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For charmonium’s decaying to the final states involving merely light quarks, in light of SUð3Þ flavor
symmetry, the effective interaction Hamiltonian in tensor form is obtained by virtue of group representation
theory. The strong and electromagnetic breaking effects are treated as a spurion octet so that the flavor
singlet principle can be utilized as the criterion to determine the form of effective Hamiltonian for all
charmonium two body decays. Moreover, a synthetic nonet is introduced to include both octet and singlet
representations for meson description, and resorting to the mixing angle, the pure octet and singlet states are
combined into the observable pseudoscalar and vector particles, so that the empirically effective
Hamiltonian can be obtained in a concise way. As an application, by virtue of this scenario the relative
phase between the strong and electromagnetic amplitudes is studied for vector-pseudoscalar meson final
state. In data analysis of samples taken in an eþe− collider, the details of experimental effects, such as
energy spread and initial state radiative correction, are taken into consideration in order to make full use of
experimental information and acquire accurate and delicate results.
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I. INTRODUCTION

Since the upgraded Beijing Electron-Positron Collider
(BEPCII) and spectrometer detector (BESIII) started data
taking in 2008 [1,2], colossal charm and charmonium data
samples in the world were collected, especially the data at
J=ψ and ψ 0 resonance peaks, which provide an unprec-
edented opportunity to acquire useful information for
understanding the interaction dynamics by analyzing vari-
ous decay final states.
Although the StandardModel (SM) has been accepted as a

universally appreciated theory basis in the high energy
community, it is still hard to calculate the wanted exper-
imental observable from the first principle of the SM for a
great many of processes, especially when the strong inter-
action is involved. Quantum chromodynamics (QCD) as a
widely appreciated theory of strong interaction, has been
proved to be very successful at high energy when the
calculation can be executed perturbatively. Nevertheless,
its validity at the nonperturbative regime, such as J=ψ and ψ 0
resonance regions, needsmore experimental guidance. As an
exploratory step, it is necessary to develop a reliable and
extensively applicable phenomenological model (PM).

The advantage of PM lies in that a well-defined PM
contains few experimentally determined parameters that
have a clear physical meaning; moreover, with only few
parameters determined from experiment, PM could pro-
duce concrete results, which can be directly confirmed or
falsified by experiment and may guide further experimental
searches. Such a model has a good relation with the
elementary principle of the theory and if applicable, can
be used for further theoretical refinement. This point is
noteworthy for the time being since the general QCD can
hardly provide solutions for special problems; conversely,
we have to establish certain effective empirical model to
advance our understanding for a generic QCD principle.
As a matter of fact, many models are constructed for

charmonium decay [3–12], and the parametrization of
various decay modes are obtained, such as the pseudoscalar
and pseudoscalar mesons (PP), vector and pseudoscalar
mesons (VP), octet baryon-pair, and so on. Especially in
Ref. [12], by virtue of SUð3Þ flavor symmetry, the effective
interaction Hamiltonian in the tensor form is obtained
according to group representation theory. In the light of
flavor singlet principle, systematical parametrization is
realized for all charmonium two-body decays, including
both baryonic and mesonic final states. The parametriza-
tions of ψ 0 or J=ψ decaying to an octet baryon pair,
decuplet baryon pair, decuplet-octet baryon final state,
vector-pseudoscalar meson final state, and pseudoscalar-
pseudoscalar meson final state are presented. However, in
the previous study [12], mesons are merely treated as pure
octet states while the actual particles are the mixing of both
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octet and singlet states. Therefore, this paper concentrates
on the meson mixing issue. With the nonet concept and
mixing angle, both octet and singlet states are mixed into
mass eigenvalue states so that the pragmatically effective
Hamiltonian can be constructed in a concise way. Such a
treatment finalizes the parametrization scheme proposed in
the previous symmetry analysis of charmonium decay.
In the next section, the parametrization scheme will be

expounded first, a synthetic nonet is introduced to combine
both octet and singlet representations for meson descrip-
tion, then the effective Hamiltonian is obtained consecu-
tively. The section that follows discusses in detail the
experimental character of the eþe− collider, then the
successive section focuses on concrete data analysis for
VP final states. A special section is used to discuss another
fit method and some open questions on understanding fit
results. After that is a summary section. Relegated to the
Appendix are two kinds of materials that are mainly
concerned on calculation details.

II. ANALYSIS FRAMEWORK

In the eþe− collider experiment, the initial state is
obviously flavorless, then the final state must be flavor
singlet. Moreover, only the Okubo-Zweig-Iizuka (OZI) rule
suppressed processes are considered, and the final states
merely involve light quarks, that is u, d, s quarks.
Therefore, the SUð3Þ group is employed for symmetry
analysis. The key rule herein is the so-called “flavor singlet
principle” that determines what kinds of terms are permit-
ted in the effective interaction Hamiltonian. Resorting to
the perturbation language, the Hamiltonian is written as

Heff ¼ H0 þ ΔH; ð1Þ

where H0 is the symmetry conserved term and ΔH the
symmetry breaking term, which is generally small compare
to H0. Since we focus on two-body decay, merely two
multiplets, say n andm, need to be considered. In the light
of group representation theory, the product of two multip-
lets can be decomposed into a series of irreducible
representations, that is

n ⊗ m ¼ l1 ⊕ l2 ⊕ � � � ⊕ lk: ð2Þ

The singlet principle requires that among the
ljðj ¼ 1;…; kÞ, only the singlet term, i.e., lj ¼ 1 for certain
j, is allowed in the Hamiltonian. Since this term is
obviously SUð3Þ invariant, it is called the symmetry
conserved term, i.e., H0.
Now turn to the SUð3Þ-breaking term. Following the

recipe of the proceeding study [13–15], the SUð3Þ-breaking
effect is treated as a “spurion” octet. With this notion, in
order to pin down the breaking term in the Hamiltonian, the
products of this spurion octet with the irreducible

representations ljðj ¼ 1;…; kÞ will be scrutinized; only
the singlet term in the decomposition is valid in the
Hamiltonian. Concretely,

lj ⊗ 8 ¼ q1 ⊕ q2 ⊕ � � � ⊕ qk; ð3Þ

then if and only if qi ¼ 1, the corresponding term is
allowed in the Hamiltonian. Since such a kind of term
violates SUð3Þ invariance, it is called the symmetry break-
ing term. In a word, with the singlet principle, the effective
interaction Hamiltonian can be determined unequivocally.
Generally speaking, the Hamiltonian term should be

written as ψM1M2, where ψ indicates the charmonium state
and M1 and M2 are two multiplet components. Since ψ is
the same for the whole final state, and the relative strength
of the multiplet final state really matters, ψ dependence is
left implicit henceforth.
The tensor denotation is adopted in order to express all

kinds of multiplets consistently. A tensor of rank ðu; vÞ
reads

Ti1i2���iu
j1j2���jv ;

or denoted as Tðu; vÞ. The irreducible tensor of SUð3Þ
representation is traceless and totally symmetric in indices
of the same type. The number of independent components
in a multiplet is called its dimension, which is calculated by
the formula,

dfTðu; vÞg ¼ 1

2
ðuþ 1Þðvþ 1Þðuþ vþ 2Þ: ð4Þ

The baryon and meson of a multiplet can be expressed by
the corresponding components of the irreducible tensor, the
characteristics of which can be used to calculate the
eigenvalues of particle charge (Q), hypercharge (Y), and
the third component of isospin (I3), that is

Q ¼ u1 − v1 −
1

3
ðu − vÞ;

Y ¼ −u3 þ v3 þ
1

3
ðu − vÞ;

I3 ¼
1

2
ðu1 − u2Þ −

1

2
ðv1 − v2Þ; ð5Þ

where ui denotes the number of upper indices with value i,
and vj denotes the number of lower indices with value j.
For SUð3Þ group, i, j ¼ 1, 2, 3 and u ¼ u1 þ u2 þ u3 and
v ¼ v1 þ v2 þ v3. The values ðQ; Y; I3Þ of the tensor
component indicate the corresponding physical particle;
as examples, some commonly used octets of baryon and
meson are displayed as follows [16–18]:
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B¼

0
B@

Σ0=
ffiffiffi
2

p þΛ=
ffiffiffi
6

p
Σþ p

Σ− −Σ0=
ffiffiffi
2

p þΛ=
ffiffiffi
6

p
n

Ξ− Ξ0 −2Λ=
ffiffiffi
6

p

1
CA;

ð6Þ

B̄¼

0
B@

Σ̄0=
ffiffiffi
2

p þΛ=
ffiffiffi
6

p
Σ̄þ Ξ̄þ

Σ̄− −Σ̄0=
ffiffiffi
2

p þΛ=
ffiffiffi
6

p
Ξ̄0

p̄ n̄ −2Λ̄=
ffiffiffi
6

p

1
CA;

ð7Þ

V ¼

0
B@

ρ0=
ffiffiffi
2

p þω=
ffiffiffi
6

p
ρþ K�þ

ρ− −ρ0=
ffiffiffi
2

p þω=
ffiffiffi
6

p
K�0

K�− K̄�0 −2ω=
ffiffiffi
6

p

1
CA;

ð8Þ

and

P¼

0
B@

π0=
ffiffiffi
2

p þ η=
ffiffiffi
6

p
πþ Kþ

π− −π0=
ffiffiffi
2

p þ η=
ffiffiffi
6

p
K0

K− K̄0 −2η=
ffiffiffi
6

p

1
CA:

ð9Þ

The corresponding tensor notations are, respectively, Bi
j,

B̄i
j, V

i
j, and P

i
j, where the superscript denotes the row index

of matrix and the subscript the column index.
The SUð3Þ-breaking effect is treated as a “spurion” octet;

its additive quantumnumbers, such asQ,Y, I3, are set to be 0
while the multiplicative quantum numbers are set to be 1.
Specially speaking, there are two kinds of spurion octet; one
is denoted as Sm that indicates the strong breaking effect and
is I-spin conservationbreaking, and the other is denoted asSe
that indicates the electromagnetic breaking effect and is
U-spin conservation breaking. The tensor expressions for
these two special octets read

ðSmÞij ¼ gmδi3δ
3
j ; ð10Þ

and

ðSeÞij ¼ geδi1δ
1
j : ð11Þ

It is noted that if u and v are switched in Eq. (5), the
values of Q, Y, I3 just change their signs, which means a
particle turns into its antiparticle. If the charge conjugate
operator is denoted as Ĉ, then

ĈTðu; vÞ → Tðv; uÞ:

This can be confirmed for V and P. But for a baryon, since
the particle and its antiparticle are in a different multiplet,

the charge conjugate not only changes the signs of values
ðQ; Y; I3Þ but also keeps the mass of particle unchanged.
According to this requirement, it yields

