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Effective field theory of particle mixing
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We introduce an effective field theory to study indirect mixing of two fields induced by their couplings to
a common decay channel in a medium. The extension of the method of Lee, Oehme, and Yang, the
cornerstone of analysis of CP violation in flavored mesons, to include the mixing of particles with different
masses provides a guide to and benchmark for the effective field theory. The analysis reveals subtle caveats
in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian, more acute in
the nondegenerate case. The effective field theory describes the dynamics of field mixing where the
common intermediate states populate a bath in thermal equilibrium, as an open quantum system. We obtain
the effective action up to second order in the couplings, where indirect mixing is a consequence of off-
diagonal self-energy components. We find that if only one of the mixing fields features an initial
expectation value, indirect mixing induces an expectation value of the other field. The equal time two point
correlation functions exhibit an asymptotic approach to a stationary thermal state, and the emergence of
long-lived bath-induced coherence which displays quantum beats as a consequence of interference of
quasinormal modes in the medium. The amplitudes of the quantum beats are resonantly enhanced in the
nearly degenerate case with potential observational consequences.
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I. INTRODUCTION

The dynamics of particle mixing induced by their
coupling to a common intermediate state or decay channel
is of broad fundamental interest within the context of CP
violation and/or baryogenesis. Field mixing may also be
a consequence of “portals,” connecting standard model
degrees of freedom to hypothetical ones via mediator
particles beyond the standard model. Such portals may
lead to mixing between fields on different sectors of the
portal via the exchange of these mediators, namely a
common intermediate state to which fields on different
sides of the portals couple.

Axions, CP-odd pseudoscalar particles proposed in
extensions beyond the standard model as a possible
solution of the strong CP problem in quantum chromo-
dynamics (QCD) [1-3], could be a compelling cold dark
matter candidate [4—6]. However, various extensions
beyond the standard model can include axionlike particles
with properties similar to the QCD axion which may also
be suitable dark matter candidates [7—11]. Just as the QCD
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axion these axionlike particles couple to photons and
gluons via Chern-Simons terms such as E- B in the case
of photons, or G"”;bGﬂv;b in the case of gluons, as a
consequence of the chiral anomaly. Their mutual coupling
to photons and gluons entails that the various “flavors” of
axions or axionlike particles may mix via a common
intermediate state of photons and gluons. For example,
processes such as A <> yy <> A’, with A, A’ being different
axionlike particles, yield off-diagonal self-energy compo-
nents X4 4, hence an indirect mixing via the common
intermediate state.

A paradigmatic example in vacuum is the mixing of
K° — K° or flavored meson-antimesons as a consequence
of common intermediate states of two or three pions (or the
weak interaction box diagram), providing dynamical obser-
vational signatures of CP violation [12-17].

Field mixing via a common intermediate state in a
thermal medium has recently been studied [18] within
the context of axion-neutral pion mixing after the QCD
phase transition, since the neutral pion couples to two
photons precisely via a U(1) Chern-Simons term as a
consequence of the chiral anomaly.

Recently, it has been realized that topological materials
and/or Weyl semimetals also feature emergent axion-
like quasiparticles as collective excitations, which couple
to electromagnetism via processes akin to the U(1)
anomaly [19-28]. Therefore, these “synthetic” axions
may mix with the cosmological axion in the same manner
as pions or generic axionlike particles in the early universe.
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This possibility motivates the study of mixing between the
cosmological and the synthetic axions, which may yield
alternative experimental avenues to probe cosmological
axions with condensed matter experiments.

A. Motivations and objectives

Motivated by the ubiquity of field mixing and its broad
relevance in particle physics, cosmology, and possibly in
condensed matter physics, we extend the preliminary study
of Ref. [18] and develop a more general effective field
theory framework to study mixing as a consequence of
coupling of different fields to common intermediate states
or decay channels. We distinguish direct mixing as a result
of explicit mixing terms in the Lagrangian, such as off-
diagonal mass matrices or kinetic mixing terms, from the
indirect mixing via common intermediate states leading
to off-diagonal self-energy components, such as flavored
meson mixing, for example, K — K°. Our study is focused
on this latter, indirect mixing case.

The theory of K°— K° mixing via weak interaction
intermediate states was advanced by Lee et al. [29] in their
pioneering study of CP violation. It is based on the theory
of atomic linewidths developed by Weisskopf and Wigner
[30-33], and it is the cornerstone of the analysis of mixing
dynamics of flavored mesons and CP violation [12—15] in
terms of an effective non-Hermitian Hamiltonian.

Our main focus is to develop an effective field theory
framework to study the dynamics of indirect mixing when
the particles in the intermediate states are components of a
thermal bath as is the case in cosmology. An advantage of
the effective field theory formulation of mixing is that it
allows one to obtain correlation functions in the medium,
to understand their approach to thermalization, and to
observe the emergence of long-lived coherence, namely
off-diagonal components of the two point field correlation
function that survives in the long time limit even when
initially the different fields are uncorrelated.

The preliminary study of Ref. [18] focused on the
particular case of axion-neutral pion mixing near the
QCD phase transition where the axion was assumed to
be a light or ultralight CP-odd scalar. In this case there is a
large mass difference between the mixing partners leading
to suppression of interference effects. Furthermore, axions
and neutral pions couple to photons with the same operator
(E . é) but with different couplings, making this a particu-
lar case.

Instead, here we contemplate more general scenarios
including that of degenerate or nearly degenerate mixing
fields and coupling to intermediate states with different
operators with nonvanishing correlations in the thermal
bath, thereby leading to mixing via off-diagonal self-energy
matrix elements. This more general situation may be
relevant for CP violation in the early universe and yields
far richer dynamics including nonperturbative interference
phenomena in the form of quantum beats that plays an

important role in the approach to thermalization and the
dynamics of coherence, with possible observational
consequences.

Unlike the case of direct mixing, such as neutrino mixing
via an off-diagonal mass matrix, or kinetic mixing, indirect
mixing in a medium, as is relevant in cosmology, to
the best of our knowledge has not yet been studied at a
deeper level.

Our objectives are (i) to provide a consistent effective
field theory framework to study the dynamics of mixing via
intermediate states in equilibrium in a medium; (ii) to apply
this formulation to study the nonequilibrium dynamics of
expectation values and correlation functions of the mixing
fields; and (iii) to focus in particular on the approach
to thermalization and the emergence and long time sur-
vival of coherence even when initially the mixing fields are
uncorrelated.

The equations of motion obtained from the effective field
theory allow one to study the dynamical evolution of
expectation values and correlation functions and the emer-
gence and evolution of coherence, hence providing an
approach to the study of coherence that complements the
quantum master equation [34-36]. We also recognize that
the effective field theory approach to mixing may also be
extended to the case of neutrinos in the mass basis, and may
provide an alternative framework to study the quantum
kinetics of massive neutrinos in the medium [37]. More
recently a quantum field theoretical approach to a Boltzmann
equation for axions consistently including misaligned con-
densates has been introduced in Ref. [38]. The formulation of
an effective field theory of mixing developed in this study
may provide a complementary approach when different types
of axions mixing indirectly via a common intermediate state
are considered.

In this article our main objective is to develop the
theoretical framework in general, without specifying par-
ticular models or applications, which will be the subject of
future study.

B. Brief summary of results

As a prelude to developing the effective field theory
framework, in Sec. II we extend the Lee-Oehme-Yang
(LOY) theory of mixing to the case of nondegenerate
mixing particles and with generic couplings to intermediate
states, and solve exactly the equations for the amplitudes,
which goes beyond the usual approach based on a non-
Hermitian effective Hamiltonian [ 12—-15]. The generalization
to the nearly degenerate and nondegenerate cases provides
an extension to analyze the dynamics of mixing relaxing
the assumption of validity of CPT. This study serves as a
guide and benchmark toward establishing the effective field
theory framework, and also reveals interesting caveats of the
usual approach with a non-Hermitian Hamiltonian, which
become more important in the nondegenerate case and may
be relevant in precision measurements of CP violation.
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Appendix A discusses the origin of some of these caveats in
the case of a single species.

In Sec. Il we consider indirect mixing of two bosonic
fields induced by their couplings to a common decay
channel in the medium. These common intermediate states
populate a bath in thermal equilibrium.

We generalize the methods of Refs. [18,39] to obtain the
effective action in the in-in or Schwinger-Keldysh formu-
lation of nonequilibrium quantum field theory [40—44] up
to second order in couplings. This effective action deter-
mines the time evolution of the reduced density matrix
upon tracing the bath degrees of freedom, and it describes
the dynamics of mixing as an open quantum system. The
equations of motion obtained from the effective action are
stochastic with self-energy and noise kernels obeying a
generalized fluctuation dissipation relation. Indirect mixing
is a consequence of off-diagonal self-energy components
arising from the correlations of the coupling operators
in the bath. The solution of the equations of motion yield
the time evolution of expectation values and correlation
functions in terms of superpositions of quasinormal modes
in the medium. The cases of nondegenerate and nearly
degenerate fields are studied in detail. We find that if only
one of the fields has an initial nonvanishing expectation
value, indirect mixing induces an expectation value for
the other field. Furthermore, the equal time two points
correlation function approaches a stationary thermal state
independent of the initial conditions and even when
initially the fields are uncorrelated exhibit an emergent
long-lived bath-induced coherence, namely off-diagonal
components. Both diagonal and off-diagonal correlation
functions display quantum beats, as a consequence of
interference of quasinormal modes. The amplitudes of the
quantum beats are resonantly enhanced in the case of nearly
degenerate fields. In this section we establish the corre-
spondence between the LOY formulation of particle mixing
and the effective field theory of mixing.

Several appendixes supplement technical details.
Appendix A discusses the caveats associated with a non-
Hermitian Hamiltonian for a single species. Section IV
summarizes the main results and conclusions.

II. THE LEE-OEHME-YANG THEORY OF MIXING

We begin by extending and generalizing the formulation
of meson mixing pioneered by Lee et al. [29,30] to analyze
CP violation in the kaon system, which is based on the
Weisskopf-Wigner theory of atomic linewidths [30], to the
case when particles of different masses mix via a common
set of intermediate states, or common decay channel. Such
a generalization will lead us to the formulation of an
effective quantum field theory of mixing including the case
when the particles in the intermediate states constitute a
medium as is relevant in cosmology.

Consider a system whose Hamiltonian H is given as a
soluble part Hy, and a perturbation H;: H = Hy+ H;.

The time evolution of states in the interaction picture of H,
is given by

d

i— (1), = H,(1)|¥(2)),

- (2.1)

where the interaction Hamiltonian in the interaction
picture is
H](l) = eiHotH,e_iHUT, (22)

where H; is proportional to a set of couplings assumed to
be small.
Equation (2.1) has the formal solution

W(2); = U2, 10)[¥(10)) 1>

where the time evolution operator in the interaction picture
U(t,t) obeys

(2.3)

i% Ut ty) = Hi (1) U(t, ty). (2.4)

Now we can expand

¥(1); =Y Cal0)ln). (2.5)

where |n) form a complete set of orthonormal states chosen
to be eigenfunctions of H(, namely Hy|n) = E,|n); in the
quantum field theory case these are many-particle Fock
states. From Eq. (2.1) and the expansion (2.5) one finds the
equation of motion for the coefficients C,(f), namely

Co(t) = =iy _Cy(1){n|H,(1)|m). (2.6)

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert
space of states spanned by {|n)} is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in H;.

Let us consider quantum states |¢, ), |¢,) associated with
the meson fields ¢ ,, respectively; these may be single
particle momentum eigenstates of the Fock quanta of
these fields, and focus on the case when the interaction
Hamiltonian does not couple directly the states |¢,), [¢,),
namely (¢,|H;|¢p,) = O. Instead, these states are connected
to a common set of intermediate states |{x}) by H;, namely
|p12) < [{x}) # |¢12), as depicted in Fig. 1.

The states |¢,) and |¢,) mix as a consequence of this
indirect coupling through the common set of intermediate
states, namely |¢;,) <> [{k}) <> |¢;,), yielding an off-
diagonal self-energy matrix. If H; has nonvanishing matrix
elements (¢;|H,|¢;) # 0, we assume that these have been
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|¢a> ’¢b>
k) k)

(PalH |K) (k| Hrlop)

FIG. 1. Mixing between |¢), and |¢), mediated by a common
set of intermediate states |«).

absorbed into terms in H, and only consider transitions
between |¢;) and other states |k) # |¢;,) mediated by H;.

In the subspace |¢,), |¢,), |{x}) the quantum state in the
interaction picture is given by

%), (1) = Ci(D)lghr) + Ca(D)] ) + D _ClD)l),  (2.7)
{x}
and the set of equations (2.6) becomes
Ci(t) = =iy (¢ |[H(1)|x)Ci(2), (2.8)
{x}
Co(t) = =i) (ol Hy (1)) Ci(0), (2.9)
{x}
Ci(1) = =il (k[H;(1)|p1) C1 (1) + (k[H (1)]h2) Ca(1)],
(2.10)

where the time dependent transition matrix elements are
given by

(UH (1)lm) =Ty e’ E=Ents Ty, = (1|H,(0)m),  (2.11)
Hermiticity of H; entails that
T, =T;,. (2.12)

The set of equations (2.8)—(2.10) truncates the hierarchy
of equations by neglecting the transitions between the states
|{x}) and [{«'}) # |{«}).|¢12), and such transitions con-
nect the states |¢ ,) <> [{«'}) at a higher order in H; and
are neglected up to O(H?). Truncating the hierarchy closes
the set of equations for the amplitudes, effectively reducing
the set of states to a closed subset in the full Hilbert space.
As a familiar example, let us consider the case where |, )
correspond to K°, K mesons mixing via a common decay
channel into two pions (there is also the three pion decay
channel) so that K* <> 27 <> K°.

