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We introduce an effective field theory to study indirectmixing of two fields induced by their couplings to
a common decay channel in a medium. The extension of the method of Lee, Oehme, and Yang, the
cornerstone of analysis of CP violation in flavored mesons, to include the mixing of particles with different
masses provides a guide to and benchmark for the effective field theory. The analysis reveals subtle caveats
in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian, more acute in
the nondegenerate case. The effective field theory describes the dynamics of field mixing where the
common intermediate states populate a bath in thermal equilibrium, as an open quantum system. We obtain
the effective action up to second order in the couplings, where indirect mixing is a consequence of off-
diagonal self-energy components. We find that if only one of the mixing fields features an initial
expectation value, indirect mixing induces an expectation value of the other field. The equal time two point
correlation functions exhibit an asymptotic approach to a stationary thermal state, and the emergence of
long-lived bath-induced coherence which displays quantum beats as a consequence of interference of
quasinormal modes in the medium. The amplitudes of the quantum beats are resonantly enhanced in the
nearly degenerate case with potential observational consequences.

DOI: 10.1103/PhysRevD.109.036038

I. INTRODUCTION

The dynamics of particle mixing induced by their
coupling to a common intermediate state or decay channel
is of broad fundamental interest within the context of CP
violation and/or baryogenesis. Field mixing may also be
a consequence of “portals,” connecting standard model
degrees of freedom to hypothetical ones via mediator
particles beyond the standard model. Such portals may
lead to mixing between fields on different sectors of the
portal via the exchange of these mediators, namely a
common intermediate state to which fields on different
sides of the portals couple.
Axions, CP-odd pseudoscalar particles proposed in

extensions beyond the standard model as a possible
solution of the strong CP problem in quantum chromo-
dynamics (QCD) [1–3], could be a compelling cold dark
matter candidate [4–6]. However, various extensions
beyond the standard model can include axionlike particles
with properties similar to the QCD axion which may also
be suitable dark matter candidates [7–11]. Just as the QCD

axion these axionlike particles couple to photons and
gluons via Chern-Simons terms such as E⃗ · B⃗ in the case
of photons, or G̃μν;bGμν;b in the case of gluons, as a
consequence of the chiral anomaly. Their mutual coupling
to photons and gluons entails that the various “flavors” of
axions or axionlike particles may mix via a common
intermediate state of photons and gluons. For example,
processes such as A ↔ γγ ↔ A0, with A, A0 being different
axionlike particles, yield off-diagonal self-energy compo-
nents ΣA;A0 , hence an indirect mixing via the common
intermediate state.
A paradigmatic example in vacuum is the mixing of

K0 − K̄0 or flavored meson-antimesons as a consequence
of common intermediate states of two or three pions (or the
weak interaction box diagram), providing dynamical obser-
vational signatures of CP violation [12–17].
Field mixing via a common intermediate state in a

thermal medium has recently been studied [18] within
the context of axion-neutral pion mixing after the QCD
phase transition, since the neutral pion couples to two
photons precisely via a Uð1Þ Chern-Simons term as a
consequence of the chiral anomaly.
Recently, it has been realized that topological materials

and/or Weyl semimetals also feature emergent axion-
like quasiparticles as collective excitations, which couple
to electromagnetism via processes akin to the U(1)
anomaly [19–28]. Therefore, these “synthetic” axions
may mix with the cosmological axion in the same manner
as pions or generic axionlike particles in the early universe.
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This possibility motivates the study of mixing between the
cosmological and the synthetic axions, which may yield
alternative experimental avenues to probe cosmological
axions with condensed matter experiments.

A. Motivations and objectives

Motivated by the ubiquity of field mixing and its broad
relevance in particle physics, cosmology, and possibly in
condensed matter physics, we extend the preliminary study
of Ref. [18] and develop a more general effective field
theory framework to study mixing as a consequence of
coupling of different fields to common intermediate states
or decay channels. We distinguish direct mixing as a result
of explicit mixing terms in the Lagrangian, such as off-
diagonal mass matrices or kinetic mixing terms, from the
indirect mixing via common intermediate states leading
to off-diagonal self-energy components, such as flavored
meson mixing, for example, K0 − K̄0. Our study is focused
on this latter, indirect mixing case.
The theory of K0 − K̄0 mixing via weak interaction

intermediate states was advanced by Lee et al. [29] in their
pioneering study of CP violation. It is based on the theory
of atomic linewidths developed by Weisskopf and Wigner
[30–33], and it is the cornerstone of the analysis of mixing
dynamics of flavored mesons and CP violation [12–15] in
terms of an effective non-Hermitian Hamiltonian.
Our main focus is to develop an effective field theory

framework to study the dynamics of indirect mixing when
the particles in the intermediate states are components of a
thermal bath as is the case in cosmology. An advantage of
the effective field theory formulation of mixing is that it
allows one to obtain correlation functions in the medium,
to understand their approach to thermalization, and to
observe the emergence of long-lived coherence, namely
off-diagonal components of the two point field correlation
function that survives in the long time limit even when
initially the different fields are uncorrelated.
The preliminary study of Ref. [18] focused on the

particular case of axion-neutral pion mixing near the
QCD phase transition where the axion was assumed to
be a light or ultralight CP-odd scalar. In this case there is a
large mass difference between the mixing partners leading
to suppression of interference effects. Furthermore, axions
and neutral pions couple to photons with the same operator
(E⃗ · B⃗) but with different couplings, making this a particu-
lar case.
Instead, here we contemplate more general scenarios

including that of degenerate or nearly degenerate mixing
fields and coupling to intermediate states with different
operators with nonvanishing correlations in the thermal
bath, thereby leading to mixing via off-diagonal self-energy
matrix elements. This more general situation may be
relevant for CP violation in the early universe and yields
far richer dynamics including nonperturbative interference
phenomena in the form of quantum beats that plays an

important role in the approach to thermalization and the
dynamics of coherence, with possible observational
consequences.
Unlike the case of direct mixing, such as neutrino mixing

via an off-diagonal mass matrix, or kinetic mixing, indirect
mixing in a medium, as is relevant in cosmology, to
the best of our knowledge has not yet been studied at a
deeper level.
Our objectives are (i) to provide a consistent effective

field theory framework to study the dynamics of mixing via
intermediate states in equilibrium in a medium; (ii) to apply
this formulation to study the nonequilibrium dynamics of
expectation values and correlation functions of the mixing
fields; and (iii) to focus in particular on the approach
to thermalization and the emergence and long time sur-
vival of coherence even when initially the mixing fields are
uncorrelated.
The equations of motion obtained from the effective field

theory allow one to study the dynamical evolution of
expectation values and correlation functions and the emer-
gence and evolution of coherence, hence providing an
approach to the study of coherence that complements the
quantum master equation [34–36]. We also recognize that
the effective field theory approach to mixing may also be
extended to the case of neutrinos in the mass basis, and may
provide an alternative framework to study the quantum
kinetics of massive neutrinos in the medium [37]. More
recently a quantum field theoretical approach to a Boltzmann
equation for axions consistently including misaligned con-
densates has been introduced inRef. [38]. The formulation of
an effective field theory of mixing developed in this study
mayprovide a complementary approachwhendifferent types
of axions mixing indirectly via a common intermediate state
are considered.
In this article our main objective is to develop the

theoretical framework in general, without specifying par-
ticular models or applications, which will be the subject of
future study.

B. Brief summary of results

As a prelude to developing the effective field theory
framework, in Sec. II we extend the Lee-Oehme-Yang
(LOY) theory of mixing to the case of nondegenerate
mixing particles and with generic couplings to intermediate
states, and solve exactly the equations for the amplitudes,
which goes beyond the usual approach based on a non-
Hermitian effectiveHamiltonian [12–15]. The generalization
to the nearly degenerate and nondegenerate cases provides
an extension to analyze the dynamics of mixing relaxing
the assumption of validity of CPT. This study serves as a
guide and benchmark toward establishing the effective field
theory framework, and also reveals interesting caveats of the
usual approach with a non-Hermitian Hamiltonian, which
become more important in the nondegenerate case and may
be relevant in precision measurements of CP violation.
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Appendix A discusses the origin of some of these caveats in
the case of a single species.
In Sec. III we consider indirect mixing of two bosonic

fields induced by their couplings to a common decay
channel in the medium. These common intermediate states
populate a bath in thermal equilibrium.
We generalize the methods of Refs. [18,39] to obtain the

effective action in the in-in or Schwinger-Keldysh formu-
lation of nonequilibrium quantum field theory [40–44] up
to second order in couplings. This effective action deter-
mines the time evolution of the reduced density matrix
upon tracing the bath degrees of freedom, and it describes
the dynamics of mixing as an open quantum system. The
equations of motion obtained from the effective action are
stochastic with self-energy and noise kernels obeying a
generalized fluctuation dissipation relation. Indirect mixing
is a consequence of off-diagonal self-energy components
arising from the correlations of the coupling operators
in the bath. The solution of the equations of motion yield
the time evolution of expectation values and correlation
functions in terms of superpositions of quasinormal modes
in the medium. The cases of nondegenerate and nearly
degenerate fields are studied in detail. We find that if only
one of the fields has an initial nonvanishing expectation
value, indirect mixing induces an expectation value for
the other field. Furthermore, the equal time two points
correlation function approaches a stationary thermal state
independent of the initial conditions and even when
initially the fields are uncorrelated exhibit an emergent
long-lived bath-induced coherence, namely off-diagonal
components. Both diagonal and off-diagonal correlation
functions display quantum beats, as a consequence of
interference of quasinormal modes. The amplitudes of the
quantum beats are resonantly enhanced in the case of nearly
degenerate fields. In this section we establish the corre-
spondence between the LOY formulation of particle mixing
and the effective field theory of mixing.
Several appendixes supplement technical details.

Appendix A discusses the caveats associated with a non-
Hermitian Hamiltonian for a single species. Section IV
summarizes the main results and conclusions.

II. THE LEE-OEHME-YANG THEORY OF MIXING

We begin by extending and generalizing the formulation
of meson mixing pioneered by Lee et al. [29,30] to analyze
CP violation in the kaon system, which is based on the
Weisskopf-Wigner theory of atomic linewidths [30], to the
case when particles of different masses mix via a common
set of intermediate states, or common decay channel. Such
a generalization will lead us to the formulation of an
effective quantum field theory of mixing including the case
when the particles in the intermediate states constitute a
medium as is relevant in cosmology.
Consider a system whose Hamiltonian H is given as a

soluble part H0 and a perturbation HI: H ¼ H0 þHI .

The time evolution of states in the interaction picture of H0

is given by

i
d
dt

jΨðtÞiI ¼ HIðtÞjΨðtÞiI; ð2:1Þ

where the interaction Hamiltonian in the interaction
picture is

HIðtÞ ¼ eiH0tHIe−iH0t; ð2:2Þ

where HI is proportional to a set of couplings assumed to
be small.
Equation (2.1) has the formal solution

jΨðtÞiI ¼ Uðt; t0ÞjΨðt0ÞiI; ð2:3Þ

where the time evolution operator in the interaction picture
Uðt; t0Þ obeys

i
d
dt

Uðt; t0Þ ¼ HIðtÞUðt; t0Þ: ð2:4Þ

Now we can expand

jΨðtÞiI ¼
X
n

CnðtÞjni; ð2:5Þ

where jni form a complete set of orthonormal states chosen
to be eigenfunctions of H0, namely H0jni ¼ Enjni; in the
quantum field theory case these are many-particle Fock
states. From Eq. (2.1) and the expansion (2.5) one finds the
equation of motion for the coefficients CnðtÞ, namely

ĊnðtÞ ¼ −i
X
m

CmðtÞhnjHIðtÞjmi: ð2:6Þ

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert
space of states spanned by fjnig is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in HI .
Let us consider quantum states jϕ1i; jϕ2i associated with

the meson fields ϕ1;2, respectively; these may be single
particle momentum eigenstates of the Fock quanta of
these fields, and focus on the case when the interaction
Hamiltonian does not couple directly the states jϕ1i; jϕ2i,
namely hϕajHIjϕbi ¼ 0. Instead, these states are connected
to a common set of intermediate states jfκgi by HI, namely
jϕ1;2i ↔ jfκgi ≠ jϕ1;2i, as depicted in Fig. 1.
The states jϕ1i and jϕ2i mix as a consequence of this

indirect coupling through the common set of intermediate
states, namely jϕ1;2i ↔ jfκgi ↔ jϕ1;2i, yielding an off-
diagonal self-energy matrix. If HI has nonvanishing matrix
elements hϕijHIjϕji ≠ 0, we assume that these have been
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absorbed into terms in H0 and only consider transitions
between jϕii and other states jκi ≠ jϕ1;2i mediated by HI.
In the subspace jϕ1i; jϕ2i; jfκgi the quantum state in the

interaction picture is given by

jΨiIðtÞ ¼ C1ðtÞjϕ1i þ C2ðtÞjϕ2i þ
X
fκg

CκðtÞjκi; ð2:7Þ

and the set of equations (2.6) becomes

Ċ1ðtÞ ¼ −i
X
fκg

hϕ1jHIðtÞjκiCκðtÞ; ð2:8Þ

Ċ2ðtÞ ¼ −i
X
fκg

hϕ2jHIðtÞjκiCκðtÞ; ð2:9Þ

ĊκðtÞ ¼ −i½hκjHIðtÞjϕ1iC1ðtÞ þ hκjHIðtÞjϕ2iC2ðtÞ�;
ð2:10Þ

where the time dependent transition matrix elements are
given by

hljHIðtÞjmi ¼ TlmeiðEl−EmÞt; Tlm ¼ hljHIð0Þjmi; ð2:11Þ

Hermiticity of HI entails that

Tml ¼ T�
lm: ð2:12Þ

The set of equations (2.8)–(2.10) truncates the hierarchy
of equations by neglecting the transitions between the states
jfκgi and jfκ0gi ≠ jfκgi; jϕ1;2i, and such transitions con-
nect the states jϕ1;2i ↔ jfκ0gi at a higher order in HI and
are neglected up to OðH2

I Þ. Truncating the hierarchy closes
the set of equations for the amplitudes, effectively reducing
the set of states to a closed subset in the full Hilbert space.
As a familiar example, let us consider the case where jϕ1;2i
correspond to K0; K̄0 mesons mixing via a common decay
channel into two pions (there is also the three pion decay
channel) so that K0 ↔ 2π ↔ K̄0.

Taking the normalized initial quantum state jΨðt ¼ 0Þi
as a coherent linear superposition of the single particle
states jϕ1;2i, it is given by

jΨðt ¼ 0Þi ¼ ðC1ð0Þjϕ1i þ C2ð0Þjϕ2iÞ ⊗ j0κi; ð2:13Þ

where j0κi is the vacuum state for the intermediate states
jκi, corresponding to setting

Cκð0Þ ¼ 0; ð2:14Þ
for the excited jκi states, and with normalization condition

jC1ð0Þj2 þ jC2ð0Þj2 ¼ 1: ð2:15Þ

A. Unitarity

The set of equations (2.8)–(2.10) describes unitary
time evolution in the restricted Hilbert space of states
jϕ1i; jϕ2i; jκi, which is a subset of the full Hilbert
space of the theory that is closed under the equations
of motion (2.8)–(2.10). Unitarity can be seen as follows:
using Eqs. (2.8)–(2.10) and noticing that hljHIðtÞjmi� ¼
hmjHIðtÞjli because HIðtÞ is an Hermitian operator, it
follows that

d
dt

�
jC1ðtÞj2 þ jC2ðtÞj2 þ

X
fκg

jCκðtÞj2
�
¼ 0; ð2:16Þ

and the initial conditions (2.14) and (2.15) yield

jC1ðtÞj2 þ jC2ðtÞj2 þ
X
fκg

jCκðtÞj2 ¼ 1: ð2:17Þ

This is the statement that time evolution within the sub-
Hilbert space fjϕ1i; jϕ2i; jκig is unitary.
In particular, if the ϕ1;2 states decay, it follows that

jC1;2ðt ¼ ∞Þj2 ¼ 0, andX
κ

jCκðt ¼ ∞Þj2 ¼ 1: ð2:18Þ

The set of equations (2.10) with the initial condition
(2.14) can be integrated to yield

CκðtÞ¼−i
Z

t

0

h
Tκ1eiðEκ−E1Þt0C1ðt0ÞþTκ2eiðEκ−E2Þt0C2ðt0Þ

i
dt0;

ð2:19Þ
where the labels 1 and 2 correspond to ϕ1;2. Inserting the
solution (2.19) into Eqs. (2.8) and (2.9) leads to the
following set of equations for the coefficients C1ðtÞ; C2ðtÞ:

Ċ1ðtÞ ¼ −
Z

t

0

X
κ

n
jT1κj2eiðE1−EκÞðt−t0ÞC1ðt0Þ þ T1κTκ2eiðE1−E2ÞteiðE2−EκÞðt−t0ÞC2ðt0Þ

o
dt0; ð2:20Þ

FIG. 1. Mixing between jϕia and jϕib mediated by a common
set of intermediate states jκi.
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Ċ2ðtÞ ¼ −
Z

t

0

X
κ

n
T2κTκ1eiðE2−E1ÞteiðE1−EκÞðt−t0ÞC1ðt0Þ þ jT2κj2eiðE2−EκÞðt−t0ÞC2ðt0Þ

o
dt0: ð2:21Þ

This procedure of solving for the amplitudes of the
intermediate states plays the role of “integrating out” or
“tracing over” the κ degrees of freedom, yielding an
effective set of equations of motion for the amplitudes
of the single particle states jϕ1;2i. Since the interaction
Hamiltonian HI is assumed to include a weak coupling,
the amplitude equations (2.20) and (2.21) are exact up to
second order in this coupling. Pictorially, this procedure
is equivalent to joining the legs representing the χ field
together in Fig. 1, thereby forming a loop or loops that
yield(s) the self-energy.