ĈTðu; vÞ → T̄ðv; uÞ;

which can be confirmed for B and B̄.
Since the effective Hamiltonian must be Ĉ-parity con-

served, it should be unchanged under Ĉ-parity transforma-
tion. This will constrain the form of the effective
Hamiltonian. Let us take the baryon octet as an example.
According to group theory, the product of two octets can be
reduced as follows:

8 ⊗ 8 ¼ 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10� ⊕ 27: ð12Þ

The singlet (denoted as ½B̄B�0) building from two octets
reads

½B̄B�0 ¼ B̄i
jB

j
i ; ð13Þ

Here, Einstein summation convention is adopted, that is the
repeated suffix, once as a subscript and once as a super-
script, implies the summation. Under Ĉ-parity transforma-
tion, Ĉ½B̄B�0 → ½BB̄�0. In order to keep Ĉ parity, the
effective Hamiltonian should take the form,

H0 ¼ g0 · ð½B̄B�0 þ ½BB̄�0Þ: ð14Þ

Next, by virtue of Eq. (12), there are two types of octet: an
antisymmetric, or f type, and a symmetric, or d type, which
are respectively constructed as

ð½B̄B�fÞij ¼ B̄i
kB

k
j − B̄k

jB
i
k; ð15Þ

and

ð½B̄B�dÞij ¼ B̄i
kB

k
j þ B̄k

jB
i
k −

2

3
δij · B̄

i
jB

j
i : ð16Þ

Under Ĉ-parity transformation, Ĉð½B̄B�dÞij → −ð½BB̄�dÞji
and Ĉð½B̄B�fÞij → ð½BB̄�fÞji . Here, the eigenvalues ξd;f with
values ξd ¼ þ1 and ξf ¼ −1 (obviously ξ0 ¼ þ1) can be
introduced to describe such effects. So in the effective
Hamiltonian, the two terms involving ½B̄B�f and ½B̄B�d
should have the forms,

½B̄B�d;f þ ξd;f½BB̄�d;f:

Nevertheless, the C parity does not change the cross
section of certain process; the terms with and without
C-parity transformation furnish the same measurement
results; as far as the relative strength is concerned, it proves
expedient to keep only one kind of term. Therefore, the
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effective interaction Hamiltonian for octet-octet final state
reads

Heff ¼ g0 · ½B̄B�0 þ gm · ð½B̄B�fÞ33 þ g0m · ð½B̄B�dÞ33
þ ge · ð½B̄B�fÞ11 þ g0e · ð½B̄B�dÞ11: ð17Þ

The other results for decuplet-decuplet and decuplet-octet
final states can be obtained similarly; the detailed infor-
mation can be referred to Refs. [11,12], together with the
corresponding parametrization forms.
The effective Hamiltonian for meson final state can be

obtained in the similar way, say, for VP, it reads

HVP
eff ¼ g0 · ½VP�0 þ gm · ð½VP�fÞ33 þ g0m · ð½VP�dÞ33

þ ge · ð½VP�fÞ11 þ g0e · ð½VP�dÞ11: ð18Þ

However, unlike a baryon, the particle and antiparticle are
contained in the same meson multiplet, so ĈV=P → V=P,
which like the neutral particle such as π0 with Ĉπ0 → π0. It
is known that π0 has the inherent C parity, that is
Ĉπ0 ¼ ηπ0π

0, with ηπ0 ¼ þ1. Herein, the generalized
inherent C parity for a multiplet is introduced, and its
value is set to be equal to that of the neutral particle in the
multiplet. That is to say,

ĈP ¼ ηPP; with ηP ¼ ηπ0 ¼ þ1;

ĈV ¼ ηVV; with ηV ¼ ηρ0 ¼ −1: ð19Þ

With these conventions, it has

Ĉ½VP�f ¼ ηVηPξf½VP�f;
Ĉ½VP�d ¼ ηVηPξd½VP�d: ð20Þ

The invariant of the effective Hamiltonian under C-parity
transformation requires that ηVηPξf or ηVηPξd must be
equal to ηJ=ψ ;ψ 0 . Since ηJ=ψ ;ψ 0 ¼ −1, only ηJ=ψ ;ψ 0 ¼ ηVηPξd
is allowed, which means only the term ½VP�d can exist in
the effective Hamiltonian of VP final state, that is

HVP
eff ¼ g0 · ½VP�0 þ gm · ð½VP�dÞ33 þ ge · ð½VP�dÞ11: ð21Þ

By virtue of the same criterion, the effective Hamiltonian of
the PP final state reads

HPP
eff ¼ gm · ð½PP�fÞ33 þ ge · ð½PP�fÞ11: ð22Þ

With the components given in Eqs. (8) and (9), the
corresponding parametrization can be obtained and sum-
marized in Tables I and II, respectively. For the other octet
final states, the parametrization scheme can be referred to
the Appendix.
In light of Eq. (21), the first term g0 · ½VP�0 represents the

SUð3Þ-conserved effect, while in Eq. (22) only the SUð3Þ-

breaking terms exist. Therefore, for VP-like final states, the
decay branching fractions are generally greater than those
of PP-like final states.
In above analysis, it is prominent that in Eqs. (8) and (9),

the mesons ω and η are treated as pure octet components,
but the real or observable ω and η are actually the mixing of
pure octet and singlet components with a certain mixing
angle. According to PDG [19],

ϕ ¼ ω8 cos θV − ω1 sin θV;

ω ¼ ω8 sin θV þ ω1 cos θV; ð23Þ

or its reverse,

ω8 ¼ cos θVϕþ sin θVω;

ω1 ¼ − sin θVϕþ cos θVω; ð24Þ

and

η ¼ η8 cos θP − η1 sin θP;

η0 ¼ η8 sin θP þ η1 cos θP; ð25Þ

or its reverse,

TABLE I. Amplitude parametrization form for decays of the ψ 0
or J=ψ into VP final states. General expressions in terms of
singlet A (by definition A ¼ g0), as well as charge-breaking
(D ¼ ge=3) and mass-breaking terms (D0 ¼ gm=3). The table can
also be used for more similar decays by appropriate change in
labeling, refer to the Appendix for more details.

Final state Amplitude parametrization form

ρ�π∓, ρ0π0 AþD − 2D0

K��K∓ AþDþD0

K�0K̄0, K̄�0K0 A − 2DþD0

ωη A −Dþ 2D0

ωπ0
ffiffiffi
3

p
D

ρ0η
ffiffiffi
3

p
D

TABLE II. Amplitude parametrization form for decays of the ψ 0
or J=ψ into PP final states. General expressions in terms of the
charge-breaking one (D ¼ 2ge) and the mass-breaking one
(D0 ¼ −2gm). The table can also be used for more similar decays
by appropriate change in labeling, refer to the Appendix for more
details.

Final state Amplitude parametrization form

πþπ− D
KþK− DþD0

K0K̄0 D0
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η8 ¼ cos θPηþ sin θPη0;

η1 ¼ − sin θPηþ cos θPη0: ð26Þ

In above equations, the superscript 8 indicates the pure
octet component and the superscript 1 the pure singlet
component.
In order to obtain the actual effective Hamiltonian, both

octet and singlet components are to be included. The
concise and effective way is to introduce a nonet that
merges a singlet with an octet [5]. Under such circum-
stances, the matrices in Eqs. (8) and (9) are recast as

VN ¼

0
B@

V1
1 ρþ K�þ

ρ− V2
2 K�0

K�− K̄�0 V3
3

1
CA; ð27Þ

with

V1
1 ¼ ρ0=

ffiffiffi
2

p
þ ω8=

ffiffiffi
6

p
þ ω1=

ffiffiffi
3

p
;

V2
2 ¼ −ρ0=

ffiffiffi
2

p
þ ω8=

ffiffiffi
6

p
þ ω1=

ffiffiffi
3

p
;

V3
3 ¼ −2ω8=

ffiffiffi
6

p
þ ω1=

ffiffiffi
3

p
; ð28Þ

and

PN ¼

0
B@

P1
1 πþ Kþ

π− P2
2 K0

K− K̄0 P3
3

1
CA; ð29Þ

with

P1
1 ¼ π0=

ffiffiffi
2

p
þ η8=

ffiffiffi
6

p
þ η1=

ffiffiffi
3

p
;

P2
2 ¼ −π0=

ffiffiffi
2

p
þ η8=

ffiffiffi
6

p
þ η1=

ffiffiffi
3

p
;

P3
3 ¼ −2η8=

ffiffiffi
6

p
þ η1=

ffiffiffi
3

p
: ð30Þ

With these new nonets VN and PN , the effective
Hamiltonian in Eq. (21) can be used formally to acquire
the corresponding parametrization for VP final states, with
both octet components, say ω8 and η8, and singlet compo-
nents, say ω1 and η1. Then with Eqs. (24) and (26), the pure
octet and singlet components ω8, ω1, η8, and η1 will be
replaced by the actual particles ω, ϕ, η, and η0. The final
parametrization results are summarized in Table III.
Besides the nonet approach, the singlet component can

be treated separately, and the final results are essentially the
same. The details are degenerated into the Appendix.

III. EXPERIMENTAL SECTION

An electron-positron collider experiment has its special
character. When analyzing the data taken in eþe− collider,
the important experimental effects, such as the initial state
radiative (ISR) correction and the effect due to energy
spread of accelerator, must be dealt with carefully.

A. Born section

For eþe− colliding experiments, there is the inevitable
continuum amplitude [20],

eþe− → γ� → hadrons

which may produce the same final state as the resonance
does. In eþe− → VP at J=ψ or ψ 0 resonance, the Born
order cross section for the final state f is [21–25]

σBorn ¼
4πα2

s3=2
jAfðsÞj2PfðsÞ; ð31Þ

where PfðsÞ ¼ q3f=3, with qf being the momentum of
either the V or the P particle, viz.

qf ¼
½ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2Þ�1=2

2
ffiffiffi
s

p ; ð32Þ

where
ffiffiffi
s

p
is the center of mass energy, m1 and m2 are the

masses of two VP final state mesons. The total amplitude
reads

TABLE III. Amplitude parametrization form for decays of the
ψ 0 or J=ψ into VP final states. General expressions in terms of
singlet A (by definition A ¼ g0), as well as charge-breaking
(D ¼ ge=

ffiffiffi
3

p
) and mass-breaking terms (D0 ¼ 2gm=

ffiffiffi
3

p
). The

shorthand symbols are defined as sα ¼ sin θα, cα ¼ cos θα,
s�αβ ¼ sinðθα � θβÞ,c�αβ ¼ cosðθα � θβÞ, sγαβ¼ sinðθγþθαþθβÞ,
cγαβ ¼ cosðθγ þ θα þ θβÞ, sγ ¼ sinθγ≡

ffiffiffiffiffiffiffiffi
1=3

p
, and cγ ¼ cos θγ≡ffiffiffiffiffiffiffiffi

2=3
p

. It should be noted that the definitions of D and D0 herein
are different from those in Table I.

