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We develop an improved method to explore the Ξc − Ξ0
c mixing, which arises from the flavor SU(3) and

heavy quark symmetry breaking. In this method, the flavor eigenstates under the SU(3) symmetry are at
first constructed, and the corresponding masses can be nonperturbatively determined. Matrix elements of
the mass operators, which break the flavor SU(3) symmetry sandwiched by the flavor eigenstates, are then
calculated. Diagonalizing the corresponding matrix of Hamiltonian gives the mass eigenstates of the full
Hamiltonian and determines the mixing. Following the previous lattice QCD calculation of Ξc and Ξ0

c, and
estimating an off diagonal matrix element, we extract the mixing angle between the Ξc and Ξ0

c. Preliminary
numerical results for the mixing angle confirm the previous observation that such mixing is incapable to
explain the large SU(3) symmetry breaking in semileptonic decays of charmed baryons.

DOI: 10.1103/PhysRevD.109.036037

I. INTRODUCTION

Remarkably recent experimental measurements of decay
widths of semileptonic charmed baryon decays have
revealed a significant breakdown of flavor SU(3) symmetry
[1–4], a pivotal tool extensively employed for deciphering
weak decays of heavy mesons (for some recent applica-
tions, please see Refs. [5–8]). This pattern is in contra-
diction with the data on heavy bottom meson and baryon
decays [9], which to a good accuracy respects the flavor
SU(3) symmetry. In the pursuit of understanding this
phenomenon, mechanisms were explored in the work
[10], with a very compelling contender being the incor-
poration of Ξc − Ξ0

c mixing [11]. Actually, the mixing has
been previously explored within various models [12–16].
Subsequently, very interesting works [11,17–19] have
explored the impact from Ξc − Ξ0

c mixing in weak decays
of charmed and doubly charmed baryons, and some
interesting phenomena were discussed [20].
In a recent analysis to determine Ξc − Ξ0

c mixing [21],
four kinds of two-point correlation functions constructed

by two kinds of baryonic operators are calculated using the
technique of lattice QCD. Via the lattice data, two distinct
methods are employed to extract the Ξc − Ξ0

c mixing angle,
which is determined as θ ¼ ð1.2� 0.1Þ°. This small value
is consistent with a previous lattice investigation in
Ref. [22] and determinations using QCD sum rules [15,23].
In this work, we will not concentrate on the inconsis-

tency in the angles obtained from the nonpertubative
determination and the global fit. Instead, we focus on
one ambiguity in defining the mixing angle between Ξc and
Ξ0
c in the lattice simulation, which is equivalent to the

construction of flavor SU(3) eigenstates in the simulation.
Previous lattice QCD determination [21] made use of the
two-point correlation functions, in which an ambiguity
exists in choosing the interpolating operators and accord-
ingly in the extraction of the mixing angle. In this work, we
will develop an improved method to explore the Ξc − Ξ0

c
mixing. In this method, the flavor eigenstates under the
SU(3) symmetry are constructed at first, and the corre-
sponding masses are nonperturbatively determined. Three-
point correlation functions made of the mass operator that
breaks the SU(3) symmetry and the interpolating operators
are then calculated. Taking a ratio with respect to the two-
point correlation function removes the dependence in the
interpolating operators, and diagonalizing the correspond-
ing matrix of Hamiltonian unambiguously gives the mass
eigenstates of the full Hamiltonian and determines the
corresponding mixing. Using an off diagonal matrix
element, we extract the mixing angle between the
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Ξc and Ξ0
c. Though a sign ambiguity is left, preliminary

numerical results for the mixing angle confirm the previous
observation that such mixing is incapable to explain the
large SU(3) symmetry breaking in semileptonic charmed
baryon decays. This leaves the problem of large SU(3)
symmetry breaking observed in charmed baryon decays
unresolved.
The rest of this paper is organized as follows. In Sec. II,

we will give the theoretical formalism and the numerical
results are collected in Sec. III. We summarize this work in
the last section.