. t . / . . /
E(1) = _/O Z{|T1K|261(E1—EK)(I—1‘)Cl(t/) i TIKTKzez(El—Ez)tel(Ez—EK)(r—t)C2<t1)}dt/’

Taking the normalized initial quantum state |¥(7 = 0))
as a coherent linear superposition of the single particle
states |¢; ), it is given by

W(1=0)) = (C1(0)[1) + C2(0)|h2)) ® [0).  (2.13)

where |0,) is the vacuum state for the intermediate states
k), corresponding to setting

C.(0) =0, (2.14)

for the excited |«) states, and with normalization condition

ICLO0)P +[C(0)) = 1. (2.15)

A. Unitarity

The set of equations (2.8)—(2.10) describes unitary
time evolution in the restricted Hilbert space of states
|p1), |d2), |k), which is a subset of the full Hilbert
space of the theory that is closed under the equations
of motion (2.8)—(2.10). Unitarity can be seen as follows:
using Egs. (2.8)~(2.10) and noticing that {I/|H(¢)|m)* =
(m|H;(t)|l) because H,;(r) is an Hermitian operator, it
follows that

e P + 160 +Z|ck<z>2] —0. (216)
dt o

and the initial conditions (2.14) and (2.15) yield

ICLOP + G0 + Y IC (D) = 1.
{x}

(2.17)

This is the statement that time evolution within the sub-
Hilbert space {|¢1), |¢,), |k)} is unitary.

In particular, if the ¢, states decay, it follows that
|C15(t = )|> =0, and

Yt =) =1. (2.18)

The set of equations (2.10) with the initial condition
(2.14) can be integrated to yield

t . , . ,
Colt) = =i [T B Cy(#) + Te Bt Co( ) ar.
0
(2.19)

where the labels 1 and 2 correspond to ¢ ,. Inserting the
solution (2.19) into Egs. (2.8) and (2.9) leads to the
following set of equations for the coefficients C;(7), C,(7):

(2.20)
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. t . . / . /
Cz([) _ _A Z{TQKTKIez(EQ—E])rez(El—EK)(z—t)Cl (t/) + |T2K‘26’(E2_EK)(Z_[>C2(t/)}dt/.

This procedure of solving for the amplitudes of the
intermediate states plays the role of “integrating out” or
“tracing over” the x degrees of freedom, yielding an
effective set of equations of motion for the amplitudes
of the single particle states |¢;,). Since the interaction
Hamiltonian H; is assumed to include a weak coupling,
the amplitude equations (2.20) and (2.21) are exact up to
second order in this coupling. Pictorially, this procedure
is equivalent to joining the legs representing the y field
together in Fig. 1, thereby forming a loop or loops that
yield(s) the self-energy.

B. Exact solutions

The set of amplitude equations (2.20) and (2.21) can be
solved exactly. For this purpose it is convenient to define
e BIC (1) = A (1);

e BIC, (1) = Ay(1),  (2.22)

and to introduce the spectral densities
pap(ko) = TaTad(ko — Eo) = iy, (ko);  a.b=1,2,

(2.23)

where the second identity follows from Eq. (2.12). The set
of equations for the amplitudes A , following from (2.20)
and (2.21) is written more compactly by introducing the
self-energy matrix

ou(t—1) = /mﬂuh(ko)e_ik“('_ﬂ)dko- (2.24)

(s

This self-energy has an intuitive interpretation as a second
order Feynman diagram wherein the lines representing the
intermediate states |x) in Fig. 1 are joined into “propa-
gators” yielding a (multi)loop diagram, representing the
self-energy up to second order in H;.

In terms of the self-energy the set of equations (2.20) and
(2.21) becomes

Aa(t)+iEaAa(r)+Atdt’Zaab(t—t’)Ab(t’)—0. (2.25)
b

This equation can be solved via a Laplace transform.
Defining the Laplace transforms for Re(s) > 0

A, (s) = / T A, (1)dt:

0

o0 o0 k
) = [ e o= [T gy,

= 2.26
o 8+ 1Ky ( )

(2.21)
I
the set of equations (2.25) leads to
<M11 MIZ) <A1(S)) _ (AI(O)) (2.27)
My My ) \ Ay(s) Ay(0) )’
with matrix elements
Mll :S‘I—l-E]—'—&l](S), (228)
My = G15(s); My, = 65 (), (2.29)
M22 =S + lE2 + 5'22(3), (230)

where we suppressed the dependence of the matrix ele-
ments M;; on the Laplace variable s to simplify notation but
it is implicit in all matrix elements.

It proves convenient to introduce

_ 1
MZE(M11+M22)» (2.31)
D =[(My, — My)* +4M ;M5 ]2, (2.32)
My — My 2My, 2M>,
a b D y D (2.33)
where a, f, y fulfill the relation
>+ py = 1. (2.34)

The inverse of the matrix with elements M, yields the
Laplace Green’s function, which is given by (see

Appendix C for details)
<A1(0)>
A5(0) )’

(2.35)

A\ | P_(s) P (s)
<A2(s)> B lM(S) _D(s)+M(S> +D(s)

where the projector operators (see Appendix C) are
given by

b ) 2

S

N[ =

(2.36)

Finally, the time evolution of the amplitudes A;, () is
obtained via the inverse Laplace transform,
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P.(s) ds

27l

(Al(t)> :/e“ ] IP’_(SL n
A1) e [ w(s) -2
(Al(()))
X 9
A,(0)
where the Bromwich countour C runs parallel to the
imaginary axis to the right of all the singularities in the
complex s plane. Stability implies that the real parts of
the singularities are negative; therefore, the contour corre-

sponds to s = iv + €, —00 <v <L 00, = 0. It is conven-
ient to change variables to v = —w, in terms of which

(2.37)

Gup(s=i(-w—ic)) =il (w)
o]
(2.38)

where P stands for the principal part. The relation (2.23)
implies that

Ap(w) = [ /_ " P<M> dk — mu;b(w)} L (239)

o0 Cl)—ko

Upon this analytic continuation, Eq. (2.37) becomes

(i) == L5 5ol o

(2.40)

where

W) = 3 {(E) + Ex + A1 (0) + An(0) £ Do)},
(2.41)

D(w) = [(E, — E, + A (0) — Ay (w))?

+4A (@) Ay (0)]'V2, (2.42)
and P_(w) are the analytic continuation of P.(s) for
s — —iw + €.

The bracket inside the integral in (2.40) has a simple
interpretation: it is the Dyson (geometric) resummation of
the second order self-energy matrix, and the time evolution
obtained from (2.40) includes this resummation of second
order self-energy corrections. Note that as a consequence
of the projector matrices being off-diagonal, even when
one of the amplitudes vanishes initially, for example, if
A,(0) = C,(0) =0, it becomes nonvanishing at a later
time. This observation will have interesting implications in
the analysis of in-medium mixing in the next section.

In the weak coupling limit we invoke the Breit-Wigner
approximation, valid in the intermediate time regime,
where each term in (2.40) features a complex pole in the
lower half @ plane at'

T
Oy = W:t(w:t> =&t — i—i’

5 (2.43)

where ¢, are the renormalized frequencies and ', the decay
rates. In weak coupling, it follows that I".. « H7 < E| 5, and
we will refer to these complex frequencies as quasinormal
modes. For a vanishing damping rate, these are the usual
normal modes associated with the coupling of harmonic
oscillators, the “quasi” reflects their damping as a conse-
quence of their coupling to and decay into a (common)
continuum.

Evaluating (2.40) by contour integration closing in the
lower half @ plane for > 0, and expanding near the
complex poles W (@) =Wi(wi)+ (0 —wp)dWo(w)/
dwl|,_,, + -+, we obtain the final result

(40 < eiz,p. o)+ 2P0

Ay(1)
A(0)
X <A2(O) ) , (2.44)
where Z, = [1 —dW _(w)/dw|,, ] and
1 1+a(oy)  Lf(o)
P00 =3 ( oy 17 amn) O

this result is general.

The Breit-Wigner approximation relies on weak cou-
pling so that the width of the state is much smaller than its
mass and that the distance between the real part of the pole
and the beginning of the multiparticle cuts must be much
larger than the half-width of the particle. This entails that
the spectral representation of the propagator can be well
approximated by a Lorentzian centered at the real part of
the pole with the width determined by the imaginary part of
the self-energy at the position of the pole. Furthermore, this
entails that the spectral density of the self-energy is finite
and smooth near the value of the pole. This is the same
criterion as in Fermi’s golden rule.

It is important to highlight that the Breit-Wigner
approximation leading to the result (2.44) is valid only
during an intermediate time regime; it is neither valid as
t — 0 nor at a very long time, when power law corrections
emerge [33,45-48].

As analyzed in detail in these references, the asymptotic
late time behavior of the integral in Eq. (2.40) is determined

'More precisely, the poles are in the second Riemann sheet, but
close to the real axis in the complex @ plane.

036038-6



EFFECTIVE FIELD THEORY OF PARTICLE MIXING

PHYS. REV. D 109, 036038 (2024)

by the behavior of the spectral density at the threshold of
multiparticle cuts, which yields a power law that emerges
when the amplitude is already perturbatively small (see
Ref. [49] for a specific example), and the behavior at early
times, ¢ — 0, receives contributions from the full spectral
density, contributing to a renormalization of the amplitude
of the field. We refer to the intermediate timescale, as the
scales between these two limits that depend specifically
on the details of the spectral density of the self-energy.
However, as is expected in the case of a weakly coupled
theory, the intermediate timescale in which there is expo-
nential decay is generically wide and is captured reliably by
the usual Breit-Wigner approximation of the propagator.

Therefore, the extrapolation to ¢ — 0 is not consistent
with this approximation. In fact, the wave function renorm-
alization is a consequence of “dressing” and renormaliza-
tion during an initial transient timescale describing the
formation of a quasiparticle [50]; in renormalizable the-
ories it is usually ultraviolet divergent. The timescale of
formation of the quasiparticle is typically associated with
the ultraviolet behavior of the spectral density, and it is in
general much shorter than the typical oscillation and decay
timescales of the particle [50].

In the following analysis we assume without loss of
generality that E| > E,, and, consistently with perturbation
theory, that E;, > A,, « H;. Furthermore, from the
identity (2.34) we choose

a(w) = /1= plw)y(w).

Hence, in the limit of vanishing coupling A,, — 0, it
follows that

(2.46)

a—1,

By =0,

(2.47)

w, = E, o_ — E;,

1 0 0 0
=) ()
0 0 0 1

Therefore, in this limit the amplitudes C;, do not depend
on time as it must be the case in the absence of interactions.

Two limits are important: (i) E; — E, > A,;,, to which
we refer as the nondegenerate case, and (ii) E; — E; < Ay,
to which we refer as the (nearly) degenerate case. The first
case describes, for example, the mixing between axionlike
particles and a neutral pseudoscalar meson as studied in
Ref. [18], such as the pion, with the pion mass much larger
than that of the axion. The second case includes neutral
(pseudoscalar) flavored meson-antimeson mixing, such as
K° — K° under the condition of charge conjugation, parity,
and time reversal (CPT) invariance [in which case
E, = E,; Aj;(s) = Ay (s)]. This second case also applies
to neutral meson mixing if there is a small (CPT) violation,
in which case Ey, E, and the diagonal matrix elements A,
A, may be slightly different but small compared to the
individual energies E| ».

(I) Nondegenerate case: E; — E, > A, In this case we
can approximate

D(a)) >~ El - E2 + A“((I)) - Azz((ﬂ) + O(Az), (248)
from which it follows that to leading order [O(A)]
W (o) =E +A;(0); W_(0)=E;+Ap(w), (2.49)

and to leading order in couplings, the complex poles are at

Ir
CO+:E1+A11(E1):E11€—17+§

EY = E, +ReA (E)), Iy, =2mpn(Ey), (2.50)
. T

w_ = Ey+ Ay (Ey) = E5 — =

Ef = E; + ReAyp(E;),  T_=2mppn(E,), (2.51)

where E¥, are the renormalized energies. Up to leading
order O(A), it is straightforward to find that the time
dependent amplitudes are given by

A1) = Z,4,(0)e o

1[Ap(E))e ™" = Ajp(Ey)e ™!
— A,(0),
*3 [ ER — ER 2(0)
(2.52)
Ay(t) = Z_Ay(0)e-
1 [Ag(Ey)e ™" — Ay (Ey)e™-!
- A .
*3 [ ER — ER 1(0)
(2.53)

The terms in brackets in (2.52) and (2.53) are perturba-
tively small in this case because A,, < E; — E,. Since
Z, ~1+ O(H?), we neglected them in the terms in the
brackets, which are already of O(A) « H2.

(II) (Nearly) degenerate case: E1,>> A, E1 —E;, SAp.
In this case we write

and to leading order in A the complex poles are given by

i, . _..  D(E
wp=E+ (A (E) + Ap(E)) iT>
r. . I D(E
Egi—i%:ER—iii%, (2.55)

where
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- -1 - -
Ef = E+§(ReA”(E) + ReAy (E));

- —%(ImA“(E) + ImAy(E)). (2.56)

From Egs. (2.23) and (2.38) it follows that I" > 0. Since in
this case 6 < A, we find that f(w.) ~y(wy) ~O(1);

therefore, in this case all matrix elements of the pro-
jectors P ~ O(1). However, to leading order in A we find

Plos) = p(E);y(0x) = y(E);a(wy) = a(E), and conse-
quently P (wy) = PL(E).

In this (nearly) degenerate case, the individual energies
are much larger than the respective widths and the
energy difference is smaller than or of the same order as
the imaginary part of the self-energies evaluated at
(E| + E,)/2. Therefore, in this (nearly) degenerate case,
the Breit-Wigner approximation is valid, and we find to
leading order in A the time dependent amplitudes

() s
+ R(E)(Z, e o — z_e-fw—')] (2;22; ) ,
(2.57)

with
(2.58)

We can now compare this result with the usual result for
flavored meson-antimeson mixing, such as K° — K° under
the conditions of (CPT) invariance, which implies E; =
E, =E; A (E) = Ax(E). In this case, and for the
purpose of comparison, we define

Ry o (g (k
Ay (E) = my — 1717; Map = /_0o P(%b_( 130)> dko;

(2.59)

Fab = 2ﬂwab (E) ’

in terms of which we find

D(E) = 2Km12 - z%) (m’{z - l%ﬂ " 260)

a(E) =0, (2.61)
r]Z
pe) = "2t 2.62)
My =15
-
) — mTZ_i% 12 L 2.63
7(E) |:m12 —ilz] BE) (2.63)

yielding
A1) = [f+(DA0) + B(E)f-(A2(0)].  (2.64)
Ay(1) = [f1(1)A2(0) + 7(E)f- (A (0)].  (2.65)

with
fe(n) = %(Z+e_i“’+’ +Z Tty (2.66)

Setting Z, =1, the expressions (2.64) and (2.65) with
(2.66) are the usual ones for the case of flavored meson-
antimeson mixing with (CPT) symmetry [12-15,32]. In
Ref. [32] the contribution from wave function renormal-
ization was neglected” but it was recognized that it would
modify the amplitudes. Therefore, with Z, ~ 1+ O(A) it
is clear that neglecting the wave function renormalizations
affects the amplitudes at second order in the interaction.
This perturbative correction may become relevant for
precision measurements of flavor mixing.

