can be included on
the same footing as the other backgrounds. We set the
background amplitude to a value averaged over a year [54].
The time dependence provides additional information
to distinguish the galactic background from other back-
grounds, so we expect this approach to be conservative, in
the sense that it will overestimate the amount of confusion.
When considering the background in conjunction with
other SGWBs, we allow the amplitude to vary but keep the
other parameters fixed.
The relation between the energy density ΩGW and the

stochastic GW background power spectral density PhðfÞ is
given by [45]

ΩGWðfÞ ¼
4π2

3H2
0

f3PhðfÞ; ð36Þ

where H0 is the Hubble constant fixed to be
67.8 km=s=Mpc; as a consequence, h ¼ 0.678. The con-
version between the energy density ΩGWðfÞ and gravita-
tional power spectral density PhðfÞ used to compute
Eq. (30) is then [45]

PhðfÞ ¼ 7.98 × 10−37
�
Hz
f

�
3

h2ΩGWðfÞ
1

Hz
: ð37Þ

We report in Fig. 6 the ASD of the four SGWB models
together with the ASD of the reference instrumental noise
in TDI channel A [27].
We also provide the computation of the SNRs of these

different backgrounds in the TDI channel A using the
following formula [55]:

SNRA ¼
ffiffiffiffi
T

p �Z
∞

0

SGWAA ðfÞ2
SAnðfÞ2

df

�
1=2

ð38Þ

with an observation period of T ¼ 4 yr. Here SGWAA ðfÞ is the
spectral density in channel A that can be computed from
Eq. (30), and SAn is the PSD of the A channel. The results3

are shown in Table I.
It is possible to notice that including the foreground as

part of the noise [SAnðfÞ ≔ SAGBðfÞ þ SAnðfÞ] leads to a
substantial decrease of the SNR for the FOPT background,
but the SNR does not change very much for the other
models.
We plot in Fig. 7 the value of the SNR in channel A

versus the energy density at 1 mHz for the different models.
The dotted lines assume no presence of the foreground,
whereas the continuous lines include the presence of the
foreground. As expected, there is a direct correlation
between increasing the energy density and an increase in
the SNR. Moreover, the presence of the foreground mostly

FIG. 6. Amplitude spectral density of the stochastic GW
background models and the amplitude spectral density of the
reference test mass and optical metrology noise in the time delay
interferometry channel A.

TABLE I. Signal-to-noise ratio in TDI channel A for the four
SGWB models, with and without the presence of the galactic
foreground as an additional noise component. The galactic
foreground here is considered to have an SNR of 1627.39.

SGWB model SNR w=o GB SNR w/ GB

Power law with running 14.54 13.35
Power law 48.70 42.89
Gaussian bump 13.51 11.65
First-order phase transition 118.68 64.18

3We note that this formula is derived assuming that we have
access to two independent channels that have uncorrelated noise
and perfectly correlated signals. This is not a good approximation
to LISA, so the SNR is not directly interpretable. However, it still
indicates the relative detectability of different backgrounds.
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affects the SNR of the FOPT. In fact, in the presence of the
foreground, the energy density must be 2 times larger to
have the same SNR as it would in the absence of a
foreground.

III. RESULTS

A. Impact of instrumental noise knowledge
uncertainty on SGWB recovery

Here, we explore how the measurement precision of the
SGWB parameters changes in the presence of instrumental
noise knowledge uncertainty, for each of the SGWB
models described in Sec. II F. We use the Fisher matrix
formalism described in Sec. II B, which assumes that the
noise is uncorrelated at different frequencies. We assume
we use three TDI channels in our analysis, A, E, and ζ, as
described in Sec. II D. We model uncertainties in the PSD
and CSD at each frequency following the model described
in Sec. II C. To build the Fisher matrix, we need the
following elements:
(1) The derivatives of the PSD and CSD at each

frequency with respect to the parameters of the
SGWB model;

(2) The derivatives of the PSD and CSD at each
frequency with respect to the parameter (amplitude)
of the galactic binaries—the addition of this param-
eter extends the dimension of the Fisher matrix
by one;

(3) The derivatives of the PSD and CSD at each
frequency with respect to the parameters of the
instrumental noise model—the instrumental noise
model is based on nine different splines: three
splines to model the PSD of A, E, and ζ and three

splines each for real and imaginary parts of the CSDs
for AE, Aζ, and Eζ. Each spline has several
parameters equal to the number of knots, which
we take to be 13. The total number of noise
parameters is, therefore, 9 × 13 ¼ 117;

(4) The evaluation of the Fisher matrix from these
elements using Eq. (8), which is summed over
frequency;

(5) The choice of a prior on the instrumental noise
parameters—we use a Gaussian prior, which is
implemented in the Fisher matrix formalism by
adding the prior matrix to the Fisher matrix before
computing its inverse [see Eq. (10)]. For this first
study, we take the priors on each noise parameter to
be independent, with zero mean and equal variance,
σinst. In this section, we fix log10ðσinstÞ ¼ 1, which
means we are allowing for up to an order of
magnitude uncertainty in the instrumental noise at
each frequency.

(6) We compute the inverse of the Fisher matrix after
adding the prior to obtain an estimate of the
measurement uncertainty, from the square root of
the diagonal elements of the inverse as explained in
Sec. II B. We also compute the inverse of the
SGWB-parameter-only submatrix of the Fisher ma-
trix, which represents the expected uncertainty in the
absence of instrumental noise uncertainties.

For each SGWB model, we will present the results in two
different ways. First, we will show the ratio of the
uncertainties in the SGWB parameters in the presence of
instrumental noise uncertainties to those uncertainties when
perfect knowledge of the instrumental noise is assumed.
These results illustrate the impact of a lack of noise
knowledge on SGWB characterization. Second, we will
show the actual uncertainties in the SGWB parameters, as
computed from the Fisher matrix. Of particular interest is
the uncertainty in the log-energy density of the background.
The criterion that we will use as a rule of thumb to

determine if a background is detectable will be that
Δ lnðAÞ≡ ðΔAÞ=A < 1. This is a generic criterion that
states that the uncertainty in the background amplitude is
smaller than the amplitude. As we expect the posterior to be
peaked close to the true amplitude and have a width
comparable to the measurement uncertainty, this condition
states that the posterior on the amplitude peaks significantly
far from 0, and so zero amplitude would be ruled out with
high confidence. In an analysis of real data, other tech-
niques would be used, such as computing the Bayesian
odds ratio for a model including the background to one
without. For this study, we need a quick way to evaluate
detectability, so we use this criterion which requires only
the computation of the Fisher matrix. Making a Gaussian
approximation to the likelihood, it can be seen that high
Bayesian odds are equivalent to Δ lnðAÞ < 1, up to factors,
and so our conclusions should be robust.