II. THEORETICAL FORMALISM

A. Ξc and Ξ0
c in SU(3) symmetry and mixing

In the QCD Lagrangian for light quarks,

L ¼ ψ̄ðiD −MÞψ ; ð1Þ

with Dμ being the covariant derivative and

ψ ¼

0
B@

u

d

s

1
CA; M ¼

0
B@

mu 0 0

0 md 0

0 0 ms

1
CA; ð2Þ

the masses of three quarks are different and explicitly break
the flavor SU(3) symmetry. In this work, we assume the
isospin symmetry and adopt mu ¼ md ≠ ms; consequently,
L can be divided into two parts: the SUð3ÞF symmetry
conserving term L0 and breaking term ΔL,

L0 ¼ ψ̄ðiD −m0Þψ ; ΔL ¼ −m8O8; ð3Þ

with

m0 ¼
2mu þms

3
; m8 ¼

mu −msffiffiffi
3

p ; ð4Þ

O8 ¼
ūuþ d̄d − 2s̄sffiffiffi

3
p : ð5Þ

Therefore, the Hamiltonian can be derived as

H ¼
Z

d3x⃗

�
∂L

∂ψ̇ðx⃗Þ ψ̇ðx⃗Þ þ
∂L

∂ ˙̄ψðx⃗Þ ˙̄ψðx⃗Þ − L
�

≡H0 þ ΔH; ð6Þ

with

ΔH ¼ m8

Z
d3x⃗O8ðx⃗Þ: ð7Þ

In the Appendix, we also give an equivalent decomposition
form as above.

In the heavy quark limit with mc → ∞, the heavy quark
decouples from the light quark system. The interpolating
operator for a JP ¼ ð1=2Þþ usc-type baryon can be
defined as

O ¼ ϵabcðqTaCΓsbÞΓ0Pþc̃c; ð8Þ
where c̃ denotes the heavy quark field in heavy quark
effective theory (HQET) satisfying γ0c̃¼ c̃. Pþ¼ð1þγ0Þ=2
is the positive parity projector. The totally antisymmetric
tensor ϵabc is used to sumover all color indices and guarantee
the antisymmetric color wave function. The transposition T
acts on a Dirac spinor, and C ¼ γ0γ2 is the charge con-
jugation matrix. The Dirac matrix Γ and Γ0 are related to the
internal spin structures of the heavy baryon.
Neglecting ΔH, the heavy baryon can be classified

according to the flavor SUð3ÞF symmetry as 3 ⊗ 3 ¼
3̄ ⊕ 6, in which 3̄ denotes the antisymmetric of light quark
pair and its angular momentum is Jqs ¼ 0, and 6 denotes
the symmetric case with Jqs ¼ 1. Then the interpolating
operators for the JP ¼ ð1=2Þþ usc-type baryon can be
chosen as [24],

O3̄
SUð3Þ ¼ ϵabcðqTaCγ5sbÞPþc̃c ð9Þ

O6
SUð3Þ ¼ ϵabcðqTaCγ⃗sbÞ · γ⃗γ5Pþc̃c: ð10Þ

These operators unambiguously define the correspond-
ing flavor eigenstates jΞ3̄

ci and jΞ6
ci, which also act as the

eigenstates of H0,

H0jΞ3̄=6
c ðp⃗ ¼ 0Þi ¼ mΞ3̄=6

c
jΞ3̄=6

c ðp⃗ ¼ 0Þi; ð11Þ

where mΞ3̄=6
c

are the mass eigenvalues in the case p⃗ ¼ 0.

When adding the SUð3ÞF breaking term ΔH, the mixing
between Ξc and Ξ0

c will emerge (actually in the charmed
baryon system, generating the Ξc − Ξ0

c mixing also requests
to break the heavy quark symmetry). One can easily see
that the SUð3ÞF breaking effect is characterized by
Δm ¼ ms −mu. This breaking effect leads to the mismatch
between the flavor eigenstates and mass eigenstates,� jΞci

jΞ0
ci

�
¼
�

cos θ sin θ

− sin θ cos θ

�� jΞ3̄
ci

jΞ6
ci

�
; ð12Þ

and in reverse, one has� jΞ3̄
ci

jΞ6
ci

�
¼
�
cos θ − sin θ

sin θ cos θ

�� jΞci
jΞ0

ci

�
; ð13Þ

where θ is the mixing angle, and the mass eigenstates are
orthogonal,

HjΞci ¼ mΞc
jΞci; HjΞ0

ci ¼ mΞ0
c
jΞ0

ci; ð14Þ
mΞc

and mΞ0
c
denote the physical baryon masses.
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B. Determination of the mixing angle

In the following, we will give the method to extract the
mixing through the calculation of Hamiltonian’s matrix
elements. Let us start from the spin-averaged matrix of
mass eigenstates,