C. Markov approximation: The effective
non-Hermitian Hamiltonian

Let us write

4 . )
/ D TaT e BB ar = Wy [t5]; Wap[1,0) =0
0 K
(2.67)

so that

; , d
ZTaKTKbel(Eb_EK>(I_t> =Wyt r].  (2.68)

dr

Inserting this definition in (2.20) and (2.21) and integrating
by parts

td
A Ewab[t, ?1C,(F)dt = W[t 1]Cp(2)

t d
- / Wt 1] 25 Cy ()
(2.69)

since T, T, & H7, and from the evolution equations (2.20)
and (2.21) it follows that Ca x H%; therefore, the second
term in (2.69) is of O(H7) and will be neglected to leading
order in the interaction, namely H?.

Hence, up to O(H?), the evolution equations for the
amplitudes (2.20) and (2.21) become

“See Appendix A, footnote in page 102 in Ref. [32], where it is
explicitly stated that such a contribution was neglected but would
modify the amplitudes.
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Ci(t) = —{W [ 4C, (1) + BBl W, [1,4]Co (1)}
(2.70)

Cy(t) = —{'EmEVIW, [t £]C, (1) + Wap[1:£]Co (1) }.
(2.71)

With the definitions (2.22) the amplitude equations become

iAl(t) = E1A1 - inl[t; []Al - inz[t; l‘}A2, (272)

lAz(t) = E2A2 — iW21 [t, I]Az — lez[[, Z}Az (273)

With
r !
Wab[t; t] = ZTaKTKb/ el(Eb—EK)(t—t)dt/
K 0

t oo X ,
= / / pap (ko) e Ev=R)=0) gk df . (2.74)
0 —00

where we used the definition of the spectral density,
Eq. (2.23). We highlight that this first step in the
Markov approximation is equivalent to the full set of
equations consistently up to order H?, since the neglected
terms of O(A?) ~ H7.

Because in the nearly degenerate case E; —E; <
A,y o< H?, the first stage of the Markov approximation,
yielding Eqgs. (2.72) and (2.73) is consistent with this case.

The set of equations (2.72) and (2.73) can be written in
terms of a time dependent Hamiltonian

A (t A (t
i;( 1()> :Heff(t)( 1())’

ARG As(1)
where the matrix elements of H.x(¢) are obtained from
Egs. (2.72) and (2.73). Unlike the case of a single species
analyzed in detail in Appendix A, for two species mixing,
H. (1) is a 2 x 2 matrix, and [H(t), He ()] # 0 for
t # t'; therefore, the solution of the evolution equations is
not a simple exponential. The usual approach, following
the main approximation in the Weisskopf-Wigner method
implemented in the LOY formulation [29], invokes the long

time limit’

r. , . 1 .
Ae@%wwmtyp(&_&>ﬂwwrfﬂ,

(2.76)

(2.75)

yielding

3This approximation is also implicitly implemented in
Ref. [29].

_iWab[t; t] - Aab(Eb)’ (277)
where A, (@) is defined by Eq. (2.38). Taking this long
time limit, the amplitude equations (2.75) become an
effective Schrodinger equation with a time independent
effective Hamiltonian

d (A1) A(1)
T (Azm) = Per (Az(f)) (278)
with
_(Er+AL(E) A (E,)
M = ( A(E) B +A22<E2>)
_(Hun Hp\
_ <H21 sz) — Hog(oo). (2.79)

This effective Hamiltonian is not Hermitian; this is a
manifestation that it describes the (approximate) dynamics
of a quantum open system, namely of a subset of degrees of
freedom which are coupled to a continuum of other degrees
of freedom whose dynamics has been “integrated out.”
Time evolution is not unitary in this subset, as is explicit
from the unitarity condition (2.16) and (2.17), which
indicates a flow of probability from the |¢,),|$,) to the
excited intermediate states |{«x}) which have been inte-
grated out in the equations of motion.
It proves convenient to rewrite Hoy as

1
Hegr = §(E1 + A (E)) + Ey + Ay (Ex))T

1. -
+§D(E17E2)R(E17E2)7 (2.80)
where I is the 2 x 2 identity matrix and
D(E|.E,) = [(El + A (Ey) — Ey — Ay (Ey))?
1/2
+4A12(E2)A21(E1)} (2.81)
and
. a(E,,E B(E,,E
R(E.E,) = (Cj( 1 E2) ﬂ~( 1 E2) ), (2.82)
V(E\ Ey) —a(E, E)
with the definitions
E,+A(E))—E, — Axn(E
a(El,Ez):( l+ 1l(~l) 2 22( 2))’ (283)
D(EI’EZ)
- 20, (E 2A,(E
BE, By =22 gy 2 2B ) gy
D(E,.E;) D(E|,E,)
It follows from these definitions that
> +py=1, (2.85)
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which implies that
R%*(E,\,E,) =1, (2.86)

therefore the matrix R features eigenvalues +1.
Consider the eigenvalue equation (suppressing the argu-

ments E ),
R(f;>:i<f;>, (2.87)
the solution of which is
pt=N*(1+a); ¢ =N'y,  (2.88)
p=N(1-d); ¢ =N7 (28

with N* normalization factors. These are eigenvectors of
Hesr, namely

+ +
p p
H. =)* , 2.90
()-2(0) em
with eigenvalues
1
i+ = 2 [(E1 + A (Ey) + By + A (Ey))
. =+
Zl:D(El,EQ)] Eg'i—l.?, (291)

where #*; ['* are both real. The effective Hamiltonian can
be diagonalized by introducing

U—l — <p+ p_ )
" —q )
1 qa p )
U=—F—"—"7F—= ] (2.92)
pra +qtp (q* -p*

satisfying UU™! = U~'U =1, and yielding

UH U™ = (/1(: /10_). (2.93)
Let us define
Cin) -G oo

and the effective evolution equations for V| ,(¢) become

) -G~ ()
(L, s

Using the definition (2.94) evaluated at ¢ = 0 yields the
solution for the amplitudes

A (t -t A (0
( 1()>:U“<e )U( ‘<)>. (2.96)
A, (1) 0 et A5(0)
With the relations (2.85), (2.88), and (2.89) it is straightfor-
ward to find that

(Al(t)> (P, 4 i (?(0) > (2.97)

Ay(1)
with the projector operators

P, =-(I+R); P2 =P, (2.98)

N =

where R is given by Eq. (2.82), or, alternatively

(Al(t)> _ 1 [(e—im Y e 4 (o7 e—im)@]
Ay(1) 2
<A1 (0) )
A»(0)
Comparing the results via Laplace transform and Breit-
Wigner approximation, namely (2.44) to the solution of
the set of equations (2.78) obtained in the infinite time
limit, namely (2.97) and (2.99), we find several sources of
discrepancies:
(i) The wave function renormalization constants Z in
(2.44) and (2.57) are missing in (2.97) and (2.99).

(ii) Whereas the projector operators in (2.44) depend on
the values of w,, namely the complex poles, those
in (2.97) depend on E, E, separately. Furthermore,
the values of the complex frequencies w,. (2.43) are
not obviously similar to A* (2.91).

The origin of these discrepancies can be traced to taking
the long time limit (2.76) and (2.77) before integrating
the set of equations (2.72) and (2.73), which is equivalent
to the original set of equations (2.20) and (2.21) up to order
O(H?). Any discrepancy between the order of the long
time limits will translate into differences of O(H?).

In Appendix A it is shown that the discrepancy in wave
function renormalization of amplitudes originates in this
long time limit in the simpler case of one species. We now
compare the results for the eigenvalues and eigenvectors of

the Laplace transform method and the Markov approxi-
mation with the effective Hamiltonian.

X

(2.99)
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1. Nondegenerate case

For E, — E, > A,, we can approximate D(E,,E,),
given by (2.81), as

D(Ey, Ey) 2 Ey + Ay (Ey) — Ey — Ay (Ey),  (2.100)
yielding for the eigenvalues A*, Eq. (2.91),
r+
/1+ = E] + All(El) = Ef - 17,
_ g1
A :E2+A22(E2)EE2 —17, (2101)

which agree with the eigenvalues obtained from the
Laplace transform (2.50) and (2.51). For the amplitudes
we now find up to O(A)

Ai(1) = Ay (0)e™™
+l [An(Ez)e_M*t — Ap(Ey)e™!
2

Ef - E;

]Az(())’
(2.102)

1 [Azl (Ey)e ™+ — Ay, (El)e_i'l‘t]
+ - A,(0).
2 ER — EX
(2.103)

The differences with the result from the Laplace transform,
Egs. (2.52) and (2.53), are noteworthy: (i) the wave
function renormalization constants multiplying the diago-
nal terms in (2.52) and (2.53) are missing in (2.102) and
(2.103); and (ii) the differences in the arguments of Aj,,
A,; are in the brackets. Clearly the discrepancies are of
second order in A, « H?, as discussed above.

2. (Nearly) degenerate case
For El,E2 > Aab but with El — E2 =0 s O(A), it
follows that
1 D(E)

A =E+ (A (E) + Ay (E)) £ =3

[\

E=2 (B +Ey), (2.104)
where D(E) corresponds to setting E; ~E, ~E in the
matrix elements of D(E,, E,). The eigenvalues 1* again
coincide with o™ given by Eq. (2.55). Furthermore, it is
straightforward to confirm that in this case D(E,,E,) =
R(E) given by Eq. (2.58). Therefore, the main difference
between the Laplace result (2.57) and that from the
effective Hamiltonian (2.99) is the wave function renorm-
alization Z multiplying the initial amplitudes in (2.57).

In fact, at a fundamental level, the emergence of the wave
function renormalization of the amplitudes of the quasinor-
mal modes precludes the description of their time evolution
in terms of an effective non-Hermitian Hamiltonian. This can
be understood from the following simple argument: the
formal solution of the amplitude equation (2.78) is

<A1 (t> ) _ e_iHcfft (Al (0) >
Ay (1) A(0) )
which obviously does not include a wave function renorm-
alization as prefactor of the quasinormal mode amplitudes.
The wave function renormalization is an off-shell contribu-
tion that describes the dressing by virtual states of the single
(quasi-)particles on short timescales, and yields second order
corrections to the amplitudes. While it may be finite in the
case of the box diagram contribution to flavored neutral
meson mixing, it is in general ultraviolet divergent in
quantum field theory.

Therefore, we conclude that the Laplace transform with
the Breit-Wigner approximation provides a more accurate
description of the evolution of mixing as compared to that
obtained from the effective non-Hermitian Hamiltonian.

(2.105)

3. Quantum beats

The two orthogonal states |¢;), |¢,) decaying into a
common channel |x) lead to interference in the amplitudes
of the decay state |«) as a consequence of “which path”
information in the decay. This is similar to the case of
quantum beats in “V”-shaped three level systems, in which
two higher levels radiatively decay to the lowest level [51],
an ubiquitous phenomenon in quantum optics. This inter-
ference phenomenon, or quantum beats, is featured in the
amplitudes of the decay products described by the states,
k), namely the coefficients C,(7).

The analysis above has focused on the time evolution
of the amplitudes C; ,(#), which also determine the ampli-
tudes C,(f) of the intermediate states via Eq. (2.19).
Writing these coefficients in terms of the amplitudes A; 5 (1),
and introducing the spectral densities (2.23), we find

t t ¢S]
Z|Ck(f)|2:/ dtl/ dtz/ dk
P 0 0 -0

x Z Aty )/“‘ab(ko)Ab(lz)e_ikO(’l—tz)‘
a,b=12

(2.106)

It is convenient to introduce O(7; — 1) + O(t, — t;) = 1
inside the time integrations, use the property of the spectral
density (2.23), and include the definition of the self-energy
(2.24) to show that

Semp= 3 / anas(n) / " gapt1 = 12)Ay (1)

a,b=12

+c.c., (2.107)
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the complex conjugate (c.c.) contribution arises from the
term with ©(#, — ;) upon relabeling #; <> t,, a <> b and
using the property (2.23). Using the amplitude equa-
tions (2.25) we finally find

SCp == /0 ", d‘f A% (1) A (1)]

= [A1(0)]* + 42 (0)]* = [|A () + |42 ()],
(2.108)

and this result is precisely the unitarity relation formally
established by Egs. (2.16) and (2.17) providing a comple-
mentary and explicit proof of unitarity exhibiting the role of
the self-energy.

Following LOY [29], introducing the total population of
the ¢, ¢, states as

N(1) = [[Ai ()P + A1) = IC1 (O + [C2() ],
(2.109)

and writing the amplitudes A, () as linear superpositions of
the quasinormal modes, namely

Ay(t) = Aa+e"'g+’e‘r7+’ +A,_eleT a=1,2,
(2.110)

where the coefficients A, can be read off Eq. (2.44), it
follows that

N(t) = Z [|Aa+|ze_r+t + |Aa—|2e_rft
a=1,2

+ 2Re(A%, A, _e!eme-))e=(TAT)2] (2 111)
the last term displays the quantum beats as a consequence
of the interference between the quasinormal modes. With
the normalization (2.15) the unitarity relations (2.17) and
(2.108) yield

D IC(0)P =1-N(). (2.112)

displaying the quantum beats from (2.111) in the last term.
Therefore unitarity entails that the quantum beats in the
total population are reflected in the time evolution of the
decay products.