States A D D0

ρ0π0 1 1=
ffiffiffi
3

p
−1=

ffiffiffi
3

p
ρþπ− 1 1=

ffiffiffi
3

p
−1=

ffiffiffi
3

p
ρþπ− 1 1=

ffiffiffi
3

p
−1=

ffiffiffi
3

p
K�þK− 1 1=

ffiffiffi
3

p
1=2

ffiffiffi
3

p
K�−Kþ 1 1=

ffiffiffi
3

p
1=2

ffiffiffi
3

p
K�0K̄0 1 −2=

ffiffiffi
3

p
1=2

ffiffiffi
3

p
K̄�0K0 1 −2=

ffiffiffi
3

p
1=2

ffiffiffi
3

p
ϕη c−VP −sγVP − sγsVsP sγVP þ sγsVsP
ϕη0 −s−VP cγVP þ sγsVcP −cγVP − sγsVcP
ωη s−VP cγVP þ sγcVsP −cγVP − sγcVcP
ωη0 c−VP sγVP − sγcVsP −sγVP þ sγcVcP
ρ0η 0

ffiffiffi
3

p
· s−γP 0

ρ0η0 0
ffiffiffi
3

p
· c−γP 0

ϕπ0 0
ffiffiffi
3

p
· s−γV 0

ωπ0 0
ffiffiffi
3

p
· c−γV 0
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AfðsÞ ¼ a3gðsÞ þ aγðsÞ þ acðsÞ; ð33Þ

which consists of three kinds of amplitudes corresponding
to (a) the strong interaction [a3gðsÞ] presumably through
three-gluon annihilation, (b) the electromagnetic interac-
tion [aγðsÞ] through the annihilation of cc̄ pair into a virtual
photon, and (c) the electromagnetic interaction [acðsÞ] due
to one-photon continuum process. For the VP final state,
the amplitudes have the forms,

acðsÞ ¼ Yf · F ðsÞ; ð34Þ

aγðsÞ ¼ Yf · BðsÞ · F ðsÞ; ð35Þ

a3gðsÞ ¼ Xf · BðsÞ · F ðsÞ; ð36Þ

with the definition,

BðsÞ≡ 3
ffiffiffi
s

p
Γee=α

s −M2 þ iMΓt
; ð37Þ

where α is the QED fine structure constant; M and Γt are
the mass and the total width of the ψ 0 or J=ψ ; Γee is the
partial width to eþe−. F ðsÞ is the form factor and takes the
form 1=s for VP final state. Xf and Yf are the functions of
the amplitude parameters of final state f, that is A, D, D0,
sP, and sV , à la Table III, viz.

Y ¼ YðD; sP; sVÞ; ð38Þ

X ¼ XðA;D0; sP; sVÞeiϕ: ð39Þ

By virtue of Eqs. (23) and (25), sP ¼ sin θP and
sV ¼ sin θV , where θP and θV are respectively the mixing
angle of pseudoscalar meson between η and η0, and that of
vector meson between ϕ and ω. The concrete form of X or
Y depends on the decay mode, as examples, for ρπ final
state, Xρπ ¼ A −D0=

ffiffiffi
3

p
and Yρπ ¼ D=

ffiffiffi
3

p
, while for the

ωπ0 final state, Xωπ0 ¼ 0 and Yωπ0 ¼ D ·
ffiffiffi
3

p
· c−γV , accord-

ing to the parametrization form in Table III. In principle, the
parameters A,D, andD0 could be complex arguments, each
with a magnitude together with a phase. Conventionally, it
is assumed that there is not relative phases among the
strong-originated amplitudes A, D0, and the sole phase
[denoted by ϕ in Eq. (39)] is between the strong and
electromagnetic interactions, that is between X and Y, as
indicated in Eqs. (38) and (39), where A, D, and D0 are
actually treated as real numbers.

B. Observed section

In an eþe− collision, the Born order cross section is
modified by the initial state radiation in the way [26],

σr:c:ðsÞ ¼
Zxm

0

dxFðx; sÞ σBornðsð1 − xÞÞ
j1 − Πðsð1 − xÞÞj2 ; ð40Þ

where xm ¼ 1 − s0=s. Fðx; sÞ is the radiative function been
calculated to an accuracy of 0.1% [26–28], and ΠðsÞ is the
vacuum polarization factor. In the upper limit of the
integration,

ffiffiffiffi
s0

p
is the experimentally required minimum

invariant mass of the final particles. If xm ¼ 1, it corre-
sponds to no requirement for invariant mass; if xm ¼ 0.2, it
corresponds to invariant mass cut of 3.3 GeV for ψ 0
resonance. The concrete value of xm should be determined
by the cut of invariant mass, which is adopted in actual
event selection.
By convention, Γee has the QED vacuum polarization in

its definition [29,30]. Here, it is natural to extend this
convention to the partial widths of other pure electromag-
netic decays, that is

Γf ¼ Γ̃eeq3f
M

jF ðM2Þj2; ð41Þ

where

Γ̃ee ≡ Γee

j1 − ΠðM2Þj2

with the vacuum polarization effect included.
The eþe− collider has a finite energy resolution, which is

much wider than the intrinsic width of narrow resonances
such as ψ 0 and J=ψ [31,32]. Such an energy resolution is
usually a Gaussian distribution [33],

GðW;W0Þ ¼ 1ffiffiffiffiffiffi
2π

p
Δ
e−

ðW−W0Þ2
2Δ2 ;

whereW ¼ ffiffiffi
s

p
and Δ, a function of energy, is the standard

deviation of Gaussian distribution. The experimentally
observed cross section is the radiative corrected cross
section folded with the energy resolution function,

σobsðWÞ ¼
Z∞

0

dW0σr:c:ðW0ÞGðW0;WÞ: ð42Þ

In fact, as pointed out in Ref. [22], the radiative
correction and the energy spread of the collider are two
important factors, both of which reduce the height of the
resonance and shift the position of the maximum cross
section. Although the ISR are the same for all eþe−
experiments, the energy spread is quite different for differ-
ent accelerators, even different for the same accelerator at
different running periods. As an example, for the CLEO
data used in this paper, the energy spread varies due to
different accelerator lattices [34]: one (for CLEO III
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detector) with a single wiggler magnet and a center-of-mass
energy spread Δ ¼ 1.5 MeV, the other (for CLEOc detec-
tor) with the first half of its full complement (12) of wiggler
magnets and Δ ¼ 2.3 MeV. The two Δ’s lead to two
maximum total cross sections 602 nb and 416 nb, respec-
tively. All these subtle effects must be taken into account in
data analysis. In the following analysis, all data are
assumed to be taken at the energy point, which yields
the maximum inclusive hadron cross sections instead of the
nominal resonance mass [20,22]. Besides the factors
considered above, the resonance parameters can also affect
the evaluation results. Since the present central values of
resonance parameters can be obviously distinct from those
of some time before, the calculated maximum inclusive
hadron cross sections will be consequently different. In
order to ensure the relation Ntot ¼ σmax · L, some adjust-
ments are mandatory. The principle is as follows: if the
luminosity is available, the energy spread will be tuned to
give a consistent maximum cross section; otherwise, the
effective luminosity is evaluated by the relation L ¼
Ntot=σmax according to the corresponding accelerator
parameters. All relevant experimental details are summa-
rized in Table IV, which are crucial for the following data
analysis. At last, the resonance parameters adopted in this
paper for J=ψ and ψ 0 are respectively [19],

MR ¼ 3096.900� 0.006 MeV;

Γt ¼ 92.9� 2.8 keV;

Γee ¼ 5.53� 0.10 keV; ð43Þ

and

MR ¼ 3686.10� 0.06 MeV;

Γt ¼ 294� 8 keV;

Γee ¼ 2.33� 0.04 keV: ð44Þ

IV. DATA ANALYSIS

The Standard Model mainly consists of two parts. One is
the Salam-Weinberg model that depicts the electroweak
interaction, which can usually accommodate an accurate
enough evaluation for certain processes. Another part is
QCD, the validity of which at nonperturbative regime needs
more experimental guidance. The production and decay of
charmonium states benefit such a study.
As one of the important and interesting steps, it is a good

start point to study the relative phase between the strong
and electromagnetic (EM) interaction amplitudes, which
provides us a new viewpoint to explore the quarkonium
decay dynamics and profound our understanding on QCD.
Studies have been carried out for many J=ψ and ψ 0 two-
body mesonic decay modes with various spin parities: 1−0−

[24,45–47], 0−0− [48–52], and 1−1− [52]. These analyses
reveal that there exists a relative orthogonal phase between
the EM and strong decay amplitudes. There is also a
conjecture to claim that such an orthogonal phase is
universal for all quarkonia decays [53,54].
The systematical parametrization scheme of charmo-

nium decay modes facilitates the study of the relative

TABLE IV. Breakdown of experiment conditions correspond to different detectors and accelerators. The energy spread is the effective
one, according to which the calculated maximum cross section satisfies the relation Ntot ¼ σmax · L. The number with star (�) is the
equivalent luminosity calculated by the relation L ¼ Ntot=σmax.

Detector Accelerator
Center of mass

energy spread (MeV)
Data taking

positiona (GeV)
Maximum
section (nb)

Total
event (×106)

Integral
luminosity (pb−1) References

BES II BEPC 1.23 3.68623 712.9 14.0� 0.6 19.72 [35]
1.23 3.65 � � � � � � 6.42 [36]

BESIII BECPII 1.343 3.68624 662.16 107.0� 0.8 161.63 [37]
1.343 3.65 � � � � � � 43.88 [37]
1.318 3.68624 672.74 341.1� 2.1 506.92 [37]
1.324 3.68624 670.17 448.1� 2.9 668.55 [37]
1.324 3.65 � � � � � � 48.8 [38]

CLEO-c CESR 1.68 3.68627 557.23 3.08 5.63 [39]
1.68 3.67 � � � � � � 20.46

BESIII BECPII 1.131 3.097014 2808.63 223.7� 1.4 79.63 [40]
1.131 3.08 � � � � � � 0.282 [41]
0.898 3.096990 3447.87 1086.9� 6.0 315.02 [42]
0.937 3.096993 3320.35 1310.6� 7.0 394.65 [42]
0.937 3.08 � � � � � � 153.8 [38]

BES II BEPC 0.85 3.09700 3631.8 57.7� 2.72 15.89� [43]
0.85 3.07 � � � � � � 2.3473 [44]

DM II DCI 1.98 3.097114 1702.0 8.6� 1.3 5.053� [45]
aThe data taking position is the energy which yield the maximum inclusive hadronic cross section.