MEðp⃗Þ≡
Z

d3p0!
ð2πÞ3

×

�hΞcðp⃗ÞjHjΞcðp0!Þi hΞcðp⃗ÞjHjΞ0
cðp0!Þi

hΞ0
cðp⃗ÞjHjΞcðp0!Þi hΞ0

cðp⃗ÞjHjΞ0
cðp0!Þi

�
: ð15Þ

Since the Ξc and Ξ0
c are the eigenstates of the full

Hamiltonian, the above matrix is diagonal. In particular, if
p⃗ ¼ 0, E2

p⃗ ¼ m2, one has

MEðp⃗ ¼ 0Þ≡
�
2m2

Ξc
0

0 2m2
Ξ0
c

�
: ð16Þ

When one rotates the external states from energy
eigenstates to SUð3ÞF flavor eigenstates, the nondiagonal
terms will be nonzero due to the mixing effect,

MFðp⃗Þ≡
Z

d3p0!
ð2πÞ3

 
hΞ3

cðp⃗ÞjHjΞ3̄
cðp0!Þi hΞ3

cðp⃗ÞjHjΞ6
cðp0!Þi

hΞ6
cðp⃗ÞjHjΞ3

cðp0!Þi hΞ6
cðp⃗ÞjHjΞ6

cðp0!Þi

!

¼
Z

d3p0!
ð2πÞ3

 
hΞ3

cðp⃗ÞjðH0 þ ΔHÞjΞ3̄
cðp0!Þi hΞ3

cðp⃗ÞjΔHjΞ6
cðp0!Þi

hΞ6
cðp⃗ÞjΔHjΞ3

cðp0!Þi hΞ6
cðp⃗ÞjðH0 þ ΔHÞjΞ6

cðp0!Þi

!
: ð17Þ

The contributions fromH0 vanish in the nondiagonal terms

due to the orthogonality between jΞ3
ci and jΞ6

ci. When
considering the conservation of momentum and the ex-
ternal states are rest (p⃗ ¼ 0), the above matrix can be
reduced to

MFðp⃗ ¼ 0Þ ¼
� 2m2

Ξ3̄
c

0

0 2m2
Ξ6
c

�

þm8

� hΞ3̄
cjO8jΞ3̄

ci hΞ3̄
cjO8jΞ6

ci
hΞ6

cjO8jΞ3̄
cÞi hΞ6

cjO8jΞ6
ci

�
; ð18Þ

where we have omitted the momentum in external states
Ξ3̄
cðp⃗ ¼ 0Þ and Ξ6

cðp⃗ ¼ 0Þ and the space coordinate in the
scalar operator O8ðx⃗ ¼ 0Þ.
It is necessary to point out that all the elements of the

above matrix can be calculated using nonperturbative tools
like lattice QCD. The off diagonal term should be equal and
in total there are five quantities [including two masses and
three independent matrix elements within Eq. (18)] to be
calculated. Diagoanlizing this matrix provides us with a
straightforward way to extract the mixing angle.
Interestingly, physical masses can be experimentally

measured or numerically determined from lattice QCD.
In this case, one can actually determine the mixing angle by
only calculating the off diagonal matrix elements. To show
this feasibility, one can perform a rotation from the mass
eigenstates basis to the flavor eigenstates basis and obtain
the relations between the elements of matrix MF,

MF;11 ¼ 2cos2θm2
Ξc

þ 2sin2θm2
Ξ0
c
;

MF;12 ¼ 2 cos θ sin θðm2
Ξc

−m2
Ξ0
c
Þ;

MF;21 ¼ 2 cos θ sin θðm2
Ξc

−m2
Ξ0
c
Þ;

MF;22 ¼ 2sin2θm2
Ξc

þ 2cos2θm2
Ξ0
c
; ð19Þ

where only the p⃗ ¼ 0 case is considered. Therefore, one
can establish a relation between the correlation functions
and Eq. (19),

MF;11 ¼ 2m2
Ξ3̄
c
þm8M3̄−3̄

8 ¼ 2cos2θm2
Ξc

þ 2sin2θm2
Ξ0
c
;

MF;22 ¼ 2m2
Ξ6
c
þm8M6−6

8 ¼ 2sin2θm2
Ξc

þ 2cos2θm2
Ξ0
c
;

MF;12 ¼ m8M3̄−6
8 ¼ 2 cos θ sin θðm2

Ξc
−m2

Ξ0
c
Þ;

MF;21 ¼ m8M6−3̄
8 ¼ 2 cos θ sin θðm2

Ξc
−m2

Ξ0
c
Þ; ð20Þ

with the abbreviated matrix elements as

MF−I
8 ≡ hΞF

c ðp⃗ ¼ 0ÞjO8ðx⃗ ¼ 0ÞjΞI
cðp0! ¼ 0Þi; ð21Þ

where I; F ¼ 3; 6 denotes the SUð3ÞF representation of
initial/final states. It is clear that the mixing angle can be
extracted through the off diagonal terms of MF once the
M3̄−6

8 or M6−3̄
8 is obtained from lattice QCD and m2

Ξc
and

m2
Ξ0
c
are experimentally determined.