These interference terms are, of course, well known,
originally recognized in the seminal work by LOY [29],
and have been experimentally observed in the decays
products of flavored neutral mesons [12—15]. We note that
the coefficients A, depend on the wave function renorm-
alization constants Z_. in the solutions (2.44), an important
discrepancy with the usual effective non-Hermitian
Hamiltonian description of particle mixing.

Our main objective in analyzing the dynamics of mixing
within the framework of the LOY theory of flavored meson
mixing is to provide a guide to and benchmark for the
effective field theory approach to the dynamics of mixing in
a medium studied in the next section.

III. THE EFFECTIVE ACTION
FOR PARTICLE MIXING

The previous section extended and generalized the
formulation of particle mixing, originally implemented
to study CP violation in the neutral kaon system, to the
case in which different particles (in general with different
masses) mix via common intermediate states or decay
channels. As it is clear from this analysis, such a formu-
lation is applicable and generally applied to the case of an
initial state being a pure state, and primarily, when such a
state is a linear superposition of single particle states [29].
This analysis also revealed several subtleties associated
with the time evolution of the amplitudes in terms of an
effective Hamiltonian. It also highlighted that the non-
Hermiticity of the effective Hamiltonian is a hallmark of a
quantum open system, namely such a Hamiltonian des-
cribes the nonunitary time evolution of a reduced subset of
states which are coupled to a continuum of states that have
been integrated out.

Our main objective is to provide a framework to study
the dynamics of particle mixing in a medium, as it is
necessary within the realm of cosmology. In this case, we
are interested in the time evolution of a density matrix,
describing a statistical ensemble of particles, not just a pure
state of a few particles. Furthermore, we are interested in
obtaining the time evolution of correlation functions and
distribution functions in the medium, in particular their
asymptotic behavior and possible thermalization, not on the
amplitudes of single (or a few) particle states.

Rather than considering the most general case of mixing
between charged bosons or fermions which necessarily add
several technical complications, we consider the simpler
case of real scalar or pseudoscalar bosonic fields ¢y, ¢,
interacting with degrees of freedom in thermal equilibrium
denoted collectively by y, to establish the main framework
and results within a simpler setting, thus paving the way to
extrapolating to a more general case.

The mixing between ¢; and ¢, is indirect and a
consequence of a coupling to a common set of intermediate
states yielding a self-energy with off-diagonal elements in
the space of ¢, , similar to the cases studied in the previous
section.

The general Lagrangian density describing this situation
is given by

Ll rxl = Ly + L, + L, (3.1)

where
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Ly =5 31000 - midi].

a=12
L;==$10,[x] = $,0,x],

where L, is the Lagrangian of the y fields. These are
assumed to describe degrees of freedom in thermal equi-
librium including interactions among these fields, and
O)5ly] are (composite) operators associated with the y
degrees of freedom. These operators include couplings g, »
assumed to be small. Indirect field mixing is a consequence
of nonvanishing correlations (O;0,) in the medium
yielding off-diagonal self-energy matrix elements.

Let us consider the initial density matrix at a time t = 0
to be of the form

7(0) = 74(0) ® 5, (0).

The initial density matrix p,(0) is normalized so that
Tryp,(0) =1 and that of the y fields will be taken to
describe a statistical ensemble in thermal equilibrium at a
temperature 7 = 1/f, namely

(3.2)

(3.3)

e Py

=—p> (3.4)
Tr,e "M

P,(0)

where H,, is the total Hamiltonian for the fields y and may
include other fields to which y is coupled other than the
fields ¢, ,. The y vacuum is obtained in the limit # — oo.

For example, for the discussion of the previous section
the initial density matrix is given by

p(0) = [¥(r = 0)){¥(r = 0)],

where |¥(r = 0)) is the state (2.13).

The factorization of the initial density matrix is an
assumption often explicitly or implicitly made in the
literature, it can be relaxed by including initial correlations
among the various fields at the expense of daunting
technical complications. In this study we will not consider
this important case, assuming the factorization as in (3.4).
In what follows we will refer to the set of fields ¢,
collectively simply as ¢ = {¢;, ¢,} to simplify notation.

The main concept that anchors the framework developed
below is the following: the time evolution of the full density
matrix in the Schrodinger picture is given by

(3.5)

plr) = eiHip(0)eit, (3.6)
where H is the total Hamiltonian
H:HO¢+H1+/d3xz¢aOa(;(), (3.7)

a=12

where H, and H, are the Hamiltonians for the respective
fields. We will assume that the composite operators O,
include weak couplings so as to define a perturbative

expansion, and second order terms in O, imply second
order in couplings, which we will denote as O(g?) with g a
generic coupling.

The reduced density matrix for the ¢, degrees of
freedom is obtained by tracing over the y degrees of
freedom, namely

Pi(8) = Tr,p (o). (3.8)

This reduced density matrix does not evolve unitarily in
time, its time evolution is determined by a time nonlocal
effective action [35,40-44]. One of our main objectives is
to obtain this effective action.

It is convenient to write the density matrix in the field
basis which facilitates a path integral representation of the
nonequilibrium reduced density matrix [35,40-44].

In the field basis the matrix elements of p,(0) and p,(0)
are given by

@1y (0)|9') = pypo(d.d): Ul (O)X) = prolrix).

(3.9)

and this is a functional density matrix as the fields feature
spatial arguments. p;(0) represents either a pure state, such
as a coherent state, or more generally an initial statistical
ensemble, whereas p, (0) is assumed to describe a thermal
ensemble and is given by Eq. (3.4).

To obtain the effective action, we follow the procedure
described above: evolve the initial density matrix in time,
trace over the y degrees of freedom thereby obtaining the
reduced density matrix for the ¢ fields, and determine the
effective action from its time evolution. Including source
terms for the fields ¢, we can compute expectation values
and correlation functions as a function of time from
variational derivatives as usual.

We now follow the main methods and results of
Refs. [18,39], summarizing here the main aspects pertinent
to the case of mixing for consistency of presentation.

The reduced density matrix is given by

(1) = TR, UOMO) U (1);  U(t) = ™™ (3.10)

In field space,

p(Drxrs O xpt) = (@i xr lU@OPO)U (1)@ 1),
(3.11)

from which the reduced density matrix elements are
obtained by taking the trace on y, namely setting )(} =xr

and carrying out the functional integral in y,
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o bpeit) = [ Drg VROV 012,
(3.12)
With the functional integral representation
(AU HOU (1))
~ [ D DD b AU isidog ol )
® pyolris ) (i lU (0| bl xf), (3.13)

it follows that the reduced density matrix elements are

P dps . it) = / Dy / D¢;DyiD¢;Dy;

XA xflUO\|bis xi)pgo(dis d))
® pro(is ) (b lU (O xp)-
(3.14)
The f D¢, etc., are functional integrals where the spatial
argument has been suppressed. The matrix elements of the

time evolution forward and backward can be written as path
integrals, namely

By U i) = / DDy T (315)

WU ) = [ DDt )
(3.16)

where we use the shorthand notation

/d4x5/tdt/d3x.
0

L[p,x] is given by (3.1) and (3.2) and the boundary
conditions on the path integrals are

(3.17)

(X1 =0)=¢;(X);  ¢T(X.1) =¢(X). (3.18)
TEr=0)=xi(X):; &) =yx5). (3.19)
(X, 1=0)=¢{(X): ¢ 1) =), (3.20)
(Er=0)=x(x): 1 EH=xE. (321

The field variables ¢* and y= along the forward (+) and
backward (—) evolution branches are recognized as those
necessary for the in-in or Schwinger-Keldysh [40-43]
closed time path approach to the time evolution of a
density matrix.

The reduced density matrix for the fields ¢, (3.14) can
be written as

Py dt) = / DODTIby. 4o s 1oy (s 01:0).
(3.22)

where the time evolution kernel is given by

= /'D¢+/'D¢_eiseff[¢+s¢ t]

from which the in-in effective action out of equilibrium is

identified as
/m/&wm+cd]

+Zip", P51},

eff ¢ ¢
(3.24)

where Z[¢p*;¢p7; 1] is the influence action [43,44] and is
obtained by tracing over the y degrees of freedom, namely

PR :/D)(iDXEDXf/Dfr

« e—ifd“x[ﬁb(*]—zn¢anb(7”p)((){i’)(;;0), (325)

with the definition (3.17).

Note that in the influence action (3.25) the ¢ fields act as
background field variables, the functional and path inte-
grations are performed in all fields y other than the ¢ fields.
These functional integrals are obtained by expanding the

terms e]Fif @i Oale”] power series and carrying the path
and functional integrals in y*;y;; xr:xs yielding correla-
tion functions of the operators O, and reexponentiating.
This is depicted in Fig. 2.

From Egs. (3.22) and (3.23) it is clear that the effective
action S determines the time evolution of the reduced
density matrix.

The path integral representations for both 7[¢, ¢;;

}, 'st] and Z[¢p*; ¢~ ;1] feature the boundary conditions
in (3.18)—(3.21) except that we now set y*(X, 1) = y;(X) to
trace over the y field.

The technical steps to obtain Z[¢"; ¢p~; ¢] in perturbation
theory, up to second order in the operators O,, up to O(g?)
are available in Ref. [18]. We follow the steps in this
reference to find up to second order in couplings
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FIG. 2. Pictorial representation of the influence action
Z[¢p";¢p~;1]. The dashed lines are the (background) fields ¢Z,
and the filled circles the trace over the y fields yielding correlation
functions of the operators O[y*]. Each vertex carries a coupling.
The second graph with two dashed lines yields the influence
function up to second order in the couplings (3.26). We assume
that (O,) = 0; hence, there is no first order contribution
to Z[pt; ¢ 1].

ﬂwawwz—/fmmmﬁﬁmwﬁ@m

where and Gfb(xl — X,) are given by

<Oa(x1)0h(x2)>)p
<Ob(x2)oa(xl>>)(7
and we have assumed that (O,) =0 (so that the first

diagram in Fig. 2 vanishes). The operators O, are
Hermitian from which it follows that

Gop(x1 —xp) = (3.27)

Goy(x1 —xp) = (3.28)

G;b(xl - )Cz) = GZH(Xz - Xl). (329)
This is the general form of the influence function up to

second order in the operators O,[y], but to all orders in

e“[¢ R = a(x,t = 0)

/ dngRa ;

i A dtz{—na(-z, (@ (1) + 02 ()@, (k. 1)) +

the couplings of the y fields to any other field except ¢ 5.
We can obtain expectation values and correlation functions
of ¢, by including sources JF(x) with Ly(¢*) —
Lo(p*) £ 50,75 (x)pE(x) and defining the generating
functional

ZJH, T =Trp"(J*T,J751)

~ [ pa;00.09; [ 4"
X / Dep=eSerld ™I p (. 1:0)  (3.30)

with the boundary conditions

(3.31)

Expectation values or correlation functions of ¢* in the
reduced density matrix are obtained as usual with varia-
tional derivatives with respect to the sources J*.

The effective action (3.24) may be written in a manner
more suitable to exhibit the equations of motion by
introducing the Keldysh [41] center of mass and relative
variables

@, (%.1) = 3 (¢ (1) + 7 (R.0):

Ro(X.1) = (¢a (X.1) — 5 (X.1)). (3.32)

The boundary conditions on the ¢* path integrals given
by (3.31) translate into the following boundary conditions
on the center of mass and relative variables:

Ro(Z.1=0) =R, (3.33)

O, (X, t=t7) = D, 4(X); R.(X,t=1t;)=0. (3.34)

Taking the spatial Fourier transform, the effective action
(3.24) with the influence functional (3.26) becomes

-

@, (K, 1)T o(=K, 1)}

t - - - - -
_/ dtl/ dtZZ{ Ra(—k. 1)) a,,(k;tl—tz)Rb(k,tz)+iRa(—k,t1)Z§b(k;t1—tz)d),,(k;tz)}, (3.35)
0
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where w?(k) = k* + m2. To obtain the above form, we

integrated by parts in time, defined J,(x) = (J{(x)—
J;(x)), and kept only the sources conjugate to @, because
we are interested in expectation values and correlation
functions of this variable only as discussed in detail
below.

The nonlocal kernels in the above effective Lagrangian
are given by [18]

Nkt =) = 5 [G5 ket = 1)+ Gy kit = )], (336)

iZR(k,t—1) =[G (kst—1) = G5kt —1)|O( = 1)
=i,k t—1)0(t—1), (3.37)
|

where G=~ (k;t — ') are the spatial Fourier transforms of
the correlation functions in (3.27) and (3.28). It is clear
from these correlation functions that if (O0,0,) #0,
the self-energy features nonvanishing off-diagonal matrix
elements, and these are responsible for indirect mixing
between the fields ¢; and ¢,. Since each operator is
associated with a coupling g,, the self-energy and noise
kernels are of second order, and we will refer to them
generically as T « ¢>; \V,,;, « g* to emphasize the second
order nature of these kernels.

In the exponential of the effective action e’er, the
quadratic term in the relative variables R, can be
written as a functional integral over a noise variable &,
as follows:

1 . - -
CXP{—z/dﬁ/dlzRu(—k§f1)Nah(k§f1 —fz)Rb(k§f2)}

~ 1 - - - - -
_¢ / D, exp{-E / dt, / ey (B NI Bty = 1)Ep (s 1) + i / dte, (=& YR, (R t)}, (3.38)

where C is a normalization factor.

The time evolution of the density matrix defines an initial value problem; consequently, we seek to obtain the equations
of motion as an initial value problem rather than a boundary value problem. Since the Heisenberg equations of motion are
second order in time, an initial value problem is determined by providing the initial values of the field and its canonical
momentum. This suggests to consider the Wigner transform of the initial density matrix by writing it in terms of the initial
center of mass and relative variables ®,,; and R,

Py @ai» i 0) = py (q>a,,~ + RT Dy = 7%2 ;0> : (3.39)
and introduce the functional Wigner transform [43,51] as a Fourier transform in the relative variable,
Wi, 1, = /DRie_ideXH“’i@Ri(}>P¢ <‘Da.i + % @y — Rza'i ;0>7 (3.40)
which allows us to write (up to a normalization factor)
P <q)a,i + % LD, - % ; 0) = /DHa.ieifd}xnd"'(}m“a)W[q)a,i’ I0,.]; (3.41)

the variables I, are the momenta conjugate to the variable ®,, and W[®, I1] yields a probability distribution in “phase-
space” @, I1.