FIG. 7. Signal-to-noise ratio of four different SGWB signals in
the TDI channel A, power law, power law with running, Gaussian
bump, and first-order phase transition, versus the energy density
at 1 mHz, both considering (continuous lines) or not (dashed
lines) the presence foreground.

IMPACT OF THE NOISE KNOWLEDGE UNCERTAINTY FOR THE … PHYS. REV. D 109, 042001 (2024)

042001-11



Our results will be presented as a function of the
background amplitude (the background energy density)
at a reference frequency of 1 mHz [the logarithm of these
quantities are linearly related, so they can be easily
represented using bottom (top) axes in a single figure].
For the second type of plot, solid lines show results in the
presence of noise knowledge uncertainty, and dashed lines
give results assuming perfect noise knowledge. In both
analyses, we consider the foreground amplitude to vary,
and we consider it as an additional source of noise together
with the instrumental noise. The upcoming analysis is then
computed considering the presence of the Galactic fore-
ground; instead, in Appendix C, we report similar results,
computed without taking into consideration the Galactic
foreground.

1. Power law

A power law SGWB is described by two parameters: the
slope and the amplitude. The full Fisher matrix, including
instrumental noise and foreground parameters, is 120 × 120.
Figure 8 shows the results computed for this model. We

see that, in the presence of instrumental noise uncertainties,
the uncertainty in the SGWB parameters increases by a
factor of ∼55–60, with the uncertainty in the slope being
slightly more affected than that of the amplitude. The
increase is lower for high background amplitudes, as
expected, but only when the background is 1–2 orders
of magnitude brighter than the reference value. Considering
the raw uncertainties, we see that the uncertainty in the log-
energy density is typically a factor of ∼50 larger and the
background energy density would have to be a factor of
∼50 times higher to be characterized with the same
measurement precision when there is instrumental noise
uncertainty as it could be without those uncertainties.
However, a background with amplitude equal to the
reference value, which has the SNR listed in Table I,
should (just) be detectable even allowing for confusion
with instrumental noise mismodeling.

2. Power law with running

For the power law with running SGWB, the fisher matrix
is 121 × 121, as the SGWB model depends on three
parameters: slope, amplitude, and running index α. The
results for this model are shown in Fig. 9. In this case, we
see that the uncertainties in the SGWB parameters increase
by a factor of ∼30–75, with the uncertainty on the
amplitude being most affected in this case. Once again,
the relative increase in the uncertainty is somewhat lower at
higher background amplitudes. The lower panel in Fig. 9
shows that the background is not detectable at the reference
amplitude, which has the SNR listed in Table I. An energy
density ∼20 times higher would be required for detection.
In general, the background has to have an energy density
∼60 times higher to be characterized with the same
measurement precision when there is instrumental noise

uncertainty as it could be without those uncertainties, and
there is a similar increase in the parameter measurement
uncertainty at fixed background energy density.

3. Gaussian bump

As for the power law, the Fisher matrix is 120 × 120 as
we have two signal parameters: the Gaussian width and the
amplitude. The results for this model are shown in Fig. 10.
In this case, the degradation in the precision of parameter
measurement is a factor of ∼2–8 when allowing for a lack
of knowledge of the instrumental noise. This difference in
behavior is related to the different shapes of the SGWBs
being considered. A Gaussian is more distinct from the
spline model being used to represent the instrumental noise
uncertainties than a power law, and, hence, the degree of
confusion between the two models is less in this case. From
the lower panel in Fig. 10, we see that the energy density in

FIG. 8. Results for the power law SGWBmodel considering the
foreground as an additional source of noise. The upper panel
shows the ratio of the uncertainties of the SGWB parameters
(amplitude and slope) when including instrumental noise un-
certainties or assuming perfect noise knowledge. This ratio is
plotted versus the amplitude (bottom axis) and SGWB energy
density at 1 mHz (top axis). The lower panel shows the estimated
parameter uncertainties for the two cases. Once again this is as a
function of amplitude or energy density, but for a restricted range.
The horizontal red dashed line corresponds to an uncertainty of
one, which is our threshold on the uncertainty in log-energy
density for deciding that a background is detectable. The vertical
red dashed line indicates the reference SGWB amplitude given
in Sec. II F.
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a Gaussian bump SGWB has to be a factor of ∼10 times
higher for it to be characterized with the same measurement
precision when there is instrumental noise uncertainty as it
could be in the absence of those uncertainties. A Gaussian
bump background at the reference amplitude, which has the
SNR listed in Table I, would be detectable; and the width of
such a Gaussian could be measured to a few tens of percent
precision. This measurement precision improves approx-
imately linearly with the background energy density.

4. First-order phase transition

The FOPT model is again characterized by two param-
eters, an amplitude and a spectral index, and has a
120 × 120 Fisher matrix. The results for this model are
shown in Fig. 11. When allowing for instrumental noise
knowledge uncertainties, the precision with which the
SGWB log-energy density can be characterized degrades
by a factor of ∼20. The degradation in the determination of
the spectral index is even larger,∼35. Once again, to achieve
the same measurement precision, the background energy
density would have to be∼20 times larger than it would need
to be in the absence of noise knowledge uncertainties.
Nonetheless, a FOPTbackground at the reference amplitude,
which has the SNR listed in Table I, would still be detectable
and provide a measurement of the spectral index at the level
of ∼�0.8.
The previous findings were derived while accounting for

the presence of the Galactic foreground. Redoing these

FIG. 9. As in Fig. 8, but now for the power law with running
SGWB model.

FIG. 10. As in Fig. 8, but now for the Gaussian bump SGWB
model.