Before closing this section, we wish to stress again that
the masses mΞ3̄=6

c
are eigenvalues of H0 under the SUð3ÞF

symmetry, while themΞc
=mΞ0

c
are the physical masses of Ξc

and Ξ0
c.
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C. Lattice QCD calculation of matrix elements

In the lattice QCD, the masses mΞ3̄;6
c

can be extracted
from the two-point functions (2pts) with usc-type inter-
polators, in which the 2pts are defined as

C3̄=6
2 ðtÞ ¼

Z
d3y⃗T 0

γ0γhO3̄=6
γ;SUð3Þðy⃗; tÞŌ3̄=6

γ0;SUð3Þð0⃗; 0Þi: ð22Þ

Here, γ and γ0 are spinor indices, and T 0 is a projection
matrix. The interpolating operators for the antitriplet and
sextet baryons are used as [24]

O3̄
SUð3Þ ¼ ϵabcðqTaCγ5sbÞPþcc; ð23Þ

O6
SUð3Þ ¼ ϵabcðqTaCγ⃗sbÞ · γ⃗γ5Pþcc: ð24Þ

It should be noticed that in the above definition, we have
used the charm quark field defined in QCD, not in HQET.
This will not affect the flavor SU(3) symmetry.
Inserting the hadronic states, keeping the lowest two

hadrons, and choosing T 0 ¼ I, one has

C3̄=6
2 ðtÞ ¼ f2

Ξ3̄=6
c
m4

Ξ3̄=6
c
e
−m

Ξ3̄=6c
t�
1þ die

−Δm
Ξ3̄=6c

t�
; ð25Þ

where fΞ3̄=6
c

denotes the decay constant of Ξ3̄
c or Ξ6

c as

hk⃗jŌ3̄=6
SUð3Þð0; 0Þj0i ¼ fΞ3̄=6

c
m2

Ξ3̄=6
c
ūðk⃗Þ; ð26Þ

and ΔmΞ3̄=6
c

describes the mass difference between the first

excited states and ground states, and di characterizes the
excited contributions to the two-point correlation.
The MF−I

8 can be extracted through the analysis of the
three-point function (3pt) as

CF−I
3 ðtseq;tÞ¼

Z
d3q⃗
ð2πÞ3

Z
d3y⃗d3 y0

!
d3x⃗eiq⃗·x⃗

×Tγ0γhOF
γ;SUð3Þðy⃗;tseqÞO8ðx⃗;tÞOI

γ0;SUð3Þðy0
!
;0Þi;
ð27Þ

where we choose Tγ0γ as the identity matrix to simplify the
expressions and the superscriptF=I mean the final state and

the initial state, which can be Ξ3
c=Ξ6

c. The momentum
transfer q⃗ ¼ 0 comes from the conservation of momentum
of the rest initial and final state. An illustration of the three-
point correlation function is shown in Fig. 1.
It should be pointed out that for a complete analysis

the flavor symmetry-breaking effects should be incorpo-
rated in both valence and sea quarks. Contributions from
sea quarks can occur through the so-called disconnected

diagrams. The computation of these diagrams requires the
quark propagators at all points on the lattice (the so-called
all-to-all propagators), which are costly in lattice simula-
tions. However, fortunately in the current decomposition of
SU(3) symmetry breaking Hamiltonian, the contribution of
the disconnected diagrams, which are proportional to the
trace of theO8 operator, vanishes at the leading order. Thus,
our analysis is limited to the valence quark.
By inserting a complete set of eigenstates of the