B. Exact solutions

The set of amplitude equations (2.20) and (2.21) can be
solved exactly. For this purpose it is convenient to define

e−iE1tC1ðtÞ≡ A1ðtÞ; e−iE2tC2ðtÞ≡ A2ðtÞ; ð2:22Þ

and to introduce the spectral densities

μabðk0Þ ¼
X
κ

TaκTκbδðk0 − EκÞ ¼ μ�baðk0Þ; a; b ¼ 1; 2;

ð2:23Þ
where the second identity follows from Eq. (2.12). The set
of equations for the amplitudes A1;2 following from (2.20)
and (2.21) is written more compactly by introducing the
self-energy matrix

σabðt − t0Þ ¼
Z

∞

−∞
μabðk0Þe−ik0ðt−t0Þdk0: ð2:24Þ

This self-energy has an intuitive interpretation as a second
order Feynman diagram wherein the lines representing the
intermediate states jκi in Fig. 1 are joined into “propa-
gators” yielding a (multi)loop diagram, representing the
self-energy up to second order in HI .
In terms of the self-energy the set of equations (2.20) and

(2.21) becomes

ȦaðtÞþ iEaAaðtÞþ
Z

t

0

dt0
X
b

σabðt− t0ÞAbðt0Þ ¼ 0: ð2:25Þ

This equation can be solved via a Laplace transform.
Defining the Laplace transforms for ReðsÞ > 0

ÃaðsÞ ¼
Z

∞

0

e−stAaðtÞdt;

σ̃abðsÞ ¼
Z

∞

0

e−stσabðtÞdt ¼
Z

∞

−∞

μabðk0Þ
sþ ik0

dk0; ð2:26Þ

the set of equations (2.25) leads to

�
M11 M12

M21 M22

��
Ã1ðsÞ
Ã2ðsÞ

�
¼
�
A1ð0Þ
A2ð0Þ

�
; ð2:27Þ

with matrix elements

M11 ¼ sþ iE1 þ σ̃11ðsÞ; ð2:28Þ

M12 ¼ σ̃12ðsÞ; M21 ¼ σ̃21ðsÞ; ð2:29Þ

M22 ¼ sþ iE2 þ σ̃22ðsÞ; ð2:30Þ

where we suppressed the dependence of the matrix ele-
mentsMij on the Laplace variable s to simplify notation but
it is implicit in all matrix elements.
It proves convenient to introduce

M̄ ¼ 1

2
ðM11 þM22Þ; ð2:31Þ

D ¼ ½ðM11 −M22Þ2 þ 4M12M21�1=2; ð2:32Þ

α ¼ M11 −M22

D
; β ¼ 2M12

D
; γ ¼ 2M21

D
; ð2:33Þ

where α, β, γ fulfill the relation

α2 þ βγ ¼ 1: ð2:34Þ

The inverse of the matrix with elements Mab yields the
Laplace Green’s function, which is given by (see
Appendix C for details)

�
Ã1ðsÞ
Ã2ðsÞ

�
¼
"

P−ðsÞ
M̄ðsÞ − DðsÞ

2

þ PþðsÞ
M̄ðsÞ þ DðsÞ

2

#�
A1ð0Þ
A2ð0Þ

�
;

ð2:35Þ

where the projector operators (see Appendix C) are
given by

P�ðsÞ ¼
1

2
ð1� RðsÞÞ; RðsÞ ¼

�
αðsÞ βðsÞ
γðsÞ −αðsÞ

�
:

ð2:36Þ

Finally, the time evolution of the amplitudes A1;2ðtÞ is
obtained via the inverse Laplace transform,
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�
A1ðtÞ
A2ðtÞ

�
¼
Z
C
est
"

P−ðsÞ
M̄ðsÞ − DðsÞ

2

þ PþðsÞ
M̄ðsÞ þ DðsÞ

2

#
ds
2πi

×

�
A1ð0Þ
A2ð0Þ

�
; ð2:37Þ

where the Bromwich countour C runs parallel to the
imaginary axis to the right of all the singularities in the
complex s plane. Stability implies that the real parts of
the singularities are negative; therefore, the contour corre-
sponds to s ¼ iνþ ϵ;−∞ ≤ ν ≤ ∞; ϵ → 0þ. It is conven-
ient to change variables to ν ¼ −ω, in terms of which

σ̃abðs¼ ið−ω− iϵÞÞ≡ iΔabðωÞ

¼ i

�Z
∞

−∞
P
�
μabðk0Þ
ω−k0

�
dk0− iπμabðωÞ

�
;

ð2:38Þ

where P stands for the principal part. The relation (2.23)
implies that

ΔbaðωÞ ¼
�Z

∞

−∞
P
�
μ�abðk0Þ
ω − k0

�
dk0 − iπμ�abðωÞ

�
: ð2:39Þ

Upon this analytic continuation, Eq. (2.37) becomes

�
A1ðtÞ
A2ðtÞ

�
¼ −

Z
∞

−∞
e−iωt

�
P−ðωÞ

ω −W−ðωÞ
þ PþðωÞ
ω −WþðωÞ

�
dω
2πi

×

�
A1ð0Þ
A2ð0Þ

�
; ð2:40Þ

where

W�ðωÞ ¼
1

2
fðE1 þ E2 þ Δ11ðωÞ þ Δ22ðωÞÞ �DðωÞg;

ð2:41Þ

DðωÞ ¼ ½ðE1 − E2 þ Δ11ðωÞ − Δ22ðωÞÞ2
þ 4Δ12ðωÞΔ21ðωÞ�1=2; ð2:42Þ

and P�ðωÞ are the analytic continuation of P�ðsÞ for
s → −iωþ ϵ.
The bracket inside the integral in (2.40) has a simple

interpretation: it is the Dyson (geometric) resummation of
the second order self-energy matrix, and the time evolution
obtained from (2.40) includes this resummation of second
order self-energy corrections. Note that as a consequence
of the projector matrices being off-diagonal, even when
one of the amplitudes vanishes initially, for example, if
A2ð0Þ ¼ C2ð0Þ ¼ 0, it becomes nonvanishing at a later
time. This observation will have interesting implications in
the analysis of in-medium mixing in the next section.

In the weak coupling limit we invoke the Breit-Wigner
approximation, valid in the intermediate time regime,
where each term in (2.40) features a complex pole in the
lower half ω plane at1

ω� ¼ W�ðω�Þ≡ ε� − i
Γ�
2
; ð2:43Þ

where ε� are the renormalized frequencies and Γ� the decay
rates. In weak coupling, it follows that Γ� ∝ H2

I ≪ E1;2, and
we will refer to these complex frequencies as quasinormal
modes. For a vanishing damping rate, these are the usual
normal modes associated with the coupling of harmonic
oscillators, the “quasi” reflects their damping as a conse-
quence of their coupling to and decay into a (common)
continuum.
Evaluating (2.40) by contour integration closing in the

lower half ω plane for t > 0, and expanding near the
complex poles W�ðωÞ ¼ W�ðω�Þ þ ðω − ω�ÞdW�ðωÞ=
dωjω¼ω� þ � � �, we obtain the final result

�
A1ðtÞ
A2ðtÞ

�
¼ ½e−iωþtZþPþðωþÞ þ e−iω−tZ−P−ðω−Þ�

×

�
A1ð0Þ
A2ð0Þ

�
; ð2:44Þ

where Z� ¼ ½1 − dW�ðωÞ=dωjω��−1 and

P�ðω�Þ ¼
1

2

�
1� αðω�Þ �βðω�Þ
�γðω�Þ 1 ∓ αðω�Þ

�
; ð2:45Þ

this result is general.
The Breit-Wigner approximation relies on weak cou-

pling so that the width of the state is much smaller than its
mass and that the distance between the real part of the pole
and the beginning of the multiparticle cuts must be much
larger than the half-width of the particle. This entails that
the spectral representation of the propagator can be well
approximated by a Lorentzian centered at the real part of
the pole with the width determined by the imaginary part of
the self-energy at the position of the pole. Furthermore, this
entails that the spectral density of the self-energy is finite
and smooth near the value of the pole. This is the same
criterion as in Fermi’s golden rule.
It is important to highlight that the Breit-Wigner

approximation leading to the result (2.44) is valid only
during an intermediate time regime; it is neither valid as
t → 0 nor at a very long time, when power law corrections
emerge [33,45–48].
As analyzed in detail in these references, the asymptotic

late time behavior of the integral in Eq. (2.40) is determined

1More precisely, the poles are in the second Riemann sheet, but
close to the real axis in the complex ω plane.
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by the behavior of the spectral density at the threshold of
multiparticle cuts, which yields a power law that emerges
when the amplitude is already perturbatively small (see
Ref. [49] for a specific example), and the behavior at early
times, t → 0, receives contributions from the full spectral
density, contributing to a renormalization of the amplitude
of the field. We refer to the intermediate timescale, as the
scales between these two limits that depend specifically
on the details of the spectral density of the self-energy.
However, as is expected in the case of a weakly coupled
theory, the intermediate timescale in which there is expo-
nential decay is generically wide and is captured reliably by
the usual Breit-Wigner approximation of the propagator.
Therefore, the extrapolation to t → 0 is not consistent

with this approximation. In fact, the wave function renorm-
alization is a consequence of “dressing” and renormaliza-
tion during an initial transient timescale describing the
formation of a quasiparticle [50]; in renormalizable the-
ories it is usually ultraviolet divergent. The timescale of
formation of the quasiparticle is typically associated with
the ultraviolet behavior of the spectral density, and it is in
general much shorter than the typical oscillation and decay
timescales of the particle [50].
In the following analysis we assume without loss of

generality that E1 ≥ E2, and, consistently with perturbation
theory, that E1;2 ≫ Δab ∝ H2

I . Furthermore, from the
identity (2.34) we choose

αðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βðωÞγðωÞ

p
: ð2:46Þ

Hence, in the limit of vanishing coupling Δab → 0, it
follows that

ωþ → E1; ω− → E2; α → 1; β; γ → 0;

Pþ →

�
1 0

0 0

�
; P− →

�
0 0

0 1

�
: ð2:47Þ

Therefore, in this limit the amplitudes C1;2 do not depend
on time as it must be the case in the absence of interactions.
Two limits are important: (i) E1 − E2 ≫ Δab, to which

we refer as the nondegenerate case, and (ii) E1 − E2 ≲ Δab,
to which we refer as the (nearly) degenerate case. The first
case describes, for example, the mixing between axionlike
particles and a neutral pseudoscalar meson as studied in
Ref. [18], such as the pion, with the pion mass much larger
than that of the axion. The second case includes neutral
(pseudoscalar) flavored meson-antimeson mixing, such as
K0 − K̄0 under the condition of charge conjugation, parity,
and time reversal (CPT) invariance [in which case
E1 ¼ E2; Δ11ðsÞ ¼ Δ22ðsÞ]. This second case also applies
to neutral meson mixing if there is a small (CPT) violation,
in which case E1, E2 and the diagonal matrix elements Δ11,
Δ22 may be slightly different but small compared to the
individual energies E1;2.

(I) Nondegenerate case: E1 − E2 ≫ Δab. In this case we
can approximate

DðωÞ ≃ E1 − E2 þ Δ11ðωÞ − Δ22ðωÞ þOðΔ2Þ; ð2:48Þ

from which it follows that to leading order [OðΔÞ]

WþðωÞ ¼E1þΔ11ðωÞ; W−ðωÞ ¼E2þΔ22ðωÞ; ð2:49Þ

and to leading order in couplings, the complex poles are at

ωþ ¼ E1 þ Δ11ðE1Þ ¼ ER
1 − i

Γþ
2
;

ER
1 ¼ E1 þ ReΔ11ðE1Þ; Γþ ¼ 2πρ11ðE1Þ; ð2:50Þ

ω− ¼ E2 þ Δ22ðE2Þ ¼ ER
2 − i

Γ−

2
;

ER
2 ¼ E2 þ ReΔ22ðE2Þ; Γ− ¼ 2πρ22ðE2Þ; ð2:51Þ

where ER
1;2 are the renormalized energies. Up to leading

order OðΔÞ, it is straightforward to find that the time
dependent amplitudes are given by

A1ðtÞ ¼ ZþA1ð0Þe−iωþt

þ 1

2

�
Δ12ðE1Þe−iωþt − Δ12ðE2Þe−iω−t

ER
1 − ER

2

�
A2ð0Þ;

ð2:52Þ

A2ðtÞ ¼ Z−A2ð0Þe−iω−t

þ 1

2

�
Δ21ðE1Þe−iωþt − Δ21ðE2Þe−iω−t

ER
1 − ER

2

�
A1ð0Þ:

ð2:53Þ

The terms in brackets in (2.52) and (2.53) are perturba-
tively small in this case because Δab ≪ E1 − E2. Since
Z� ≃ 1þOðH2

I Þ, we neglected them in the terms in the
brackets, which are already of OðΔÞ ∝ H2

I .
(II) (Nearly) degenerate case: E1;2≫Δab;E1−E2≲Δab.

In this case we write

E1 þ E2

2
≡ Ē ≫ Δab; E1 − E2 ≡ δ≲OðΔÞ; ð2:54Þ

and to leading order in Δ the complex poles are given by

ω� ¼ Ēþ 1

2
ðΔ11ðĒÞ þ Δ22ðĒÞÞ �

DðĒÞ
2

≡ ε� − i
Γ�
2

¼ ĒR − i
Γ̄
2
�DðĒÞ

2
; ð2:55Þ

where
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ĒR ¼ Ēþ 1

2
ðReΔ11ðĒÞ þ ReΔ22ðĒÞÞ;

Γ̄ ¼ −
1

2
ðImΔ11ðĒÞ þ ImΔ22ðĒÞÞ: ð2:56Þ

From Eqs. (2.23) and (2.38) it follows that Γ̄ > 0. Since in
this case δ≲ Δab, we find that βðω�Þ ≃ γðω�Þ ≃Oð1Þ;
therefore, in this case all matrix elements of the pro-
jectors P� ≃Oð1Þ. However, to leading order in Δ we find
βðω�Þ ¼ βðĒÞ; γðω�Þ ¼ γðĒÞ; αðω�Þ ¼ αðĒÞ, and conse-
quently P�ðω�Þ ¼ P�ðĒÞ.
In this (nearly) degenerate case, the individual energies

are much larger than the respective widths and the
energy difference is smaller than or of the same order as
the imaginary part of the self-energies evaluated at
ðE1 þ E2Þ=2. Therefore, in this (nearly) degenerate case,
the Breit-Wigner approximation is valid, and we find to
leading order in Δ the time dependent amplitudes

�
A1ðtÞ
A2ðtÞ

�
¼
�
1

2
ðZþe−iωþt þ Z−e−iω−tÞI

þ RðĒÞðZþe−iωþt − Z−e−iω−tÞ
��

A1ð0Þ
A2ð0Þ

�
;

ð2:57Þ

with

RðĒÞ ¼ 1

2

�
αðĒÞ βðĒÞ
γðĒÞ −αðĒÞ

�
: ð2:58Þ

We can now compare this result with the usual result for
flavored meson-antimeson mixing, such as K0 − K̄0 under
the conditions of (CPT) invariance, which implies E1 ¼
E2 ¼ Ē; Δ11ðĒÞ ¼ Δ22ðĒÞ. In this case, and for the
purpose of comparison, we define

ΔabðEÞ ¼ mab − i
Γab

2
; mab ≡

Z
∞

−∞
P
�
μabðk0Þ
Ē − k0

�
dk0;

Γab ≡ 2πμabðĒÞ; ð2:59Þ

in terms of which we find

DðĒÞ ¼ 2

��
m12 − i

Γ12

2

��
m�

12 − i
Γ�
12

2

��
1=2

; ð2:60Þ

αðĒÞ ¼ 0; ð2:61Þ

βðĒÞ ¼
�
m12 − i Γ12

2

m�
12 − i Γ

�
12

2

�
1=2

; ð2:62Þ

γðĒÞ ¼
�
m�

12 − i Γ
�
12

2

m12 − i Γ12

2

�
1=2

¼ 1

βðĒÞ ; ð2:63Þ

yielding

A1ðtÞ ¼ ½fþðtÞA1ð0Þ þ βðĒÞf−ðtÞA2ð0Þ�; ð2:64Þ

A2ðtÞ ¼ ½fþðtÞA2ð0Þ þ γðĒÞf−ðtÞA1ð0Þ�; ð2:65Þ
with

f�ðtÞ ¼
1

2
ðZþe−iωþt � Z−e−iω−tÞ: ð2:66Þ

Setting Z� ¼ 1, the expressions (2.64) and (2.65) with
(2.66) are the usual ones for the case of flavored meson-
antimeson mixing with (CPT) symmetry [12–15,32]. In
Ref. [32] the contribution from wave function renormal-
ization was neglected2 but it was recognized that it would
modify the amplitudes. Therefore, with Z� ≃ 1þOðΔÞ it
is clear that neglecting the wave function renormalizations
affects the amplitudes at second order in the interaction.
This perturbative correction may become relevant for
precision measurements of flavor mixing.

C. Markov approximation: The effective
non-Hermitian Hamiltonian

Let us writeZ
t0

0

X
κ

TaκTκbeiðEb−EκÞðt−t00Þdt00≡Wab½t; t0�; Wab½t;0� ¼ 0

ð2:67Þ
so that

X
κ

TaκTκbeiðEb−EκÞðt−t0Þ ¼ d
dt0

Wab½t; t0�: ð2:68Þ

Inserting this definition in (2.20) and (2.21) and integrating
by partsZ

t

0

d
dt0

Wab½t; t0�Cbðt0Þdt0 ¼ Wab½t; t�CbðtÞ

−
Z

t

0

Wab½t; t0�
d
dt0

Cbðt0Þdt0;

ð2:69Þ

since TaκTκb ∝ H2
I , and from the evolution equations (2.20)

and (2.21) it follows that Ċa ∝ H2
I ; therefore, the second

term in (2.69) is of OðH4
I Þ and will be neglected to leading

order in the interaction, namely H2
I.