FIG. 11. As in Fig. 8, but now for the first-order phase
transition SGWB model.
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analyses ignoring the foreground, we do not see big
differences in the uncertainty ratio nor in the absolute
uncertainties, when these are compared at fixed SNR, i.e.,
when the signal-to-noise ratio is recomputed without the
Galactic binaries included in the spectral density. To
illustrate this, we show in Fig. 12 the precision of the
measurement of the log-energy density of the background,
as a function of the SNR in TDI channel A for all SGWB
models, and both including and not including the Galactic
binary foreground. We see that the uncertainty is typically
larger when the foreground is present, but this is typically
less than a factor of a few. The Gaussian bump and power
law background are most affected. The uncertainty at fixed
SNR and the SNR required for detection both decrease by a
factor of a few when the Galactic binary background is
removed from the spectral density. For the Gaussian bump,
the uncertainty decreases by a factor of a little more than 2
when the Galactic background is excluded. Moreover,
the SNR needed to reach the Δ lnðAÞ < 1 threshold for
detection decreases by a similar factor. For the power law,
the uncertainty decreases by about a factor of 4, and the
Δ lnðAÞ < 1 threshold required for detection is reached at
an SNR that is a factor of ∼4 smaller. For the power law
with running and the FOPT backgrounds, the uncertainty at
fixed SNR is almost unchanged, and the threshold SNR for
detection is within a factor of 1.5 and 2, respectively.
This behavior can be understood by looking at the shapes

of the various SGWBs in Fig. 6. Figure 7 demonstrates that
the removal of the foreground does not affect the SNR very
much. The only SGWB that shows a significant change is
the FOPT, for which most of the power is at frequencies
where the foreground is significant. However, in the region
around 300 μHz, where the majority of the SNR is
generated, the shape of the FOPT is very different from
the foreground. This is also true for the power law with a

running model around 5 mHz, where the majority of its
SNR is generated. The power law model, on the other hand,
is quite parallel to the foreground at low frequency, and the
Gaussian bump is quite parallel to the foreground at a few
millihertz. This most likely explains why the latter two
backgrounds are more difficult to distinguish from a
Galactic foreground and, therefore, more affected by its
inclusion.

B. Setting a noise knowledge requirement

In this section, we will explore how the amount of
uncertainty in the instrumental noise impacts the results. In
practice, we will not be completely ignorant of the
instrumental noise. Measurements on board the satellites
will indicate the size of certain noise components. In
principle, it might therefore be possible to place a require-
ment on how well the instrumental noise must be known to
not degrade the science output of the mission. To assess
this, we will recompute the results while changing the
variance of the Gaussian prior to the instrumental noise
spline parameters. We will vary the prior on the spline
weights from very small values [log10ðσinstÞ ¼ −10], rep-
resenting near-perfect knowledge of the noise, to very high
values log10ðσinstÞ ¼ 6, representing no knowledge of
the noise.
We fix the amplitude of the background for each SGWB

model so that it corresponds to an SNR of ∼120–142 in
each case: 135 for the power law with running, 138 for the
power law, 142 for the first-order phase transition, and 120
flor the Gaussian bump. This choice of SNR was motivated
by Fig. 12, which shows that an SNR greater than 100 is
required to ensure all types of SGWB are detectable. For
the case of the power law, we also show results with the
amplitude set to the reference energy density, which shows
that the exact choice of background amplitude does not
make a significant difference to the qualitative behavior,
only to the absolute value of the uncertainty.
For all SGWB models, we again present the results in

two different ways: as a ratio of the SGWB parameter
measurement uncertainties when instrumental noise uncer-
tainties are considered to those assuming perfect noise
knowledge and as the absolute measurement uncertainty.
Results for the power law model are shown in Fig. 13, for
the power law with running model in Fig. 14, for the
Gaussian bump model in Fig. 15, and for the FOPT
in Fig. 16.
The results for all four SGWB models are qualitatively

similar. For very low prior uncertainties, the ratio of the
uncertainties tends to be unity. This is expected, as this limit
corresponds to the limit in which the instrumental noise is
perfectly known. As the prior uncertainty is increased
beyond ∼10−6, the measurement precision in the presence
of noise knowledge uncertainties starts to increase. When
the noise knowledge uncertainty reaches ∼10−2 for
power law and Gaussian bump, ∼10−1 for power law with

FIG. 12. Signal-to-noise ratio of four different SGWB signals in
the TDI channel A, power law, power law with running, Gaussian
bump, and first-order phase transition versus the error in log
amplitude both considering (continuous lines) or not (dashed
lines) the presence foreground.
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running, and 10 for FOPT, the measurement precision ratio
saturates. This final value reflects the expected uncertainty
in the absence of any noise knowledge. The results given in
Sec. III A were all computed in this regime.
The main conclusion from these results is that if we

wanted to ensure that there was no degradation in LISA
science due to lack of noise knowledge, the requirement on
the noise knowledge would be ≪10%.
In the LISA Pathfinder mission, which was designed to

accurately characterize the free-fall performance of test
masses in a space-based environment, the observed noise
could be explained only within some margin: The physical
origin of the measured submillihertz acceleration is only
partially understood, as more than 50% of its PSD is still
unmodeled [28,56].
It is therefore unrealistic to expect that a noise require-

ment at the ∼1%–10% level could be met. At noise
uncertainties above this threshold, there is little difference
between some and no noise knowledge, at least within the
model for instrumental noise variations considered here.
We conclude that no useful and achievable noise knowl-
edge requirement could be implemented in practice.
While we will not be able to achieve the precision that

would be possible under ideal circumstances, it is important
to emphasize that this does not mean we will not be able to

FIG. 13. As in Fig. 8, but now for fixed background amplitude
and varying the variance of the Gaussian prior on the instrumental
noise spline model. This plot is for a power law background, and
the amplitude has been fixed such that the SNR in TDI channel A
is 138 (continuous line) and 42.89 (dashed lines).

FIG. 14. As in Fig. 13 but now for the power law with running
model. The background amplitude has been fixed to give an
overall SNR of 135.

FIG. 15. As in Fig. 13 but now for theGaussian bumpmodel. The
background amplitude has been fixed to give anoverall SNRof 120.
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detect and characterize modeled SGWBs. In all cases, at
SNR of ≳100, the amplitude can be constrained to a few
tens of percent, even without any knowledge of the
instrumental noise.

C. Signal reconstruction

To finish this section, we will use our Fisher matrix
results to illustrate how well we can reconstruct the power
law, the foreground, and the instrumental noise. To do this,
we will approximate the posterior distribution on the model
parameters using a multivariate Gaussian with a covariance
matrix equal to the inverse of the Fisher matrix. We can
then take random draws from this fake4 posterior distri-
bution and plot the PSD of the SGWB, the foreground, and
instrumental noise corresponding to the drawn parameters.
In Fig. 17, we follow this procedure for a power law signal
with an SNR of 138 as in the previous section. In
Appendix C 5, we report the results for the reconstruction
of a power law signal with SNRs of 48 and 971 to illustrate
the impact of a smaller and bigger amplitude, respectively,
on the results.