SYMMETRY ANALYSIS INVOLVING MESON MIXING FOR … PHYS. REV. D 109, 036036 (2024)

036036-7



phase. In Ref. [12], the phase is measured for various
charmonium decay modes, including ψ 0 and/or J=ψ decay
to octet baryon pair, decuplet baryon pair, decuplet-octet
baryon final state, and pseudoscalar-pseudoscalar meson
final state. In this section, the study is devoted to the vector-
pseudoscalar (VP) meson final state according to the
parametrization of Table III.
Since our analysis involves the experimental details as

indicated by the description in preceding section, some
measurements are not suitable in the following study due to
the lack of necessary information of detectors and/or
accelerators. In addition, at a different energy point, the
status parameters of accelerators are also distinctive, so the
studies of phase angle for ψ 0 and J=ψ decay are performed
separately for the sake of clarity.

A. ψ 0 → VP decay

There are lots of measurements concerned with ψ 0
decaying to VP final states. However, the results of
Ref. [55] were obtained forty years ago, and moreover,
only the upper limits of K��K∓ and ρπ final states were
given based on 1 million ψ 0 events. The results from
Ref. [56] are merely the upper limits for ρπ and γη0 final
states based on 0.2 million ψ 0 events. Therefore, these kinds
of measurements are not adopted in our study. The results
of experimental measurements obtained in this century are
collected in Table V, which are mainly due to CLEO and
BES Collaborations.
First, let us focus on ρπ final state. By virtue of Table V,

the branching fraction of ψ 0 → πþπ−π0 agrees very well for
both CLEO and BES experiments, while that of ψ 0 → ρπ

TABLE V. Experimental data of ψ 0 decaying to VP final states. For branching ratios, the first uncertainties are statistical, and the
second systematic. The peak position is assumed at

ffiffiffi
s

p ¼ 3.686 GeV, while the continuum position is assumed at
ffiffiffi
s

p ¼ 3.65 GeV for
BES and

ffiffiffi
s

p ¼ 3.67 GeV for CLEO. The efficiency indicates the selection efficiency for resonance events. The number in parenthesis is
not quoted in the original literature but is evaluated according to the information given therein.

Mode Nobs (peak) Nobs (continuum) Efficiency (%) Branching ratio (×10−5) Detector

πþπ−π0 7771� 88 220.6� 14.8 30.5 2.14� 0.03þ0.08
−0.07 BESIII [41]

216.7 85 33.5 18.8þ1.6
−1.5 � 2.8 CLEO [39]

260� 19 10.0� 4.2 9.02 18.1� 1.8� 1.9 BESII [57]
ρπ 34.4 47 28.8 2.4þ0.8

−0.7 � 0.2 CLEO [39]
64.12� 6.44 � � � 9.02 5.1� 0.7� 1.1 BESII [57]

K�þK− þ c:c: 7.7 4 16.7 1.3þ1.0
−0.7 � 0.3 CLEO [39]

9.6� 4.2 � � � 7.3 2.9þ1.3
−1.7 � 0.4 BESII [58]

224� 21 (54.7� 7.6) 20.25 3.18� 0.30þ0.26
−0.31 BESIII [59]

K�0K̄0 þ c:c: 34.5 36 8.7 9.2þ2.7
−2.2 � 0.9 CLEO [39]

65.6� 9.0 2.5þ2.6
−1.8 9.7 12.3þ2.4

−2.6 � 1.7 BESII [58]
ϕη 6.6 3 9.4 2.0þ1.5

−1.1 � 0.4 CLEO [39]
16.7� 5.6 � � � 18.9 3.3� 1.1� 0.5 BESII [60]
216� 16 (7.0� 2.5) 33.53 3.14� 0.23� 0.23 BESIII [59]

ϕη0 8.4� 3.7 � � � 8.4 3.1� 1.4� 0.7 BESII [60]
201� 15 221� 15

a 26.8 1.51� 0.16� 0.12 BESIII [61]
ωη < 0 3 10.2 < 1.1 CLEO [39]

< 9.7 � � � 6.3 < 3.1 BESII [60]
ωη0 4.2þ3.2

−2.7 � � � 2.3 3.2þ2.4
−2.0 � 0.7 BESII [60]

ρ0η 28.1 38 19.3 3.0þ1.1
−0.9 � 0.2 CLEO [39]

29.2þ7.5
−6.8 2.3þ2.1

−1.4 (12.06) 1.87þ0.68
−0.62 � 0.18 BESII [62]

ρ0η0 5.4þ3.3
−2.2 < 4.4 (4.92) 1.87þ1.64

−1.11 � 0.33 BESII [62]
(211� 16)b 5.06� 2.01 18.7 1.02� 0.11� 0.24 BESIII [38]
(148� 18)c 5.06� 2.01 18.7 0.569� 0.128� 0.236 BESIII [38]

ϕπ0 < 0 3 15.8 < 0.7 CLEO [39]
< 4.4 � � � 16.1 < 0.4 BESII [60]
< 6 � � � 35.63 < 0.04 BESIII [59]

ωπ0 29.1 55 19.1 2.5þ1.2
−1.0 � 0.2 CLEO [39]

31.2þ7.7
−6.9 7.3þ3.3

−2.7 (5.45) 1.78þ0.67
−0.62 � 0.28 BESII [62]

aThe number of event is obtained at
ffiffiffi
s

p ¼ 3.773 GeV.
bThe solution of destructive interference between ρ and nonresonant components.
cThe solution of constructive interference between ρ and nonresonant components.
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are rather different. As pointed out in Ref. [57], the partial
wave analysis indicates that in all πþπ−π0 events, only 28%
are due to ρπ final state. It seems that the result from BES
takes more information into account. If we adopt the same
proportion of ρπ for CLEO data, the branching fraction
ψ 0 → ρπ is around 5.3 × 10−5, which is fairly consist with
BES result. Therefore, the modified data from CLEO are
adopted in the following analysis; the details are presented
in Table VI.
Second, in Ref. [38] based on 448 million ψ 0 events,

πþπ−η0 final state is studied resorting to the partial wave
analysis technique. The interference between ρ and non-
resonant components is observed. The constructive and
destructive interferences lead to two possible solutions of
branching fraction, that is ð5.69� 1.28� 2.36Þ × 10−6 and
ð1.02� 0.11� 0.24Þ × 10−5, respectively. In the following
fit, two results will be dealt with separately.

Third, for many VP decay modes, there are the inter-
mediate states. Take ϕη mode as an example, ϕ → KþK−

and η → γγ, in calculation of branching ratio, the inter-
mediate decay branching ratios must be taken into con-
sideration. Such kinds of effects could also be included in
the Monte Carlo simulation. Therefore, it must be careful to
figure out how such kinds of effects are taken into account.
Moreover, there are some efficiency correction factors due
to the detector or Monte Carlo simulation, which should
also be considered. In a word, the efficiency in the
following analysis is the one that includes all kinds of
necessary effects and is termed as the effective efficiency.
Fourth, as far as the aforementioned principle is con-

cerned, the energy spread will be tuned to give the
maximum cross section that can satisfy the relation
Ntot ¼ σmax · L. CLEO data [39] are composed of two
sets, one with luminosity 2.74 pb−1 and the other
2.89 pb−1, which are taken with energy spreads 1.5 and
2.3 MeV, respectively. In the following analysis, the data
are treated as one set with total luminosity 5.63 pb−1

corresponding to the effective energy spread 1.68 MeV
as displayed in Table IV. It it worthy of noticing that unlike
branching fraction evaluation, the contribution due to QED
continuum should not be subtracted from the observed
number of events, since the QED contribution is included in
the calculation of observed cross section. At last, since the
error of number of events are needed in analysis, for CLEO
data, the maximum relative statistical error of branching
fraction is used to evaluate the corresponding error of the
number of events.
The chi-square method is adopted to fit the experimental

data. The estimator is constructed as

χ2 ¼
X
i

½Ni − niðη⃗Þ�2
ðδNiÞ2

; ð45Þ

where N with the corresponding error (δN) denotes the
experimentally measured number of events while n the
theoretically calculated number of events,

n ¼ L · σobs · ϵ; ð46Þ

where L is the integrated luminosity, ϵ is the effective
efficiency, and σobs the observed cross section calculated
according to formula (42), which contains the parameters to
be fit, such as A, D, D0, sP, sV , and the phase angle ϕ. All
these parameters are denoted by the parameter vector η⃗ in
Eq. (45). The concrete form is determined by the para-
metrization form in Table III. All observed numbers of
events together with the corresponding efficiencies dis-
played in Table VI are employed as input information. The
data can be grouped into four sets: two from BESIII, one
with total luminosity 668.55 pb−1, the other with luminos-
ity 161.63 pb−1; one from CLEO, with total luminosity
5.63 pb−1, and one from BESII with luminosity

TABLE VI. Data of ψ 0→VP decays from CLEO and BES
experiments. The error is merely the statistical and the efficiency
is the effective one as depicted in the text.

Mode
Energy
(GeV) Nobs

Efficiency
(%) Detector

ρπ 3.686 54.24�11.53 33.5 CLEO [39]
3.686 64.12�6.44 9.02 BESII [57]

K�þK−

þc:c:
3.686 7.7�5.9 16.7 CLEO [39]

3.67 4�3.1 16.7
3.686 9.6�4.2 2.34 BESII [58]
3.686 224�21 6.65 BESIII [59]

K�0K̄0

þc:c:
3.686 34.5�10.1 8.7 CLEO [39]

3.67 36�10.6 8.7
3.686 65.6�9.0 3.11 BESII [58]
3.65 2.5�2.6 3.11

ϕη 3.686 6.6�5.0 9.4 CLEO [39]
3.67 3�2.3 9.4
3.686 16.7�5.6 3.67 BESII [60]
3.686 216�16 6.50 BESIII [59]

ϕη0 3.686 8.4�3.7 1.92 BESII [60]
3.686 201�15 2.21 BESIII [61]

ωη 3.686 4.2�3.2 0.95 BESII [60]
ρ0η 3.686 28.1�10.3 19.3 CLEO [39]

3.67 38�13.9 19.3
3.686 29.2�7.5 4.75 BESII [62]
3.65 2.3�2.1 4.29

ρ0η0 3.686 5.4�3.3 0.86 BESII [62]
3.686 (211�16)a 3.116 BESIII [38]
3.686 (148�18)b 3.116 BESIII [38]
3.65 5.06�2.01 3.116 BESIII [38]

ωπ0 3.686 29.1�14.0 19.1 CLEO [39]
3.67 55�26.4 19.1
3.686 31.2�7.7 4.87 BESII [62]
3.65 7.3�3.3 4.55

aThe destructive solution.
bThe constructive solution.
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19.72 pb−1. There might be some systematic difference
among those datasets, so normalization factors are intro-
duced to take into account these systematic effects.
However, only three relative (relative to the greatest dataset
of BESIII) factors of luminosity are introduced with the
belief that the relative relations of measurements of each
experiment group is more reliable than the corresponding
absolute values. The fit values of three factors fcleo, fbes2,
and fbes3a indicate that there indeed exists certain obvious
differences, the inconsistencies of these experiments from
the highest precision one range from 10% to 70%.
The fitting yields a χ2 of 18.91 with the number of

degrees of freedom being 19 for the destructive inference
case,

ϕ ¼ −131.55°� 13.05°;