Hence, up to OðH2
I Þ, the evolution equations for the

amplitudes (2.20) and (2.21) become

2See Appendix A, footnote in page 102 in Ref. [32], where it is
explicitly stated that such a contribution was neglected but would
modify the amplitudes.
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Ċ1ðtÞ ¼ −fW11½t; t�C1ðtÞ þ eiðE1−E2ÞtW12½t; t�C2ðtÞg;
ð2:70Þ

Ċ2ðtÞ ¼ −feiðE2−E1ÞtW21½t; t�C1ðtÞ þW22½t; t�C2ðtÞg:
ð2:71Þ

With the definitions (2.22) the amplitude equations become

iȦ1ðtÞ ¼ E1A1 − iW11½t; t�A1 − iW12½t; t�A2; ð2:72Þ

iȦ2ðtÞ ¼ E2A2 − iW21½t; t�A2 − iW22½t; t�A2: ð2:73Þ

With

Wab½t; t� ¼
X
κ

TaκTκb

Z
t

0

eiðEb−EκÞðt−t0Þdt0

¼
Z

t

0

Z
∞

−∞
μabðk0ÞeiðEb−k0Þðt−t0Þdk0dt0; ð2:74Þ

where we used the definition of the spectral density,
Eq. (2.23). We highlight that this first step in the
Markov approximation is equivalent to the full set of
equations consistently up to order H2

I , since the neglected
terms of OðΔ2Þ ≃H4

I .
Because in the nearly degenerate case E1 − E2 ≲

Δab ∝ H2
I , the first stage of the Markov approximation,

yielding Eqs. (2.72) and (2.73) is consistent with this case.
The set of equations (2.72) and (2.73) can be written in

terms of a time dependent Hamiltonian

i
d
dt

�
A1ðtÞ
A2ðtÞ

�
¼ HeffðtÞ

�
A1ðtÞ
A2ðtÞ

�
; ð2:75Þ

where the matrix elements of HeffðtÞ are obtained from
Eqs. (2.72) and (2.73). Unlike the case of a single species
analyzed in detail in Appendix A, for two species mixing,
HeffðtÞ is a 2 × 2 matrix, and ½HeffðtÞ; Heffðt0Þ� ≠ 0 for
t ≠ t0; therefore, the solution of the evolution equations is
not a simple exponential. The usual approach, following
the main approximation in the Weisskopf-Wigner method
implemented in the LOY formulation [29], invokes the long
time limit3

Z
t

0

eiðEb−EκÞðt−t0Þdt0 !
t→∞

i

�
P
�

1

Eb − Eκ

�
− iπδðEb − EκÞ

�
;

ð2:76Þ

yielding

−iWab½t; t� → ΔabðEbÞ; ð2:77Þ

where ΔabðωÞ is defined by Eq. (2.38). Taking this long
time limit, the amplitude equations (2.75) become an
effective Schrödinger equation with a time independent
effective Hamiltonian

i
d
dt

�
A1ðtÞ
A2ðtÞ

�
¼ Heff

�
A1ðtÞ
A2ðtÞ

�
ð2:78Þ

with

Heff ¼
�
E1 þ Δ11ðE1Þ Δ12ðE2Þ

Δ21ðE1Þ E2 þ Δ22ðE2Þ

�

≡
�
H11 H12

H21 H22

�
¼ Heffð∞Þ: ð2:79Þ

This effective Hamiltonian is not Hermitian; this is a
manifestation that it describes the (approximate) dynamics
of a quantum open system, namely of a subset of degrees of
freedom which are coupled to a continuum of other degrees
of freedom whose dynamics has been “integrated out.”
Time evolution is not unitary in this subset, as is explicit
from the unitarity condition (2.16) and (2.17), which
indicates a flow of probability from the jϕ1i; jϕ2i to the
excited intermediate states jfκgi which have been inte-
grated out in the equations of motion.
It proves convenient to rewrite Heff as

Heff ¼
1

2
ðE1 þ Δ11ðE1Þ þ E2 þ Δ22ðE2ÞÞI

þ 1

2
D̃ðE1; E2ÞR̃ðE1; E2Þ; ð2:80Þ

where I is the 2 × 2 identity matrix and

D̃ðE1; E2Þ ¼
h
ðE1 þ Δ11ðE1Þ − E2 − Δ22ðE2ÞÞ2

þ 4Δ12ðE2ÞΔ21ðE1Þ
i
1=2 ð2:81Þ

and

R̃ðE1; E2Þ ¼
�
α̃ðE1; E2Þ β̃ðE1; E2Þ
γ̃ðE1; E2Þ −α̃ðE1; E2Þ

�
; ð2:82Þ

with the definitions

α̃ðE1; E2Þ ¼
ðE1 þ Δ11ðE1Þ − E2 − Δ22ðE2ÞÞ

D̃ðE1; E2Þ
; ð2:83Þ

β̃ðE1;E2Þ ¼
2Δ12ðE2Þ
D̃ðE1;E2Þ

; γ̃ðE1;E2Þ ¼
2Δ21ðE1Þ
D̃ðE1;E2Þ

: ð2:84Þ

It follows from these definitions that

α̃2 þ β̃ γ̃ ¼ 1; ð2:85Þ
3This approximation is also implicitly implemented in

Ref. [29].
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which implies that

R̃2ðE1; E2Þ ¼ I; ð2:86Þ

therefore the matrix R̃ features eigenvalues �1.
Consider the eigenvalue equation (suppressing the argu-

ments E1;2),

R̃

 
p�

�q�

!
¼ �

 
p�

�q�

!
; ð2:87Þ

the solution of which is

pþ ¼ Nþð1þ α̃Þ; qþ ¼ Nþγ̃; ð2:88Þ

p− ¼ N−ð1 − α̃Þ; q− ¼ N−γ̃; ð2:89Þ

with N� normalization factors. These are eigenvectors of
Heff , namely

Heff

 
p�

�q�

!
¼ λ�

 
p�

�q�

!
; ð2:90Þ

with eigenvalues

λ� ¼ 1

2
½ðE1 þ Δ11ðE1Þ þ E2 þ Δ22ðE2ÞÞ

� D̃ðE1; E2Þ�≡ ε̃� − i
Γ̃�

2
; ð2:91Þ

where ε̃�; Γ̃� are both real. The effective Hamiltonian can
be diagonalized by introducing

U−1 ¼
�
pþ p−

qþ −q−

�
;

U ¼ 1

pþq− þ qþp−

�
q− p−

qþ −pþ

�
; ð2:92Þ

satisfying UU−1 ¼ U−1U ¼ I, and yielding

UHeffU−1 ¼
�
λþ 0

0 λ−

�
: ð2:93Þ

Let us define

�
A1ðtÞ
A2ðtÞ

�
¼ U−1

�
V1ðtÞ
V2ðtÞ

�
; ð2:94Þ

and the effective evolution equations for V1;2ðtÞ become

i
d
dt

�
V1ðtÞ
V2ðtÞ

�
¼
�
λþV1ðtÞ
λ−V2ðtÞ

�
⇒

�
V1ðtÞ
V2ðtÞ

�

¼
�
e−iλ

þt 0

0 e−iλ
−t

��
V1ð0Þ
V2ð0Þ

�
: ð2:95Þ

Using the definition (2.94) evaluated at t ¼ 0 yields the
solution for the amplitudes

�
A1ðtÞ
A2ðtÞ

�
¼ U−1

�
e−iλ

þt 0

0 e−iλ
−t

�
U

�
A1ð0Þ
A2ð0Þ

�
: ð2:96Þ

With the relations (2.85), (2.88), and (2.89) it is straightfor-
ward to find that

�
A1ðtÞ
A2ðtÞ

�
¼ ½e−iλþtP̃þ þ e−iλ

−tP̃−�
�
A1ð0Þ
A2ð0Þ

�
; ð2:97Þ

with the projector operators

P̃� ¼ 1

2
ðI � R̃Þ; P̃2

� ¼ P̃�; ð2:98Þ

where R̃ is given by Eq. (2.82), or, alternatively

�
A1ðtÞ
A2ðtÞ

�
¼ 1

2

h
ðe−iλþt þ e−iλ

−tÞ þ ðe−iλþt − e−iλ
−tÞR̃

i

×

�
A1ð0Þ
A2ð0Þ

�
: ð2:99Þ

Comparing the results via Laplace transform and Breit-
Wigner approximation, namely (2.44) to the solution of
the set of equations (2.78) obtained in the infinite time
limit, namely (2.97) and (2.99), we find several sources of
discrepancies:

(i) The wave function renormalization constants Z� in
(2.44) and (2.57) are missing in (2.97) and (2.99).

(ii) Whereas the projector operators in (2.44) depend on
the values of ω�, namely the complex poles, those
in (2.97) depend on E1, E2 separately. Furthermore,
the values of the complex frequencies ω� (2.43) are
not obviously similar to λ� (2.91).

The origin of these discrepancies can be traced to taking
the long time limit (2.76) and (2.77) before integrating
the set of equations (2.72) and (2.73), which is equivalent
to the original set of equations (2.20) and (2.21) up to order
OðH2

I Þ. Any discrepancy between the order of the long
time limits will translate into differences of OðH2

I Þ.
In Appendix A it is shown that the discrepancy in wave

function renormalization of amplitudes originates in this
long time limit in the simpler case of one species. We now
compare the results for the eigenvalues and eigenvectors of
the Laplace transform method and the Markov approxi-
mation with the effective Hamiltonian.
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1. Nondegenerate case

For E1 − E2 ≫ Δab we can approximate D̃ðE1; E2Þ,
given by (2.81), as

D̃ðE1; E2Þ ≃ E1 þ Δ11ðE1Þ − E2 − Δ22ðE2Þ; ð2:100Þ

yielding for the eigenvalues λ�, Eq. (2.91),

λþ ¼ E1 þ Δ11ðE1Þ≡ ER
1 − i

Γþ

2
;

λ− ¼ E2 þ Δ22ðE2Þ≡ ER
2 − i

Γ−

2
; ð2:101Þ

which agree with the eigenvalues obtained from the
Laplace transform (2.50) and (2.51). For the amplitudes
we now find up to OðΔÞ

A1ðtÞ ¼ A1ð0Þe−iλþt

þ 1

2

�
Δ12ðE2Þe−iλþt − Δ12ðE2Þe−iλ−t

ER
1 − ER

2

�
A2ð0Þ;

ð2:102Þ

A2ðtÞ ¼ A2ð0Þe−iλ−t

þ 1

2

�
Δ21ðE1Þe−iλþt − Δ21ðE1Þe−iλ−t

ER
1 − ER

2

�
A1ð0Þ:

ð2:103Þ

The differences with the result from the Laplace transform,
Eqs. (2.52) and (2.53), are noteworthy: (i) the wave
function renormalization constants multiplying the diago-
nal terms in (2.52) and (2.53) are missing in (2.102) and
(2.103); and (ii) the differences in the arguments of Δ12,
Δ21 are in the brackets. Clearly the discrepancies are of
second order in Δab ∝ H2

I , as discussed above.

2. (Nearly) degenerate case

For E1; E2 ≫ Δab but with E1 − E2 ≡ δ≲OðΔÞ, it
follows that

λ� ¼ Ēþ 1

2
ðΔ11ðĒÞ þ Δ2ðĒÞÞ �

D̃ðĒÞ
2

;

Ē ¼ 1

2
ðE1 þ E2Þ; ð2:104Þ

where D̃ðĒÞ corresponds to setting E1 ≃ E2 ≃ Ē in the
matrix elements of D̃ðE1; E2Þ. The eigenvalues λ� again
coincide with ω� given by Eq. (2.55). Furthermore, it is
straightforward to confirm that in this case D̃ðE1; E2Þ ¼
RðĒÞ given by Eq. (2.58). Therefore, the main difference
between the Laplace result (2.57) and that from the
effective Hamiltonian (2.99) is the wave function renorm-
alization Z multiplying the initial amplitudes in (2.57).

In fact, at a fundamental level, the emergence of the wave
function renormalization of the amplitudes of the quasinor-
mal modes precludes the description of their time evolution
in terms of an effective non-HermitianHamiltonian. This can
be understood from the following simple argument: the
formal solution of the amplitude equation (2.78) is�

A1ðtÞ
A2ðtÞ

�
¼ e−iHeff t

�
A1ð0Þ
A2ð0Þ

�
; ð2:105Þ

which obviously does not include a wave function renorm-
alization as prefactor of the quasinormal mode amplitudes.
The wave function renormalization is an off-shell contribu-
tion that describes the dressing by virtual states of the single
(quasi-)particles on short timescales, and yields second order
corrections to the amplitudes. While it may be finite in the
case of the box diagram contribution to flavored neutral
meson mixing, it is in general ultraviolet divergent in
quantum field theory.
Therefore, we conclude that the Laplace transform with

the Breit-Wigner approximation provides a more accurate
description of the evolution of mixing as compared to that
obtained from the effective non-Hermitian Hamiltonian.

3. Quantum beats

The two orthogonal states jϕ1i; jϕ2i decaying into a
common channel jκi lead to interference in the amplitudes
of the decay state jκi as a consequence of “which path”
information in the decay. This is similar to the case of
quantum beats in “V”-shaped three level systems, in which
two higher levels radiatively decay to the lowest level [51],
an ubiquitous phenomenon in quantum optics. This inter-
ference phenomenon, or quantum beats, is featured in the
amplitudes of the decay products described by the states,
jκi, namely the coefficients CκðtÞ.
The analysis above has focused on the time evolution

of the amplitudes C1;2ðtÞ, which also determine the ampli-
tudes CκðtÞ of the intermediate states via Eq. (2.19).
Writing these coefficients in terms of the amplitudes A1;2ðtÞ,
and introducing the spectral densities (2.23), we findX
κ

jCκðtÞj2 ¼
Z

t

0

dt1

Z
t

0

dt2

Z
∞

−∞
dk0

×
X

a;b¼1;2

A�
aðt1Þμabðk0ÞAbðt2Þe−ik0ðt1−t2Þ:

ð2:106Þ
It is convenient to introduce Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1
inside the time integrations, use the property of the spectral
density (2.23), and include the definition of the self-energy
(2.24) to show that

X
κ

jCκðtÞj2¼
X

a;b¼1;2

Z
t

0

dt1A�
aðt1Þ

Z
t1

0

σabðt1− t2ÞAbðt2Þdt2

þc:c:; ð2:107Þ
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the complex conjugate (c.c.) contribution arises from the
term with Θðt2 − t1Þ upon relabeling t1 ↔ t2, a ↔ b and
using the property (2.23). Using the amplitude equa-
tions (2.25) we finally find

X
κ

jCκðtÞj2 ¼ −
X
a¼1;2

Z
t

0

dt1
d
dt1

½A�
aðt1ÞAaðt1Þ�

¼ jA1ð0Þj2 þ jA2ð0Þj2 − ½jA1ðtÞj2 þ jA2ðtÞj2�;
ð2:108Þ

and this result is precisely the unitarity relation formally
established by Eqs. (2.16) and (2.17) providing a comple-
mentary and explicit proof of unitarity exhibiting the role of
the self-energy.
Following LOY [29], introducing the total population of

the ϕ1;ϕ2 states as

NðtÞ ¼ ½jA1ðtÞj2 þ jA2ðtÞj2�≡ ½jC1ðtÞj2 þ jC2ðtÞj2�;
ð2:109Þ

and writing the amplitudes AaðtÞ as linear superpositions of
the quasinormal modes, namely

AaðtÞ ¼ Aaþe−iεþte−
Γþ
2
t þ Aa−e−iε−te−

Γ−
2
t; a ¼ 1; 2;

ð2:110Þ

where the coefficients Aa� can be read off Eq. (2.44), it
follows that

NðtÞ ¼
X
a¼1;2

½jAaþj2e−Γþt þ jAa−j2e−Γ−t

þ 2ReðA�
aþAa−eiðεþ−ε−ÞtÞe−ðΓþþΓ−Þt=2�; ð2:111Þ

the last term displays the quantum beats as a consequence
of the interference between the quasinormal modes. With
the normalization (2.15) the unitarity relations (2.17) and
(2.108) yield X

κ

jCκðtÞj2 ¼ 1 − NðtÞ; ð2:112Þ

displaying the quantum beats from (2.111) in the last term.
Therefore unitarity entails that the quantum beats in the
total population are reflected in the time evolution of the
decay products.
These interference terms are, of course, well known,

originally recognized in the seminal work by LOY [29],
and have been experimentally observed in the decays
products of flavored neutral mesons [12–15]. We note that
the coefficients Aa� depend on the wave function renorm-
alization constants Z� in the solutions (2.44), an important
discrepancy with the usual effective non-Hermitian
Hamiltonian description of particle mixing.

Our main objective in analyzing the dynamics of mixing
within the framework of the LOY theory of flavored meson
mixing is to provide a guide to and benchmark for the
effective field theory approach to the dynamics of mixing in
a medium studied in the next section.