FIG. 16. As in Fig. 13 but now for the FOPT model. The
background amplitude has been fixed to give an overall SNR
of 142.

FIG. 17. We show the power law signal, noise ASDs, and
Galactic binaries corresponding to random draws from the
posterior, approximated using the Fisher matrix as described
in the text. In each panel, the curves correspond to the three TDI
channels: A (red), E (purple), and ζ (blue). The upper first panel:
reconstructed SGWB; the upper second panel: reconstructed TM
and OMS instrumental noise; the middle panel: reconstructed
Galactic binaries; the lower panel: total reconstructed ASD
(signalþ noiseþ GB). Note that the TDI combinations A and
E are overlapping.

4Even if the measurements x are Gaussian, the posterior is not,
because it is a function of θ. A Gaussian with unknown variance σ
is not a Gaussian on that variance; pðxjθÞ ∝ 1

σ expð− x2

2σ2
Þ is a

Gaussian in x but not in σ.
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The four panels show the reconstructed ASDs for the
power law, for the foreground, and for the instrumental
noise and the total, which is the sum of the three.
What we would expect is that our ability to measure the

total spectral density is roughly independent of the relative
amplitudes of the two components, since this is what we see
and measure in the data. Our model attempts to split that
measurement into constituent components. If one of those
components is much weaker than the other, we would not
expect to recover it as well as when the components are
making comparable contributions to the data. Figure 17 is
consistent with this expectation, as it shows the Galactic
binaries are well recovered in comparison with the power
law signal or the noise, both of which show more
uncertainty. Moreover, the noise-only reconstruction for
the TDI A and E suffers from the presence of the GW
background and foreground in the regime 0.4–4 mHz,
where these two signals have the majority of power. As a
final point, it is clear that the SGWB is best constrained
around a frequency of 4 mHz, where the power of the GB is
less and the uncertainty in the instrumental noise is also the
largest (although still small) at this point. This can be
understood from Fig. 6, which shows that the power law
background is closest to the instrumental noise ASD at that
frequency and the Galactic binaries pick at 1 mHz, and so
this frequency range dominates the SNR in the signal. We
expect to be able to measure the background best in the
frequency range where it is most dominant relative to the
instrumental noise and distinguishable from the Galactic
binaries.

IV. DISCUSSION AND CONCLUSION

We have explored the impact of noise knowledge
uncertainty on measuring the parameters of various mod-
eled stochastic gravitational wave backgrounds. This was
done by modeling instrumental noise uncertainties using
cubic splines to represent deviations away from the design
PSDs and CSDs for the three TDI channels A, E, and ζ. We
then used a Fisher matrix analysis to evaluate the expected
uncertainties in the measurements of the model parameters
when fitting a model including the instrumental noise
uncertainties and compared it to fitting a model without
those uncertainties. The degree of uncertainty was char-
acterized by including a Gaussian prior on the instrumental
noise parameters, allowing us to quantify the impact of
imposing a requirement on our noise knowledge.
This analysis showed that, for all SGWB models,

allowing for instrumental noise uncertainties leads to a
significant increase in the uncertainty in our measurements
of the background parameters. The increase in uncertainty
was a factor of 2–8 for the Gaussian bump model, which
reduces to 2–4when not includingGB as foreground, 55–60
for the power law (15–30without GB as foreground), 20–35
for the first-order phase transition (20–50 without GB as
foreground), and 30–75 for the power law with running

(20–75 without GB as foreground). These increased uncer-
tainties correspond to the threshold background energy
density required for detection increasing by a factor of 10
(5 without GB) for the Gaussian bump model, a factor of 60
with andwithoutGB for the powerwith running, and a factor
of 20 with and without GB for all other models (50 for the
power law when including GBs). The threshold energy
density at 1 mHz at which the backgrounds start to be
detectable are 4 × 10−13, 4 × 10−13, 2 × 10−16, and 10−12

(10−13, 2.5 × 10−13, 8 × 10−17, and 5 × 10−13 if we do not
include the GB foreground) for the power law, power law
with running, Gaussian bump, and FOPT models, respec-
tively. Comparing these to the reference background ampli-
tudes introduced in Sec. II F, we see that the power law, the
Gaussian bump, and FOPT backgrounds are detectable at
the reference amplitudes, while the power law with running
is not, as the threshold energydensity is 1.5 times higher than
the reference. However, for this latter background, the
amplitudes were specified based on the SNR and not on a
physical model. The reference amplitudes for the power law
and FOPT backgrounds are based on physical model
predictions, so it is more important that these backgrounds
are still detectable. We note that this result does depend on
the particular choice of the model we used for representing
the instrumental noise uncertainty. If this model is made
evenmore flexible, for example, by increasing the number of
spline knots used, the threshold would increase further
and potentially also make the reference backgrounds
undetectable.
When we vary our assumed level of knowledge of the

instrumental noise, we find that the uncertainties on the
SGWB parameters show a similar trend for all models,
starting to degrade at relatively small uncertainties, increas-
ing, and then saturating after a certain point. The point at
which the sensitivity starts to degrade is when the uncer-
tainty in the log-spectral density of the noise reaches
∼10−6 − 10−5, depending on the SGWB model. The
uncertainty saturates at log-spectral density uncertainties
of ∼10−2, 10−1, 10−2, and 101 (10−2, 10−1, 10−3, and 10−1

in the absence of the GB foreground) for the power law,
power law with running, Gaussian bump, and FOPT
backgrounds, respectively. This means that if we wanted
to limit the degradation in the science that arises from lack
of noise knowledge, we would have to impose a very
stringent requirement on our knowledge of the noise. This
is likely to be impossible to implement in practice, so we
will have to accept that our ability to resolve SGWBs will
not be as good as calculations that assume perfect noise
knowledge prediction.
It is important to note that these results are based on

some assumptions which might not hold in practice. In
particular, we have considered only modeled SGWBs,
and we have assumed a particular form for variations in
the PSD that forces variations to be smoothly varying as a
function of frequency. We have also run additional tests for
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completeness, which are not reported in the paper for
reasons of conciseness, wherewe have increased the number
of knots. Increasing the number of knots provides a more
flexible instrumental noise model, allowing potentially
faster variations of the PSD as a function of frequency.
This leads to a degradation in the estimation of the log-
energy density of the SGWB components. It is the distin-
guishability of the models that allows us to measure the
parameters of the SGWBs. In the extreme picture where we
do not want to make any assumption at all about the form of
the instrumental or SGWB spectral densities, then spectral
separation will not be possible. We will be able to report
measured power spectral density in all channels, and cross-
spectral densities between them, and translate these into
upper limits on the SGWB amplitude, but any interpretation
of this as an actual detection will require independent
confirmation from another detector [16].
All previous studies of the separation of instrumental