A ¼ 0.577� 0.053;

D ¼ 0.334� 0.026;

D0 ¼ −0.025� 0.078;

sP ¼ −0.277� 0.055;

θP ¼ −16.10°;

sV ¼ 0.279� 0.195;

θV ¼ 16.19°;

fcleo ¼ 0.937� 0.167;

fbes2 ¼ 1.277� 0.208;

fbes3a ¼ 1.361� 0.252; ð47Þ

and a χ2 of 15.82 with the number of degrees of freedom
being 19 for the constructive inference case,

ϕ ¼ −144.31°� 20.93°;

A ¼ 0.545� 0.047;

D ¼ 0.300� 0.027;

D0 ¼ −0.030� 0.068;

sP ¼ −0.307� 0.058;

θP ¼ −17.88°;

sV ¼ 0.386� 0.221;

θV ¼ 22.73°;

fcleo ¼ 1.141� 0.220;

fbes2 ¼ 1.516� 0.264;

fbes3a ¼ 1.703� 0.364; ð48Þ

where θα ¼ arcsin sα ðα ¼ P; VÞ.
The scan for the parameter ϕ displays merely one

minimum, which is a rather uncommon case for multiple
solution theory. When fitting cross sections with several

resonances or interfering background and resonances, one
usually obtains multiple solutions of parameters with equal
fitting quality. Such a phenomenon was firstly noticed
experimentally [63,64], then some studies are performed
from a mathematical point of view [65–68]. Especially in
Ref. [68], the source of multiple solutions for a combina-
tion of several resonances or interfering background and
resonances is found by analyzing the mathematical struc-
ture of the Breit-Wigner function. It is proved that there are
exactly 2n−1 fitting solutions with equal quality for n
amplitudes, and the multiplicity of the interfering back-
ground function and resonance amplitudes depends on
zeros of the amplitudes in the complex plane. Our study
involves the interference between strong and electromag-
netic amplitudes, corresponding to n ¼ 2 case; therefore, it
is expected that there are two solutions for the phase angle
ϕ. For the present fit result, we are not sure if this is the
special feature of ψ 0 → VP decay, or the current data are
not accurate enough to differentiate two solutions that are
close to each other.
Besides the fit for all data in Table VI, we also perform

the fit for part of it. In the light of parametrization of
Table III, it is obvious that ρ0η, ρ0η0, ϕπ0, and ωπ0 are only
concerned with D, sP, and sV ; therefore, the fit of the data
relevant to these final states can be used to determine the
three parameters. Based on the information of Table VI
related to ρ0η, ρ0η0, and ωπ0 final states, the fitting yields a
χ2 of 7.08 with the number of degrees of freedom being 8
for the destructive inference case,

D ¼ 0.369� 0.023;

sP ¼ −0.335� 0.044;

θP ¼ −19.57°;

sV ¼ 0.853� 0.136;

θV ¼ 58.54°; ð49Þ

and a χ2 of 4.68 with the number of degrees of freedom
being 8 for the constructive inference case,

D ¼ 0.351� 0.025;

sP ¼ −0.405� 0.044;

θP ¼ −23.90°;

sV ¼ 0.342� 0.400;

θV ¼ 20.02°: ð50Þ

It can be seen that the fit value of θP is marginally
consistent with the overall fit, which means that the value
of θP is dominantly determined by ρ0η and ρ0η0 final states.
On the contrary, since only the data of ωπ0 final state are
available, the fluctuation of fit value of θV is fairly
prominent. Anyway, if the precise measurements of ρ0η,
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ρ0η0, ϕπ0, and ωπ0 final states can be obtained, the mixing
angle of θP and θV is expected to be determined definitely.

B. J=ψ → VP decay

For J=ψ decaying to the VP final state, there are lots of
experimental results, some of which are summarized in
Table VII. However, a few of measurements were obtained
forty years ago with low statistic samples. In Refs. [69,70],
the branching fraction of ρπ is measured to be ð1.3�
0.3Þ × 10−2 and ð1.6� 0.4Þ × 10−2 based on 50 and 84
thousand J=ψ events, respectively. In Refs. [55,71], the
branching fraction of ρπ is measured to be ð1.3� 0.3Þ ×
10−2 and ð1.0� 0.2Þ × 10−2 based on 0.4 and 0.87 million
J=ψ events, respectively. In Ref. [72], the study is mainly
focused on J=ψ radiative decay into ππγ and KKγ. With
1.71 million J=ψ events, the branching fraction of ρπ is

merely obtained as a consistency check. These kinds of
measurements involving ρπ final state are excluded from
the following analysis. The measurements of J=ψ →
K�þK− þ c:c: from Ref. [55], J=ψ → ϕπ0 from
Ref. [73], J=ψ → ρ�π∓; K��K∓ fromRef. [74], and J=ψ →
K�þK− þ c:c:, K�0K̄0 þ c:c: from Ref. [75] are not adopted
either due to low statistic.
Both Refs. [46] and [47] made a systematical measure-

ment for J=ψ decaying into VP final state. The latter data,
consisting of 5.8 × 106 produced J=ψ ’s, represent a two-
fold increase over the former data (2.7 × 106); therefore,
the better accuracy is realized in the latter analysis.
Although all VP channels, viz., ρπ, ρ0η, ρ0η0, ωπ0, ωη,
ωη0, ϕπ0, ϕη, ϕη0, K�þK− þ c:c:, and K�0K̄0 þ c:c:, are
measured, the number of events and the corresponding
efficiencies are not provided, which leads to impossibility
to include these results in this analysis.

TABLE VII. Experimental data of J=ψ decaying to VP final states. For branching ratios, the first uncertainties are
statistical, and the second systematic. The peak position is assumed at

ffiffiffi
s

p ¼ 3.097 GeV, while the continuum
position is assumed at

ffiffiffi
s

p ¼ 3.07 or
ffiffiffi
s

p ¼ 3.08 GeV for BES measurement. The effective efficiency is presented
and the one with star (�) is evaluated by virtue of the observed number of events Nobs, the total number of resonance
events, and the corresponding of branching fraction. The symbol “n:g:b:” indicates that the continuum background
is negligible.

Mode Nobs (peak) Nobs (continuum) Efficiency (%) Branching ratio (×10−3) Detector

πþπ−π0 1849852� 1360 31.0� 5.6 38.13 21.37� 0.04þ0.58
−0.56 BESIII [41]

219691.0� 503.0 17.83 21.84� 0.05� 2.01 BESII [76]
166 2.68 15.0� 2.0 MARKII [55]

ρπ 149.7 2.68 13.0� 3.0 MARKII [55]
543.0� 105.6 6.08 10� 2 DESY-H. [71]

K�þK− þ c:c: 2285.0� 43.1 5.814� 4.57� 0.17� 0.70 DM2 [45]
24 2.13 2.6� 0.8 MARKII [55]

K�0K̄0 þ c:c: 1192.0� 39.1 3.500� 3.96� 0.15� 0.60 DM2 [45]
ϕη 346.0� 21.2 6.286� 0.64� 0.04� 0.11 DM2 [45]

2418.0� 65.2 4.667� 0.898� 0.024� 0.089 BESII [73]
ϕη0 167.0� 13.5 4.736� 0.41� 0.03� 0.08 DM2 [45]

728.0� 40.5 2.311� 0.546� 0.031� 0.056 BESII [73]
31321� 201 4.690 0.510� 0.003� 0.032 BESIII [77]

ωη 378.0� 26.9 3.074� 1.43� 0.10� 0.21 DM2 [45]
4927.0� 91.0 n:g:b: 3.631� 2.352� 0.273 BESII [44]

ωη0 6.0� 2.5 0.388� 0.18þ0.10
−0.08 � 0.03 DM2 [45]

218.0� 32.8 n:g:b: 1.672� 0.226� 0.043 BESII [44]
137� 20 n:g:b: 0.050 0.208� 0.030� 0.014 BESIII [38]

ρ0η 299.0� 34.0 17.921� 0.194� 0.017� 0.029 DM2 [45]
ρ0η0 19.2� 7.5 2.690� 0.083� 0.030� 0.012 DM2 [45]

3621� 83 57.13� 11.03 3.381 0.0790� 0.0019� 0.0049 BESIII [38]
ϕπ0 24 8.08 < 6.4 × 10−3 (90% C.L.) BESII [73]

(838.5� 45.8)a n:g:b: 21.79 ð2.94� 0.16� 0.16Þ × 10−3 BESIII [78]
(35.3� 9.3)b n:g:b: 21.79 ð1.24� 0.33� 0.30Þ × 10−4 BESIII [78]

ωπ0 222.0� 19.0 7.171� 0.360� 0.028� 0.054 DM2 [45]
2090.0� 67.3 6.88� 2.85 6.57 0.538� 0.012� 0.065 BESII [44]

aThe solution of constructive interference between J=ψ → ϕπ0 and J=ψ → KþK−π0 decays.
bThe solution of destructive interference between J=ψ → ϕπ0 and J=ψ → KþK−π0 decays.
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In addition, in Ref. [79], cross sections of ρπ final state are
measured at 29 different energy points covering a 40 MeV
interval spanning the J=ψ resonance. Based on this data
sample, which corresponds to a total integrated luminosity of
238 nb−1, the branching fraction is determined to be
ð1.21� 0.20Þ%. Such information is too distinctive to be
combined with those in Table VII. In Ref. [80], resorting to
partial wave analysis technique measured is the branching
fraction of J=ψ → K�þK− þ c:c:, whose feature is too
different to be merged with other information. In both
Refs. [81] and [82], the initial state radiation technique is
used to obtain the branching fractions of J=ψ → πþπ−π0 and
J=ψ → ωη. Such kinds of results can not be utilized in the
present scheme of analysis.
Based on a sample of 1.31 billion J=ψ events [78], the

KþK− mass spectrum is scrutinized, and the observation is a
clear structure due to the interference between J=ψ → ϕπ0

and J=ψ → KþK−π0 decays. Such a interference yields two
possible solutions of branching fraction, that is ð2.94�
0.16�0.16Þ×10−6 and ð1.24�0.33�0.30Þ×10−7, which
correspond to the constructive and destructive interferences,
respectively. In the following fit, two resultswill be dealtwith
separately.
The minimization estimator for J=ψ is similar to that of

ψ 0 as defined in Eq. (45) and the fit yields

ϕ ¼ −66.52°� 1.82°; or þ 71.42°� 1.82°;

A ¼ 2.622� 0.011; or 2.697� 0.011;