III. THE EFFECTIVE ACTION
FOR PARTICLE MIXING

The previous section extended and generalized the
formulation of particle mixing, originally implemented
to study CP violation in the neutral kaon system, to the
case in which different particles (in general with different
masses) mix via common intermediate states or decay
channels. As it is clear from this analysis, such a formu-
lation is applicable and generally applied to the case of an
initial state being a pure state, and primarily, when such a
state is a linear superposition of single particle states [29].
This analysis also revealed several subtleties associated
with the time evolution of the amplitudes in terms of an
effective Hamiltonian. It also highlighted that the non-
Hermiticity of the effective Hamiltonian is a hallmark of a
quantum open system, namely such a Hamiltonian des-
cribes the nonunitary time evolution of a reduced subset of
states which are coupled to a continuum of states that have
been integrated out.
Our main objective is to provide a framework to study

the dynamics of particle mixing in a medium, as it is
necessary within the realm of cosmology. In this case, we
are interested in the time evolution of a density matrix,
describing a statistical ensemble of particles, not just a pure
state of a few particles. Furthermore, we are interested in
obtaining the time evolution of correlation functions and
distribution functions in the medium, in particular their
asymptotic behavior and possible thermalization, not on the
amplitudes of single (or a few) particle states.
Rather than considering the most general case of mixing

between charged bosons or fermions which necessarily add
several technical complications, we consider the simpler
case of real scalar or pseudoscalar bosonic fields ϕ1;ϕ2

interacting with degrees of freedom in thermal equilibrium
denoted collectively by χ, to establish the main framework
and results within a simpler setting, thus paving the way to
extrapolating to a more general case.
The mixing between ϕ1 and ϕ2 is indirect and a

consequence of a coupling to a common set of intermediate
states yielding a self-energy with off-diagonal elements in
the space of ϕ1;2 similar to the cases studied in the previous
section.
The general Lagrangian density describing this situation

is given by

L½ϕ1;ϕ2; χ� ¼ Lϕ þ Lχ þ LI; ð3:1Þ

where
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Lϕ ¼ 1

2

X
a¼1;2

½ð∂ϕaÞ2 −m2
aϕ

2
a�;

LI ¼ −ϕ1O1½χ� − ϕ2O2½χ�; ð3:2Þ
where Lχ is the Lagrangian of the χ fields. These are
assumed to describe degrees of freedom in thermal equi-
librium including interactions among these fields, and
O1;2½χ� are (composite) operators associated with the χ
degrees of freedom. These operators include couplings g1;2
assumed to be small. Indirect field mixing is a consequence
of nonvanishing correlations hO1O2i in the medium
yielding off-diagonal self-energy matrix elements.
Let us consider the initial density matrix at a time t ¼ 0

to be of the form

ρ̂ð0Þ ¼ ρ̂ϕð0Þ ⊗ ρ̂χð0Þ: ð3:3Þ
The initial density matrix ρ̂ϕð0Þ is normalized so that

Trϕρ̂ϕð0Þ ¼ 1 and that of the χ fields will be taken to
describe a statistical ensemble in thermal equilibrium at a
temperature T ¼ 1=β, namely

ρ̂χð0Þ ¼
e−βHχ

Trχe−βHχ
; ð3:4Þ

where Hχ is the total Hamiltonian for the fields χ and may
include other fields to which χ is coupled other than the
fields ϕ1;2. The χ vacuum is obtained in the limit β → ∞.
For example, for the discussion of the previous section

the initial density matrix is given by

ρ̂ð0Þ ¼ jΨðt ¼ 0ÞihΨðt ¼ 0Þj; ð3:5Þ
where jΨðt ¼ 0Þi is the state (2.13).
The factorization of the initial density matrix is an

assumption often explicitly or implicitly made in the
literature, it can be relaxed by including initial correlations
among the various fields at the expense of daunting
technical complications. In this study we will not consider
this important case, assuming the factorization as in (3.4).
In what follows we will refer to the set of fields ϕ1;2

collectively simply as ϕ≡ fϕ1;ϕ2g to simplify notation.
The main concept that anchors the framework developed

below is the following: the time evolution of the full density
matrix in the Schrödinger picture is given by

ρ̂ðtÞ ¼ e−iHtρ̂ð0ÞeiHt; ð3:6Þ

where H is the total Hamiltonian

H ¼ H0ϕ þHχ þ
Z

d3x
X
a¼1;2

ϕaOaðχÞ; ð3:7Þ

where H0ϕ and Hχ are the Hamiltonians for the respective
fields. We will assume that the composite operators Oa
include weak couplings so as to define a perturbative

expansion, and second order terms in Oa imply second
order in couplings, which we will denote as Oðg2Þ with g a
generic coupling.
The reduced density matrix for the ϕ1;2 degrees of

freedom is obtained by tracing over the χ degrees of
freedom, namely

ρ̂rϕðtÞ ¼ Trχρ̂ðtÞ: ð3:8Þ

This reduced density matrix does not evolve unitarily in
time, its time evolution is determined by a time nonlocal
effective action [35,40–44]. One of our main objectives is
to obtain this effective action.
It is convenient to write the density matrix in the field

basis which facilitates a path integral representation of the
nonequilibrium reduced density matrix [35,40–44].
In the field basis the matrix elements of ρ̂ϕð0Þ and ρ̂χð0Þ

are given by

hϕjρ̂ϕð0Þjϕ0i ¼ ρϕ;0ðϕ;ϕ0Þ; hχjρ̂χð0Þjχ0i ¼ ρχ;0ðχ; χ0Þ;
ð3:9Þ

and this is a functional density matrix as the fields feature
spatial arguments. ρ̂ϕð0Þ represents either a pure state, such
as a coherent state, or more generally an initial statistical
ensemble, whereas ρ̂χð0Þ is assumed to describe a thermal
ensemble and is given by Eq. (3.4).
To obtain the effective action, we follow the procedure

described above: evolve the initial density matrix in time,
trace over the χ degrees of freedom thereby obtaining the
reduced density matrix for the ϕ fields, and determine the
effective action from its time evolution. Including source
terms for the fields ϕ, we can compute expectation values
and correlation functions as a function of time from
variational derivatives as usual.
We now follow the main methods and results of

Refs. [18,39], summarizing here the main aspects pertinent
to the case of mixing for consistency of presentation.
The reduced density matrix is given by

ρrϕðtÞ ¼ TrχUðtÞρ̂ð0ÞU−1ðtÞ; UðtÞ ¼ e−iHt: ð3:10Þ

In field space,

ρðϕf; χf;ϕ0
f; χ

0
f; tÞ ¼ hϕf; χfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0

f; χ
0
fi;
ð3:11Þ

from which the reduced density matrix elements are
obtained by taking the trace on χ, namely setting χ0f ¼ χf
and carrying out the functional integral in χf,
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ρrðϕf;ϕ
0
f; ; tÞ ¼

Z
Dχfhϕf; χfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0

f; χfi:

ð3:12Þ

With the functional integral representation

hϕf; χfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0
f; χ

0
fi

¼
Z

DϕiDχiDϕ0
iDχ0ihϕf; χfjUðtÞjϕi; χiiρϕ;0ðϕi;ϕ

0
iÞ

⊗ ρχ;0ðχi; χ0iÞhϕ0
i; χ

0
ijU−1ðtÞjϕ0

f; χ
0
fi; ð3:13Þ

it follows that the reduced density matrix elements are

ρrðϕf;ϕ
0
f; ; tÞ ¼

Z
Dχf

Z
DϕiDχiDϕ0

iDχ0i

× hϕf; χfjUðtÞjϕi; χiiρϕ;0ðϕi;ϕ
0
iÞ

⊗ ρχ;0ðχi; χ0iÞhϕ0
i; χ

0
ijU−1ðtÞjϕ0

f; χfi:
ð3:14Þ

The
R
Dϕ, etc., are functional integrals where the spatial

argument has been suppressed. The matrix elements of the
time evolution forward and backward can be written as path
integrals, namely

hϕf; χfjUðtÞjϕi; χii ¼
Z

DϕþDχþei
R

d4xL½ϕþ;χþ�; ð3:15Þ

hϕ0
i; χ

0
ijU−1ðtÞjϕ0

f; χ
0
fi ¼

Z
Dϕ−Dχ−e−i

R
d3xL½ϕ−;χ−�;

ð3:16Þ

where we use the shorthand notationZ
d4x≡

Z
t

0

dt
Z

d3x: ð3:17Þ

L½ϕ; χ� is given by (3.1) and (3.2) and the boundary
conditions on the path integrals are

ϕþðx⃗; t ¼ 0Þ ¼ ϕiðx⃗Þ; ϕþðx⃗; tÞ ¼ ϕfðx⃗Þ; ð3:18Þ

χþðx⃗; t ¼ 0Þ ¼ χiðx⃗Þ; χþðx⃗; tÞ ¼ χfðx⃗Þ; ð3:19Þ

ϕ−ðx⃗; t ¼ 0Þ ¼ ϕ0
iðx⃗Þ; ϕ−ðx⃗; tÞ ¼ ϕ0

fðx⃗Þ; ð3:20Þ

χ−ðx⃗; t ¼ 0Þ ¼ χ0iðx⃗Þ; χ−ðx⃗; tÞ ¼ χ0fðx⃗Þ: ð3:21Þ

The field variables ϕ� and χ� along the forward (þ) and
backward (−) evolution branches are recognized as those
necessary for the in-in or Schwinger-Keldysh [40–43]
closed time path approach to the time evolution of a
density matrix.

The reduced density matrix for the fields ϕa (3.14) can
be written as

ρrðϕf;ϕ0
f; tÞ ¼

Z
DϕiDϕ0

iT ½ϕf;ϕ0
f;ϕi;ϕ0

i; t�ρϕðϕi;ϕ0
i; 0Þ;

ð3:22Þ

where the time evolution kernel is given by

T ½ϕf;ϕi;ϕ
0
f;ϕ

0
i; t� ¼

Z
Dϕþ

Z
Dϕ−eiSeff ½ϕþ;ϕ−;t�; ð3:23Þ

from which the in-in effective action out of equilibrium is
identified as

Seff ½ϕþ;ϕ−; t� ¼
Z

t

0

dt0
Z

d3xfL0½ϕþ� − L0½ϕ−�

þ I ½ϕþ;ϕ−; t�g; ð3:24Þ

where I ½ϕþ;ϕ−; t� is the influence action [43,44] and is
obtained by tracing over the χ degrees of freedom, namely

eiI ½ϕþ;ϕ−;t� ¼
Z

DχiDχ0iDχf

Z
Dχþ

×
Z

Dχ−ei
R
d4x½L½χþ�−

P
a
ϕþ
a Oa½χþ��

× e−i
R
d4x½L½χ−�−

P
a
ϕ−
aOa½χ−��ρχðχi;χ0i; 0Þ; ð3:25Þ

with the definition (3.17).
Note that in the influence action (3.25) the ϕ fields act as

background field variables, the functional and path inte-
grations are performed in all fields χ other than the ϕ fields.
These functional integrals are obtained by expanding the

terms e∓i
R

d4xϕ�
a Oa½χ�� in power series and carrying the path

and functional integrals in χ�; χi; χf; χ0, yielding correla-
tion functions of the operators Oa and reexponentiating.
This is depicted in Fig. 2.
From Eqs. (3.22) and (3.23) it is clear that the effective

action Seff determines the time evolution of the reduced
density matrix.
The path integral representations for both T ½ϕf;ϕi;

ϕ0
f;ϕ

0
i; t� and I ½ϕþ;ϕ−; t� feature the boundary conditions

in (3.18)–(3.21) except that we now set χ�ðx⃗; tÞ ¼ χfðx⃗Þ to
trace over the χ field.
The technical steps to obtain I ½ϕþ;ϕ−; t� in perturbation

theory, up to second order in the operators Oa, up to Oðg2Þ
are available in Ref. [18]. We follow the steps in this
reference to find up to second order in couplings
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iI ½ϕþ;ϕ−; t� ¼ −
Z

d4x1d4x2fϕþ
a ðx⃗1; t1Þϕþ

b ðx⃗2; t2Þ

×G>
abðx1 − x2Þ þ ϕ−

a ðx⃗1; t1Þϕ−
b ðx⃗2; t2Þ

×G<
abðx1 − x2Þ − ϕþ

a ðx⃗1; t1Þϕ−
b ðx⃗2; t2Þ

×G<
abðx1 − x2Þ − ϕ−

a ðx⃗1; t1Þϕþ
b ðx⃗2; t2Þ

×G>
abðx1 − x2ÞgΘðt1 − t2Þ; ð3:26Þ

where and G≶
abðx1 − x2Þ are given by

G>
abðx1 − x2Þ ¼ hOaðx1ÞObðx2Þiχ ; ð3:27Þ

G<
abðx1 − x2Þ ¼ hObðx2ÞOaðx1Þiχ ; ð3:28Þ

and we have assumed that hOai ¼ 0 (so that the first
diagram in Fig. 2 vanishes). The operators Oa are
Hermitian from which it follows that

G<
abðx1 − x2Þ ¼ G>

baðx2 − x1Þ: ð3:29Þ

This is the general form of the influence function up to
second order in the operators Oa½χ�, but to all orders in

the couplings of the χ fields to any other field except ϕ1;2.
We can obtain expectation values and correlation functions
of ϕ1;2 by including sources J�a ðxÞ with L0ðϕ�Þ →
L0ðϕ�Þ �Pa J

�
a ðxÞϕ�

a ðxÞ and defining the generating
functional

Z½Jþ; J−� ¼ TrρrðJþ;J−; tÞ

¼
Z

DϕfDϕiDϕ0
i

Z
Dϕþ

×
Z

Dϕ−eiSeff ½ϕþ;Jþ;ϕ−;J−;t�ρϕðϕi;ϕ0
i; 0Þ ð3:30Þ

with the boundary conditions

ϕþ
a ðx⃗; t ¼ 0Þ ¼ ϕi;aðx⃗Þ; ϕþ

a ðx⃗; tÞ ¼ ϕf;aðx⃗Þ;
ϕ−
a ðx⃗; t ¼ 0Þ ¼ ϕ0

i;aðx⃗Þ; ϕ−
a ðx⃗; tÞ ¼ ϕf;aðx⃗Þ: ð3:31Þ

Expectation values or correlation functions of ϕ� in the
reduced density matrix are obtained as usual with varia-
tional derivatives with respect to the sources J�.
The effective action (3.24) may be written in a manner

more suitable to exhibit the equations of motion by
introducing the Keldysh [41] center of mass and relative
variables

Φaðx⃗; tÞ ¼
1

2
ðϕþ

a ðx⃗; tÞ þ ϕ−
a ðx⃗; tÞÞ;

Raðx⃗; tÞ ¼ ðϕþ
a ðx⃗; tÞ − ϕ−

a ðx⃗; tÞÞ: ð3:32Þ

The boundary conditions on the ϕ� path integrals given
by (3.31) translate into the following boundary conditions
on the center of mass and relative variables:

Φaðx⃗; t ¼ 0Þ ¼ Φa;i; Raðx⃗; t ¼ 0Þ ¼ Ra;i; ð3:33Þ

Φaðx⃗; t ¼ tfÞ ¼ Φa;fðx⃗Þ; Raðx⃗; t ¼ tfÞ ¼ 0: ð3:34Þ

Taking the spatial Fourier transform, the effective action
(3.24) with the influence functional (3.26) becomes

iSeff ½Φ;R� ¼ −i
Z

d3x
X
a

Ra;iðxÞΦ̇aðx; t ¼ 0Þ

þ i
Z

t

0

dt
X
k⃗;a

f−Rað−k⃗; tÞðΦ̈aðk⃗; tÞ þ ω2
aðkÞΦaðk⃗; tÞÞ þΦaðk⃗; tÞJ að−k⃗; tÞg

−
Z

t

0

dt1

Z
t

0

dt2
X
ab

�
1

2
Rað−k⃗; t1ÞN abðk⃗; t1 − t2ÞRbðk⃗; t2Þ þ iRað−k⃗; t1ÞΣR

abðk⃗; t1 − t2ÞΦbðk⃗; t2Þ
�
; ð3:35Þ

FIG. 2. Pictorial representation of the influence action
I ½ϕþ;ϕ−; t�. The dashed lines are the (background) fields ϕ�

a ,
and the filled circles the trace over the χ fields yielding correlation
functions of the operators O½χ��. Each vertex carries a coupling.
The second graph with two dashed lines yields the influence
function up to second order in the couplings (3.26). We assume
that hOai ¼ 0; hence, there is no first order contribution
to I ½ϕþ;ϕ−; t�.
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where ω2
aðkÞ ¼ k2 þm2

a. To obtain the above form, we
integrated by parts in time, defined J aðxÞ ¼ ðJþa ðxÞ−
J−a ðxÞÞ, and kept only the sources conjugate to Φa because
we are interested in expectation values and correlation
functions of this variable only as discussed in detail
below.
The nonlocal kernels in the above effective Lagrangian

are given by [18]

N abðk; t − t0Þ ¼ 1

2
½G>

abðk; t − t0Þ þ G<
abðk; t − t0Þ�; ð3:36Þ

iΣR
abðk; t − t0Þ ¼ ½G>

abðk; t − t0Þ −G<
abðk; t − t0Þ�Θðt − t0Þ

≡ iΣabðk; t − t0ÞΘðt − t0Þ; ð3:37Þ

where G<;>ðk; t − t0Þ are the spatial Fourier transforms of
the correlation functions in (3.27) and (3.28). It is clear
from these correlation functions that if hO1O2i ≠ 0,
the self-energy features nonvanishing off-diagonal matrix
elements, and these are responsible for indirect mixing
between the fields ϕ1 and ϕ2. Since each operator is
associated with a coupling ga, the self-energy and noise
kernels are of second order, and we will refer to them
generically as Σ ∝ g2;N ab ∝ g2 to emphasize the second
order nature of these kernels.
In the exponential of the effective action eiSeff , the

quadratic term in the relative variables Ra can be
written as a functional integral over a noise variable ξa
as follows:

exp

�
−
1

2

Z
dt1

Z
dt2Rað−k⃗; t1ÞN abðk⃗; t1 − t2ÞRbðk⃗; t2Þ

�

¼ C̃
Z

Dξa exp

�
−
1

2

Z
dt1

Z
dt2ξað−k⃗; t1ÞN −1

abðk⃗; t1 − t2Þξbðk⃗; t2Þ þ i
Z

dtξað−k⃗; tÞRaðk⃗; tÞ
�
; ð3:38Þ

where C̃ is a normalization factor.
The time evolution of the density matrix defines an initial value problem; consequently, we seek to obtain the equations

of motion as an initial value problem rather than a boundary value problem. Since the Heisenberg equations of motion are
second order in time, an initial value problem is determined by providing the initial values of the field and its canonical
momentum. This suggests to consider the Wigner transform of the initial density matrix by writing it in terms of the initial
center of mass and relative variables Φa;i and Ra;i,

ρϕðϕa;i;ϕ0
a;i; 0Þ≡ ρϕ

�
Φa;i þ

Ra;i

2
;Φa;i −

Ra;i

2
; 0

�
; ð3:39Þ

and introduce the functional Wigner transform [43,51] as a Fourier transform in the relative variable,

W½Φa;i;Πa;i� ¼
Z

DRie
−i
R

d3xΠa;iðx⃗ÞRiðx⃗Þρϕ

�
Φa;i þ

Ra;i

2
;Φa;i −

Ra;i

2
; 0

�
; ð3:40Þ

which allows us to write (up to a normalization factor)

ρϕ

�
Φa;i þ

Ra;i

2
;Φa;i −

Ra;i

2
; 0

�
¼
Z

DΠa;ie
i
R

d3xΠa;iðx⃗ÞRa;iðx⃗ÞW½Φa;i;Πa;i�; ð3:41Þ

the variables Πa are the momenta conjugate to the variable Φa, and W½Φ;Π� yields a probability distribution in “phase-
space” Φ, Π.
Gathering these results together, we now write the generating functional (3.30) in terms of the Keldysh variables (3.32),

with the effective action in these variables given by Eq. (3.35). Implementing the Wigner transform (3.41) and using the
representation (3.38) we obtain

Z½J � ¼
Z

DΦf

Z
DRiDΦiDΠi

Z
DΦDRDξW½Φi;Πi� × P½ξ� × exp

�
i
Z

dt
X
k⃗

Φaðk⃗; tÞJ að−k⃗; tÞ
�

× exp

�
−i
Z

dt
X
k⃗

Rað−k⃗; tÞ
�
Φ̈aðk⃗; tÞ þ ω2

aðkÞΦaðk⃗; tÞ þ
Z

t

0

Σabðk⃗; t − t0ÞΦbðk⃗; t0Þdt0 − ξaðk⃗; tÞ
��

× exp

�
i
X
k⃗

Ra;ið−k⃗ÞðΠa;iðk⃗Þ − Φ̇a;iðk⃗ÞÞ
�
; ð3:42Þ

SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 109, 036038 (2024)

036038-16



where ω2
aðkÞ ¼ k2 þm2

a and repeated field indices are summed over. The noise probability distribution function P½ξa� is
given by

P½ξa� ¼ C̃
Y
k⃗

exp

�
−
1

2

Z
dt1

Z
dt2ξað−k⃗; t1ÞN −1

abðk; t1 − t2Þξaðk⃗; t2Þ
�
: ð3:43Þ

The generating functional Z½J � is the final form of the time evolved reduced density matrix after tracing over the bath
degrees of freedom. Variational derivatives with respect to the source J yield the correlation functions of the Keldysh center
of mass variables Φ.