Gathering these results together, we now write the generating functional (3.30) in terms of the Keldysh variables (3.32),
with the effective action in these variables given by Eq. (3.35). Implementing the Wigner transform (3.41) and using the
representation (3.38) we obtain

Z[J) = / DD, / DR,D®;DII, / DODRDEW[®;,T1;] x P[¢] xexp{i / dry @, (k: 1) T (~k: t)}
R
Xexp{—i / dr;Ra(—£; 1) (dsaa'é; 1) + 02 (k)®,(k; 1) + /) 'S (ks = )0, (R, £)dl — &, (R t))}
(3.42)

exp{ 3R (R) T (F) - @4, .
k
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2

where w? (k) = k*> + m?2 and repeated field indices are summed over. The noise probability distribution function P[£,] is

given by

~ 1 - o
PlE,] = CHGXP{—E/dﬁ /dt2§a(_k;tl)'/\/;ll(k; f —fz)fa(k;fz)}-
k

(3.43)

The generating functional Z[7] is the final form of the time evolved reduced density matrix after tracing over the bath
degrees of freedom. Variational derivatives with respect to the source .7 yield the correlation functions of the Keldysh center

of mass variables ®.

Carrying out the functional integrals over R,(I;) and Ry (¢) yields a clearer form, namely

Z[T] / DO, / D®, DI, ; / D®,DE W[, T1;] x P[¢] xexp{i / dry @, (k1) T ,(~k: z)}
ok

-

X Hé[l’[a.i(l_c') -, (k).

Obtaining expectation values and correlation functions

from this generating functional is straightforward:

(i) The functional delta functions in (3.44) determine
the field configurations that contribute to the gen-
erating functional Z[7]. These are the solutions of
the stochastic Langevin equation of motion [39] for

@a(§; t), namely
&, (k1 1) + w2 (k) D, (k1)

+ / 'S (Kot = )0, (Ko ) dE = E,(Ko1).  (3.45)
0

This equation of motion is retarded as it involves the
retarded self-energy, thereby defining a causal initial
value problem. This is a distinct consequence of the
in-in formulation of time evolution.

(i) The expectation value and correlations of the sto-

chastic noise &, (1? t) are determined by the Gaussian
probability distribution P[,]. Introducing the defi-
nition (- - -))) for averages with P[&,], the Gaussian
stochastic noise features the following averages:

(Ealk. 1)) = 0;

k
(ks )&, (K3 1)) = Nap(kst = 1)6; . (3.46)
Since P[£,] is a Gaussian distribution function,
higher order correlation functions are obtained by
implementing Wick’s theorem. This averaging is a
manifestation of stochasticity, establishing a direct
relation between nonequilibrium dynamics of quan-
tum open systems and stochastic field theory [52,53].

<]]o [cbuu?; 1) + 0} (k)@ (K 1) + / 2y (1 = 1)@y (ks 1)t — &, (F: r)]

(3.44)

(iii) The stochastic equation of motion (3.45) must be
solved with the initial conditions

b, (F: 1 = 0) = I0,,;(F),
(3.47)

and these initial conditions confirm that I1,, ; are the
canonical momenta conjugate to ®, ;. The solution of

-

(3.45) is a functional of the variables @, ; (k). 1, ; (k)
which are distributed according to the probability
distribution function W[®, ;,I1,,], which in turn is
determined by the initial density matrix. This is
another manifestation of stochasticity, but now in
the distribution of initial conditions.

We now introduce the notation (---) to denote
averaging over the initial conditions (3.47) with the
distribution function W[®,, ;, IT, ;].

The solutions of the Langevin equation (3.45)

D, [l_é, t;& @, ;3 I1, ;] are functionals of the stochastic noise
variables £, and the initial conditions. Therefore correlation
functions of the original field variables ¢, in the reduced
density matrix correspond to averaging the products of the
solutions over both the initial conditions with the Wigner
distribution function W[®,;,I1,,], and the noise with the
probability distribution function P[£]. We denote such

averages by ((---))) where (--
initial conditions (3.47) and &,.
These stochastic averages yield the expectation values
and correlation functions of functionals of @, obtained
from variational derivatives with respect to 7.
In Appendix B we provide a nonperturbative spectral
Lehmann representation of the correlation functions

-) is any functional of the
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Gfb(x — y) that enter in the definitions of the self-energy
(3.37) and noise correlation function (3.36). The result is
that these nonlocal kernels can be written in a dispersive
representation as

Zab (k’ r— t/) =-i (dz—ko)pab (k()v k)e_ik()(t_t/)a (348)
T
1 [ dk k1
(3.49)

where p,;, (ko, k) is a 2 x 2 matrix of spectral densities (see
Appendix B for details). The representations (3.48) and
(3.49) are a manifestation of a generalized fluctuation
dissipation relation, a consequence of taking the y degrees
of freedom in thermal equilibrium.

The stochastic equation of motion (3.45) with initial
conditions (3.47) defines an initial value problem whose
solution is obtained by Laplace transform. Let us define the
Laplace transforms

®,(k;s) = / e, (ks 1)dr, (3.50)
0

E(ks) = / ¥ evig (ks 1)dt, (3.51)
0

1 /Oopab(k07k) dko

S (kis) = OO‘S’Z I?;tdtz
(o) = [ ez ol

0 _2_7T -0
(3.52)

where in (3.52) we used the representation (3.48). The
Laplace transform of the Langevin equation (3.45) with
initial conditions (3.47) becomes

-

Gy} (k. 5)®y (ki s) = 1, (k) + 5@, (k) + &, (ks ), (3.53)
where

Gl (k,s) = (s + @2(k))Sa + Eap(kis).  (3.54)

The solution in real time is obtained by inverse Laplace
transform, and it is given by

@, (k1) = D (k; 1) + D5 (k: 1), (3.55)

where q>g(12; t);d>§(lz; t) are the homogeneous and inho-
mogeneous solutions, respectively, namely

DL (K3 1) = Gop (ks 1) D (k) + Gy (ks )T, (),

ok (k1) = / "Gt — 1) (R 1), (3.56)
0

and repeated indices are summed over. Green’s function is
given by

1
gab(k; f) = —/ ES[Gab(k, S)dS, (357)
2ri C

where C denotes the Bromwich contour parallel to the
imaginary axis and to the right of all the singularities of
Ggp(k,s) in the complex s plane, closing along a large
semicircle at infinity with Re(s) < 0. These singularities
correspond to poles and multiparticle branch cuts with
Re(s) < 0; thus, the contour runs parallel to the imaginary
axis s = i(v — i€), with —oo < v < 00 and € — 0. Finally,
changing variables v = —®, we obtain

) . d
Gup(k;t) = / Gup(k, s = —iw + e)e"“”z—w, (3.38)
—oo b3

and for # > 0 the integration contour is closed in the lower
half @ plane. We obtain Green’s function G, (k,s) by
following the steps in Appendix C. Without loss of
generality we consider m? > m3 and define

(k) = 524 3 [0 (K) + 03(K) + S0, (k.5) + E (k5]

(3.59)
D(k,s) = [(@](k) = 3(k) + Zy, (k. 5) = Zn (k. 5))?
+ 4% (k, )%, (k, 5)]'72, (3.60)
7 _ ! ? (k) — w? S0k s) =S5 (k. s
a(k,s) = D(l_c:s)( 1(k) = w3(k) + 2y (k, 5) — Zpp(k, 5)).
(3.61)
. _28,(ks) o= 255, (k. s)
) =T e =D 6
with the property
a*(k,s) + Pk, s)7(k,s) =1 = a(k,s)
— J1-Blks)ilks).  (3.63)

where we used the same argument leading to Eq. (2.46) for
the choice of sign for a.

In terms of these variables, G} (k, s) has the same form
as Eq. (C3) in Appendix C, yielding

_ P_(k,s) P, (k.s)
G(k, s) T ks — 260 T Tk Diks)’
( ’s) ) ( ,S)—|— )
P, = % 1£R), (3.64)

036038-18



EFFECTIVE FIELD THEORY OF PARTICLE MIXING

PHYS. REV. D 109, 036038 (2024)

with
= (5 L)
7 —a

The analytic continuation of the self-energies is

R?=1= Pi(k,s) =P.(k,s).

(3.65)

p(k,s = —iw +€)

Pab(ko, k)
27[[/ [y w — ky

Upon analytic continuation to @ Green’s function (3.58)
becomes

dky — inp (@, k)] . (3.66)

N P_(k, w)
Gan (ki t) = = /_oo {(a) +ie)? — Q2 (k, )
P+(k, w) —iwtd_w
(@ + ie)? — Q2 (k, a))] ey (367)
with
0 (k) = 3 [0} (K) + @3(K) + £, (k. )
+ %5, (k, w) = D(k, )], (3.68)

where the functions of w are understood as the functions of
s upon analytic continuation s = —iw + ¢, keeping the
same name for the functions to simplify notation.

The form of Green’s function is similar to Eq. (2.40) of
the previous section, with important differences: whereas
the denominators in Eq. (2.40) are linear in w, therefore
each term features only one pole, and the denominators in
(3.67) are quadratic in @ implying that each term features
two poles. This discrepancy has a simple explanation: the
set of amplitude equations leading up to (2.40) describe the
evolution of single particle states, whereas the effective
field theory yields the time evolution of the density matrix
in the field basis, and a real scalar field describes positive
frequency particle states and negative frequency antipar-
ticle states. Even in the absence of perturbations, the
propagator has two poles yielding the time evolution
eF @K for the amplitudes. Furthermore, the self-energies
2. (k, @) have dimensions of energy squared, unlike the
quantities A, in the previous section that feature dimen-
sions of energy.

The complex poles in Green’s functions are at

0} = Q% (k,w.), (3.69)

namely
ol = (£)Q, (ko). (3.70)
o) = (£)Q_(k, 0, (3.71)

where the superscripts (&) denote the two roots of (3.70)
and (3.71) for each subscript label 4, — corresponding to
the signs of Qi in (3.68). These roots define the complex
frequencies of the quasinormal modes.

Consistent with perturbation theory, we assume that
w? (k) > £,,(k,w)  H} allowing one to implement
Breit-Wigner and narrow width approximations to the
propagators. Just as in the case discussed in the previous
section, the validity of the Breit-Wigner approximation
relies on weak coupling, in particular that the distance
between the real part of the poles and thresholds is much
larger than the half-width of the resonance. This criterion
holds for both the nondegenerate and nearly degenerate
cases, because in the latter the condition of near degeneracy
is that w2 > £, and w? — w} < ¥,,. This approximation
describes exponential relaxation valid in the intermediate
timescale as discussed above.

In these approximations, we expand around each pole in
the denominators in (3.67), namely

o=0\"+(-o);

Q. (ko) = Q. (ko\”) + (0o
1 d
- — Q2 (k, HF- 3.72
sz(f)dw +k @),y + (3.72)

and similarly for each of the other poles. Using the pole
condition (3.69) yields the general form of Green’s function,

gab(k; t) = gab.-‘r(k; t) =+ gab,—(k; t)’ (373)
where each term corresponds to the contribution of the
individual quasinormal modes corresponding to the sub-
scripts &£, namely

gab +(k t) - i|:ZS-+) 2w(+) +<wg—+))
+
e—iw(;)t
L2000 e
+ ab
—iw ™t
e
G- (ki) = |20 P(al?)
O e—iwf)t O
w- ab

The wave function renormalization constants are given by

QQ -1
zZ®H = |1- d @ (k) :
dw 2(1)( ) w:w(f)
d Q(k,w) -1
)= |1 ’
AS {1 e wm(})] . (3.76)
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Green’s function for each quasinormal mode features both
positive (@) and negative (@) frequency contributions.

This is the general result for Green’s function, again
displaying the four poles: positive and negative frequency
for each quasinormal mode, with the associated wave func-
tion renormalization constants arising from the residues at
the poles in the Breit-Wigner approximation.

Note that while the result (2.44) features only positive
frequency components, Green’s function (3.73) features
both positive (w(*)) and negative (w'~)) frequency compo-
nents. As discussed above the origin of this difference
is that whereas the Weisskopf-Wigner formulation, upon
which the LOY theory is based, describes the time
evolution of single particle (positive frequency) or anti-
particle (negative frequency) amplitudes, Green’s function
in the effective field theory describes the propagation of
fields that include both positive and negative frequencies
and describe the quasinormal modes of propagation as a
consequence of mixing and decay. Although this expres-
sion looks cumbersome in its index structure, we clarify
again: the superscripts (%) refer to the positive (particle)
and negative (antiparticle) frequencies, the subscripts +
refer to the two (quasi)normal modes from mixing, corre-
sponding to the £ in Eq. (3.68).

With the purpose of comparison with the LOY theory,
we focus on the same possible scenarios as in the previous
section.

A. Nondegenerate: m} —m3 > £,

In this case it follows that
Dk, ) = 2(K) - 3(K) + £ (k. 0) = Spa(k.@), (3.77)

yielding up to second order in the couplings

Q2 (k,w) = 0?(k) + £, (k, w), (3.78)
Q2 (k, w) = w3 (k) + Zpy(k, w). (3.79)
a(k,w) ~ 1+ O(?), (3.80)
_ 2%, (k,
ﬁ(k,a))z%« I, (3.81)
7(k, ) ~ M < 1. (3.82)
my — n

Therefore, up to second order in couplings the complex
poles are at

(®)
W (k) = +ar, (k) - iFJ’T(k), (3.83)
o®) (k) = £o_, (k) — l_r<_i2>( ), (3.84)

w_,(k) = @y (k) +6_(k)

are the renormalized frequencies of each quasinormal mode
and to leading order

5, (k) _ ReZyi(k oy (k) 5_(k) = ReZ (k, @ (k))

2w, (k) 2an(k) 7
(3.86)
) oy P1(Fo (k) k)
I = (@)= e
6 (k) = (i)% (3.87)

To obtain the above results we used the property
Paa(—0,k) = —p.(@, k) (no sum over a) for the diagonal
matrix elements of the spectral density [see Eq. (B15) in
Appendix B]. The contributions 6. (k) are renormalizations
of the bare frequencies @, ,, respectively.