Hamiltonian H0 between the operators, we can simplify
Eq. (27) as

CF−I
3 ðtseq; tÞ ¼

MF−I
8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mΞI
c
mΞF

c

p fΞI
c
fΞF

c
m2

ΞI
c
m2

ΞF
c
e
−ðmΞIc

−mΞFc
Þt

× e
−mΞFc

tseqð1þ c1e
−ΔmΞIc

tÞ
× ð1þ c2e

−ΔmΞFc
ðtseq−tÞÞ; ð28Þ

where mΞI
c
and mΞF

c
are the ground-state energies of Ξ3̄

c and
Ξ6
c and ci are parameters decoding the excited state con-

tamination. ΔmΞI
c
and ΔmΞF

c
describe the mass differences

between the first excited states and ground states.
Combining the 3pt and 2pt, one can remove the depend-

ence on nonperturbative decay constants. However, there is a
remnant ambiguity in determining the sign of the MF−I

8 .
From Eq. (25), one can notice that the two-point correlation
contains the square of the decay constant, while the three-
point function in Eq. (28) is proportional to the decay
constant for the initial state and final state. Thus, if the
initial state and final states are different, the determination of
MF−I

8 and accordingly the θ has a sign problem from
the 3pt.

FIG. 1. An illustration of the off diagonal three-point correla-
tion functions shown in Eq. (27) on the lattice.
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Keeping in mind this ambiguity, one can make use of the following ratio to suppress the contributions from the excited
states:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CFI
3 ðtseq; tÞCFI

3 ðtseq; tseq − tÞ
CI
2ðtseqÞCF

2 ðtseqÞ

s
: ð29Þ

Combing Eqs. (25) and (28), R can be parametrized as

R ¼ jMF−I
8 j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimΞI

c
mΞF

c

p
�ð1þ c1e

−ΔmΞIc
tÞð1þ c1e

−ΔmΞIc
ðtseq−tÞÞð1þ c2e

−ΔmΞFc
tÞð1þ c2e

−ΔmΞFc
ðtseq−tÞÞ

ð1þ d1e
−ΔmΞFc

tseqÞð1þ d2e
−ΔmΞIc

tseqÞ

�
1=2

≃
jMF−I

8 j
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimΞI

c
mΞF

c

p
�ð1þ c1e

−ΔmΞIc
t þ c2e

−ΔmΞFc
ðtseq−tÞÞð1þ c1e

−ΔmΞIc
ðtseq−tÞ þ c2e

−ΔmΞFc
tÞ

ð1þ d1e
−ΔmΞIc

tseqÞð1þ d2e
−ΔmΞFc

tseqÞ

�1=2

; ð30Þ

where the nonperturbative decay constants have been
eliminated and temporal dependence of R becomes sym-
metric under t ↔ ðtseq − tÞ, which allows one to extract the
values of jMF−I

8 j conveniently.
In practice, we adopt the initial state I ¼ 3̄ and final state

F ¼ 6 to generate the correlation functions related to the off
diagonal term of MF, and then extract the jM6−3̄

8 j numeri-
cally. Based on Eq. (20), the mixing angle can be evaluate
from the formula,

sin 2θ ¼ � m8M6−3̄
8

m2
Ξ0
c
−m2

Ξc

; ð31Þ

where the� reveals the sign ambiguity from 3pt and cannot
be uniquely fixed for the time being.

III. NUMERICAL RESULTS

As shown in the previous section, one can determine the
mixing angle by calculating the five quantities in Eq. (18).
In addition, one can also make use of mΞc

and mΞ0
c
and

obtain the mixing angle through the simulation of the off
diagonal matrix element. In the following estimate, we will
adopt the latter strategy for an illustration.
Our numerical calculations are based on the lattice QCD

calculations with the gauge configurations generated by
the Chinese Lattice QCD (CLQCD) Collaboration with
Nf ¼ 2þ 1 flavor stout smeared clover fermions and

Symanzik gauge action [25]. These configurations have
been applied to explore different physical quantities as in
Refs. [26–29].
For the estimation of the off diagonal matrix element, we

choose one set of lattice ensembles with the lattice spacing
a ¼ 0.108 fm. The detailed parameters of the ensemble are
listed in Table I. The bare charm quark mass is tuned to
accommodate the spin-average value of the J=ψ and ηc
masses; more details can be found in Ref. [21]. The quark
propagators are computed using the Coulomb gauge fixed
wall source at one source time slice. By choosing different
reference time slices, we perform 432 × 6measurements on
C11P29S ensemble.
The masses of Ξ3̄ and Ξ6

c states are extracted from fitting
the 2pt via the two-state parametrization in Eq. (25), and the
corresponding results are shown in Fig. 2. Choosing the
proper time slices range, we obtain good fits with
χ2=d:o:f: ¼ 0.49 and χ2=d:o:f: ¼ 1.1, and obtain mΞ3̄

c
¼

ð2.395� 0.007Þ GeV and mΞ3̄
c
¼ ð2.500� 0.003Þ GeV.