Carrying out the functional integrals over Riðk⃗Þ and Rk⃗ðtÞ yields a clearer form, namely

Z½J � ∝
Z

DΦa;f

Z
DΦa;iDΠa;i

Z
DΦaDξaW½Φi;Πi� × P½ξ� × exp

�
i
Z

dt
X
a;k⃗

Φaðk⃗; tÞJ að−k⃗; tÞ
�

×
Y
k⃗

δ

�
Φ̈aðk⃗; tÞ þ ω2

aðkÞΦaðk⃗; tÞ þ
Z

t

0

Σabðk⃗; t − t0ÞΦbðk⃗; t0Þdt0 − ξaðk⃗; tÞ
�

×
Y
a;k⃗

δ½Πa;iðk⃗Þ − Φ̇a;iðk⃗Þ�: ð3:44Þ

Obtaining expectation values and correlation functions
from this generating functional is straightforward:

(i) The functional delta functions in (3.44) determine
the field configurations that contribute to the gen-
erating functional Z½J �. These are the solutions of
the stochastic Langevin equation of motion [39] for
Φaðk⃗; tÞ, namely

Φ̈aðk⃗; tÞ þω2
aðkÞΦaðk⃗; tÞ

þ
Z

t

0

Σabðk⃗; t− t0ÞΦbðk⃗; t0Þdt0 ¼ ξaðk⃗; tÞ: ð3:45Þ

This equation of motion is retarded as it involves the
retarded self-energy, thereby defining a causal initial
value problem. This is a distinct consequence of the
in-in formulation of time evolution.

(ii) The expectation value and correlations of the sto-
chastic noise ξaðk⃗; tÞ are determined by the Gaussian
probability distribution P½ξa�. Introducing the defi-
nition ⟪ð� � �Þ⟫ for averages with P½ξa�, the Gaussian
stochastic noise features the following averages:

⟪ξaðk⃗; tÞ⟫ ¼ 0;

⟪ξaðk⃗; tÞξbðk⃗0; t0Þ⟫ ¼ N abðk; t − t0Þδk⃗;−k⃗0 : ð3:46Þ

Since P½ξa� is a Gaussian distribution function,
higher order correlation functions are obtained by
implementing Wick’s theorem. This averaging is a
manifestation of stochasticity, establishing a direct
relation between nonequilibrium dynamics of quan-
tum open systems and stochastic field theory [52,53].

(iii) The stochastic equation of motion (3.45) must be
solved with the initial conditions

Φaðk⃗; t ¼ 0Þ ¼ Φa;iðk⃗Þ; Φ̇aðk⃗; t ¼ 0Þ ¼ Πa;iðk⃗Þ;
ð3:47Þ

and these initial conditions confirm that Πa;i are the
canonical momenta conjugate toΦa;i. The solution of

(3.45) is a functional of the variablesΦa;iðk⃗Þ;Πa;iðk⃗Þ,
which are distributed according to the probability
distribution function W½Φa;i;Πa;i�, which in turn is
determined by the initial density matrix. This is
another manifestation of stochasticity, but now in
the distribution of initial conditions.

We now introduce the notation ð� � �Þ to denote
averaging over the initial conditions (3.47) with the
distribution function W½Φa;i;Πa;i�.

The solutions of the Langevin equation (3.45)
Φa½k⃗; t; ξ;Φa;i;Πa;i� are functionals of the stochastic noise
variables ξa and the initial conditions. Therefore correlation
functions of the original field variables ϕa in the reduced
density matrix correspond to averaging the products of the
solutions over both the initial conditions with the Wigner
distribution function W½Φa;i;Πa;i�, and the noise with the
probability distribution function P½ξ�. We denote such
averages by ⟪ð� � �Þ⟫ where ð� � �Þ is any functional of the
initial conditions (3.47) and ξa.
These stochastic averages yield the expectation values

and correlation functions of functionals of Φa obtained
from variational derivatives with respect to J a.
In Appendix B we provide a nonperturbative spectral

Lehmann representation of the correlation functions
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G≷
abðx − yÞ that enter in the definitions of the self-energy

(3.37) and noise correlation function (3.36). The result is
that these nonlocal kernels can be written in a dispersive
representation as

Σabðk; t − t0Þ ¼ −i
Z

dk0
ð2πÞ ρabðk0; kÞe

−ik0ðt−t0Þ; ð3:48Þ

N abðk; t − t0Þ ¼ 1

2

Z
dk0
ð2πÞ ρabðk0; kÞ coth

�
βk0
2

�
e−ik0ðt−t0Þ;

ð3:49Þ

where ρabðk0; kÞ is a 2 × 2 matrix of spectral densities (see
Appendix B for details). The representations (3.48) and
(3.49) are a manifestation of a generalized fluctuation
dissipation relation, a consequence of taking the χ degrees
of freedom in thermal equilibrium.
The stochastic equation of motion (3.45) with initial

conditions (3.47) defines an initial value problem whose
solution is obtained by Laplace transform. Let us define the
Laplace transforms

Φ̃aðk⃗; sÞ ¼
Z

∞

0

e−stΦaðk⃗; tÞdt; ð3:50Þ

ξ̃aðk⃗; sÞ ¼
Z

∞

0

e−stξaðk⃗; tÞdt; ð3:51Þ

Σ̃abðk⃗; sÞ ¼
Z

∞

0

e−stΣabðk⃗; tÞdt¼ −
1

2π

Z
∞

−∞

ρabðk0; kÞ
k0 − is

dk0;

ð3:52Þ

where in (3.52) we used the representation (3.48). The
Laplace transform of the Langevin equation (3.45) with
initial conditions (3.47) becomes

G−1
abðk; sÞΦ̃bðk⃗; sÞ ¼ Πa;iðk⃗Þ þ sΦa;iðk⃗Þ þ ξ̃aðk⃗; sÞ; ð3:53Þ

where

G−1
abðk; sÞ ¼ ðs2 þ ω2

aðkÞÞδab þ Σ̃abðk⃗; sÞ: ð3:54Þ

The solution in real time is obtained by inverse Laplace
transform, and it is given by

Φaðk⃗; tÞ ¼ Φh
aðk⃗; tÞ þΦξ

aðk⃗; tÞ; ð3:55Þ

where Φh
aðk⃗; tÞ;Φξ

aðk⃗; tÞ are the homogeneous and inho-
mogeneous solutions, respectively, namely

Φh
aðk⃗; tÞ ¼ Ġabðk; tÞΦb;iðk⃗Þ þ Gabðk; tÞΠb;iðk⃗Þ;

Φξ
aðk⃗; tÞ ¼

Z
t

0

Gabðk; t − t0Þξbðk⃗; t0Þdt0; ð3:56Þ

and repeated indices are summed over. Green’s function is
given by

Gabðk; tÞ ¼
1

2πi

Z
C
estGabðk; sÞds; ð3:57Þ

where C denotes the Bromwich contour parallel to the
imaginary axis and to the right of all the singularities of
Gabðk; sÞ in the complex s plane, closing along a large
semicircle at infinity with ReðsÞ < 0. These singularities
correspond to poles and multiparticle branch cuts with
ReðsÞ < 0; thus, the contour runs parallel to the imaginary
axis s ¼ iðν − iϵÞ, with −∞ ≤ ν ≤ ∞ and ϵ → 0þ. Finally,
changing variables ν ¼ −ω, we obtain

Gabðk; tÞ ¼
Z

∞

−∞
Gabðk; s ¼ −iωþ ϵÞe−iωt dω

2π
; ð3:58Þ

and for t > 0 the integration contour is closed in the lower
half ω plane. We obtain Green’s function Gabðk; sÞ by
following the steps in Appendix C. Without loss of
generality we consider m2

1 ≥ m2
2 and define

M̄ðk; sÞ ¼ s2 þ 1

2
½ω2

1ðkÞ þω2
2ðkÞ þ Σ̃11ðk; sÞ þ Σ̃22ðk; sÞ�;

ð3:59Þ

Dðk; sÞ ¼ ½ðω2
1ðkÞ − ω2

2ðkÞ þ Σ̃11ðk; sÞ − Σ̃22ðk; sÞÞ2
þ 4Σ̃12ðk; sÞΣ̃21ðk; sÞ�1=2; ð3:60Þ

ᾱðk; sÞ ¼ 1

Dðk⃗; sÞ
ðω2

1ðkÞ − ω2
2ðkÞ þ Σ̃11ðk⃗; sÞ − Σ̃22ðk⃗; sÞÞ;

ð3:61Þ

β̄ðk; sÞ ¼ 2Σ̃12ðk; sÞ
Dðk⃗; sÞ

; γ̄ðk; sÞ ¼ 2Σ̃21ðk; sÞ
Dðk; sÞ ; ð3:62Þ

with the property

ᾱ2ðk; sÞ þ β̄ðk; sÞγ̄ðk; sÞ ¼ 1 ⇒ αðk; sÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄ðk; sÞγ̄ðk; sÞ

q
; ð3:63Þ

where we used the same argument leading to Eq. (2.46) for
the choice of sign for ᾱ.
In terms of these variables, G−1

abðk; sÞ has the same form
as Eq. (C3) in Appendix C, yielding

Gðk; sÞ ¼ P−ðk; sÞ
M̄ðk; sÞ − Dðk;sÞ

2

þ Pþðk; sÞ
M̄ðk; sÞ þ Dðk;sÞ

2

;

P� ¼ 1

2
ð1�RÞ; ð3:64Þ
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with

R ¼
�
ᾱ β̄

γ̄ −ᾱ

�
; R2 ¼ 1 ⇒ P2

�ðk; sÞ ¼ P�ðk; sÞ:

ð3:65Þ
The analytic continuation of the self-energies is

Σ̃abðk; s ¼ −iωþ ϵÞ

¼ 1

2π

�Z
∞

−∞
P
ρabðk0; kÞ
ω − k0

dk0 − iπρabðω; kÞ
�
: ð3:66Þ

Upon analytic continuation to ω Green’s function (3.58)
becomes

Gabðk; tÞ ¼ −
Z

∞

−∞

�
P−ðk;ωÞ

ðωþ iϵÞ2 −Ω2
−ðk;ωÞ

þ Pþðk;ωÞ
ðωþ iϵÞ2 − Ω2þðk;ωÞ

�
ab
e−iωt

dω
2π

; ð3:67Þ

with

Ω2
�ðk;ωÞ ¼

1

2
½ω2

1ðkÞ þ ω2
2ðkÞ þ Σ̃11ðk;ωÞ

þ Σ̃22ðk;ωÞ �Dðk;ωÞ�; ð3:68Þ
where the functions of ω are understood as the functions of
s upon analytic continuation s ¼ −iωþ ϵ, keeping the
same name for the functions to simplify notation.
The form of Green’s function is similar to Eq. (2.40) of

the previous section, with important differences: whereas
the denominators in Eq. (2.40) are linear in ω, therefore
each term features only one pole, and the denominators in
(3.67) are quadratic in ω implying that each term features
two poles. This discrepancy has a simple explanation: the
set of amplitude equations leading up to (2.40) describe the
evolution of single particle states, whereas the effective
field theory yields the time evolution of the density matrix
in the field basis, and a real scalar field describes positive
frequency particle states and negative frequency antipar-
ticle states. Even in the absence of perturbations, the
propagator has two poles yielding the time evolution
e∓iωðkÞt for the amplitudes. Furthermore, the self-energies
Σ̃abðk;ωÞ have dimensions of energy squared, unlike the
quantities Δab in the previous section that feature dimen-
sions of energy.
The complex poles in Green’s functions are at

ω2
� ¼ Ω2

�ðk;ω�Þ; ð3:69Þ

namely

ωð�Þ
þ ¼ ð�ÞΩþðk;ωð�Þ

þ Þ; ð3:70Þ
ωð�Þ
− ¼ ð�ÞΩ−ðk;ωð�Þ

− Þ; ð3:71Þ

where the superscripts (�) denote the two roots of (3.70)
and (3.71) for each subscript label þ;− corresponding to
the signs of Ω2

� in (3.68). These roots define the complex
frequencies of the quasinormal modes.
Consistent with perturbation theory, we assume that

ω2
1;2ðkÞ ≫ Σ̃abðk;ωÞ ∝ H2

I allowing one to implement
Breit-Wigner and narrow width approximations to the
propagators. Just as in the case discussed in the previous
section, the validity of the Breit-Wigner approximation
relies on weak coupling, in particular that the distance
between the real part of the poles and thresholds is much
larger than the half-width of the resonance. This criterion
holds for both the nondegenerate and nearly degenerate
cases, because in the latter the condition of near degeneracy
is that ω2

a ≫ Σ̃ab and ω2
1 − ω2

2 ≲ Σ̃ab. This approximation
describes exponential relaxation valid in the intermediate
timescale as discussed above.
In these approximations, we expand around each pole in

the denominators in (3.67), namely

ω ¼ ωðþÞ
þ þ ðω − ωðþÞ

þ Þ;
Ωþðk;ωÞ ¼ Ωþðk;ωðþÞ

þ Þ þ ðω − ωðþÞ
þ Þ

×
1

2ωðþÞ
þ

d
dω

Ω2þðk;ωÞjω¼ωðþÞ
þ

þ � � � ð3:72Þ

and similarly for each of the other poles. Using the pole
condition (3.69) yields the general form of Green’s function,

Gabðk; tÞ ¼ Gab;þðk; tÞ þ Gab;−ðk; tÞ; ð3:73Þ

where each term corresponds to the contribution of the
individual quasinormal modes corresponding to the sub-
scripts �, namely

Gab;þðk; tÞ ¼ i

�
ZðþÞ

þ
e−iω

ðþÞ
þ t

2ωðþÞ
þ

PþðωðþÞ
þ Þ

þ Zð−Þ
þ

e−iω
ð−Þ
þ t

2ωð−Þ
þ

Pþðωð−Þ
þ Þ
�
ab
; ð3:74Þ

Gab;−ðk; tÞ ¼ i

�
ZðþÞ

−
e−iω

ðþÞ
− t

2ωðþÞ
−

P−ðωðþÞ
− Þ

þ Zð−Þ
−

e−iω
ð−Þ
− t

2ωð−Þ
−

P−ðωð−Þ
− Þ
�
ab
: ð3:75Þ

The wave function renormalization constants are given by

Zð�Þ
þ ¼

�
1 −

d
dω

Ω2þðk;ωÞ
2ωð�Þ

þ

				
ω¼ωð�Þ

þ

�
−1
;

Zð�Þ
− ¼

�
1 −

d
dω

Ω2
−ðk;ωÞ
2ωð�Þ

−

				
ω¼ωð�Þ

−

�
−1
: ð3:76Þ
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Green’s function for each quasinormal mode features both
positive (ωðþÞ) and negative (ωð−Þ) frequency contributions.
This is the general result for Green’s function, again

displaying the four poles: positive and negative frequency
for each quasinormal mode, with the associated wave func-
tion renormalization constants arising from the residues at
the poles in the Breit-Wigner approximation.
Note that while the result (2.44) features only positive

frequency components, Green’s function (3.73) features
both positive (ωðþÞ) and negative (ωð−Þ) frequency compo-
nents. As discussed above the origin of this difference
is that whereas the Weisskopf-Wigner formulation, upon
which the LOY theory is based, describes the time
evolution of single particle (positive frequency) or anti-
particle (negative frequency) amplitudes, Green’s function
in the effective field theory describes the propagation of
fields that include both positive and negative frequencies
and describe the quasinormal modes of propagation as a
consequence of mixing and decay. Although this expres-
sion looks cumbersome in its index structure, we clarify
again: the superscripts (�) refer to the positive (particle)
and negative (antiparticle) frequencies, the subscripts �
refer to the two (quasi)normal modes from mixing, corre-
sponding to the � in Eq. (3.68).
With the purpose of comparison with the LOY theory,

we focus on the same possible scenarios as in the previous
section.