D ¼ 0.523� 0.006; or 0.538� 0.006;

D0 ¼ −0.475� 0.017; or − 0.489� 0.017;

sP ¼ −0.341� 0.004; or − 0.341� 0.004;

θP ¼ −20.17°; or − 19.96°;

sV ¼ 0.557� 0.002; or 0.557� 0.002;

θV ¼ 33.86°; or 33.82°;

fdm2 ¼ 0.624� 0.011; or 0.590� 0.010;

fbes2 ¼ 1.246� 0.010; or 1.177� 0.010;

fbes3a ¼ 0.613� 0.010; or 0.579� 0.009;

fbes3b ¼ 1.305� 0.010; or 1.233� 0.010; ð51Þ

with χ2 ¼ 4302 for the destructive interference solution,
and

ϕ ¼ −66.92°� 1.77°; or þ 71.82°� 1.77°;

A ¼ 2.633� 0.011; or 2.713� 0.011;

D ¼ 0.536� 0.006; or 0.552� 0.006;

D0 ¼ −0.501� 0.017; or − 0.516� 0.018;

sP ¼ −0.397� 0.004; or − 0.397� 0.004;

θP ¼ −23.38°; or − 23.38°;

sV ¼ 0.492� 0.002; or 0.492� 0.002;

θV ¼ 29.47°; or 29.47°;

fdm2 ¼ 0.620� 0.011; or 0.584� 0.010;

fbes2 ¼ 1.224� 0.010; or 1.152� 0.010;

fbes3a ¼ 0.664� 0.011; or 0.625� 0.010;

fbes3b ¼ 1.282� 0.010; or 1.207� 0.010; ð52Þ

with χ2 ¼ 4200 for the constructive interference solution,
where θα ¼ arcsin sαðα ¼ P;VÞ.
From a pure viewpoint of a hypothesis test [83,84], the

ratio of the chi square value to the number of degrees of
freedom should approximate one for a good fit, but the values
of χ2 for fitting results in Eqs. (51) and (52) is horrendously
large. Since the accuracy of J=ψ data is generally higher than
that of ψ 0, the discrepancies between the different experi-
ments become much more prominent. The data summarized
in Table VI can be grouped into four sets: two from BESIII,
one with total luminosity 394.65 pb−1, the other with
luminosity 79.63 pb−1; one from BESII with luminosity
15.89 pb−1 and one from MD2, with total luminosity
5.053 pb−1. Four normalization factors of luminosity are
introduced to alleviate the possible inconsistency among the
data from different experiment groups. Nevertheless, such a
kind of treatment is obviously not sufficient enough so that
certain great deviations still exist which lead to huge chi
square value.
In order to figure out the effect due to the discrepancy of

different experiments on the value of χ2, the fits for
different datasets are performed respectively, viz., DM2
data, DM2 and BESII data, DM2 and BESIII data, and all
dataset; the results are tabulated in Table VIII. The value of
χ2 is minimum for a sole experiment dataset (DM2 data),
and the values increase when more experiment datasets are
fit together (DM2 and BESII datasets or DM2 and BESIII
datasets). It can be seen when all data are fit together, the
value of χ2=nd enhances almost one order of magnitude.
Moreover, after some filtration trial it is found that the
inconsistency of the measurement of ψ 0 → ωη decay from
BESII [44] from the other measurements is rather obvi-
ously. The fit is performed for all data except for this one;
the results are presented in the second column of
Table VIII. The comparison of chi squares of the first
two columns indicates that the sole measurement of ωη
channel from BESII contributes more than half of chi
square value, which seriously deteriorates the χ2 probability
of the fit. If we compare the two branching fractions from
DM2 [45] and BESII [44], that is ð1.43� 0.10� 0.21Þ ×
10−3 and ð2.352� 0.273Þ × 10−3, the former is only about
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the half of the latter. The great discrepancy renders huge chi
square, which can only be settled down by further more
accurate experimental measurement.
Of course, there is a factor that has been neglected for

data analysis. In the fitting solely considered are the statistic
uncertainties, if the systematic uncertainties are included as
well, it is expected that the chi square could be decreased to
one half or one third of the present value. As a matter of
fact, we also performed a fit with increased error of ωη
channel. If 4927.0� 571.0 instead of 4927.0� 91.0 is
used, χ2 ¼ 2055 instead of χ2 ¼ 4302. Anyway, even so
the value of χ2 is still too large to be satisfied from a point of
statistical view.
It also exists the possibility that the present parametriza-

tion form is not exquisite enough to describe all data
perfectly, but only more precise and consistent experimen-
tal data can furnish quantitative evidence for or against the
present phenomenology model and pin down the problem
we come across here. The absence of a set of ideally
experimental data is keenly felt.
Last but not least, we also perform the fit for data related

to ρ0η, ρ0η0, ωπ0, and ϕπ0 final states, the fitting yields a χ2
of 3.91 with the number of degrees of freedom being 3 for
the destructive interference case,

D ¼ 0.404� 0.037;

sP ¼ −0.288� 0.068;

θP ¼ −16.73°;

sV ¼ 0.595� 0.003;

θV ¼ 36.50°;

fdm2 ¼ 1.096� 0.248;

fbes2 ¼ 1.773� 0.329; ð53Þ

and a χ2 of 3.97 with the number of degrees of freedom
being 3 for the constructive interference case,

D ¼ 0.403� 0.036;

sP ¼ −0.285� 0.068;

θP ¼ −16.57°;

sV ¼ 0.660� 0.010;

θV ¼ 41.30°;

fdm2 ¼ 1.112� 0.252;

fbes2 ¼ 1.805� 0.337: ð54Þ

For the destructive interference case, the fit values of θP and
θV are marginally consist with those of overall fit, which
means that these four channels are necessary, sufficient, and
efficient for measurement of the mixing angles of pseu-
doscalar and vector mesons.

V. DISCUSSION

Besides the cross section approach (CSA) used to
analyze the data, there is another way to deal with the
information involving ψ 0; J=ψ → VP decay, which is call
branching ratio method (BRM). The idea is fairly simple,
the so-called “reduced branching ratio” is related to the
square of amplitude directly [5,52], that is

B̃ðψ → fÞ ¼ jXf þ Yfj2; ð55Þ

where Xf and Yf are defined in Eqs. (38) and (39) for a
certain VP final state f, and the reduced branching ratio is
defined as follows:

TABLE VIII. Comparison of various fitting results for the destructive interference solution data and positive angle case. The data with
star (⋆) exclude the measurement of ψ 0 → ωη decay from BESII [44]. nd indicates the degree of freedom.

η⃗ & χ2 All data All data⋆ DM2 data DM2 and BESII data⋆ DM2 and BESIII data

χ2 4302.444 1962.792 91.254 345.825 239.325
χ2=nd 330.6 163.6 45.63 49.40 29.92
ϕ ð71.42� 1.82Þ° ð64.47� 1.91Þ° ð70.92� 3.43Þ° ð61.60� 3.46Þ° ð69.52� 3.18Þ°
A 2.697� 0.011 2.631� 0.011 2.013� 0.209 2.460� 0.033 2.914� 0.018
D 0.538� 0.006 0.562� 0.006 0.395� 0.044 0.497� 0.010 0.690� 0.017
D0 −0.489� 0.017 −0.638� 0.018 −0.223� 0.049 −0.679� 0.032 0.171� 0.069
sP −0.341� 0.004 −0.472� 0.005 −0.530� 0.046 −0.755� 0.010 −0.208� 0.028
θP −19.96° −28.17° −32.76° −48.98° −11.98°
sV 0.557� 0.002 0.557� 0.001 0.308� 0.045 0.221� 0.010 0.657� 0.025
θV 33.82° 33.85° 17.94° 12.76° 41.10°
fdm2 0.590� 0.010 0.603� 0.011 1.020� 0.212 0.698� 0.022 0.422� 0.014
fbes2 1.177� 0.010 1.166� 0.010 1.295� 0.034
fbes3a 0.579� 0.009 0.686� 0.015 0.281� 0.012
fbes3b 1.233� 0.010 1.864� 0.01− 1.326� 0.011
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B̃ðψ → fÞ ¼ Bðψ → fÞ
q3f

; ð56Þ

where Bðψ → fÞ is the branching ratio of ψðψ ¼ J=ψ ;ψ 0Þ
decays to the final state f, and qf defined in Eq. (32), is the
momentum of either particle in the center of mass system
for two-body decay. According to the formula (55) together
with the information in Table IX, the fits are performed and
the fitting results are displayed in Table X.
Comparing results of two kinds of fits, for ψ 0 case, the

values of χ2 are both reasonable, merely one solution is
found. Some results are similar such as A, D, sP, while
others are different such as D0, sV . For J=ψ case, the
similarity is much worse, especially for the destruction
solution; only one minimum instead of two is found for the
phase angle. As a matter of fact, since the branching ratios
herein are averaged results that combine the various
measurements due to many experiments, such an admixture

blurs the discrepancy between distinctive experimental
analysis. Therefore, the following discussion is based on
the results due to CSA instead of BRM.
Table XI summarizes various fitting results of phase

angle for ψ 0 and J=ψ two-body decays. The most excep-
tional solution is due to ψ 0 → VP decay. Such a situation
can not help reminding of the famous “ρπ puzzle” in
charmonium decays.
Theoretically, the OZI (Okubo-Zweig-Iizuka) [86] sup-

pressed decays of J=ψ and ψ 0 to hadrons are via three
gluons or a photon, in either case, the perturbative QCD
(pQCD) provides a relation [87],

Qh ¼
Bψ 0→h

BJ=ψ→h
¼ Bψ 0→eþe−

BJ=ψ→eþe−
≈ ð13.28� 0.29Þ%; ð57Þ

where Bψ 0→eþe− and BJ=ψ→eþe− are taken from PDG2022
[85]. This relation is expected to be held to a reasonable

TABLE IX. Branching ratios of ψ 0; J=ψ → VP extracted from PDG2022 [85]. Qh is defined in Eq. (57) and
calculated by the ratio of Bðψ 0 → VPÞ to BðJ=ψ → VPÞ. ðK�þK−Þc:c: and ðK�0K̄0Þc:c: indicate K�þK− þ c:c: and
K�0K̄0 þ c:c: respectively.