We numerically simulate the three-point function
C6−3̄
3 ðtseq; tÞ and adopt the parametrization in Eq. (30) to

extract the matrix elements jM6−3̄
8 j and jM6−3̄

s̄s j; the fit result
is shown in Fig. 3. To determine the mixing angle, we quote
the masses mΞc

¼ 2.468 GeV and mΞ0
c
¼ 2.578 from

Particle Data Group (PDG) [9]. For the quark masses,
their results depend on the scale, which should be com-
pensated by the renormalization scale dependence of the

TABLE I. Parameters of the ensembles used in this work, including the gauge coupling β ¼ 10=g2, spatial lattice
size L and temporal T, lattice spacing a, bare quark massesmb

l;s;c, pion massmπ , and total measurements Nmeas. The
total measurements are equal to the number of gauge configurations times the measurements from different time
slices on one configuration.

Ensemble β L3 × T a (fm) mb
l mb

s mb
c mπ (MeV) Nmeas

C11P29S 6.20 243 × 72 0.108 −0.2770 −0.2315 0.4780 284 432 × 6
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O8 (or s̄s) operator. Since the aim of this paper is to
demonstrate the improved method used in this work, we
take two values for the quark masses and include their
differences as a systematic uncertainty, which in principle
could be removed by a more sophisticated analysis on the
lattice. PDG gives ms −mu ≃ 0.090 GeV at μ ¼ 2 GeV,
and the running effects from 2 GeV to 1 GeV approx-
imately gives a factor 1.35 [9]. So we adopt ms −mu ≃
0.12 GeV at μ ¼ 1 GeV in our calculation and take into
account the scale uncertainty to estimate the systematic
error from quark masses. The numerical results of the
matrix elements jM6−3̄

s̄s=8j and mixing angle θ are collected in
Table II.
A few remarks are given in order.
(i) It is necessary to point out that the lattice renorm-

alization of the 3pt, and the scale dependence in
quark masses are not systematically taken into
account in above discussion.

(ii) In this calculation, we only adopt one ensemble of
CLQCDconfigurations.A near-term calculation [21],

which has systematically considered the effects from
physical mass extrapolation and continuum extrapo-
lation, indicates that a result obtained from C11P29S
approximately exists with a 20% deviation from the
physical one. It can also happened in the current
calculation.

(iii) Despite the undetermined sign, the absolute value
for θ indicates that it is insufficient to account for the
large SU(3) symmetry breaking effects in semi-
leptonic weak decays of charmed baryons [1–4]
and leaves the large SU(3) symmetry breaking
problem unresolved.

(iv) Numerical results show that the three-point function
C6−3̄
3 ðtseq; tÞ is negative. From Eq. (28), one can see

that if the decay constants forΞ3̄
c andΞ6

c have the same
sign, the obtained mixing angle will be positive.

(v) One can calculate the diagonal matrix element of the
Hamiltonian, namely MF;11 and MF;22, which does
not contain the sign ambiguity in the determination of
MF−I

8 . However from Eq. (20), one can see that the
square of cosine and sine of θ appears in the relation
and thus, still can not be uniquely determined.

IV. THE MIXING ANGLE AND HEAVY QUARK
SYMMETRY BREAKING

In heavy quark effective theory, the classification of
heavy baryonic states is based on heavy quark symmetry
for the heavy quark and flavor SU(3) symmetry for the light
quarks. In the heavy quark limit, the corresponding
Lagrangian for a heavy quark is given as

LQ ¼ h̄vðiv ·DÞhv; ð32Þ

where hv is the heavy quark field and v denotes the velocity.
In this Lagrangian, the heavy quark, such as a charm quark,
serves as a static color source, and the interaction term does
not modify the spin. As a result the heavy quark decouples
with the light-quark system, and thereby charmed baryons
can be classified according to the quantum number of the
light-quark system. Furthermore, when light quarks in QCD
Lagrangian have the same masses, the light-quark system in
a charmed baryon forms an SU(3) triplet and sextet. This is
how charmed baryons are classified.
In reality, the Ξc in the triplet and Ξ0

c in the sextet can mix
with each other, and this mixing requires the breaking of

FIG. 3. Joint fit of ratio R as function of t, with tseq ¼ 8a ∼ 14a.
In this figure, the colored bands correspond to the fitted
results at each tseq, and the gray band denotes the fit results of

jM6−3̄
8 j=ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimΞ3̄

c
mΞ6

c

p Þ. The χ2=d:o:f: of this fit is about 0.17.