noise and stochastic backgrounds have required assump-
tions: In [25], it was assumed that the instrumental
uncertainty is a spline and that the SGWB has a power
law spectrum; in [11], it was assumed that the instrumental
noise is determined by 12 individual noise levels; and in
this paper, we are assuming something similar to [25],
although with a bit more flexibility, a wider variety of
SGWB models and a different noise model for single
satellite links. The SGWBinner [7] is agnostic on the
spectrum of the background, but it can work only because it
assumes a specific model for the instrumental noise. That is
not going to be possible in practice. SGWBinner could be
adapted to use a more flexible noise model, similar to the
model used here, but the precision of the background
recovery will be degraded. If we have a completely general
instrumental noise model and a completely general SGWB
model, then we will not be able to separate them. In that
case, the only hope would be that the SGWB is above the
design sensitivity, and we trust that the instrumental noise
meets the mission requirements, in which case the best
interpretation of such an observation would be an SGWB.
However, even then an assumption would be made that the
mission had met the design sensitivity requirements.
An exploration of how our ability to separate instrumental

noise from SGWB, as the spectral models of the SGWB and
the instrumental noise aremademore complicated, should be
the focus of future work. Moreover, there are a couple of
issues that we have not explored in this paper which should
also be the subject of future studies. First, we have ignored
the possible presence of correlations across frequencies in the
stochastic background spectra. Such correlations could arise
fromnonstationarities or nonstandard physics. In general, we
would expect that well-modeled correlations could help to
break degeneracies and, hence, improve the precision of
parameter estimation. An example of a well-modeled non-
stationarity would be the time dependence of the Galactic
binary background. Accounting for unmodeled stationarities

would introduce additional model parameters, fitting for
which would tend to reduce the precision of parameter
estimation of the original parameters, so this would probably
make the sensitivity somewhat worse. In this paper, we did
consider one type of correlation, which was the correlation
between the instrumental noise in different TDI channels.
The inclusion of this had little impact on the precision of
parameter estimation, because we limited the size of the
correlation to 10% of the uncorrelated noise level. This limit
was well motivated, but if much larger correlations were
present, in either the instrumental noise or astrophysical
background, we would expect to see degradation in param-
eter estimation precision. Another simplification that was
made in the analysis presented in this paper was that we
considered only one type of stochastic background at a time,
while the LISA data could contain backgrounds with several
different origins. A realistic scenario would be that the data
include backgrounds from Galactic binaries, stellar-origin
black holes, and one or more cosmological stochastic
backgrounds. A full analysis of LISA data would have to
include the possibility of fitting multiple backgrounds at the
same time, ideally in a flexible way that allows the number
and properties of the backgrounds to be automatically
adapted to the observed data. In general, we would expect
fitting multiple backgrounds to lead to the precision of
parameter estimation for each background to degrade.
However, the amount of degradation will depend on the
degree of similarity of the shapes of the different back-
grounds. We saw the effect of this when removing the
Galactic binary foreground (see Appendix C for details).
Figure 12 shows that the biggest effect of removing the
foreground is for the Gaussian bump and power law back-
grounds. These are the backgrounds that lookmost similar to
the Galactic background in the frequency range where most
of the SNR is accumulated. We would expect this to be
generally true—if we are fitting multiple backgrounds that
have similar spectral shapes, there will be bigger degener-
acies than when fitting more distinct backgrounds. Further
studies would be required to obtain a quantitative assessment
of the amount of degradation arising from this and the
correlations discussed in the previous paragraph.

Note added. In [57], it is used a known spectral shape for
the noise, with a frequency-independent uncertainty on its
amplitude in the range 1% to 20%, and they remain fully
agnostic on the signal. The authors also compute lower
bounds on the signal amplitude as a function of the
uncertainty on the noise amplitude in a set of frequency
bins such that it be detectable with a Bayes factor greater
than 100.
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APPENDIX A: LIKELIHOOD DERIVATION

Wederive the likelihood starting from the noise properties
and explain why it takes the form shown in Sec. II. If we
assume that the real-time series nðtÞ is a stationary, zero-
mean, Gaussian, and ergodic random process, then the
Fourier transform of the noise ñk ¼ ñðfkÞ at each frequency
fk is normally distributed with zero mean and variance σ2k.
Thus, the natural log-likelihood at each frequency takes the
form of a two-dimensional normal distribution

lnpðñkÞ¼−
1

2

�
Re½ñk�2

σ2k
þ Im½ñk�2

σ2k

�
−
1

2
ln½ð2πσ2kÞ2�; ðA1Þ

wherewe assumed that the real Re and imaginary Im parts of
the noise are not correlated and have the samevariance. If we
further assume that the variance of the noise at different
frequencies follows a one-sided power spectral density
SnðfÞ, then

hñ�ðf0ÞñðfÞi ¼ 1

2
SnðfÞδðf − f0Þ; ðA2Þ

hñðf0ÞñðfÞi ¼ 0; ðA3Þ

where we used the expectation value of hi over the data-
generating process. For a set of frequencies, the first relation
can be written as

hñ�kñji ¼
T
2
SnðfkÞδjk: ðA4Þ

Therefore, the variance of the real and imaginary parts of the
noise is given by

hRe½ñk�2i ¼ hIm½ñk�2i ¼
T
4
SnðfkÞ ¼ σ2k: ðA5Þ

We can write the natural log-likelihood for all the measured
frequencies as

X
k

lnpðñkÞ ¼ −
Xn
k¼1

ln

�
2π

T
4
SnðfkÞ

�
−
1

2

Xn
k¼1

jñðfÞj2
T
4
SnðfkÞ

;

ðA6Þ
which becomes in the continuum limit

lnpðñÞ ¼ − ln

�
2π

1

4
det½SnðfÞδðf − f0Þ�

�

−
1

2
4

Z
∞

0

jñðfÞj2
SnðfÞ

df: ðA7Þ

Note that in the continuum limit the variance of the noise can
be thought of as an operator. One can define the inner
product