Green'’s function (3.73) with (3.74) and (3.75) is given to
leading order in this case by

+

Gups (ki) = i [Z(+)e—i{1)+,ze—r7+tp (o)
ab,+\"" 2w+r + + 1
=200t P (o) (3.88)
gab,— (k, t) = Zé_r [Z(_—F)e—iw,rte—%tlp_ (602)
— ZO) oo TP_(=y)] 1, (3.89)

with the projection operators given to leading order in the
couplings by

P+(ia)1)<%7(k’iwl) 0 ) (3.90)
0 1Bk, tw,)
P_(+w,) = (_iy(k’ to) : ) (3.91)

Since in this nondegenerate case 3,7 « X [see Egs. (3.81)
and (3.82)] the off-diagonal terms are perturbatively small,
for these the wave function renormalization constants can
be set Z ~ 1 to leading order. This result agrees with those
obtained in Ref. [18] for the case of pion-axion mixing.
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B. (Nearly) degenerate: m3 —m3 S X,

In this case, it is convenient to define

Q2 (k. w) = @ (k) + 4 (k. w), (3.92)
with
o(l) = = [0i0) + 030 2> £ D (393)
and
E. (k) =~ [£11(k @) + £ (k. ) + Dk, )] < @

N |

(3.94)

with %, and D of the same order. In this case the complex
poles are at

()
o' (k) = 2o, (k) - iF+2(k) , (3.95)
0 (k) = e (k) - lr(-iz)( ) (3.96)
where
w4, (k) = @(k) + 6. (k) (3.97)

are the renormalized (nearly degenerate) frequencies, with

Re[€y (k, (k)]

51“‘) = 2&)(1() 5
' (k) = (%) Im[gig&;@(k) Iy (3.98)

and both are of quadratic order in the couplings.

We assume that the decay rates Ff) are all positive for

stability, and further properties of d.; F(f) will depend on

the specific details of the self-energies ,,, which in turn
depend on the type of operators O,. In this case
Dy — O, %, namely the difference in the quasinormal
mode frequencies are of quadratic order in the couplings.
To leading order in the couplings Green’s functions (3.74)
and (3.75) in this nearly degenerate case are given by

: +
L (1) jmiwr 1 ymivst
|:Z+ e rle” P (@)

Gi(k;t) = 2w,

~
— ZD et P (~w,,)|. (3.99)

i
2w_,
_ Z(_—)eiw_,.t

G_(k;1) = [z&ﬂe—lw-rte—t%um_(w_r)

e-i%um_(—w_,)] : (3.100)

where all matrix elements of P are of O(1).

C. Expectation values and correlation functions

We seek to obtain expectation values and correlation
functions of ¢, in the reduced density matrix. In particular,
we focus on equal time correlation functions. If asymp-
totically at long time these become time independent, this is
a signal of the emergence of a stationary state, from which
we can assess if the fields reach thermal equilibration with
the bath. Furthermore, off-diagonal equal time correlation
functions will also inform on the emergence and long time
survivability of coherence. Therefore, we must relate these
to the averages of the center of mass Keldysh fields ®,. To
establish this relation, we begin with the path integral
representations for the forward and backward time evolu-
tion operators (3.13), (3.15), and (3.16) which show that ¢}
are associated with U(f) and ¢, with U~'(r). Hence, it
follows that the expectation value of the fields in the full
density matrix is given by

(Pa(X,1)) = Trep (X, 1)p(0) = Trp(0)gz (X, 1)
= Trd, (¥, 1)p(0)(0) = (@, (%, 1)),  (3.101)
whereas
TrR, (%, 1)p(0) = 0. (3.102)

Similarly, correlation functions in the forward, back-
ward, and mixed forward-backward branches are given by

tT(a (ks 1)y (K3 £))p(0),
(¢

Teeh; (ks 1)y, (K3 £)p(0) = Tep(0)T (o (K: )by (K 7)),
Teep;, (k: 1) (K's7)p(0) = Trep, (ks 1)p(0) by (K's 1)
= T, (K's V)b (k; 1)p(0),

(3.103)

where T and T are the time ordering and antitime ordering
symbols, respectively. Using the relations (3.103) it is
straightforward to confirm that

Tr®, (X, 1)@, (¥, 1)p(0) = = Tr(dy (X, 1)y (¥'. 1)
$p(X. 1) a (%, 1))p(0).

(3.104)

1
2
_|_
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Upon obtaining the functional solutions of Eq. (3.45) our
objective is to obtain the connected equal time correlation
functions

(3.105)

and the population for each field component of wave vector
k, namely

k1) = 5 T O) (1)

+ @304 (F: 09 (F: 1)) ~ 3

(no sum over a). (3.106)

Establishing contact with the dynamics of the density
matrix of two level systems [51], the off-diagonal compo-
nents of the connected correlation function (3.105) are a
manifestation of coherence. If initially the fields are
uncorrelated, the off-diagonal components of the correla-
tion function vanish. Therefore, if upon time evolution
these are nonvanishing, these off-diagonal correlations
between the two fields are a consequence of coherence
induced by the indirect mixing through the interactions of
the field with the bath.

-

na(ks 1) = 2a)1(k)

Tep(0) (4 (K: 1), (K 1) + 07 (k) (K )0, (~Fi 1)) -

_ {<<<i>a</€; NP (K 1)) + 02 (), (G 1) (—F: r)»} -

2w, (k)

The corollary of this analysis is that we can obtain the
connected correlation functions and the populations of the
fields ¢, by obtaining the solutions of the Langevin
equation of motion (3.45) with initial conditions (3.47) and
taking the averages over the initial conditions and noise
described above.

Armed with the solution of the Langevin equations (3.55)
and (3.56), the above results, and the general form for
Green’s function (3.73), in terms of Green’s functions for
the quasinormal modes (3.74) and (3.75), we can now study
the expectation values, connected correlation functions
(3.107), and populations (3.110). The solutions (3.55)
and (3.56) along with the averages (3.46) yield for the
spatial Fourier transform of the fields

(ha(k.1)) = Gup (ks 1)@y (k) + Gop (ks DIL, (). (3.111)

With the definition of the Keldysh center of mass field
variables @, (3.32) and the relations (3.101)—(3.103), we
find that the equal time connected correlation function
(3.105) is given by

(Da(1)p (1)) = (Pu(1) Py (1)) — (Pu (1)) (P, (1)) -
(3.107)
To obtain the population for each field (3.106) we now
introduce
C; (ki 1.1') = Trgy; (ks )b (=K £)p(0);

Cs (ki1 7') = Trgy (k: /) pg (—k; 1)p(0),  (3.108)

and the populations of the wave vector k component of each
field ¢, (3.106) become

1 00
ng(kyt) = 4o, (k) (atat’+ wf,(k))

1
x [CC(ktt) + Co(k t.)] iy =5 (3.109)
Using the definition (3.32) and the relations (3.103) it is
straightforward to show that this symmetrized product
yields

N = =

. (3.110)

[
Similarly, the connected correlation functions (3.107) are

(balk, 1)y (=K. 1)), = DLk, 1)) (=K, 1)
— @k, 1) D) (k. 1)
+ (@5 (K. 1)@ (=K. 1)),

(3.112)

where @ and ®¢ are given by (3.56). These are general
results for expectation values and correlation functions,
from which we can obtain their time evolution.

D. Time evolution, thermalization,
and bath-induced coherence

Taken together, the results (3.111) and (3.112) inform
important aspects for the time evolution of expectation
values and correlation functions:
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(I) Even when initially only one of the fields, for example
¢,, features an expectation value, the off-diagonal compo-
nents of Green’s functions determined by the projector
operators P in (3.74) and (3.75) induce a nonvanishing
expectation value for the other field, in this case ¢,. This
phenomenon has been noticed in Ref. [18] in the case of
axion-pion mixing. In the LOY theory discussed in the
previous section, a similar feature emerges at the level of the
amplitudes of the single particle states |¢;) and |¢,): for
example, if the initial amplitudes are C;(0) # 0; C,(0) = 0,
upon time evolution a nonvanishing amplitude C,(7) is
induced as a consequence of mixing. The off-diagonal
components of G,;, are a consequence of the off-diagonal
components of the self-energy matrix and a direct manifes-
tation of the couplings of the fields to correlated operators of
the bath degrees of freedom, namely “indirect” mixing.

(II) A similar phenomenon emerges for the connected
correlation function (3.112). Even if the fields ¢, are
initially uncorrelated, a nonvanishing correlation emerges
from the off-diagonal components of the noise correlation
function that determines the last term in (3.112). We refer to
the emergence of nonvanishing correlations as bath-
induced coherence, referring as coherence to the off-
diagonal connected correlation functions of the field in
agreement with the description of the time evolution of a
density matrix in two level systems [51].

(IIT) The off-diagonal components of the projectors P
are perturbatively small O(X) in the nondegenerate case,
whereas they are of O(1) in the nearly degenerate case. In
turn, this implies that the induced expectation values and
coherence are perturbatively small in the nondegenerate
case, in agreement with the results in Ref. [18], but are of
O(1) in the nearly degenerate case. This expectation is
confirmed by the analysis below.

The first two terms in (3.112) decay exponentially
because Green’s functions do, and depend explicitly on
the initial conditions. The last term is independent of the
initial conditions, it is completely determined by the noise
term induced by the bath degrees of freedom, and, as we
show below, it survives in the long time limit, hence
determining the approach to a stationary state.

We now focus on this last term, which upon using the
noise correlation function (3.46) and (3.49) is given by

(@) = [~5° { [ Gutinre d]

X |:/ gbd(k, T)e_ikOTdT:| pcd(kO) coth
0

B

Each of the ¢'s in this expression is a sum of Green’s
functions of each quasinormal mode given by Egs. (3.73)—
(3.75); therefore, each G features four terms; and hence,

(3.113)

there are altogether 16 terms in (3.113). Because p., is of
second order in couplings, we will focus on the terms that
are of O(1) in these couplings, and these arise from the
terms that feature small denominators of second order in the
couplings that compensate the numerator p_.

Each of the terms in G features exponentials of the form
e~ {EW=II/2)t \where W stands for the real part of the
quasinormal mode frequencies, the £ describes the positive
and negative frequency components, and I' > 0 stands
generically for the decay rate of these modes. Therefore,
the time integral of such a typical term in the first bracket in
(3.113) yields

ol FW+IT/2)t _

i(ko FW+il/2)’

/ "k T2 gy (3.114)
0

and for the second bracket there is a similar generic
contribution but with ky; — —k,. Obviously as t — oo these
contributions remain nonvanishing, confirming that the
noise contribution to the correlation functions and coher-
ences (off-diagonal) remain finite in the long time limit.
The kg integral in (3.113) is dominated by the poles in the
complex kg plane. To identify these, consider the product of
the positive frequency contribution for the first G with the
negative frequency contribution of the second G for the
same quasinormal mode, for example, that of frequency
@, ,. Such a term is proportional to the product

l e~ (kO_err_l_)t ‘|
. I
(=i)(ko — @y, = i)

1+ e—(riJrl“)l/Z (ko—u)+r+l—> (ko “’+r_’T)

(kO @y r +i 2 ) (kO @Dy — rz )

(3.115)

rt
ei(ko—w+r+i7+)t -1
. It
itko — @i, +i%)

and we refer to these as direct terms: there are two for
each quasinormal mode. These terms feature poles at

.
ky=w,, £i % yielding for the integral a contribution
proportional to

pcd(w+r)
“ri4Ts
% (1 _ e—(FiJrF;)t/Z)’

o4 27P. (@) P (04 (1 +2n(w.,))

(3.116)

where n(w) is the Bose-Einstein distribution function with
energy w. In this expression we kept the leading order terms
and neglected wave function renormalization constants.
Furthermore, p.;(®) and coth(w) are evaluated at @,
namely the real part of the frequency of the quasinormal
mode, since I'F are of second order in couplings. An
important aspect of this contribution is that it is of O(1),
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because p and I" are both of second order in the couplings.
Now consider the positive (or negative) frequency contri-
butions of the same quasinormal modes in both brackets,
for example, for the positive frequency whose time inte-
grals yield a term proportional to

+ +

r r
eilko—o +i0)r _ e—ilkoto,—i5)r _ |

. Tt . Tt
l(ko —w,, + 17*) (—1) (ko +w,, - 17*)

rt rt rt
1+ e—2im+,te—7+t _ ei(ko—w+,+i7+)t _ e—i(k0+w+r—i7+)t

(ko—w+,+i%) (k0+a)+,—i%> ’
(3.117)

and the negative frequency contribution is obtained by
o, , > —o,,. We refer to these as indirect terms. These

feature complex poles at kg = £(w,, —i %) yielding
terms proportional to

pcd(iw-&-r)
[FD (a) r)ac
+\W 20,

x (14 2n(w,)) <1,

Py (@y))pa(l = eF2iowrTin)
(3.118)

where we have used that in the narrow width approximation
@, > I'{. These indirect terms are of second order in the
couplings and therefore are subleading with respect to the
direct terms.

Finally, consider the contribution of a positive frequency
of one quasinormal mode in one bracket and a negative
frequency of the other mode in the other bracket. We
refer to these as interference terms. For example, consider
the positive frequency mode @, in the first bracket in
(3.113), and the negative frequency mode —w_, in the
second bracket, where the time integrals yield a term
proportional to

r+

rt+
ei(k(l_“’+r+i7+>t —_ ]
l(k() — Wy, + l%)

e—i(ko—m,,—i%)t -1
"

1. (3.119)

A similar analysis as for the previous terms yields the
following leading order contribution to the correlation
function:

pcd((b)
Dy — O — é (Fi + F:)]
X P_(=@)[1 = €/ @012 T (1 + 2n(@)).
(3.120)

[FD+ (E)ac [

These interference terms exhibit the quantum beats, an
interference phenomenon associated with the difference in
the (quasi)normal mode frequencies, similar to that in the
expression (2.112).