FIG. 2. Effective mass of Ξ3̄ and Ξ6
c on the C11P29S ensemble.

The purple markers and the corresponding fit line represent the
effective mass of Ξ3̄. The blue markers denote the effective mass
of Ξ6

c.

TABLE II. Results of the matrix elements jM6−3̄
8 j and jM6−3̄

s̄s j (in
unit of GeV), as well as the mixing angle θ. The former only
contains statistical uncertainty, while the latter one include both
statistical and systematic uncertainties.

Ensemble jM6−3̄
s̄s j jM6−3̄

8 j jθj
C11P29S 0.131(8) 0.227(14) ð0.810� 0.050� 0.200Þ°
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both heavy quark and flavor SU(3) symmetries. It is evident
that only when the flavor SU(3) symmetry is broken,
baryons in different multiplets can get entangled with each
other. The requirement for breaking heavy quark symmetry
can be understood as follows. In the heavy quark limit, the
heavy quark acts as a color source and the interacting gluon
does not change the spin. Thereby light-quark systems in
charmed baryons have a conserved total spin and behave
like a π and ρ meson with different angular momenta,
respectively. If the heavy quark symmetry is not spoiled, no
source is provided to modify the spin of the light quark
system, and accordingly, Ξc and Ξ0

c baryons will not
mix with each other. It is anticipated that the mixing is
proportional to 1=mQ.
While the constructions of baryonic states are estab-

lished under both heavy quark and flavor SU(3) symmetry,
in our lattice simulation of the correlation function, we have
used a finite mass for the charm quark. This explicitly
breaks the heavy quark symmetry and can induce the Ξc
and Ξ0

c mixing.
It is necessary to stress that in the lattice QCD simulation,

the charm quark can not be too large. This is due to the fact
that the discretization effects are likely proportional tom2

ca2.
On the other hand, the charm quark can not be chosen too
small. In our calculation of the mixing angle, we have firstly
constructed the SU(3) symmetric hadron state and then
calculated the matrix elements of symmetry breaking
Hamiltonian. This is based on the spirit of perturbation
theory with the expansion parameter ðms −muÞ=mc. If the
charm quark mass is small, the expansion parameter would
be large and the perturbation could in general fail.
To investigate the heavy quark mass dependence of

the mixing angle and to predict the behavior at the heavy
quark limit, we vary the charm quark mass mc in lattice
calculation, and more explicitly, we have chosen mΞ3̄

c
¼

2.047ð6Þ;2.183ð6Þ;2.309ð6Þ;2.401ð6Þ;2.535ð6Þ;2.637ð6Þ;
2.734ð6Þ GeV. The mixing angle is correspondingly
extracted and the results are shown in Table III.
From this table, one can see that the mixing angle will

decrease with the increase of charm quark and charmed
baryon mass. We then employ a fit ansatz for the mixing
angle θ as a function of mΞ3̄

c
,

θ ¼ c1
mΞ3̄

c

þ c2
m2

Ξ3̄
c

þ c3; ð33Þ

with fit results c1 ¼ 1.25ð85Þ GeV, c2 ¼ 1.9ð1.1Þ GeV2

and c3 ¼ −0.04ð22Þ. The results of θ extracted from
different mc as well as the fit band are illustrated in
Fig. 4. It should be highlighted that from the fit result
one can see that the mixing angle is consistent with 0 when
the charm quark mass tends to infinity, shown as the red
data point in the figure. It demonstrates the mixing effect
vanishes in the heavy quark limit. This validates the
classification of baryons in the heavy quark limit.

V. SUMMARY

In this work, we have developed an improved method to
explore the Ξc − Ξ0

c mixing, which arises from the flavor
SU(3) and heavy quark symmetry breaking effects. The
recipe in this method is summarized as follows.

(i) First, the flavor eigenstates are constructed under the
flavor SU(3) symmetry. The corresponding masses
can be determined via an explicit nonperturbative
calculation using lattice QCD simulation or QCD
sum rules.

(ii) The SU(3) symmetry breaking contributions are
treated as perturbative corrections. Matrix elements
of the mass operators which break the flavor SU(3)
symmetry sandwiched by the flavor eigenstates are
then calculated.

(iii) Diagonalizing thecorrespondingmatrixofHamiltonian
gives the mass eigenstates of the full Hamiltonian and
determines the corresponding mixing.