ðaðtÞjbðtÞÞ

¼ 4Re
Z

∞

0

Z
∞

0

ã�ðfÞΣ−1ðf; f0Þb̃ðf0Þdfdf 0 ðA8Þ

with Σ−1 defined through the relation
Z

∞

0

Σ−1ðf; f0ÞΣðf0; f00Þdf 0 ¼ δðf − f00Þ; ðA9Þ

where, if we set in Eq. (A9) that Σðf0; f00Þ ¼
δðf0 − f00ÞSnðf0Þ, we obtain

Σ−1ðf; f00ÞSnðf00Þ ¼ δðf − f00Þ ðA10Þ
and the inner product becomes

ðaðtÞjbðtÞÞ ¼ 4Re
Z

∞

0

Z
∞

0

ã�ðfÞδðf − f0Þb̃ðf0Þ
Snðf0Þ

dfdf 0

¼ 4Re
Z

∞

0

ã�ðfÞb̃ðfÞ
SnðfÞ

df: ðA11Þ

APPENDIX B: FISHER MATRIX DERIVATION

1. Single detector

To compute the Fisher matrix of Eq. (7), we need the first
derivative of the log-likelihood l with respect to the
parameters of the power spectral density.
Here, we present the derivation of the Fisher matrix for

the noise parameters λ⃗ affecting the one-sided spectral
density Snðfjλ⃗Þ, but this can be easily extended also
including the gravitational wave background parameters
Snðfjλ⃗Þ → Snðfjλ⃗Þ þ SGWðfjθ⃗Þ. We differentiate the log-
likelihood of Eq. (A6) with respect to the parameters λ⃗:

∂l
∂λi

¼
Xn
k¼1

�
−

1

SnðfkÞ
∂SnðfkÞ
∂λi

þ1

2

jñðfkÞj2
T
4
SnðfkÞ2

∂SnðfkÞ
∂λi

�
; ðB1Þ
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where we have omitted the dependency on λ⃗ to have a
lighter notation. The second derivative of the likelihood
is then

∂
2l

∂λi∂λj
¼

Xn
k¼1

�
1

S2nðfkÞ
∂SnðfkÞ
∂λi

∂SnðfkÞ
∂λj

−
1

SnðfkÞ
∂
2SnðfkÞ
∂λi∂λj

−
1

2

2jñðfkÞj2
T
4
SnðfkÞ3

∂SnðfkÞ
∂λj

∂SnðfkÞ
∂λi

þ 1

2

jñðfkÞj2
T
4
SnðfkÞ2

∂
2SnðfkÞ
∂λj∂λi

�
; ðB2Þ

using the definition of Eq. (A4) the second and last terms
cancel, and we get

Γij ¼
Xn
k¼1

1

SnðfkÞ2
∂SnðfkÞ
∂λi

∂SnðfkÞ
∂λj

: ðB3Þ

If we want to get the continuum limit, we need to recast a
factor of Tdf:

Γij ¼ T
Z

∞

0

1

SnðfÞ2
∂SnðfÞ
∂λi

∂SnðfÞ
∂λj

df: ðB4Þ

2. Multiple detectors: Real and imaginary part
as separate random variables

If we want to generalize our derivation to multiple
detectors or channels, we need to define the noise proper-
ties of each channel. For simplicity, let us consider two
channels A and E with four independent random variables
XðfkÞ ¼ Xk ¼ fRe½X̃A

k �; Im½X̃A
k �;Re½X̃E

k �; Im½X̃E
k �g at each

frequency fk. Since the final likelihood will be given by
the product over all the frequencies, we consider only one
frequency and we drop the subscript “k.” We can specify
the spectral densities of each channel and the cross-spectral
densities with

hX̃c�ðf0ÞX̃cðfÞi ¼ 1

2
ScðfÞδðf − f0Þ; ðB5aÞ

hX̃cðf0ÞX̃cðfÞi ¼ 0; ðB5bÞ

hX̃E�ðf0ÞX̃AðfÞi ¼ 1

2
S�AEðfÞδðf − f0Þ; ðB5cÞ

hX̃A�ðf0ÞX̃EðfÞi ¼ 1

2
SAEðfÞδðf − f0Þ; ðB5dÞ

hX̃Aðf0ÞX̃EðfÞi ¼ 0; ðB5eÞ

where the first two rows are valid for both channels c ¼ A,
E and Sc is real and SAE is complex. From the above
expression, we can deduce for the discrete case

hRe½X̃c�Re½X̃c�i þ hIm½X̃c�Im½X̃c�i ¼ T
Sc
2
; ðB6aÞ

hRe½X̃c�Re½X̃c� − Im½X̃c�Im½X̃c�i ¼ 0; ðB6bÞ

hRe½X̃c�Im½X̃c�i ¼ 0; ðB6cÞ

hRe½X̃A�Re½X̃E�i þ hIm½X̃A�Im½X̃E�i ¼ T
Re½SAE�

2
; ðB6dÞ

hRe½X̃A�Re½X̃E�i − hIm½X̃A�Im½X̃E�i ¼ 0; ðB6eÞ

hRe½X̃A�Im½X̃E�i − hIm½X̃A�Re½X̃E�i ¼ T
Im½SAE�

2
; ðB6fÞ

hRe½X̃A�Im½X̃E�i þ hIm½X̃A�Re½X̃E�i ¼ 0; ðB6gÞ

where T is the observation time and in the first three rows
c ¼ A, E. Note that these are in total ten independent
conditions (three equations for A, three equations for E, and
four equations for AE) that specify uniquely the ten
independent elements of a symmetric covariance matrix.
For a single frequency, we can generalize the likelihood

to two channels:

pðXÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2×Nc detðTΣÞ

p e−
1
2TX

⊺Σ−1X; ðB7Þ

where Nc ¼ 2 is the number of channels, X is a four-
dimensional vector defined above, and Σ is the multiple-
channels covariance matrix:

Σ ¼

0
BBBBBB@

SA
4

0
ReðSAEÞ

4

ImðSAEÞ
4

0 SA
4

ImðSAEÞ
4

ReðSAEÞ
4

ReðSAEÞ
4

ImðSAEÞ
4

SE
4

0

ImðSAEÞ
4

ImðSAEÞ
4

0 SE
4

1
CCCCCCA
; ðB8Þ

where each element is evaluated at a fixed frequency. It can
be shown that the expectation value of the argument of the
exponential X⊺Σ−1X=T equals the degrees of freedom, in
this case, 4. We have two channels, where each one has two
degrees of freedom associated with the real and imaginary
part of X̃.
We can then derive the Fisher matrix for the multiple-

channel case. Taking the first derivative of the log-likelihood

∂ lnpðXÞ
∂λi

¼ −
1

2

1

detðΣÞ
∂ detðΣÞ

∂λi
−

1

2T
X⊺ ∂Σ

−1

∂λi
X; ðB9Þ
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where we can use the following property of the determinant:

∂ detðΣÞ
∂λi

¼ detðΣÞTr
�
Σ−1 ∂Σ

∂λi

�

¼ detðΣÞ½Σ−1�lm
�
∂Σ
∂λi

�
ml

ðB10Þ

to obtain

∂ lnpðXÞ
∂λi

¼ −
1

2
½Σ−1�lm

�
∂Σ
∂λi

�
ml

−
1

2T
X⊺ ∂Σ

−1

∂λi
X: ðB11Þ

Then, the second derivative of the log-likelihood takes the
form

∂
2 lnpðXÞ
∂λi∂λj

¼ −
1

2

∂ðΣ−1Þlm
∂λi

∂Σml

∂λj

−
1

2
Σ−1
lm

∂
2Σml

∂λi∂λj
−

1

2T
X⊺ ∂

2Σ−1

∂λiλj
X: ðB12Þ

We can take the expectation value of the previous
expression and obtain the Fisher matrix for a single
frequency with

Γij¼
1

2

�
∂Σ−1

lm

∂λi
∂Σml

∂λj
þΣ−1

lm
∂
2Σml

∂λi∂λj
þΣml

∂
2ðΣ−1Þlm
∂λiλj

�
; ðB13Þ

where we have considered hX⊺
l
∂
2Σ−1

lm
∂λiλj

Xmi 1
T ¼ ∂

2Σ−1
lm

∂λiλj
Σml. If we

use the property

∂ðΣÞ−1lm
∂λ

¼ −ðΣÞ−1ln
∂ðΣÞnq
∂λ

ðΣÞ−1qm; ðB14Þ

we obtain the following expression:

Γij ¼
1

2
Tr

�
−Σ−1 ∂Σ

∂λi
Σ−1 ∂Σ

∂λj
þ Σ−1 ∂

2Σ
∂λi∂λj

þ Σ
∂
2Σ−1

∂λi∂λj

�
;

ðB15Þ

which can be further simplified if we use the following
properties:

∂ðΣΣ−1Þ ¼ 0; ðB16aÞ

∂ΣΣ−1 þ Σ∂Σ−1 ¼ 0; ðB16bÞ

∂
2ΣΣ−1 þ 2∂Σ∂Σ−1 þ Σ∂2Σ−1 ¼ 0; ðB16cÞ

∂
2ΣΣ−1 − 2∂ΣΣ−1

∂ΣΣ−1 þ Σ∂2Σ−1 ¼ 0: ðB16dÞ

Note that, in the above expression, the first and last terms of
Eq. (B16d) correspond to the last two terms in the Fisher
matrix expression (B15). The final expression for all

frequencies can be easily obtained by taking the sum over
all the frequencies:

Γij ¼
1

2

Xn
k¼1

�
ðΣ−1

k Þlr
∂Σrp

k

∂λi
ðΣ−1

k Þpm
∂Σml

k

∂λj

�
: ðB17Þ

Note that there is an additional factor of 1=2 with respect to
Eq. (B3). If we insert only the first two columns and rows of
Σ, we obtain the previous equation for the single channel as
expected.

3. Multiple detectors: Complex random variables

Equivalently, the likelihood can be written in terms of
complex variables X̃A and X̃E [58]:

pðX̃A; X̃EÞ ¼
e−

1
Tð½X̃A;X̃E�HΣ−1½X̃A;X̃E�Þ

ð2πÞNc detðTΣÞ ; ðB18Þ

where “H” indicates the Hermitian conjugate, the factor of
1=2 disappeared because it is a complex distribution and
must match Eqs. (B7) and (B8), and the new complex
covariance matrix is defined as

Σ ¼ 1

2

�
SA SAE
S�AE SE

�
; ðB19Þ

where Σ is now a Hermitian matrix and can be obtained
from the conditions imposed in Eqs. (B5). The expectation
value of ð½X̃A; X̃E�HΣ−1½X̃A; X̃E�Þ=T over complex variable
realizations ½X̃A; X̃E� is now 2. However, since the expo-
nential does not have any factor of 1=2 for a complex
distribution, we recover the same number of degrees of
freedom in the argument of the exponent as in the previous
derivation; i.e., we got exp ½1

2
4� for the case of multiple

detectors with real and imaginary parts as separate random
variables and exp[2] for the case considered here.
The derivation of the Fisher matrix differs from the

previous one [Eq. (B17)] only by the factor 1=2:

Γij ¼
Xn
k¼1

�
ðΣ−1

k Þlr
∂Σrp

k

∂λi
ðΣ−1

k Þpm
∂Σml

k

∂λj

�
; ðB20Þ

where the matrix Σk is given by Σ with spectral densities
evaluated at given frequency fk.
Note that we can recover the single channel realization

by using the first element of Σ.
The continuum limit of the Fisher matrix in this

formulation is given by

Γij ¼ T
Z

∞

0

ðΣ−1
k Þlr

∂Σrp
k

∂λi
ðΣ−1

k Þpm
∂Σml

k

∂λj
df: ðB21Þ
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4. Deterministic sources and noise cross-correlation

In the presence of a deterministic source h̃ðfkjμ⃗Þ, the
derivative of the log-likelihood in Eq. (6) with respect to the
source parameters μ⃗ is

∂l
∂μi

¼ −
Xn
k¼1

js̃ðfkÞ − h̃ðfkjμ⃗Þj
T
4
Snðfkjλ⃗Þ

∂h̃ðfkjμ⃗Þ
∂μi

; ðB22Þ

and the derivative with respect to the parameters character-
izing the spectral density is given by Eq. (B1). The
derivative with respect to the source parameters is odd in
the noise component, ñðfkÞ ¼ s̃ðfkÞ − h̃ðfkjμ⃗Þ, while the
derivative with respect to the noise parameters is even.
Since E½ñðfkÞ� ¼ 0, from this we deduce that

EL

�
∂l
∂μi

∂l
∂λj

�
¼ 0; ðB23Þ

i.e., at this level of approximation, the terms in the Fisher
matrix that mix signal and noise parameters vanish. We
conclude that the estimation of the noise parameters and the
signal parameters is, in leading order, independent. Lack of
knowledge of the noise should, therefore, not significantly
affect measurements of the parameters of deterministic
signals, except indirectly through the change in the spectral
density that enters the likelihood for the deterministic
sources.