These results are general and highlight the perturbative
and nonperturbative contributions to the correlation func-
tions in the long time limit. Before we discuss the non-
degenerate and nearly degenerate cases, it is convenient to
compare the results above to the case of the equal time
correlation functions of a free field theory in thermal
equilibrium, which is given by

(@, (k. 1)®y (K. 1)) = Zcfal(]k)

(14+2n(w,)), (3.121)

where we assumed uncorrelated fields, and the brackets
stand for statistical averages in a thermal ensemble of
uncorrelated fields.

It is then clear that the long time limits (3.116), (3.118),
and (3.120) all feature exponential relaxation to a ther-
malized stationary state with the asymptotic long time limit
featuring the thermal factors 1 4+ 2n(®) in terms of the real
parts of the frequencies of the quasinormal modes (the
imaginary parts yield subleading contributions). This is one
of the important results of this study.

Furthermore, all feature off-diagonal terms which we
identify as coherence because of the similarity with two
level systems [51], as discussed above. We refer to this
phenomenon as bath-induced coherence because even if the
fields are initially uncorrelated, their interaction with the bath
induces off-diagonal terms that survive in the long time limit.
Interference terms between the two different quasinormal
modes leads to the approach to the stationary thermal state
with quantum beats. Thermalization, the emergence of off-
diagonal coherence in the long time limit, and quantum beats
from interference between the two different quasinormal
modes are some of the main results of this study. In Sec. Il we
highlighted that in the LOY theory, quantum beats emerged
in the time evolution of the total population (2.109) and by
unitarity in the amplitudes of intermediate states or decay
products [see Eq. (2.110)]. In the effective field theory these
interference terms are explicit in the approach to the sta-
tionary thermal state of the correlation functions of the fields,
both the diagonal and off-diagonal (coherence) components
displaying the quantum beats.

1. Nondegenerate case

In the nondegenerate case, with _ , —w_, ~0| —w,>T"
the direct terms (3.116) are the leading ones. As shown
by Egs. (3.90) and (3.91) with (3.81) and (3.82), in the
nondegenerate case the off-diagonal components of the
projection operators are of O(g?). Therefore, in this case,
the correlation functions exhibit thermalization albeit with
a perturbatively small coherence. Furthermore, because
the interference terms are perturbatively small since
p/(w; — w,) x T  ¢?, the quantum beats in the approach
to thermalization feature small amplitudes. This is in
agreement with the results obtained in Ref. [18] for the
case of (ultralight) axion-pion mixing.
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2. Nearly degenerate case

In the nearly degenerate case with ., —w_, ST both
the direct (3.116) and the interference terms (3.120) are
of O(1), and all the matrix elements of the projector
operators are also of O(1). In this case the amplitude of
the quantum beats is large, enhanced by the near
resonance, and the timescale of these interference effects
is similar to the relaxation timescale. In this case the off-
diagonal correlations, namely the coherence, become
large, amplified by the (near) resonant denominators,
and could potentially be observable. This situation is akin
to the case of K — K(©) mixing where the decay products
exhibit quantum beats on the timescales comparable to
the lifetime. This is clearly the same physical process as
described by the LOY theory described in Sec. I
However, in the effective field theory approach the
quantum beats are explicit in the correlation functions
of the mixing fields in both the diagonal and the off-
diagonal components, and in the approach to the thermal
stationary state.

This large amplitude interference effect may open a
window toward observation of synthetic-cosmological
axion mixing via their (anomalous) coupling to photons
with a Chern-Simons term. This pathway is being explored
as a possible mechanism to harness synthetic axion
quasiparticles in condensed matter systems to probe the
cosmological axion [54].

|

. . o>

E. Relation to the LOY formulation of mixing

The results of the effective field theory bear a similarity
with those obtained from the LOYtheory in Sec. II, but also
have noteworthy differences. We seek to establish a more
direct correspondence between both formulations enlight-
ening the reason for the similarities and the origin of the
differences.

The main ingredient to obtain the time evolution of
expectation values and correlation functions is Green’s
function (3.67), which is completely determined by the
solutions of the Langevin equation (3.45) for the homo-
geneous case ¢, = 0, namely

b, (K; 1) + w2 (k) @, (k; 1)

t - -
+ / Ty kit — )0y (k; ' )dr = 0. (3.122)
0
In the absence of the self-energy, the solutions are the usual
free field positive and negative frequency components with
constant amplitudes. Since the self-energy is « g (with g a
generic coupling), we write

@, (k1) = C,(k; f)em @ 4 Cx (ks )ei@a® | (3.123)

where the amplitudes Ca(l;; t),CZ(E; t) are slowly varying,
namely C,,C}; «x £ « ¢ The equations of motion (3.122)
become

, > , o . R
et {ca( 1) = Qi RIC ) + et [ ot = )00, f)dﬂ}
0

+ ef@ab) {é;(/?, 1) + 2iw, (k)C:(k, 1) 4 el@k)-eak)r /

1

S (ks t = 1) e ®=1)Cx (k; t’)dt’} =0, (3.124)

0

where in the last terms the sum over b is implicit. Because the terms inside the brackets are slowly varying and of O(¢?),

each bracket must vanish independently, yielding

- P

. . t - . , -
Colk, 1) = 2w, (k)Cy(k, t) + e~ (@ (k)=walk)r) / T (ks t — 1)elr®=C, (k) dt' = 0,
0

(3.125)

and the equation for C* is obtained from (3.125) by replacing w, ;, = —®, . Let us neglect C in (3.125) for a moment; we
will show below that it is subleading in the long time limit. We introduce

i 4 - .
Waltit] = —— | Zu(kst—1")e®Ea W, [t0] =0, 3.126
altit] = ot [T =) 150 (3.126)
in terms of which (3.125) becomes
i (7 iy 0)-y [T 4 y TN g

Cu(k, 1) = —e @ (K)=®a ; Ewab[t,t] Cp(k; t)dt'. (3.127)

Upon integration by parts and the use of the initial condition in (3.126), the integral becomes

tfd N N t d N
/ (W Waslts t’])C,,(k; )dt = W[t 1]Cy (ks ) —/ Wealt; 7]) (ch(k; t’)) dr, (3.128)
0 0
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because W  ¢? and C « X ¢ the second term in Eq. (3.128) is of O(g*) and will be neglected to leading order, yielding

C (k1) = —{Wi[11C, (ks 1) + i1 (0)=o(0)

Cz (]_(” I) _ _{ei(u12 -, (k

i~ ]

where

(27) 2w,(k)

Wit t]Cz(k N}, (3.129)
DWW, (1 01C1 (K 1) + W [151]Ca (K3 1)} (3.130)
o pasKo-K) i, 1)t 0-1) g (3.131)

Comparing the amplitude equations for the positive frequency components (3.129) and (3.130) with the amplitude
equations in the LOY formulation, Egs. (2.70) and (2.71) with W [z, t] given by Eq. (2.74), we see that they are exactly the

same with the identifications

Wab[t; t] = Wab[t; t];

Hab (k())

pub(kO’ k) .

_— E ,= .
4zra)a(k)’ 12 001,2(k)

(3.132)

Furthermore, this analysis clarifies that the amplitudes C} for the negative frequency components are also present in the

effective field theory framework, but not in the LOY theory.

Invoking the long time limit

i 1
eilop(k)=ko)(1=1") gyt ,[73 <7> —ind(wy (k) — k
A oo | \(wy (k) — ko) (@5{k) = ko)

yields

—Wali] = Ap(@p(0),  (3.134)
where A, (w) is given by Eq. (2.39) with the identification
(3.132). Since in the long time limit W,,[t;t] —
A (wp(k)), it follows from the amplitude equations (2.70)
and (2.71) that Cu o ¢* and can be consistently neglected,
thus justifying neglecting C in Eq. (3.125). The equations for
the amplitudes (3.129) and (3.130) become exactly the same
as the set of equations (2.70) and (2.71) in the LOY theory;
therefore, the positive frequency components of Green’s
function G, (k; 1), Eq. (3.73), is equivalent to the bracket in
Eq. (2.44), explaining the similar projector operators. How-
ever, full Green’s function (3.73) includes the negative
frequency components, because (3.73) describes the time
evolution of fields rather than single particle amplitudes.
The solutions of the Langevin equation that determine
the expectation values and correlation functions in the
effective field theory, namely (3.55), feature two terms.

The homogeneous term [CI)Z(Iz; t)] in (3.56) depends on the
initial conditions and corresponds to the solution (2.44) in
the LOY theory, which also depends on the initial con-

ditions. However, the inhomogeneous term [(Di(lz; 1)] in
(3.56) is independent of initial conditions and is determined
by the noise. It is this inhomogeneous term that determines
the asymptotic behavior of the correlation functions and
exhibits the approach to a thermal stationary state in the

(3.133)

|

long time limit, while the homogeneous term decays
exponentially at long time, in the same manner as the
amplitudes in the LOY theory. This is one of the major
differences between the effective field theory and LOY
theory of mixing.

This analysis highlights the similarities and differences
between the LOY theory and the effective field theory, the
differences are noteworthy: (i) the effective field theory
describes the evolution of fields, including both positive
and negative frequency components of the quasinormal
modes. (ii) The effective field theory description yields the
correlation functions, describes the approach to a thermal
steady state, as well as the emergence and long time
survival of coherence, aspects that are not captured by
the LOY theory. Another important difference is that in the
effective field theory, the quantum beats are manifest
in the approach to thermalization of the correlation function
as a consequence interference of quasinormal modes, in
both the diagonal (populations) and the off-diagonal
(coherence) components of the correlation functions.
(iii) Since the LOY method describes the evolution of
the amplitudes of pure, single particle states, it cannot
describe correlation functions.

IV. SUMMARY OF RESULTS AND CONCLUSIONS

A. Summary of results

We generalized the seminal theory of particle mixing
pioneered by Lee, Oehme, and Yang to study CP violation
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in K% — K° mixing. This theory is the cornerstone of all
analysis of CP violation in flavored meson mixing in terms
of an effective non-Hermitian Hamiltonian.

We extend this theory in two ways: (i) to include the
cases in which the mixing degrees of freedom are not mass
degenerate in the absence of perturbations, thereby relaxing
the assumption of CPT invariance, and (ii) to treat the time
evolution without resorting to the approximation of a time
independent non-Hermitian effective Hamiltonian, and
discuss the caveats resulting from this approximation,
which become more important in the nondegenerate case.
The LOY theory is only valid for pure single (or few)
particle states and does not directly allow one to obtain
correlation functions of the mixing fields, nor the time
evolution of multiparticle states, such as coherent states,
or statistical ensembles. However, its generalization and
extension provide a useful guide to and benchmark for
the effective field theory which we introduce to describe
indirect particle mixing as a consequence of their coupling
to a common set of intermediate states or decay channels
populated in a medium.

The effective action determines the time evolution of the
reduced density matrix after tracing over the degrees of
freedom in the medium described as a bath in thermal
equilibrium. Therefore, it describes the dynamics of field
mixing as a quantum open system. Indirect mixing is a
result of nonvanishing correlations of the operators that
couple the mixing partners to the intermediate states in the
medium, and is manifest in off-diagonal components of the
self-energy. The dynamics of field mixing is determined by
a Langevin-like equation of motion with a dissipative self-
energy kernel and stochastic noise obeying a generalized
fluctuation dissipation relation. The solution of the equa-
tions of motion determines the dynamics of expectation
values and correlation functions in terms of a superposition
of quasinormal modes in the medium. The off-diagonal
elements of the self-energy and noise kernels lead to
indirect mixing and the emergence of long-lived coherence,
namely off-diagonal components of the two point correla-
tion functions, even when initially the mixing fields are
uncorrelated. We refer to this phenomenon as bath-induced
coherence. We analyze in detail the cases in which the
masses of the mixing particles are widely different, namely
the nondegenerate case, and when they are nearly degen-
erate, which may describe small violations of CPT. In both
cases even if one of the fields features an initial expectation
value and the other does not, the latter develops an
expectation value as a consequence of indirect mixing.
We find the remarkable result that the equal time two point
correlation functions of the fields approach a thermal
stationary state and feature quantum beats as a conse-
quence of the interference of the quasinormal modes. In the
nondegenerate case these interference effects feature per-
turbatively small amplitudes; however, in the nondegener-
ate case the amplitude of the quantum beats is resonantly

enhanced and nonperturbative. These interference effects
may provide an observational avenue to probe cosmologi-
cal axions in condensed matter systems.

We establish a direct relation between the effective field
theory and the LOY theory of mixing, and highlight
important differences, in particular that the effective field
theory describes emergent, bath-induced long-lived coher-
ence independent of the initial conditions that approach
asymptotically a stationary thermal state.

B. Conclusions

Indirect field mixing as a consequence of common
intermediate states or decay channels is of great importance
in particle physics, cosmology, and possibly condensed
matter physics. In particle physics indirect field mixing is at
the heart of flavor meson mixing and CP violation in the
standard model. Beyond the standard model it may be a
consequence of intermediate messengers connecting stan-
dard model particles to degrees of freedom beyond through
portals. In cosmology various axionlike particles may mix
through common decay channels into photons and/or
gluons, and in condensed matter synthetic axions, emergent
quasiparticles in materials that feature parity breaking,
such as topological insulators and Weyl semimetals, may
hybridize (mix) with cosmological axions, thereby offering
a way to probe the latter by exciting the former. Thus, the
interdisciplinary relevance of field mixing motivates the
study in this article. An important result of this study is that
the equal time correlation functions feature quantum beats,
as a consequence of interference of the quasinormal modes
in the medium.

As demonstrated within the LOY theory, quantum beats
are also manifest in the time evolution of the decay
products, which may provide an observational signature
of field mixing. This could be of particular relevance in the
case of axion mixing.