A. Nondegenerate: m2
1 −m2

2 ≫ Σ̃ab

In this case it follows that

Dðk;ωÞ ≃ ω2
1ðkÞ − ω2

2ðkÞ þ Σ̃11ðk;ωÞ − Σ̃22ðk;ωÞ; ð3:77Þ
yielding up to second order in the couplings

Ω2þðk;ωÞ ¼ ω2
1ðkÞ þ Σ̃11ðk;ωÞ; ð3:78Þ

Ω2
−ðk;ωÞ ¼ ω2

2ðkÞ þ Σ̃22ðk;ωÞ: ð3:79Þ

ᾱðk;ωÞ ≃ 1þOðΣ̃2Þ; ð3:80Þ

β̄ðk;ωÞ ≃ 2Σ̃12ðk;ωÞ
m2

1 −m2
2

≪ 1; ð3:81Þ

γ̄ðk;ωÞ ≃ 2Σ̃21ðk;ωÞ
m2

1 −m2
2

≪ 1: ð3:82Þ

Therefore, up to second order in couplings the complex
poles are at

ωð�Þ
þ ðkÞ ¼ �ωþrðkÞ − i

Γð�Þ
þ ðkÞ
2

; ð3:83Þ

ωð�Þ
− ðkÞ ¼ �ω−rðkÞ − i

Γð�Þ
− ðkÞ
2

; ð3:84Þ

where

ωþrðkÞ ¼ ω1ðkÞ þ δþðkÞ; ω−rðkÞ ¼ ω2ðkÞ þ δ−ðkÞ
ð3:85Þ

are the renormalized frequencies of each quasinormal mode
and to leading order

δþðkÞ ¼
ReΣ̃11ðk;ω1ðkÞÞ

2ω1ðkÞ
; δ−ðkÞ ¼

ReΣ̃22ðk;ω2ðkÞÞ
2ω2ðkÞ

;

ð3:86Þ

Γð�Þ
þ ðkÞ ¼ ð�Þ ρ11ð�ω1ðkÞ; kÞ

2ω1ðkÞ
;

Γð�Þ
− ðkÞ ¼ ð�Þ ρ22ð�ω2ðkÞ; kÞ

2ω2ðkÞ
: ð3:87Þ

To obtain the above results we used the property
ρaað−ω; kÞ ¼ −ρaaðω; kÞ (no sum over a) for the diagonal
matrix elements of the spectral density [see Eq. (B15) in
Appendix B]. The contributions δ�ðkÞ are renormalizations
of the bare frequencies ω1;2, respectively.
Green’s function (3.73) with (3.74) and (3.75) is given to

leading order in this case by

Gab;þðk; tÞ ¼
i

2ωþr
½ZðþÞ

þ e−iωþrte−
Γþþ
2
tPþðω1Þ

− Zð−Þ
þ eiωþrte−

Γ−þ
2
tPþð−ω1Þ�ab; ð3:88Þ

Gab;−ðk; tÞ ¼
i

2ω−r
½ZðþÞ

− e−iω−rte−
Γþ−
2
tP−ðω2Þ

− Zð−Þ
− eiω−rte−

Γ−−
2
tP−ð−ω2Þ�ab; ð3:89Þ

with the projection operators given to leading order in the
couplings by

Pþð�ω1Þ ¼
�

1 1
2
β̄ðk;�ω1Þ

1
2
γ̄ðk;�ω1Þ 0

�
; ð3:90Þ

P−ð�ω2Þ ¼
�

0 − 1
2
β̄ðk;�ω2Þ

− 1
2
γ̄ðk;�ω2Þ 1

�
: ð3:91Þ

Since in this nondegenerate case β̄; γ̄ ∝ Σ [see Eqs. (3.81)
and (3.82)] the off-diagonal terms are perturbatively small,
for these the wave function renormalization constants can
be set Z ≃ 1 to leading order. This result agrees with those
obtained in Ref. [18] for the case of pion-axion mixing.
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B. (Nearly) degenerate: m2
1 −m2

2 ≲ Σ̃ab

In this case, it is convenient to define

Ω2
�ðk;ωÞ ¼ ω̄2ðkÞ þ E�ðk;ωÞ; ð3:92Þ

with

ω̄ðkÞ ¼ 1ffiffiffi
2

p ½ω2
1ðkÞ þ ω2

2ðkÞ�1=2 ≫ Σ̃ab;D ð3:93Þ

and

E�ðk;ωÞ ¼
1

2
½Σ̃11ðk;ωÞ þ Σ̃22ðk;ωÞ �Dðk;ωÞ� ≪ ω̄2

ð3:94Þ

with Σ̃ab and D of the same order. In this case the complex
poles are at

ωð�Þ
þ ðkÞ ¼ �ωþrðkÞ − i

Γð�Þ
þ ðkÞ
2

; ð3:95Þ

ωð�Þ
− ðkÞ ¼ �ω−rðkÞ − i

Γð�Þ
− ðkÞ
2

; ð3:96Þ

where

ω�rðkÞ ¼ ω̄ðkÞ þ δ�ðkÞ ð3:97Þ

are the renormalized (nearly degenerate) frequencies, with

δ�ðkÞ ¼
Re½E�ðk;�ω̄ðkÞÞ�

2ω̄ðkÞ ;

Γð�Þ
� ðkÞ ¼ ð∓Þ Im½E�ðk;�ω̄ðkÞÞ�

ω̄ðkÞ ; ð3:98Þ

and both are of quadratic order in the couplings.

We assume that the decay rates Γð�Þ
� are all positive for

stability, and further properties of δ�;Γ
ð�Þ
� will depend on

the specific details of the self-energies Σ̃ab, which in turn
depend on the type of operators Oa. In this case
ωþr − ω−r ≃ Σ̃, namely the difference in the quasinormal
mode frequencies are of quadratic order in the couplings.
To leading order in the couplings Green’s functions (3.74)
and (3.75) in this nearly degenerate case are given by

Gþðk; tÞ ¼
i

2ωþr

h
ZðþÞ

þ e−iωþrte−i
Γþþ
2
tPþðωþrÞ

− Zð−Þ
þ eiωþrte−i

Γ−þ
2
tPþð−ωþrÞ

i
; ð3:99Þ

G−ðk; tÞ ¼
i

2ω−r

h
ZðþÞ

− e−iω−rte−i
Γþ−
2
tP−ðω−rÞ

− Zð−Þ
− eiω−rte−i

Γ−−
2
tP−ð−ω−rÞ

i
; ð3:100Þ

where all matrix elements of P� are of Oð1Þ.

C. Expectation values and correlation functions

We seek to obtain expectation values and correlation
functions of ϕa in the reduced density matrix. In particular,
we focus on equal time correlation functions. If asymp-
totically at long time these become time independent, this is
a signal of the emergence of a stationary state, from which
we can assess if the fields reach thermal equilibration with
the bath. Furthermore, off-diagonal equal time correlation
functions will also inform on the emergence and long time
survivability of coherence. Therefore, we must relate these
to the averages of the center of mass Keldysh fields Φa. To
establish this relation, we begin with the path integral
representations for the forward and backward time evolu-
tion operators (3.13), (3.15), and (3.16) which show that ϕþ

a

are associated with UðtÞ and ϕ−
a with U−1ðtÞ. Hence, it

follows that the expectation value of the fields in the full
density matrix is given by

hϕaðx⃗; tÞi ¼ Trϕþ
a ðx⃗; tÞρ̂ð0Þ ¼ Trρ̂ð0Þϕ−

a ðx⃗; tÞ
¼ TrΦaðx⃗; tÞρ̂ð0Þð0Þ ¼ ⟪Φaðx⃗; tÞ⟫; ð3:101Þ

whereas

TrRaðx⃗; tÞρ̂ð0Þ ¼ 0: ð3:102Þ

Similarly, correlation functions in the forward, back-
ward, and mixed forward-backward branches are given by

Trϕþ
a ðk⃗; tÞϕþ

b ðk⃗0; t0Þρ̂ð0Þ≡ TrTðϕaðk⃗; tÞϕbðk⃗0; t0ÞÞρ̂ð0Þ;
Trϕ−

a ðk⃗; tÞϕ−
b ðk⃗0; t0Þρ̂ð0Þ≡ Trρ̂ð0ÞT̃ðϕaðk⃗; tÞϕbðk⃗0; t0ÞÞ;

Trϕþ
a ðk⃗; tÞϕ−

b ðk⃗0; t0Þρ̂ð0Þ≡ Trϕaðk⃗; tÞρ̂ð0Þϕbðk⃗0; t0Þ
¼ Trϕbðk⃗0; t0Þϕaðk⃗; tÞρ̂ð0Þ;

ð3:103Þ

where T and T̃ are the time ordering and antitime ordering
symbols, respectively. Using the relations (3.103) it is
straightforward to confirm that

TrΦaðx⃗; tÞΦbðx⃗0; t0Þρ̂ð0Þ≡ 1

2
Trðϕaðx⃗; tÞϕbðx⃗0; t0Þ

þ ϕbðx⃗0; t0Þϕaðx⃗; tÞÞρ̂ð0Þ:
ð3:104Þ
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Upon obtaining the functional solutions of Eq. (3.45) our
objective is to obtain the connected equal time correlation
functions

hϕaðtÞϕbðtÞic ¼ Trρ̂ð0ÞϕaðtÞϕbðtÞ
− Trρ̂ð0ÞϕaðtÞTrρ̂ð0ÞϕbðtÞ; ð3:105Þ

and the population for each field component of wave vector
k, namely

naðk; tÞ ¼
1

2ωaðkÞ
Trρ̂ð0Þ½ϕ̇aðk⃗; tÞϕ̇að−k⃗; tÞ

þ ω2
aðkÞϕaðk⃗; tÞϕað−k⃗; tÞ� −

1

2

ðno sum over aÞ: ð3:106Þ

Establishing contact with the dynamics of the density
matrix of two level systems [51], the off-diagonal compo-
nents of the connected correlation function (3.105) are a
manifestation of coherence. If initially the fields are
uncorrelated, the off-diagonal components of the correla-
tion function vanish. Therefore, if upon time evolution
these are nonvanishing, these off-diagonal correlations
between the two fields are a consequence of coherence
induced by the indirect mixing through the interactions of
the field with the bath.

With the definition of the Keldysh center of mass field
variables Φa (3.32) and the relations (3.101)–(3.103), we
find that the equal time connected correlation function
(3.105) is given by

hϕaðtÞϕbðtÞic ¼ ⟪ΦaðtÞΦbðtÞ⟫ − ⟪ΦaðtÞ⟫⟪ΦbðtÞ⟫ :

ð3:107Þ

To obtain the population for each field (3.106) we now
introduce

C>
a ðk; t; t0Þ ¼ Trϕ−

a ðk⃗; tÞϕþ
a ð−k⃗; t0Þρð0Þ;

C<
a ðk; t; t0Þ ¼ Trϕ−

a ðk⃗; t0Þϕþ
a ð−k⃗; tÞρð0Þ; ð3:108Þ

and the populations of the wave vector k⃗ component of each
field ϕa (3.106) become

naðk; tÞ ¼
1

4ωaðkÞ
�
∂

∂t
∂

∂t0
þ ω2

aðkÞ
�

× ½C>
a ðk; t; t0Þ þ C<

a ðk; t; t0Þ�t¼t0 −
1

2
: ð3:109Þ

Using the definition (3.32) and the relations (3.103) it is
straightforward to show that this symmetrized product
yields

naðk; tÞ ¼
1

2ωaðkÞ
Trρð0Þ



Φ̇aðk⃗; tÞΦ̇að−k⃗; tÞ þ ω2

aðkÞΦaðk⃗; tÞΦað−k⃗; tÞ
�
−
1

2

¼ 1

2ωaðkÞ
�
⟪Φ̇aðk⃗; tÞΦ̇að−k⃗; tÞ⟫þ ω2

aðkÞ⟪Φaðk⃗; tÞΦað−k⃗; tÞ⟫
�
−
1

2
: ð3:110Þ

The corollary of this analysis is that we can obtain the
connected correlation functions and the populations of the
fields ϕ1;2 by obtaining the solutions of the Langevin
equation of motion (3.45) with initial conditions (3.47) and
taking the averages over the initial conditions and noise
described above.
Armed with the solution of the Langevin equations (3.55)

and (3.56), the above results, and the general form for
Green’s function (3.73), in terms of Green’s functions for
the quasinormal modes (3.74) and (3.75), we can now study
the expectation values, connected correlation functions
(3.107), and populations (3.110). The solutions (3.55)
and (3.56) along with the averages (3.46) yield for the
spatial Fourier transform of the fields

hϕaðk⃗; tÞi ¼ Ġabðk; tÞΦb;iðk⃗Þ þ Gabðk; tÞΠb;iðk⃗Þ: ð3:111Þ

Similarly, the connected correlation functions (3.107) are

hϕaðk⃗; tÞϕbð−k⃗; tÞic ¼ Φh
aðk⃗; tÞΦh

bð−k⃗; tÞ
−Φh

aðk⃗; tÞΦh
bð−k⃗; tÞ

þ ⟪Φξ
aðk⃗; tÞΦξ

bð−k⃗; tÞ⟫; ð3:112Þ

where Φh and Φξ are given by (3.56). These are general
results for expectation values and correlation functions,
from which we can obtain their time evolution.

D. Time evolution, thermalization,
and bath-induced coherence

Taken together, the results (3.111) and (3.112) inform
important aspects for the time evolution of expectation
values and correlation functions:

SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 109, 036038 (2024)

036038-22



(I) Even when initially only one of the fields, for example
ϕ1, features an expectation value, the off-diagonal compo-
nents of Green’s functions determined by the projector
operators P� in (3.74) and (3.75) induce a nonvanishing
expectation value for the other field, in this case ϕ2. This
phenomenon has been noticed in Ref. [18] in the case of
axion-pion mixing. In the LOY theory discussed in the
previous section, a similar feature emerges at the level of the
amplitudes of the single particle states jϕ1i and jϕ2i: for
example, if the initial amplitudes are C1ð0Þ ≠ 0; C2ð0Þ ¼ 0,
upon time evolution a nonvanishing amplitude C2ðtÞ is
induced as a consequence of mixing. The off-diagonal
components of Gab are a consequence of the off-diagonal
components of the self-energy matrix and a direct manifes-
tation of the couplings of the fields to correlated operators of
the bath degrees of freedom, namely “indirect” mixing.
(II) A similar phenomenon emerges for the connected

correlation function (3.112). Even if the fields ϕ1;2 are
initially uncorrelated, a nonvanishing correlation emerges
from the off-diagonal components of the noise correlation
function that determines the last term in (3.112). We refer to
the emergence of nonvanishing correlations as bath-
induced coherence, referring as coherence to the off-
diagonal connected correlation functions of the field in
agreement with the description of the time evolution of a
density matrix in two level systems [51].
(III) The off-diagonal components of the projectors P�

are perturbatively small OðΣÞ in the nondegenerate case,
whereas they are of Oð1Þ in the nearly degenerate case. In
turn, this implies that the induced expectation values and
coherence are perturbatively small in the nondegenerate
case, in agreement with the results in Ref. [18], but are of
Oð1Þ in the nearly degenerate case. This expectation is
confirmed by the analysis below.
The first two terms in (3.112) decay exponentially

because Green’s functions do, and depend explicitly on
the initial conditions. The last term is independent of the
initial conditions, it is completely determined by the noise
term induced by the bath degrees of freedom, and, as we
show below, it survives in the long time limit, hence
determining the approach to a stationary state.
We now focus on this last term, which upon using the

noise correlation function (3.46) and (3.49) is given by

⟪Φξ
aðtÞΦξ

bðtÞ⟫ ¼ 1

2

Z
∞

−∞

dk0
2π

�Z
t

0

Gacðk; τÞeik0τdτ
�

×

�Z
t

0

Gbdðk; τÞe−ik0τdτ
�
ρcdðk0Þ coth

×

�
βk0
2

�
: ð3:113Þ

Each of the G0s in this expression is a sum of Green’s
functions of each quasinormal mode given by Eqs. (3.73)–
(3.75); therefore, each G features four terms; and hence,

there are altogether 16 terms in (3.113). Because ρcd is of
second order in couplings, we will focus on the terms that
are of Oð1Þ in these couplings, and these arise from the
terms that feature small denominators of second order in the
couplings that compensate the numerator ρcd.
Each of the terms in G features exponentials of the form

e−ið�W−iΓ=2Þt where W stands for the real part of the
quasinormal mode frequencies, the� describes the positive
and negative frequency components, and Γ > 0 stands
generically for the decay rate of these modes. Therefore,
the time integral of such a typical term in the first bracket in
(3.113) yields

Z
t

0

eiðk0∓WþiΓ=2Þτdτ ¼ eiðk0∓WþiΓ=2Þt − 1

iðk0 ∓ W þ iΓ=2Þ ; ð3:114Þ

and for the second bracket there is a similar generic
contribution but with k0 → −k0. Obviously as t → ∞ these
contributions remain nonvanishing, confirming that the
noise contribution to the correlation functions and coher-
ences (off-diagonal) remain finite in the long time limit.
The k0 integral in (3.113) is dominated by the poles in the
complex k0 plane. To identify these, consider the product of
the positive frequency contribution for the first G with the
negative frequency contribution of the second G for the
same quasinormal mode, for example, that of frequency
ωþr. Such a term is proportional to the product

"
eiðk0−ωþrþi

Γþþ
2
Þt − 1

iðk0 − ωþr þ i Γ
þ
þ
2
Þ

#"
e−iðk0−ωþr−i

Γ−þ
2
Þt − 1

ð−iÞðk0 − ωþr − i Γ
−
þ
2
Þ

#

¼ 1þ e−ðΓ
þ
þþΓ−

þÞt=2 − e
i



k0−ωþrþi

Γþþ
2

�
t
− e

−i


k0−ωþr−i

Γ−þ
2

�
t


k0 − ωþr þ i Γ
þ
þ
2

�

k0 − ωþr − i Γ

−
þ
2

� ;

ð3:115Þ

and we refer to these as direct terms: there are two for
each quasinormal mode. These terms feature poles at

k0 ¼ ωþr � i Γ
þ
þ
2

yielding for the integral a contribution
proportional to

∝ 4 × 2πPþðωþrÞac
ρcdðωþrÞ
Γþ
þ þ Γ−þ

Pþð−ωþrÞbdð1þ 2nðωþrÞÞ

× ð1 − e−ðΓ
þ
þþΓ−

þÞt=2Þ; ð3:116Þ

where nðωÞ is the Bose-Einstein distribution function with
energy ω. In this expression we kept the leading order terms
and neglected wave function renormalization constants.
Furthermore, ρcdðωÞ and cothðωÞ are evaluated at ωþr,
namely the real part of the frequency of the quasinormal
mode, since Γ�þ are of second order in couplings. An
important aspect of this contribution is that it is of Oð1Þ,
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because ρ and Γ are both of second order in the couplings.
Now consider the positive (or negative) frequency contri-
butions of the same quasinormal modes in both brackets,
for example, for the positive frequency whose time inte-
grals yield a term proportional to2
64 eiðk0−ωþrþi

Γþþ
2
Þt − 1

i


k0 − ωþr þ i Γ

þ
þ
2

�
3
75
2
64 e−iðk0þωþr−i

Γþþ
2
Þt − 1

ð−iÞ


k0 þ ωþr − i Γ

þ
þ
2

�
3
75

¼ 1þ e−2iωþrte−
Γþþ
2
t − eiðk0−ωþrþi

Γþþ
2
Þt − e−iðk0þωþr−i

Γþþ
2
Þt


k0 − ωþr þ i Γ
þ
þ
2

�

k0 þ ωþr − i Γ

þ
þ
2

� ;

ð3:117Þ
and the negative frequency contribution is obtained by
ωþr → −ωþr. We refer to these as indirect terms. These

feature complex poles at k0 ¼ �ðωþr − i Γ
þ
þ
2
Þ, yielding

terms proportional to

PþðωþrÞac
ρcdð�ωþrÞ

2ωþr
PþðωþrÞbdð1 − e�2iωþre−Γ

þ
þtÞ

× ð1þ 2nðωþrÞÞ ≪ 1; ð3:118Þ

where we have used that in the narrow width approximation
ωþr ≫ Γþ

þ. These indirect terms are of second order in the
couplings and therefore are subleading with respect to the
direct terms.
Finally, consider the contribution of a positive frequency

of one quasinormal mode in one bracket and a negative
frequency of the other mode in the other bracket. We
refer to these as interference terms. For example, consider
the positive frequency mode ωþr in the first bracket in
(3.113), and the negative frequency mode −ω−r in the
second bracket, where the time integrals yield a term
proportional to

"
eiðk0−ωþrþi

Γþþ
2
Þt − 1

iðk0 − ωþr þ i Γ
þ
þ
2
Þ

#"
e−iðk0−ω−r−i

Γ−−
2
Þt − 1

ð−iÞðk0 − ω−r − i Γ
−
−
2
Þ

#
: ð3:119Þ

A similar analysis as for the previous terms yields the
following leading order contribution to the correlation
function:

PþðωÞac
ρcdðω̄Þ

½ωþr − ω−r − i
2
ðΓþ

þ þ Γ−
−Þ�

× P−ð−ω̄Þbd½1 − eiðωþr−ω−rÞte−
1
2
ðΓþ

þþΓ−
−Þt�ð1þ 2nðω̄ÞÞ:

ð3:120Þ
These interference terms exhibit the quantum beats, an
interference phenomenon associated with the difference in
the (quasi)normal mode frequencies, similar to that in the
expression (2.112).