Mode Bðψ 0 → VPÞ (×10−5) BðJ=ψ → VPÞ (×10−3) Qh (%)

ρπ 3.2� 1.2 16.9� 1.5 0.2� 0.1
ðK�þK−Þc:c: 2.9� 0.4 6.0� 1.0 1.1� 0.2
ðK�0K̄0Þc:c: 10.9� 2.0 4.2� 0.4 2.6� 0.5
ϕη 3.10� 0.31 0.74� 0.08 4.2� 0.6
ϕη0 1.54� 0.20 0.46� 0.05 3.3� 0.6
ωη < 1.1 1.74� 0.20 < 0.632
ωη0 3.2� 2.5 0.189� 0.018 16.9� 13.3
ρ0η 2.2� 0.6 0.193� 0.023 11.4� 3.4
ρ0η0 1.87� 1.67 0.081� 0.008 23.1� 20.7
ωπ0 < 0.004 0.45� 0.05 < 0.0089
ϕπ0 2.1� 0.6 ð2.94� 0.23Þ × 10−3

a ð7.1� 2.1Þ × 102

ð1.24� 0.45Þ × 10−4
b ð1.7� 0.8Þ × 104

aThe constructive solution.
bThe destructive solution.

TABLE X. Fit results of branching ratio method for ψ 0; J=ψ → VP decay. nd:o:f. indicates degree of freedom.

η⃗ & χ2 ψ 0 → VP
J=ψ → VP

Constructive solution Destructive solution

χ2 1.995 184.075 184.075 169.651

nd:o:f. 3 5 5 5

ϕ ð−133.56� 13.54Þ° ð61.65� 31.87Þ° ð−61.65� 20.89Þ° ð−152.18� 44.56Þ°
A 0.887� 0.092 0.796� 0.027 0.796� 0.031 0.714� 0.040
D 0.618� 0.079 −0.192� 0.008 −0.192� 0.008 0.202� 0.007
D0 0.247� 0.166 −0.277� 0.088 −0.277� 0.060 −0.233� 0.071
sP −0.227� 0.074 −0.585� 0.018 −0.585� 0.022 −0.439� 0.051
θP −13.10° −35.84° −35.84° −26.04°
sV 0.029� 0.141 0.493� 0.002 0.493� 0.005 0.594� 0.003
θV 1.64° 29.52° 29.52° 36.44°
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good degree for both inclusive and exclusive decays. The
so-called “ρπ puzzle” is that the prediction by Eq. (57) is
severely violated in the ρπ and several other decay
channels. The first evidence for this effect was found by
Mark-II Collaboration in 1983 [55]. From then on, many
theoretical explanations have been put forth to decipher this
puzzle; refer to the treatise [88] for a detailed review.
From the theoretical point of view, since the Q value is

smaller than the expectation for ρπ, it may be caused either
by enhanced J=ψ or suppressed ψ 0 decay rate. Another
possibility is by both. Then the relevant theoretical spec-
ulations can be classified into three categories:
(1) J=ψ-enhancement hypothesis, which attributes the

small Q value to the enhanced branching fraction of
J=ψ decays [89–98].

(2) ψ 0-suppress hypothesis, which attributes the smallQ
value to the suppressed branching fraction of ψ 0
decays [99–105].

(3) Other hypotheses, which are not included in the
above two categories [106–113].

With more and more experimental data are obtained, many
theoretical explanations have been ruled out, and some still
need to be tested. However, “ρπ puzzle” seems still a puzzle
since no propose can explain all existing experimental data
satisfactorily and naturally. If we scrutinize the Qh values in
Table IX, it can seen that many values are suppressed relative
to the expected value 13.28% while some are enhanced,
a fortiori for ϕπ0 channel, the Qh value is several orders of
magnitude greater than the expectation. Furthermore, the
deviation seems rather arbitrary, no regularity can be found.
At the same time, if we investigate Table XI, it can be seen
that the phase angle for ψ 0 → VP decay is rather abnormal
from the other decays. So the more we think about various
information, more problems spring up. It seems to trigger a
Pandora’s Box of questions:
(1) ψ 0 and J=ψ are both S-state of charmonium; the

decay pattern is similar for some channels but rather

different for the others; the prominent example is
about ρπ final state, and some studies of which have
been performed in Ref. [57]. What is the reason for
such grotesquery situations?

(2) Is the abnormal feature only for VP mode, or for all
VP-like modes, such as SV, SA−, PA−, VT, VAþ,
TA−, and AþA−? (S, P, V, A, and T denote scalar,
pseudoscalar, vector, axial vector, and tensor, re-
spectively; refer to Tables XII and XIII for more
details.)

(3) Does the exceptional phase angle have a connection
with the abnormal Qh value? Is there a profound
rationale for such a connection?

(4) From the viewpoint of phase angle and by virtue of
fit result, the baryonic mode seems more normal
than the mesonic mode. What is the reason for such a
difference?

(5) From the viewpoint of phase angle and by virtue of
fit result, J=ψ decay seems more normal than ψ 0.
What is the reason for such a difference?

(6) Does such a bizarre situation also exist for a
bottomonium decay?

(7) There is a suggestion that ψ 0 is not a pure state but a
mixing of ψð23S1Þ state and ψð13D1Þ. Such a
opinion is adopted to explain the decrease Qh value
for the ρπ channel [105] and the increase Qh value
for the K0

SK
0
L channel [114]. Anyway, could this

suggestion explain decay behaviors for all kinds
of modes?

(8) Glueball was once put forth to explain “ρπ puzzle”
[90–96], but the experimental research is unfavor-
able to the detailed analyses and deductions due to
this kind of scenario. However, the eccentric decay
pattern of the VP mode shown by their various Qh
values indeed implies the peculiar feature of this
mode. The doubt is aggravated by the fitted mixing
angles of θP and θV , none of which is consist with
theoretical expectation. According to mass matrix
analysis, θP ¼ −11.3° or −24.5° and θV ¼ 39.2° or
36.5°, corresponding to the quadratic or linear mass
assumptions, respectively. The deviation from ex-
pectation maybe indicate the admixture of pseudo-
scalar meson with some glueball-like component.
This is an issue need to be studied further.

It is true that a lot of measurements are available now, but
even more precise and systematical measurements are
needed to clarify the dynamics of charmonium decay.

VI. SUMMARY

The flavor-singlet principle, with assuming the flavor
symmetry breaking effects (both strong and electromag-
netic breaking effects) as a special SUð3Þ octet furnishes a
criterion to figure out the effective interaction Hamiltonian
in tensor form for all kinds of two-body final states
decaying from a charmonium resonance. The generalized

TABLE XI. The fit results of phase angle for ψ 0 and J=ψ two-
body decays, some of which are from Ref. [12]. The subscripts d
and c indicate the results for destructive and constructive cases,
respectively.

Decay mode Phase angle ϕ (in degree)

ψ 0 → B8B̄8 −94.59� 1.31 þ85.42� 2.25
J=ψ → B8B̄8 −84.81� 0.70 þ95.19� 0.70
ψ 0 → B10B̄10 −75.51� 4.87 þ104.49� 4.91
J=ψ → B10B̄10 −96.28� 17.23 þ83.27� 11.38
J=ψ → B10B̄8 −89.97� 37.17 þ101.20� 71.87
ψ 0 → PP −58.19� 5.47 þ92.82� 5.62
J=ψ → PP −87.25� 8.60 þ92.14� 8.61
ψ 0 → VP ð−131.55� 13.05Þd

ð−144.31� 20.93Þc
J=ψ → VP ð−66.52� 1.82Þd ðþ71.42� 1.82Þd

ð−66.92� 1.77Þc ðþ71.42� 1.77Þc
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inherentC-parity for a multiplet is introduced, which plays a
crucial role for determining the form of effective
Hamiltonian, especially for mesonic final states. Resorting
to the nonet notion, both octet and singlet representations for
meson description are synthesized together to acquire the
effective Hamiltonian in a concise way, then solving the
meson mixing problem in charmonium decay. As an appli-
cation, by virtue of this scenario, the relative phase between
the strong and electromagnetic amplitudes is measured for
vector-pseudoscalar meson final state; more information
involving the interaction coupling coefficients is obtained,
all of which deepen our understanding of the dynamics of
charmonium decay. Furthermore, the fit results indicate that
the measurements of four final states, that is ρ0η, ρ0η0, ωπ0,
and ϕπ0, are necessary, sufficient, and efficient for the study
of mixing angles of pseudoscalar and vector multiplets.
In the analysis of data samples taken in an eþe− collider,

the details of experimental effects, such as energy spread
and initial state radiative correction are taken into consid-
eration in order to make full advantage of experimental
information and acquire the comprehensive results.
However, the discrepancy between different experimental
measurement leads to large chi square, which is fairly
unfavorable from the statistic viewpoint. The data analysis
of this paper makes it urgent that further more precise and
systematic experimental measurements should be per-
formed based on BESIII colossal data sample of charmo-
nium decay, in order to figure out the unclear issues we
come across here.
By virtue of present analysis, the uniform parametriza-

tion scheme provides a general description for various
kinds of charmonium two-body decays and lays an exten-
sive foundation for more profound dynamics exploration in
the future.
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APPENDIX

This appendix is devoted to two issues. The first one is
about the C-parity transformation of meson octet.
For two meson octets, denoted respectively by O1 and

O2, defined are the following terms, which may be allowed
or forbidden in the effective Hamiltonian:

½O1O2�0 ¼ ðO1ÞijðO2Þji ; ðA1Þ

ð½O1O2�fÞij ¼ ðO1ÞikðO2Þkj − ðO1ÞkjðO2Þik; ðA2Þ

and

ð½O1O2�dÞij ¼ ðO1ÞikðO2Þkj þ ðO1ÞkjðO2Þik
−
2

3
δij · ðO1ÞijðO2Þji : ðA3Þ

The aforementioned generalized inherent C parity for
meson octet is introduced as a criterion for Hamiltonian
terms, and its value (denoted as ηO) is set to be equal to that
of the neutral particle of the corresponding octet. In
Table XII, listed are some observed light mesons that
are classified into distinctive octets. The value of general-
ized C parity is equal to the C parity presented in the table.
A remark is in order here. The physical isoscalars are

mixtures of the SUð3Þ wave function ψ8 and ψ1,

f0 ¼ ψ8 cos θ − ψ1 sin θ;

f ¼ ψ8 sin θ þ ψ1 cos θ; ðA4Þ
where θ is the nonet mixing angle and

ψ8 ¼ ðuūþ dd̄ − 2ss̄Þ=
ffiffiffi
6

p
;

ψ1 ¼ ðuūþ dd̄þ ss̄Þ=
ffiffiffi
3

p
: ðA5Þ

Thesemixing relations are often rewritten to exhibit theuūþ
dd̄ and ss̄ components, which decouple for the “ideal”
mixing angle, such that tan θi ¼ 1=

ffiffiffi
2

p
(or θi ¼ 35.3°).

Defining α ¼ θ þ 54.7°, one obtains the physical isoscalar
in the flavor basis,

TABLE XII. Some meson octet particles. For I ¼ 0 meson, the mixing between singlet and octet always exists.
The f0 and f are mixing states as defined in Eq. (A4) or in Eqs. (A6) and (A7). In addition, K1A and K1B are nearly
equal (45°) mixtures of the K1ð1270Þ and K1ð1400Þ.