The phenomena revealed by this study, such as bath-
induced emergent coherence, induced condensates, and
quantum beats, are all qualitatively general independent of
the particular couplings or degrees of freedom in the
medium. However, the quantitative form of the quasinor-
mal modes, the projection operators, and the amplitudes of
the quantum beats clearly will depend on the particular
models and the parameters that define them.

Although we focused on field mixing in the case of
bosonic fields, the general approach is also suitable to study
indirect mixing for fermionic or gauge degrees of freedom.
In the case of fermions the derivation of the effective field
theory would require the extension of the current study to
Grassman fields. One possible avenue would be to study
neutrino mixing in the mass basis, where the weak
interaction vertices feature flavor off-diagonal terms after
diagonalizing a mass matrix in the free part of the
Lagrangian. An effective field theory description of indirect
mixing (of the mass eigenstates) in a medium in which
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vector bosons and charged leptons are in thermal equilib-
rium may be a suitable application of the concepts
developed in this study that may be worthwhile to study
further. The effective field theory approach may comple-
ment the study of neutrinos [37] and axions in a medium
including condensates [38] with kinetic or Boltzman
equations and allow one to obtain off-diagonal correlation
functions, namely coherences, not just populations. We
expect many features of the results found in this study to be
common to other field-mixing scenarios; for example, we
conjecture that the emergence of the long-lived coherence
(off-diagonal correlation functions) approach to thermal-
ization and quantum beats, as a result of the interference
between (quasi)normal modes in the medium, is a robust
consequence of field mixing that may yield to novel
phenomena, and plausible observational consequences,
worthy of further exploration.

Among further questions that remain to be addressed in
future studies are the issues of renormalizability; in particu-
lar, if the off-diagonal matrix elements of the self-energy
feature divergences, renormalizing them may necessitate off-
diagonal counterterms in the bare Lagrangian. This would
call for direct mixing terms (such as an off-diagonal mass
matrix) to be included in the bare Lagrangian. These aspects
must be studied on a model dependent basis, since the
renormalization aspects are directly related to the type of
operators O,[y]. Furthermore, we have assumed that
(Oly]) = 0; however, a nonvanishing expectation value of
this operator in the medium would require introducing
tadpole terms that may lead to condensates of the fields
¢, All of these questions, while interesting in their own
right, remain for further study.
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APPENDIX A: SINGLE SPECIES

In this appendix we gather the results of the Weisskopf-
Wigner approximation in the simpler case of one species to
highlight the main aspects associated with the fulfillment of
unitarity and the differences between the exact results via
Laplace transform and the Markov approximation. For a
single species ¢ we have

=iy ($IH (1)|K) (1),

K

Co(t) = =iCy(1) (k| H (1)|h).

where the sum over x is over all the intermediate states
coupled to |¢) via H;.

Cyr) = (A1)

(A2)

Consider the initial value problem in which at time ¢ = 0
the state of the system |¥(7r = 0)) = |¢), i.e
C.(0)=0. (A3)

We can solve Eq. (A2) and then use the solution in Eq. (A1)
to find

Gl =1 ["WHOBC()dr.  (a4)
1) = - A "ot = 1)Cy()dr, (AS)
where
o(t—1) ZI (Bl H f[)[?e!EoE) =)
= [ i)ttt taky, (a6)
and we introduced the spectral density
(A7)

ko) = > [(@lH, <) 2o(ko — Ey).

Inserting the solution for C,(¢) into Eq. (A4) one obtains
the time evolution of amplitudes C,(¢) from which we can
compute |C,(#)|?, namely the time dependent probability to
populate the state |x).

The set of equations (A1) and (A2), together with the
Hermiticity of the interaction Hamiltonian H;, yields

& lcstor+ Xicor| <o

which along with the initial conditions (A3) leads to the
unitarity relation

lcyor + QCKW] i

(A8)

(A9)

1. Exact solution of Eq. (A5)

The integro-differential equation (A5) for Cy(t) can be
solved by Laplace transform. Introducing the Laplace
variable s and the Laplace transform of C, (1) as C,(s),
with the initial condition Cy(z = 0) = 1, we find

- « p(ko) -
C¢(s) = {s + /_oo dko—s ik — )] (A10)
with solution
icote (s
G = [ meyls)e (Al1)
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where ¢ — 07 determines the Bromwich contour in the
complex s plane parallel to the imaginary axis to the right

of all the singularities. Writing s = i(—w — i) we find
o d —iwt
== 5o T (A12)
et ﬂl[ foo dwE+wk+ze+l€]

The integral is carried out by closing the contour in the
lower half @ plane. In the free case where pu(kq) = 0, the
pole is located at @ = —ie — 0, leading to a constant Cy. In
perturbation theory there is a complex pole very near v = 0
that can be obtained directly by expanding the integral in
the denominator near @ = 0. We find

M(ko) ~F¢
dk. ~AE, — —— Al
/—oo "Ey+o— ko + i€ A (A13)
where
«© (ko)
AE, = 73/ do/ —————, Al4
¢ —00 (E(/) - kO) ( )
Zp = ’P/ dkg Al6
¢ E¢ ko) (A16)

and P stands for the principal part. The term AE, is
recognized as the energy shift while 'y, is seen to be the
decay rate as found from Fermi’s golden rule. The long time
limit of Cj(t) is determined by this complex pole near the
origin leading to the asymptotic behavior to leading order
in the coupling

Cylt) = Zye e 1, (A17)

where

d

7, =
¢ 1+Z¢

is the wave function renormalization constant.

2. Markov approximation

The time evolution of Cj(#) determined by Eq. (A5) is
slow in the sense that the timescale is determined by a weak
coupling kernel ¢ o« H7. This suggests to use a Markovian
approximation in terms of a consistent expansion in
derivatives of C,. For this purpose, let us define

W(t, 1) = /O "ot = )t (A19)

so that

a(t—t)*iW(t ),

o W(t,0) = 0.

(A20)

Integrating by parts in Eq. (AS) we obtain
t
/ o(t=1)Cy(t')dt = W(t,1)Cy(1)
0

/th

The second term on the right-hand side is formally of fourth
order in H; because W(r,1') ~ H7 and Cj(1) ~ H7; there-
fore, it can be neglected to leading order O(H?). Up to
leading order in this Markovian approximation Eq. (AS5)
becomes

C,(1)dt. (A21)

Cy(t) + Wy(t.1)Cy(1) =0, (A22)
with the solution
Cp(t) = e L&D () = —iw(rr).  (A23)

Note that in general £(t) is complex. To leading order in H?
we find

i(ko—E,,,)t] (A24)

_ [ p(ko) e
= [, gt
so that
B u(ko) _sin(ko — Ej)1
/ E(r)dr = t/_wdko (Ep—ko) {1 (ko—Eg)t ]

_ ,-/_oo dko(%(_%u — cos|(ko - Ey)].

(A25)

Asymptotically as t — oo, these integrals approach

o u(ko) sin(kg — Ej)t
/-oo o (Ey —Oko) {1 (ko 0— Eaf’ }

N p(ko)
2P o (A26)
IR (E:(fok)o)z 11— cos[(ko — By )]
o p(ko)
—uip(Ey) + P /_ ) dkq m (A27)
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Using these results we find that in the long time limit

' I
—i/) E()dl - —iMEyt— L1 -z,

5 (A28)

where AE,, T, z4 are given by Egs. (A14)~(Al6) and
(A18). From this we read off

. r{
Cy(t) = Zye BEst =31, (A29)

where we approximated e™* ~ 1 -z, = Z, up to second
order in perturbation theory. This is in complete agreement
with the asymptotic result from the exact solution
Eq. (A17) obtained via the Laplace transform.

3. Taking the long time limit before integration

We now compare the results obtained above with those
obtained with yet another approximation: taking the long
time limit in W(z,¢) in (A22) before integrating this
evolution equation:

(ko) / ®

{/ PE i E,- ko dko - ’”ﬂ(E¢)} (A30)

therefore, under this approximation the solution of (A22) is

W(t.0)— ~iko=Ey)7 dzdk,

Cy(t) = e72Es'e 41, (A31)
Obviously, the main difference with the solutions (A17)
and (A22) is the lack of wave function renormalization in
(A31). Therefore, we conclude that the Markov approxi-
mation leading to (A22) reproduces the exact result
obtained from Laplace transform; however, the further
approximation of replacing W(z, ¢) by its infinite time limit
(A30) in the Markovian equation (A22) misses the wave
function renormalization.

4. Unitarity

Because of the exponential decay of the amplitude of the
initial state, the unitarity condition (A9) entails that in the
long time limit

(A32)

D IC(0)? =

We now address how this constraint is fulfilled. The
coefficients C(t) are given by Eq. (A4).

Gbxl—x2
){nm

2 :e—ﬂE,,e (Es=Ep)(t1=1) p=i(P, —B,)-(%

Introducing the leading order result (A31) [since
Zy=1+ O(H?)] into Eq. (A4) for the coefficients C,,
we find to leading order

HIDP
[(E5 - E)? +%]

|CK(00)|2 = ¢ =

Ey+ AE,.

(A33)

This expression can be interpreted as follows. If |¢) is an
unstable state, the states |«) with E, ~ Eg, i.e., those nearly
resonant with the state |¢p), are “populated” with an
amplitude  1/T", within a band of width I, centered at
Ef. Furthermore,

u(k
Slcdeop = [T a1 (as
: ~o {(Eg — ko) + 7‘”}
where we have written
1 1 I
= ¢ =, (A35)
(Ef kP +3] 1o |(BF ~ ko + ]
and in the narrow width limit I'y — O we replace
Ty R
=7 276(Ey — ko) (A36)
(B8 — ko) + %]

and used the result (A15) to obtain (A34). Unitarity entails
a probability flow from the initial toward the final excited
states.

APPENDIX B: LEHMANN REPRESENTATION
OF CORRELATION FUNCTIONS

The correlation functions G, (x —y); G5, (x —y) can be
written in an exact Lehmann (spectral) representation that is
useful to include in the equations of motion:

1

G (x—y) = Z—TFE"*HZOQ(X)Oh (v),  (B1)
X
1

Gy(x—y) = Z—Tre"”’lob(y)@a (x), (B2

e

where Z, = Tre ", and O,(X,1) = e'fi'e” iPX0),(0)x
eiPFe=it I terms of a complete set of simultaneous
eigenstates of HZ,I_S, namely (HZ,IB)|n) = (E,,P,)|n),
and by inserting the identity in this basis, we find

©(n]0,(0)]m) (m| Oy (0) ). (B3)
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Gyl Ze P g i EE) 102 ol PuPo) (B1=%2) (1] O, (0) | m) (m] O, (0) ). (B4)

){nm

These representations may be written in terms of spectral densities, by introducing

(2m)* - o -
Py (ko k) = Ze‘/’E” (n|O4(0)[m) (m|Oy(0)|n)6(ko — (E,y — En))8 (k= (P = Py)), (BS)
Z,
Py (ko k) = ZE‘”E (1|04 (0)[m) (m] O, (0)|n)3(ky = (E, — E,,))8 (k = (B, = P,,)), (B6)
in terms of which

> — dk kg 1) e—iko(ti—t e lk(xl—xz)
Gab('xl - X2) - (2 )4pab< k)e (B7)

< d'k e—iko(t1=1) pik-(¥1=%,)
Gop(x) —x) = (2x )4pab<k0’k) OV e TR, (B8)

Relabeling n <> m and using the k delta function in (B6), we find the generalized Kubo-Martin-Schwinger condition [55]

Py ko, k) = ePhapz (ko k). (B9)
Introducing the spectral density
Pab(ko k) = pr,(ko. k) = p, (ko. k) = pr, (Ko, k) (1 — e7PRo), (B10)
it follows that
pap(ko, k) = (14 n(ko))pap(ko. k);  pay(kos k) = n(ko)pap (ko k), (B11)
where
(ko) = (B12)
n =
077 ko — 1

Therefore, the spatial Fourier transform of the self-energy matrix (3.37) and the noise kernel (3.36) can be written as

dk, . ,
Skt — ) = i / S pusll el (B13)
Nkt =1) = (C;ko) Pap(ko. k) coth [%] e~iko(i=1) (B14)

This is the general relation between the self-energy and the noise correlation function commonly determined by the spectral
density p,;,(ko, k), a direct consequence of the fluctuation-dissipation relation as a result of the bath being in thermal
equilibrium.

Assuming rotational invariance implies that p,(k, /?) = paup(ko, k), in particular the diagonal matrix elements of the
spectral density

palhr ) = 22 S B (4]0, O m) P15k = (B = Er)) = 8lko = (Ey ~ E)IFE = (B = )

X nm

= —paa(—ko, k), no sum over a. (B15)
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The assumption of rotational invariance also applies to
correlation functions of pseudoscalar operators (relevant
for axions) in a thermal equilibrium density matrix that is
invariant under rotations because these are bilinear in the

operators and, hence, are invariant under k — —k.
We note that because the operators O, are Hermitian, it

follows that (pfb(ko, k))* = pfa(ko, k) and, consequently,
Pap(ko. k) = ppa(ko. k).
APPENDIX C: LAPLACE GREEN’S FUNCTION

Consider the matrix

My My
M = , (C1)
My My
whose (right and left) inverse is
1 M -M
M1 = < 2 12). (C2)
det[M] —M21 Mll

In terms of the variables (2.31)—(2.33) it follows that

M_<M+§a op )
a D M—-2q)’
27 a

2

det[M] = (1\71 - %) (M 4 %) ,

where we used the relation (2.34).

(C3)

Therefore, the inverse of the matrix (C1) is given by

1 _ D/fa p
M!=—— |[M1-= . Cc4
det[rw{ 2<y —a>] (©4)
Writing
=2+ 2) 4 (-2
2 2 2 2)
o= (#+3)(-3) [ te el
2 2) | M-2 M+
yields
P P 1
M= —= __t . P,=-(1+R C5
M—g+M+§ 2( ). (G3)
with
R:<"‘ ﬁ); R2—1, (C6)
Y -

where the last equality follows from the identity (2.34).
Therefore, the matrices P are projectors, namely
PL =Py (C7)

hence, their eigenvalues are 0,1.
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