These results are general and highlight the perturbative
and nonperturbative contributions to the correlation func-
tions in the long time limit. Before we discuss the non-
degenerate and nearly degenerate cases, it is convenient to
compare the results above to the case of the equal time
correlation functions of a free field theory in thermal
equilibrium, which is given by

hΦaðk⃗; tÞΦbð−k⃗; tÞi ¼
δab

2ωaðkÞ
ð1þ 2nðωaÞÞ; ð3:121Þ

where we assumed uncorrelated fields, and the brackets
stand for statistical averages in a thermal ensemble of
uncorrelated fields.
It is then clear that the long time limits (3.116), (3.118),

and (3.120) all feature exponential relaxation to a ther-
malized stationary statewith the asymptotic long time limit
featuring the thermal factors 1þ 2nðωÞ in terms of the real
parts of the frequencies of the quasinormal modes (the
imaginary parts yield subleading contributions). This is one
of the important results of this study.
Furthermore, all feature off-diagonal terms which we

identify as coherence because of the similarity with two
level systems [51], as discussed above. We refer to this
phenomenon as bath-induced coherence because even if the
fields are initially uncorrelated, their interactionwith the bath
induces off-diagonal terms that survive in the long time limit.
Interference terms between the two different quasinormal
modes leads to the approach to the stationary thermal state
with quantum beats. Thermalization, the emergence of off-
diagonal coherence in the long time limit, and quantum beats
from interference between the two different quasinormal
modes are some of themain results of this study. In Sec. II we
highlighted that in the LOY theory, quantum beats emerged
in the time evolution of the total population (2.109) and by
unitarity in the amplitudes of intermediate states or decay
products [see Eq. (2.110)]. In the effective field theory these
interference terms are explicit in the approach to the sta-
tionary thermal state of the correlation functions of the fields,
both the diagonal and off-diagonal (coherence) components
displaying the quantum beats.

1. Nondegenerate case

In the nondegenerate case, with ωþr−ω−r≃ω1−ω2≫Γ
the direct terms (3.116) are the leading ones. As shown
by Eqs. (3.90) and (3.91) with (3.81) and (3.82), in the
nondegenerate case the off-diagonal components of the
projection operators are of Oðg2Þ. Therefore, in this case,
the correlation functions exhibit thermalization albeit with
a perturbatively small coherence. Furthermore, because
the interference terms are perturbatively small since
ρ=ðω1 − ω2Þ ∝ Σ ∝ g2, the quantum beats in the approach
to thermalization feature small amplitudes. This is in
agreement with the results obtained in Ref. [18] for the
case of (ultralight) axion-pion mixing.
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2. Nearly degenerate case

In the nearly degenerate case with ωþr − ω−r ≲ Γ both
the direct (3.116) and the interference terms (3.120) are
of Oð1Þ, and all the matrix elements of the projector
operators are also of Oð1Þ. In this case the amplitude of
the quantum beats is large, enhanced by the near
resonance, and the timescale of these interference effects
is similar to the relaxation timescale. In this case the off-
diagonal correlations, namely the coherence, become
large, amplified by the (near) resonant denominators,
and could potentially be observable. This situation is akin
to the case of K0 − K̄ð0Þ mixing where the decay products
exhibit quantum beats on the timescales comparable to
the lifetime. This is clearly the same physical process as
described by the LOY theory described in Sec. II.
However, in the effective field theory approach the
quantum beats are explicit in the correlation functions
of the mixing fields in both the diagonal and the off-
diagonal components, and in the approach to the thermal
stationary state.
This large amplitude interference effect may open a

window toward observation of synthetic-cosmological
axion mixing via their (anomalous) coupling to photons
with a Chern-Simons term. This pathway is being explored
as a possible mechanism to harness synthetic axion
quasiparticles in condensed matter systems to probe the
cosmological axion [54].

E. Relation to the LOY formulation of mixing

The results of the effective field theory bear a similarity
with those obtained from the LOYtheory in Sec. II, but also
have noteworthy differences. We seek to establish a more
direct correspondence between both formulations enlight-
ening the reason for the similarities and the origin of the
differences.
The main ingredient to obtain the time evolution of

expectation values and correlation functions is Green’s
function (3.67), which is completely determined by the
solutions of the Langevin equation (3.45) for the homo-
geneous case ξa ≡ 0, namely

Φ̈aðk⃗; tÞ þ ω2
aðkÞΦaðk⃗; tÞ

þ
Z

t

0

Σabðk⃗; t − t0ÞΦbðk⃗; t0Þdt0 ¼ 0: ð3:122Þ

In the absence of the self-energy, the solutions are the usual
free field positive and negative frequency components with
constant amplitudes. Since the self-energy is ∝ g2 (with g a
generic coupling), we write

Φaðk⃗; tÞ≡ Caðk⃗; tÞe−iωaðkÞt þ C�aðk⃗; tÞeiωaðkÞt; ð3:123Þ

where the amplitudes Caðk⃗; tÞ; C�aðk⃗; tÞ are slowly varying,
namely Ċa; Ċ

�
a ∝ Σ ∝ g2. The equations of motion (3.122)

become

e−iωaðkÞt
�
C̈aðk⃗; tÞ − 2iωaðkÞĊaðk⃗; tÞ þ e−iðωbðkÞ−ωaðkÞÞt

Z
t

0

Σabðk⃗; t − t0ÞeiωbðkÞðt−t0ÞCbðk⃗; t0Þdt0
�

þ eiωaðkÞt
�
C̈�aðk⃗; tÞ þ 2iωaðkÞĊ�aðk⃗; tÞ þ eiðωbðkÞ−ωaðkÞÞt

Z
t

0

Σabðk⃗; t − t0Þe−iωbðkÞðt−t0ÞC�bðk⃗; t0Þdt0
�
¼ 0; ð3:124Þ

where in the last terms the sum over b is implicit. Because the terms inside the brackets are slowly varying and of Oðg2Þ,
each bracket must vanish independently, yielding

C̈aðk⃗; tÞ − 2iωaðkÞĊaðk⃗; tÞ þ e−iðωbðkÞ−ωaðkÞtÞ
Z

t

0

Σabðk⃗; t − t0ÞeiωbðkÞðt−t0ÞCbðk⃗; t0Þdt0 ¼ 0; ð3:125Þ

and the equation for C� is obtained from (3.125) by replacing ωa;b → −ωa;b. Let us neglect C̈ in (3.125) for a moment; we
will show below that it is subleading in the long time limit. We introduce

Wab½t; t0� ¼
i

2ωaðkÞ
Z

t0

0

Σabðk⃗; t − t00ÞeiωbðkÞðt−t00Þdt00; Wab½t; 0� ¼ 0; ð3:126Þ

in terms of which (3.125) becomes

Ċaðk⃗; tÞ ¼ −e−iðωbðkÞ−ωaðkÞÞt
Z

t

0

�
d
dt0

Wab½t; t0�
�
Cbðk⃗; t0Þdt0: ð3:127Þ

Upon integration by parts and the use of the initial condition in (3.126), the integral becomes

Z
t

0

�
d
dt0

Wab½t; t0�
�
Cbðk⃗; t0Þdt0 ¼ Wab½t; t�Cbðk⃗; tÞ −

Z
t

0

Wab½t; t0�Þ
�

d
dt0

Cbðk⃗; t0Þ
�
dt0; ð3:128Þ
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becauseW ∝ g2 and Ċ ∝ Σ ∝ g2 the second term in Eq. (3.128) is ofOðg4Þ and will be neglected to leading order, yielding

Ċ1ðk⃗; tÞ ¼ −fW11½t; t�C1ðk⃗; tÞ þ eiðω1ðkÞ−ω2ðkÞÞtW12½t; t�C2ðk⃗; tÞg; ð3:129Þ

Ċ2ðk⃗; tÞ ¼ −feiðω2ðkÞ−ω1ðkÞÞtW21½t; t�C1ðk⃗; tÞ þW22½t; t�C2ðk⃗; tÞg; ð3:130Þ

where

Wab½t; t� ¼
Z

t

0

Z
∞

−∞

dk0
ð2πÞ

ρabðk0; kÞ
2ωaðkÞ

eiðωbðkÞ−k0Þðt−t0Þdt0: ð3:131Þ

Comparing the amplitude equations for the positive frequency components (3.129) and (3.130) with the amplitude
equations in the LOY formulation, Eqs. (2.70) and (2.71) withWab½t; t� given by Eq. (2.74), we see that they are exactly the
same with the identifications

Wab½t; t�≡Wab½t; t�; μabðk0Þ≡ ρabðk0; kÞ
4πωaðkÞ

; E1;2 ≡ ω1;2ðkÞ: ð3:132Þ

Furthermore, this analysis clarifies that the amplitudes C�a for the negative frequency components are also present in the
effective field theory framework, but not in the LOY theory.
Invoking the long time limit

Z
t

0

eiðωbðkÞ−k0Þðt−t0Þdt0 !
t→∞

i

�
P
�

1

ðωbðkÞ − k0Þ
�
− iπδðωbðkÞ − k0Þ

�
ð3:133Þ

yields

−iWab½t; t� → ΔabðωbðkÞÞ; ð3:134Þ

where ΔabðωÞ is given by Eq. (2.39) with the identification
(3.132). Since in the long time limit Wab½t; t� →
ΔabðωbðkÞÞ, it follows from the amplitude equations (2.70)
and (2.71) that C̈a ∝ g4 and can be consistently neglected,
thus justifying neglecting C̈ in Eq. (3.125). The equations for
the amplitudes (3.129) and (3.130) become exactly the same
as the set of equations (2.70) and (2.71) in the LOY theory;
therefore, the positive frequency components of Green’s
function Gabðk; tÞ, Eq. (3.73), is equivalent to the bracket in
Eq. (2.44), explaining the similar projector operators. How-
ever, full Green’s function (3.73) includes the negative
frequency components, because (3.73) describes the time
evolution of fields rather than single particle amplitudes.
The solutions of the Langevin equation that determine

the expectation values and correlation functions in the
effective field theory, namely (3.55), feature two terms.
The homogeneous term [Φh

aðk⃗; tÞ] in (3.56) depends on the
initial conditions and corresponds to the solution (2.44) in
the LOY theory, which also depends on the initial con-
ditions. However, the inhomogeneous term [Φξ

aðk⃗; tÞ] in
(3.56) is independent of initial conditions and is determined
by the noise. It is this inhomogeneous term that determines
the asymptotic behavior of the correlation functions and
exhibits the approach to a thermal stationary state in the

long time limit, while the homogeneous term decays
exponentially at long time, in the same manner as the
amplitudes in the LOY theory. This is one of the major
differences between the effective field theory and LOY
theory of mixing.
This analysis highlights the similarities and differences

between the LOY theory and the effective field theory, the
differences are noteworthy: (i) the effective field theory
describes the evolution of fields, including both positive
and negative frequency components of the quasinormal
modes. (ii) The effective field theory description yields the
correlation functions, describes the approach to a thermal
steady state, as well as the emergence and long time
survival of coherence, aspects that are not captured by
the LOY theory. Another important difference is that in the
effective field theory, the quantum beats are manifest
in the approach to thermalization of the correlation function
as a consequence interference of quasinormal modes, in
both the diagonal (populations) and the off-diagonal
(coherence) components of the correlation functions.
(iii) Since the LOY method describes the evolution of
the amplitudes of pure, single particle states, it cannot
describe correlation functions.

IV. SUMMARY OF RESULTS AND CONCLUSIONS

A. Summary of results

We generalized the seminal theory of particle mixing
pioneered by Lee, Oehme, and Yang to study CP violation
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in K0 − K0 mixing. This theory is the cornerstone of all
analysis of CP violation in flavored meson mixing in terms
of an effective non-Hermitian Hamiltonian.
We extend this theory in two ways: (i) to include the

cases in which the mixing degrees of freedom are not mass
degenerate in the absence of perturbations, thereby relaxing
the assumption of CPT invariance, and (ii) to treat the time
evolution without resorting to the approximation of a time
independent non-Hermitian effective Hamiltonian, and
discuss the caveats resulting from this approximation,
which become more important in the nondegenerate case.
The LOY theory is only valid for pure single (or few)
particle states and does not directly allow one to obtain
correlation functions of the mixing fields, nor the time
evolution of multiparticle states, such as coherent states,
or statistical ensembles. However, its generalization and
extension provide a useful guide to and benchmark for
the effective field theory which we introduce to describe
indirect particle mixing as a consequence of their coupling
to a common set of intermediate states or decay channels
populated in a medium.
The effective action determines the time evolution of the

reduced density matrix after tracing over the degrees of
freedom in the medium described as a bath in thermal
equilibrium. Therefore, it describes the dynamics of field
mixing as a quantum open system. Indirect mixing is a
result of nonvanishing correlations of the operators that
couple the mixing partners to the intermediate states in the
medium, and is manifest in off-diagonal components of the
self-energy. The dynamics of field mixing is determined by
a Langevin-like equation of motion with a dissipative self-
energy kernel and stochastic noise obeying a generalized
fluctuation dissipation relation. The solution of the equa-
tions of motion determines the dynamics of expectation
values and correlation functions in terms of a superposition
of quasinormal modes in the medium. The off-diagonal
elements of the self-energy and noise kernels lead to
indirect mixing and the emergence of long-lived coherence,
namely off-diagonal components of the two point correla-
tion functions, even when initially the mixing fields are
uncorrelated. We refer to this phenomenon as bath-induced
coherence. We analyze in detail the cases in which the
masses of the mixing particles are widely different, namely
the nondegenerate case, and when they are nearly degen-
erate, which may describe small violations of CPT. In both
cases even if one of the fields features an initial expectation
value and the other does not, the latter develops an
expectation value as a consequence of indirect mixing.
We find the remarkable result that the equal time two point
correlation functions of the fields approach a thermal
stationary state and feature quantum beats as a conse-
quence of the interference of the quasinormal modes. In the
nondegenerate case these interference effects feature per-
turbatively small amplitudes; however, in the nondegener-
ate case the amplitude of the quantum beats is resonantly

enhanced and nonperturbative. These interference effects
may provide an observational avenue to probe cosmologi-
cal axions in condensed matter systems.
We establish a direct relation between the effective field

theory and the LOY theory of mixing, and highlight
important differences, in particular that the effective field
theory describes emergent, bath-induced long-lived coher-
ence independent of the initial conditions that approach
asymptotically a stationary thermal state.