I ¼ 1 I ¼ 1=2 I ¼ 0 I ¼ 0

Octet JPC ud̄; ūd, ðdd̄ − uūÞ= ffiffiffi
2

p
us̄; ds̄; d̄s;−ūs f0 f

P 0−þ π K η η0ð958Þ
V 1−− ρð770Þ K�ð892Þ ϕð1020Þ ωð782Þ
A− 1þ− b1ð1235Þ K1B h1ð1380Þ h1ð1170Þ
S 0þþ a0ð1450Þ K�

0ð1430Þ f0ð1710Þ f0ð1370Þ
Aþ 1þþ a1ð1260Þ K1A f1ð1420Þ f1ð1285Þ
T 2þþ a2ð1320Þ K�

2ð1430Þ f02ð1525Þ f2ð1270Þ
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f0 ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ cos α − ss̄ sinα; ðA6Þ

and

f ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ sinαþ ss̄ cosα; ðA7Þ

which is the orthogonal partner of f0 (replace α by α − 90°).
Thus, for idealmixing (αi ¼ 90°),f0 becomes pure ss̄ and the
f pure uūþ dd̄.
Let us return to the C-parity transformation issue. Under

the transformation of the generalized inherent C parity,
Ĉ½O1O2�x → ξx½O1O2�x, where x ¼ 0; d; f, that is ξ0 ¼
þ1, ξd ¼ þ1, ξf ¼ −1. In addition, under C-parity trans-
formation, ĈOi → ηOi

Oi; (i ¼ 1, 2), synthetically,

Ĉ½O1O2�x ¼ ηO1
ηO2

ξx½O1O2�x: ðA8Þ

At the same time for the initial state of ψ

Ĉψ ¼ ηψψ : ðA9Þ

Therefore, the term ½O1O2�x is allowed in the effective
Hamiltonian as long as ηψ ¼ −1 ¼ ηO1

ηO2
ξx. Otherwise,

the term is forbidden. With this criterion, it is easy to figure
out what kind of terms can be presented in the effective
Hamiltonian for various kinds of final states; the results are
summarized in Table XIII.
By virtue of Table XIII, two types of Hamiltonian forms

exist. One type contains both ½O1O2�0 and ½O1O2�d terms,
while the other contains only ½O1O2�f term, that is

HO1O2

eff ¼ g0 · ½O1O2�0þgm · ð½O1O2�dÞ33þge · ð½O1O2�dÞ11;
ðA10Þ

or

HO1O2

eff ¼ gm · ð½O1O2�fÞ33 þ ge · ð½O1O2�fÞ11: ðA11Þ

Comparing with Eqs. (21) and (22), Eq. (A10) can be
called the VP-type Hamiltonian, while Eq. (A11), the PP-
type Hamiltonian. For the most general case of PP-type
Hamiltonian, the mesons of final state may belong to
distinctive octets, take PT mode as an example, by virtue
of Eq. (A11), the parametrization form is obtained and
displayed in Table XIV.
The second issue of this appendix is about another

approach to derive the effective Hamiltonian.
Besides the nonet approach, the singlet component can

be treated separately. Corresponding to the matrices in
Eqs. (8) and (9), the singlet matrices are introduced as
follows:

SV ¼

0
B@

ω1=
ffiffiffi
3

p

ω1=
ffiffiffi
3

p

ω1=
ffiffiffi
3

p

1
CA; ðA12Þ

and

SP ¼

0
B@

η1=
ffiffiffi
3

p

η1=
ffiffiffi
3

p

η1=
ffiffiffi
3

p

1
CA: ðA13Þ

Therefore, besides the octet-octet effective Hamiltonian, it
also has the singlet-singlet effective Hamiltonian and the
octet-singlet effective Hamiltonian, as listed in the follow-
ing equations:

H88
eff ¼ g880 ½VP�0 þ g88m ð½VP�dÞ33 þ g88e ð½VP�dÞ11;

H11
eff ¼ g110 ½SVSP�0 þ g11m ð½SVSP�dÞ33 þ g11e ð½SVSP�dÞ11;

H18
eff ¼ g180 ½SVP�0 þ g18m ð½SVP�dÞ33 þ g18e ð½SVP�dÞ11;

H81
eff ¼ g810 ½VSP�0 þ g81m ð½VSP�dÞ33 þ g81e ð½VSP�dÞ11: ðA14Þ

The calculation results are displayed in Table XV. If the
mixing between octet and singlet are taken into account
according to Eqs. (24) and (26), the results are changed into

TABLE XIII. The determination of interaction terms in the
effective Hamiltonian. The symbol ½O1O2�x is shorthand for
½O1O2�0; ½O1O2�d, and ½O1O2�f. Herein there are essentially two
types of Hamiltonian forms, that is “yyn,” which means both
½O1O2�0 and ½O1O2�d terms are allowed in the effective Ham-
iltonian, and “nny,” which means only ½O1O2�f term is allowed.
The symbol “y” indicates the allowed term, while “n” indicates
forbidden.O1 andO2 denote octets S; P; V; T; Aþ, and A−, which
are shown in Table XII. The superscript of symbol indicates the
generalized inherent C-parity of corresponding octet.

½O1O2�x Sþ Pþ V− Tþ Aþ A−

Sþ nny nny yyn nny nny yyn
Pþ nny yyn nny nny yyn
V− nny yyn yyn nny
Tþ nny nny yyn
Aþ nny yyn
A− nny

TABLE XIV. Amplitude parametrization form for decays of the
ψ 0 or J=ψ into PT final states. The table can also be used for other
similar decays by appropriate change in labeling.

Final state Parametrization form

πþa−2 =π
−aþ2 �ge

KþK⋆−
2 =K−K⋆þ

2
∓gm �ge

K0K̄⋆0
2 =K̄0K⋆0

2
∓gm
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Table XVI. If replacing sV and cV with
ffiffiffiffiffiffiffiffi
1=3

p
and

ffiffiffiffiffiffiffiffi
2=3

p
,

respectively, the Table II in Ref. [5] will be recovered. It is
should be noted that for gm, there is an overall normalized
factor −2=

ffiffiffi
3

p
between our calculation and that of Ref. [5].

Furthermore, if we introduce a new angle and define
sin θγ ≡

ffiffiffiffiffiffiffiffi
1=3

p
and cos θγ ≡

ffiffiffiffiffiffiffiffi
2=3

p
, the more compact

form of Table XVI can be obtained as shown in
Table III.

TABLE XV. Amplitude parametrization form for decays of the ψ 0 or J=ψ into VP final states. The results are based on the effective
Hamiltonian in Eq. (A14). With the assumptions in the last three columns, the results are the same as those due to the nonet approach.

States g880 g88m g88e g110 g11m g11e g180 g18m g18e g810 g81m g81e g880 ¼ g110 g88m ¼ g18m ¼ g81m g88e ¼ g18e ¼ g81e

ρ0π0 1 −2=3 1=3 0 0 0 0 0 0 0 0 0 1 −2=3 1=3
ρþπ− 1 −2=3 1=3 0 0 0 0 0 0 0 0 0 1 −2=3 1=3
ρþπ− 1 −2=3 1=3 0 0 0 0 0 0 0 0 0 1 −2=3 1=3
K�þK− 1 1=3 1=3 0 0 0 0 0 0 0 0 0 1 1=3 1=3
K�−Kþ 1 1=3 1=3 0 0 0 0 0 0 0 0 0 1 1=3 1=3
K�0K̄0 1 1=3 −2=3 0 0 0 0 0 0 0 0 0 1 1=3 −2=3
K̄�0K0 1 1=3 −2=3 0 0 0 0 0 0 0 0 0 1 1=3 −2=3
ω8η8 1 2=3 −1=3 0 0 0 0 0 0 0 0 0 1 2=3 −1=3
ω8π0 0 0 1=

ffiffiffi
3

p
0 0 0 0 0 0 0 0 0 0 0 1=

ffiffiffi
3

p
ρ0η8 0 0 1=

ffiffiffi
3

p
0 0 0 0 0 0 0 0 0 0 0 1=

ffiffiffi
3

p
ω1η1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
ω1η8 0 0 0 0 0 0 0 −2

ffiffiffi
2

p
=3

ffiffiffi
2

p
=3 0 0 0 0 −2

ffiffiffi
2

p
=3

ffiffiffi
2

p
=3

ω1π0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffi
2=3

p
0 0 0 0 0

ffiffiffiffiffiffiffiffi
2=3

p
ω8η1 0 0 0 0 0 0 0 0 0 0 −2

ffiffiffi
2

p
=3

ffiffiffi
2

p
=3 0 −2

ffiffiffi
2

p
=3

ffiffiffi
2

p
=3

ρ0η1 0 0 0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffi
2=3

p
0 0

ffiffiffiffiffiffiffiffi
2=3

p

TABLE XVI. Amplitude parametrization form for decays of the ψ 0 or J=ψ into VP final states. The mixing between octet and singlet
are taken into account according to Eqs. (24) and (26). The shorthand symbols are defined as sα ¼ sin θα and cα ¼ cos θα (α ¼ V, P).

Decay mode Coupling constant

ψ → X g880 g110 gm ge

ρ0π0 1 0 −2=3 1=3
ρþπ− 1 0 −2=3 1=3
ρþπ− 1 0 −2=3 1=3
K�þK− 1 0 1=3 1=3
K�−Kþ 1 0 1=3 1=3
K�0K̄0 1 0 1=3 −2=3
K̄�0K0 1 0 1=3 −2=3
ϕη cVcP sVsP 2

3
cVcP þ 2

ffiffi
2

p
3
ðcVsP þ sVcPÞ − 1

3
cVcP −

ffiffi
2

p
3
ðcVsP þ sVcPÞ

ϕη0 cVsP −sVcP 2
3
cVsP − 2

ffiffi
2

p
3
ðcVcP − sVsPÞ − 1

3
cVsP þ

ffiffi
2

p
3
ðcVcP − sVsPÞ

ωη sVcP −cVsP 2
3
sVcP − 2

ffiffi
2

p
3
ðcVcP − sVsPÞ − 1

3
sVcP þ

ffiffi
2

p
3
ðcVcP − sVsPÞ

ωη0 sVsP cVcP 2
3
sVsP − 2

ffiffi
2

p
3
ðcVsP þ sVcPÞ − 1

3
sVsP þ

ffiffi
2

p
3
ðcVsP þ sVcPÞ

ρ0η 0 0 0
ffiffi
1
3

q
cP −

ffiffi
2
3

q
sP

ρ0η0 0 0 0
ffiffi
1
3

q
sP þ

ffiffi
2
3

q
cP

ϕπ0 0 0 0
ffiffi
1
3

q
cV −

ffiffi
2
3

q
sV

ωπ0 0 0 0
ffiffi
1
3

q
sV þ

ffiffi
2
3

q
cV
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