(iv) Using the physical masses from data, one can
actually determine the mixing angle by only calcu-
lating the off diagonal matrix elements.

Estimating an off diagonal matrix element, we have
extracted the mixing angle between the Ξc and Ξ0

c, with a
sign ambiguity. Preliminary numerical results for the
mixing angle confirm the previous observation that such

TABLE III. Results of the mixing angle and the dependence on
heavy baryon mass. Only statistical results are included in the
results.

mΞ3̄
c
(GeV) 2.047(6) 2.183(6) 2.309(6) 2.401(6)

jθjð∘Þ 1.03(6) 0.94(5) 0.86(5) 0.81(5)
mΞ3̄

c
(GeV) 2.535(6) 2.637(6) 2.734(6)

jθjð∘Þ 0.75(5) 0.71(5) 0.67(5)

FIG. 4. The heavy quark mass dependence of mixing angle θ.
The blue data points denote the results calculated from different
charm quark masses, and the dashed line denotes the physical
one. The red band shows the fit result of θ as a function of 1=mΞ3̄

c

based on Eq. (33), and the red data point indicates the value of θ is
consistent to 0 at mc tends to infinity.
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mixing is not able to explain the large SU(3) symmetry
breaking in semileptonic charmed baryon decays.
It should be pointed out that in this method only the

leading order contributions from the symmetry breaking
terms are taken into account, and it is based on a
perturbative expansion in terms of ðms −muÞ=Λ with Λ
being the hadronic scale. In the Ξc − Ξ0

c mixing, the heavy
quark symmetry also needs to be broken, introducing a
factor Λ=mc. Other interesting examples, such as the
K1ð1270Þ and K1ð1400Þ mixing also due to the flavor
SU(3) symmetry breaking, can be analyzed similarly.
Though in our illustration, the lattice QCD has been used

to calculate the matrix element, this method can be applied
with other nonperturbative approaches like the QCD sum
rules [23]. Following this spirit, a recent analysis [30] has
estimated the QED contribution to Ξþ

c − Ξ0þ
c mixing angle.
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APPENDIX: ANOTHER DECOMPOSITION
OF SYMMETRY BREAKING HAMILTONIAN

In addition to the decomposition of Hamiltonian used in
the main text that is based on a complete SU(3) symmetry
analysis, one can also adopt another equivalent way. where
the symmetry breaking term comes from the deviation
between u=d and s quark masses,

ΔL ¼ −s̄ðms −muÞs: ðA1Þ

The pertinent Hamiltonian is correspondingly derived as

H ¼
Z

d3x⃗
�

∂L
∂ψ̇ðx⃗Þ ψ̇ðx⃗Þ þ

∂L
∂ ˙̄ψðx⃗Þ ˙̄ψðx⃗Þ − L

�
≡H0 þ ΔH; ðA2Þ

with

ΔH ¼ ðms −muÞ
Z

d3x⃗ s̄ sðx⃗Þ: ðA3Þ

Compared to Eq. (7), one can see that there is a corre-
spondence between the symmetry breaking Hamiltonian,

m8 → ms −mu; O8 → s̄s: ðA4Þ

Without considering the disconnected diagrams, the two
forms give an equivalent result at leading order inms −mu.
For example, neglecting higher order SU(3) symmetry
breaking effects and disconnected diagrams, the off diago-
nal matrix element M6−3̄

8 can be simplified as

M6−3̄
8 ¼ 1ffiffiffi

3
p hΞ6

cjūuþ d̄d − 2s̄sjΞ3̄
ci

¼ 1ffiffiffi
3

p hΞ6
cj − 3s̄sjΞ3̄

ci

¼ −
ffiffiffi
3

p
hΞ6

cjs̄sjΞ3̄
ci

≡ −
ffiffiffi
3

p
M6−3̄

s̄s : ðA5Þ

In deriving the above equation, we have made use of the
fact that the antitriplet state is antisymmetric under the
interchange of u=d ↔ s and the sextet state is symmetric.
The illustration diagrams for the corresponding 3pt are

shown in Fig. 5. Unlike the results in the main text with the
decomposition in Eq. (7), the correlation function under
this decomposition receives contributions from discon-
nected diagrams as shown in panel (b), which are difficult
to evaluate.

FIG. 5. An illustration of the three-point correlation functions
using the Hamiltonian in Eq. (A3). Compared to the decom-
position in the main text, this form receives contributions from
both connected diagram (a) and disconnected diagram (b).
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