B. Conclusions

Indirect field mixing as a consequence of common
intermediate states or decay channels is of great importance
in particle physics, cosmology, and possibly condensed
matter physics. In particle physics indirect field mixing is at
the heart of flavor meson mixing and CP violation in the
standard model. Beyond the standard model it may be a
consequence of intermediate messengers connecting stan-
dard model particles to degrees of freedom beyond through
portals. In cosmology various axionlike particles may mix
through common decay channels into photons and/or
gluons, and in condensed matter synthetic axions, emergent
quasiparticles in materials that feature parity breaking,
such as topological insulators and Weyl semimetals, may
hybridize (mix) with cosmological axions, thereby offering
a way to probe the latter by exciting the former. Thus, the
interdisciplinary relevance of field mixing motivates the
study in this article. An important result of this study is that
the equal time correlation functions feature quantum beats,
as a consequence of interference of the quasinormal modes
in the medium.
As demonstrated within the LOY theory, quantum beats

are also manifest in the time evolution of the decay
products, which may provide an observational signature
of field mixing. This could be of particular relevance in the
case of axion mixing.
The phenomena revealed by this study, such as bath-

induced emergent coherence, induced condensates, and
quantum beats, are all qualitatively general independent of
the particular couplings or degrees of freedom in the
medium. However, the quantitative form of the quasinor-
mal modes, the projection operators, and the amplitudes of
the quantum beats clearly will depend on the particular
models and the parameters that define them.
Although we focused on field mixing in the case of

bosonic fields, the general approach is also suitable to study
indirect mixing for fermionic or gauge degrees of freedom.
In the case of fermions the derivation of the effective field
theory would require the extension of the current study to
Grassman fields. One possible avenue would be to study
neutrino mixing in the mass basis, where the weak
interaction vertices feature flavor off-diagonal terms after
diagonalizing a mass matrix in the free part of the
Lagrangian. An effective field theory description of indirect
mixing (of the mass eigenstates) in a medium in which
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vector bosons and charged leptons are in thermal equilib-
rium may be a suitable application of the concepts
developed in this study that may be worthwhile to study
further. The effective field theory approach may comple-
ment the study of neutrinos [37] and axions in a medium
including condensates [38] with kinetic or Boltzman
equations and allow one to obtain off-diagonal correlation
functions, namely coherences, not just populations. We
expect many features of the results found in this study to be
common to other field-mixing scenarios; for example, we
conjecture that the emergence of the long-lived coherence
(off-diagonal correlation functions) approach to thermal-
ization and quantum beats, as a result of the interference
between (quasi)normal modes in the medium, is a robust
consequence of field mixing that may yield to novel
phenomena, and plausible observational consequences,
worthy of further exploration.
Among further questions that remain to be addressed in

future studies are the issues of renormalizability; in particu-
lar, if the off-diagonal matrix elements of the self-energy
feature divergences, renormalizing themmay necessitate off-
diagonal counterterms in the bare Lagrangian. This would
call for direct mixing terms (such as an off-diagonal mass
matrix) to be included in the bare Lagrangian. These aspects
must be studied on a model dependent basis, since the
renormalization aspects are directly related to the type of
operators Oa½χ�. Furthermore, we have assumed that
hO½χ�i ¼ 0; however, a nonvanishing expectation value of
this operator in the medium would require introducing
tadpole terms that may lead to condensates of the fields
ϕa. All of these questions, while interesting in their own
right, remain for further study.
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APPENDIX A: SINGLE SPECIES

In this appendix we gather the results of the Weisskopf-
Wigner approximation in the simpler case of one species to
highlight the main aspects associated with the fulfillment of
unitarity and the differences between the exact results via
Laplace transform and the Markov approximation. For a
single species ϕ we have

ĊϕðtÞ ¼ −i
X
κ

hϕjHIðtÞjκiCκðtÞ; ðA1Þ

ĊκðtÞ ¼ −iCϕðtÞhκjHIðtÞjϕi; ðA2Þ
where the sum over κ is over all the intermediate states
coupled to jϕi via HI .

Consider the initial value problem in which at time t ¼ 0
the state of the system jΨðt ¼ 0Þi ¼ jϕi, i.e.,

Cϕð0Þ ¼ 1; Cκð0Þ ¼ 0: ðA3Þ

We can solve Eq. (A2) and then use the solution in Eq. (A1)
to find

CκðtÞ ¼ −i
Z

t

0

hκjHIðt0ÞjϕiCϕðt0Þdt0; ðA4Þ

ĊϕðtÞ ¼ −
Z

t

0

σðt − t0ÞCϕðt0Þdt0; ðA5Þ

where

σðt − t0Þ ¼
X
κ

jhϕjHIjκij2eiðEϕ−EκÞðt−t0Þ

≡
Z

∞

−∞
μðk0Þe−iðk0−EϕÞðt−t0Þdk0; ðA6Þ

and we introduced the spectral density

μðk0Þ ¼
X
κ

jhϕjHIjκij2δðk0 − EκÞ: ðA7Þ

Inserting the solution for CϕðtÞ into Eq. (A4) one obtains
the time evolution of amplitudes CκðtÞ from which we can
compute jCκðtÞj2, namely the time dependent probability to
populate the state jκi.
The set of equations (A1) and (A2), together with the

Hermiticity of the interaction Hamiltonian HI , yields

d
dt

�
jCϕðtÞj2 þ

X
κ

jCκðtÞj2
�
¼ 0; ðA8Þ

which along with the initial conditions (A3) leads to the
unitarity relation�

jCϕðtÞj2 þ
X
κ

jCκðtÞj2
�
¼ 1: ðA9Þ

1. Exact solution of Eq. (A5)

The integro-differential equation (A5) for CϕðtÞ can be
solved by Laplace transform. Introducing the Laplace
variable s and the Laplace transform of CϕðtÞ as CϕðsÞ,
with the initial condition Cϕðt ¼ 0Þ ¼ 1, we find

CϕðsÞ ¼
�
sþ

Z
∞

−∞
dk0

μðk0Þ
sþ iðk00 − EϕÞ

�
−1

ðA10Þ

with solution

CϕðtÞ ¼
Z

i∞þϵ

−i∞þϵ

ds
2πi

CϕðsÞest; ðA11Þ
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where ϵ → 0þ determines the Bromwich contour in the
complex s plane parallel to the imaginary axis to the right
of all the singularities. Writing s ¼ ið−ω − iϵÞ we find

CϕðtÞ ¼ −
Z

∞

−∞

dω
2πi

e−iωth
ω −

R∞
−∞ dω0 μðk0Þ

Eϕþω−k0þiϵ þ iϵ
i : ðA12Þ

The integral is carried out by closing the contour in the
lower half ω plane. In the free case where μðk0Þ ¼ 0, the
pole is located at ω ¼ −iϵ → 0, leading to a constantCϕ. In
perturbation theory there is a complex pole very near ω ¼ 0
that can be obtained directly by expanding the integral in
the denominator near ω ¼ 0. We find

Z
∞

−∞
dk00

μðk0Þ
Eϕ þ ω − k0 þ iϵ

≃ ΔEϕ − zϕω − i
Γϕ

2
; ðA13Þ

where

ΔEϕ ¼ P
Z

∞

−∞
dω0 μðk0Þ

ðEϕ − k0Þ
; ðA14Þ

Γϕ ¼ 2πμðEϕÞ; ðA15Þ

zϕ ¼ P
Z

∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ2

; ðA16Þ

and P stands for the principal part. The term ΔEϕ is
recognized as the energy shift while Γϕ is seen to be the
decay rate as found from Fermi’s golden rule. The long time
limit of CϕðtÞ is determined by this complex pole near the
origin leading to the asymptotic behavior to leading order
in the coupling

CϕðtÞ ≃ Zϕe−iΔEϕte−
Γϕ
2
t; ðA17Þ

where

Zϕ ¼ 1

1þ zϕ
≃ 1 − zϕ ¼ ∂

∂Eϕ
½Eϕ þ ΔEϕ� ðA18Þ

is the wave function renormalization constant.

2. Markov approximation

The time evolution of CϕðtÞ determined by Eq. (A5) is
slow in the sense that the timescale is determined by a weak
coupling kernel σ ∝ H2

I . This suggests to use a Markovian
approximation in terms of a consistent expansion in
derivatives of Cϕ. For this purpose, let us define

Wðt; t0Þ ¼
Z

t0

0

σðt − t00Þdt00 ðA19Þ

so that

σðt − t0Þ ¼ d
dt0

Wðt; t0Þ; Wðt; 0Þ ¼ 0: ðA20Þ

Integrating by parts in Eq. (A5) we obtainZ
t

0

σðt − t0ÞCϕðt0Þdt0 ¼ Wðt; tÞCϕðtÞ

−
Z

t

0

Wðt; t0Þ d
dt0

Cϕðt0Þdt0: ðA21Þ

The second term on the right-hand side is formally of fourth
order in HI because Wðt; t0Þ ≃H2

I and ĊϕðtÞ ≃H2
I ; there-

fore, it can be neglected to leading order OðH2
I Þ. Up to

leading order in this Markovian approximation Eq. (A5)
becomes

ĊϕðtÞ þW0ðt; tÞCϕðtÞ ¼ 0; ðA22Þ

with the solution

CϕðtÞ ¼ e−i
R

t

0
Eðt0Þdt0 ; EðtÞ ¼ −iWðt; tÞ: ðA23Þ

Note that in general EðtÞ is complex. To leading order inH2
I

we find

EðtÞ ¼ −i
Z

t

0

σðt − t0Þdt0

¼
Z

∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ

½1 − e−iðk0−EϕÞt� ðA24Þ

so that

Z
t

0

Eðt0Þdt0 ¼ t
Z

∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ

�
1−

sinðk0 −EϕÞt
ðk0 −EϕÞt

�

− i
Z

∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ2

½1− cos½ðk0 −EϕÞt��:

ðA25Þ

Asymptotically as t → ∞, these integrals approach

Z
∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ

�
1 −

sinðk0 − EϕÞt
ðk0 − EϕÞt

�

⟶
t→∞

P
Z

∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ

; ðA26Þ

Z
∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ2

½1 − cos½ðk0 − EϕÞt��

⟶
t→∞

πtμðEϕÞ þ P
Z

∞

−∞
dk0

μðk0Þ
ðEϕ − k0Þ2

: ðA27Þ
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Using these results we find that in the long time limit

−i
Z

t

0

Eðt0Þdt0 → −iΔEϕt −
Γϕ

2
t − zϕ; ðA28Þ

where ΔEϕ;Γϕ; zϕ are given by Eqs. (A14)–(A16) and
(A18). From this we read off

CϕðtÞ ¼ Zϕe−iΔEϕte−
Γϕ
2
t; ðA29Þ

where we approximated e−zϕ ≃ 1 − zϕ ¼ Zϕ up to second
order in perturbation theory. This is in complete agreement
with the asymptotic result from the exact solution
Eq. (A17) obtained via the Laplace transform.

3. Taking the long time limit before integration

We now compare the results obtained above with those
obtained with yet another approximation: taking the long
time limit in Wðt; tÞ in (A22) before integrating this
evolution equation:

Wðt; tÞ⟶
t→∞

Z
∞

−∞
μðk0Þ

Z
∞

0

e−iðk0−EϕÞτdτdk0

¼ i

�Z
∞

−∞
P

μðk0Þ
ðEϕ − k0Þ

dk0 − iπμðEϕÞ
�
; ðA30Þ

therefore, under this approximation the solution of (A22) is

CϕðtÞ ¼ e−iΔEϕte−
Γϕ
2
t: ðA31Þ

Obviously, the main difference with the solutions (A17)
and (A22) is the lack of wave function renormalization in
(A31). Therefore, we conclude that the Markov approxi-
mation leading to (A22) reproduces the exact result
obtained from Laplace transform; however, the further
approximation of replacingWðt; tÞ by its infinite time limit
(A30) in the Markovian equation (A22) misses the wave
function renormalization.

4. Unitarity

Because of the exponential decay of the amplitude of the
initial state, the unitarity condition (A9) entails that in the
long time limit X

κ

jCκð∞Þj2 ¼ 1: ðA32Þ

We now address how this constraint is fulfilled. The
coefficients CκðtÞ are given by Eq. (A4).

Introducing the leading order result (A31) [since
Zϕ ¼ 1þOðH2

I Þ] into Eq. (A4) for the coefficients Cκ,
we find to leading order

jCκð∞Þj2 ¼ jhκjHIjϕij2h
ðER

ϕ − EκÞ2 þ Γ2
ϕ

4

i ; ER
ϕ ¼ Eϕ þ ΔEϕ:

ðA33Þ
This expression can be interpreted as follows. If jϕi is an
unstable state, the states jκi with Eκ ∼ ER

ϕ, i.e., those nearly
resonant with the state jϕi, are “populated” with an
amplitude ∝ 1=Γϕ within a band of width Γϕ centered at
ER
ϕ. Furthermore,

X
κ

jCκð∞Þj2 ¼
Z

∞

−∞

μðk0Þh
ðER

ϕ − k0Þ2 þ Γ2
ϕ

4

i dk0 ≃ 1; ðA34Þ

where we have written

1h
ðER

ϕ − k0Þ2 þ Γ2
ϕ

4

i ¼ 1

Γϕ

Γϕh
ðER

ϕ − k0Þ2 þ Γ2
ϕ

4

i ; ðA35Þ

and in the narrow width limit Γϕ → 0 we replace

Γϕh
ðER

ϕ − k0Þ2 þ Γ2
ϕ

4

i → 2πδðER
ϕ − k0Þ ðA36Þ

and used the result (A15) to obtain (A34). Unitarity entails
a probability flow from the initial toward the final excited
states.

APPENDIX B: LEHMANN REPRESENTATION
OF CORRELATION FUNCTIONS

The correlation functions G>
abðx − yÞ;G<

abðx − yÞ can be
written in an exact Lehmann (spectral) representation that is
useful to include in the equations of motion:

G>
abðx − yÞ ¼ 1

Zχ
Tre−βHχOaðxÞObðyÞ; ðB1Þ

G<
abðx − yÞ ¼ 1

Zχ
Tre−βHχObðyÞOaðxÞ; ðB2Þ

where Zχ ¼ Tre−βHχ and Oaðx⃗; tÞ ¼ eiHχ te−iP⃗·x⃗Oað0Þ×
eiP⃗·x⃗e−iHχ t. In terms of a complete set of simultaneous
eigenstates of Hχ ; P⃗, namely ðHχ ; P⃗Þjni ¼ ðEn; P⃗nÞjni,
and by inserting the identity in this basis, we find

G>
abðx1 − x2Þ ¼

1

Zχ

X
n;m

e−βEneiðEn−EmÞðt1−t2Þe−iðP⃗n−P⃗mÞ·ðx⃗1−x⃗2ÞhnjOað0ÞjmihmjObð0Þjni; ðB3Þ
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G<
abðx1 − x2Þ ¼

1

Zχ

X
n;m

e−βEne−iðEn−EmÞðt1−t2ÞeiðP⃗n−P⃗mÞ·ðx⃗1−x⃗2ÞhnjObð0ÞjmihmjOað0Þjni: ðB4Þ

These representations may be written in terms of spectral densities, by introducing

ρ>abðk0; k⃗Þ ¼
ð2πÞ4
Zχ

X
n;m

e−βEnhnjOað0ÞjmihmjObð0Þjniδðk0 − ðEm − EnÞÞδ3ðk⃗ − ðP⃗m − P⃗nÞÞ; ðB5Þ

ρ<abðk0; k⃗Þ ¼
ð2πÞ4
Zχ

X
n;m

e−βEnhnjObð0ÞjmihmjOað0Þjniδðk0 − ðEn − EmÞÞδ3ðk⃗ − ðP⃗n − P⃗mÞÞ; ðB6Þ

in terms of which

G>
abðx1 − x2Þ ¼

Z
d4k
ð2πÞ4 ρ

>
abðk0; k⃗Þe−ik0ðt1−t2Þeik⃗·ðx⃗1−x⃗2Þ; ðB7Þ

G<
abðx1 − x2Þ ¼

Z
d4k
ð2πÞ4 ρ

<
abðk0; k⃗Þe−ik0ðt1−t2Þeik⃗·ðx⃗1−x⃗2Þ: ðB8Þ

Relabeling n ↔ m and using the k0 delta function in (B6), we find the generalized Kubo-Martin-Schwinger condition [55]

ρ<abðk0; k⃗Þ ¼ e−βk0ρ>abðk0; k⃗Þ: ðB9Þ

Introducing the spectral density

ρabðk0; k⃗Þ ¼ ρ>abðk0; k⃗Þ − ρ<abðk0; k⃗Þ ¼ ρ>abðk0; k⃗Þð1 − e−βk0Þ; ðB10Þ

it follows that

ρ>abðk0; k⃗Þ ¼ ð1þ nðk0ÞÞρabðk0; k⃗Þ; ρ<abðk0; k⃗Þ ¼ nðk0Þρabðk0; k⃗Þ; ðB11Þ
where

nðk0Þ ¼
1

eβk0 − 1
: ðB12Þ

Therefore, the spatial Fourier transform of the self-energy matrix (3.37) and the noise kernel (3.36) can be written as

Σabðk; t − t0Þ ¼ −i
Z

dk0
ð2πÞ ρabðk0; kÞe

−ik0ðt−t0Þ; ðB13Þ

N abðk; t − t0Þ ¼ 1

2

Z
dk0
ð2πÞ ρabðk0; kÞ coth

�
βk0
2

�
e−ik0ðt−t0Þ: ðB14Þ

This is the general relation between the self-energy and the noise correlation function commonly determined by the spectral
density ρabðk0; kÞ, a direct consequence of the fluctuation-dissipation relation as a result of the bath being in thermal
equilibrium.

Assuming rotational invariance implies that ρabðk0; k⃗Þ ¼ ρabðk0; kÞ, in particular the diagonal matrix elements of the
spectral density

ρaaðk0; kÞ ¼
ð2πÞ4
Zχ

X
n;m

e−βEn jhnjOað0Þjmij2½δðk0 − ðEm − EnÞÞ − δðk0 − ðEn − EmÞÞ�δ3ðk⃗ − ðP⃗m − P⃗nÞÞ

¼ −ρaað−k0; kÞ; no sum over a: ðB15Þ
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The assumption of rotational invariance also applies to
correlation functions of pseudoscalar operators (relevant
for axions) in a thermal equilibrium density matrix that is
invariant under rotations because these are bilinear in the
operators and, hence, are invariant under k⃗ → −k⃗.
We note that because the operators Oa are Hermitian, it

follows that ðρ≷abðk0; kÞÞ� ¼ ρ≷baðk0; kÞ and, consequently,
ρ�abðk0; kÞ ¼ ρbaðk0; kÞ.

APPENDIX C: LAPLACE GREEN’S FUNCTION

Consider the matrix

M ¼
�
M11 M12

M21 M22

�
; ðC1Þ

whose (right and left) inverse is

M−1 ¼ 1

det½M�
�

M22 −M12

−M21 M11

�
: ðC2Þ

In terms of the variables (2.31)–(2.33) it follows that

M ¼
�
M̄ þ D

2
α D

2
β

D
2
γ M̄ − D

2
α

�
;

det½M� ¼
�
M̄ −

D
2

��
M̄ þD

2

�
; ðC3Þ

where we used the relation (2.34).

Therefore, the inverse of the matrix (C1) is given by

M−1 ¼ 1

det½M�
�
M̄1 −

D
2

�
α β

γ −α

��
: ðC4Þ

Writing

M̄ ¼ 1

2

�
M̄ þD

2

�
þ 1

2

�
M̄ −

D
2

�
;

D ¼
�
M̄ þD

2

��
M̄ −

D
2

��
1

M̄ − D
2

−
1

M̄ þ D
2

�

yields

M−1 ¼ P−

M̄ − D
2

þ Pþ
M̄ þ D

2

; P� ¼ 1

2
ð1� RÞ; ðC5Þ

with

R ¼
�
α β

γ −α

�
; R2 ¼ 1; ðC6Þ

where the last equality follows from the identity (2.34).
Therefore, the matrices P� are projectors, namely

P2
� ¼ P�; ðC7Þ

hence, their eigenvalues are 0,1.
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