APPENDIX C: IMPACT OF INSTRUMENTAL
NOISE KNOWLEDGE UNCERTAINTY
ON SGWB RECOVERY IN ABSENCE

OF GALACTIC FOREGROUND

Below, we show the same computations we did in
Sec. III but in case we do not consider the presence of
the foreground.

1. Power law

Figure 18 shows the results computed for the power law
model. We see that, in the presence of instrumental noise
uncertainties, the uncertainty in the SGWB parameters
increases by a factor of ∼19–36, with the uncertainty in the
slope being more affected than that of the amplitude.
Considering the raw uncertainties, to achieve the same
measurement precision, the background energy density
would have to be ∼33 times larger than it would need
to be in the absence of noise knowledge uncertainties.
However, a background with an amplitude equal to the
reference value should be detectable even allowing for
confusion with instrumental noise mismodeling.

2. Power law with running

The results for this model are shown in Fig. 19. In this
case, we see that the uncertainties in the SGWB parameters

increase by a factor of ∼21–72, with the uncertainty on the
log amplitude being most affected in this case. Once again,
the relative increase in the uncertainty is somewhat lower at
higher background amplitudes. The lower panel in Fig. 19
shows that the background is not detectable at the reference
amplitude. An energy density ∼5 times higher would be
required for detection. In general, the background again has
to have an energy density ∼100 times higher to be
characterized with the same measurement precision when
there is instrumental noise uncertainty as it could be
without those uncertainties.

3. Gaussian bump

The results for this model are shown in Fig. 20. In this
case, the degradation in the precision of parameter meas-
urement is a factor of ∼2.3–4 when allowing for lack of
knowledge of the instrumental noise. From the lower panel
in Fig. 20, we see that the energy density in a Gaussian
bump SGWB has to be just a small factor of ∼2.5 times
bigger to achieve the same measurement precision when
the instrumental noise is not known perfectly. Moreover, a
Gaussian bump background at the reference amplitude can
be measured to percent precision at the reference ampli-
tude. The width of the Gaussian can be measured to a few
tens of percent precision at the reference amplitude,
improving approximately linearly with the background
energy density.

FIG. 18. Results for the power law SGWB model without
foreground.
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FIG. 19. Results for the power law with running SGWB model
without foreground.

FIG. 20. Results for Gaussian bump SGWB model without
foreground.

FIG. 21. Results for first-order phase transition SGWB model
without foreground.

FIG. 22. As in Fig. 18 but now for fixed background amplitude
and varying the variance of the Gaussian prior on the instrumental
noise spline model. This plot is for a power law background, and
the amplitude has been fixed such that the SNR in TDI channel A
is 136 (continuous lines) and 43 (dashed lines).
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4. First-order phase transition

The results for first-order phase transition are shown in
Fig. 21. The results for this SGWB model are quite similar
to those for the power law background. When allowing for
instrumental noise knowledge uncertainties, the precision
with which the SGWB log amplitude can be characterized
degrades by a factor of ∼18. The degradation in the
determination of the spectral index is even larger, ∼50.
Once again, to achieve the same measurement precision,
the background energy density would have to be ∼50 times
larger than it would need to be in the absence of noise
knowledge uncertainties. Nonetheless, a FOPT background
at the reference amplitude would still be detectable and
provide a measurement of the spectral index at the level of
about 0.5%.
We can do the same analysis we did in Sec. III B but

without including the foreground. The results for all four
SGWB models are qualitatively similar among themselves
and also to the previous case with foreground in Sec. III B.
Figure 22 considers the power law case, Fig. 23 the case of
power law with running, Fig. 24 the case of Gaussian
model, and Fig. 25 the case of FOPT model.
The main conclusion from these results is that again if we

wanted to ensure that there was no degradation in LISA
science due to lack of noise knowledge, the requirement on
the noise knowledge would be ≪10%.

FIG. 23. As in Fig. 22 but now for the power law with running
model. The background amplitude has been fixed to give an
overall SNR of 145.

FIG. 24. As in Fig. 22 but now for theGaussian bumpmodel. The
background amplitude has been fixed to give anoverall SNRof 135.

FIG. 25. As in Fig. 22 but now for the FOPT model. The
background amplitude has been fixed to give anoverall SNRof 149.
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5. Signal reconstruction without foreground
of Galactic binaries

We consider a power law signal with an SNR of 48.70
in Fig. 26. The three panels show the reconstructed ASDs
for the SGWB and for the instrumental noise and the total,
which is the sum of the three. No foreground has been
considered in this case. In Fig. 27, we show corresponding
results for a power law with a higher SNR of 971.
We see that our ability to reconstruct the signal

component of the data stream is poor when the SNR
is low. However, we can obtain good measurements of

the instrumental noise and the total spectral density. We
note that the total ASD reconstruction in the lower panel
in Fig. 26 is somewhat poorer than the noise-only
component, which does not fit with the expectation that
we are measuring the total. This happens due to the
breakdown in the Fisher matrix approximation for the
SGWB parameters in this case, because the SGWB
parameter uncertainties are large and no longer in the
linear signal regime. At higher SNR, we start to be able
to reconstruct the SGWB more precisely, shown by a
reduction in the scatter in Fig. 27. As the SNR is
increased, we would expect the scatter to reduce further.
The reconstruction of the noise spectral density is
comparable to what is seen in the lower SNR case,
but we would eventually expect it to degrade as the
SGWB becomes more dominant in the data. The

FIG. 26. Signal and noise reconstruction for a power law
SGWB with SNR 48.70. We show the signal and noise PSDs
corresponding to random draws from the posterior, approximated
using the Fisher matrix as described in the text. In each panel, the
curves correspond to the three TDI channels: A (blue), E (red),
and ζ (green). Upper panel: reconstructed SGWB; middle panel:
reconstructed instrumental noise; lower panel: total reconstructed
ASD (signalþ noise).

FIG. 27. As in Fig. 26 but for a power law background with
higher SNR of 971.
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reconstruction of the total spectral density is similar to
the low SNR case but does not suffer from the scatter
induced by the breakdown of the Fisher matrix approxi-
mation, as all uncertainties remain in the linear regime in
this case.

In conclusion, it is also interesting to notice in the
instrumental noise reconstruction that the channels A and E
are affected by the SGWB in the range from 1 to 4 mHz,
where the SGWB dominates the total spectral density, as
might be expected.
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