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Thermal behavior of effective, chiral condensate-dependent UAð1Þ anomaly couplings is investigated
using the functional renormalization group approach in the Nf ¼ 3 flavor meson model. We derive flow
equations for anomaly couplings that arise from instantons of higher topological charge, dependent also on
the chiral condensate. These flow equations are solved numerically for the jQj ¼ 1, 2 topological sectors at
finite temperature. Assuming that the anomaly couplings at the ultraviolet scale may also exhibit explicit
temperature dependence, we calculate the thermal behavior of the effective potential. In accordance with
our earlier study, [G. Fejos and A. Patkos, Phys. Rev. D 105, 096007 (2022)], we find that for increasing
temperatures, the anomalous breaking of chiral symmetry tends to strengthen toward the pseudocritical
temperature (TC) of chiral symmetry breaking. It is revealed that below TC, around ∼10% of the UAð1Þ
breaking arises from the jQj ¼ 2 topological sector. Correspondingly, a detailed analysis on the thermal
behavior of the mass spectrum is also presented.
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I. INTRODUCTION

The axialUAð1Þ subgroup of the approximateUVðNfÞ ×
UAðNfÞ chiral symmetry of quantum chromodynamics
(QCD) with Nf quark flavors is known to be broken
anomalously in the ground state of the system [1,2].
Microscopic origin of this anomaly, at least at sufficiently
high temperatures, can be well described in the dilute
instanton gas picture. However, at lower temperatures,
toward the pseudocritical point (Tc), the eigenvalue spec-
trum of the Dirac operator is rather different to its high T
counterpart, revealing that the instanton gas approximation
definitely breaks down [3,4]. The correct picture in such
regimes is assumed to be more of an instanton liquid [5],
where the instanton density and radius play a central role.
Though the understanding of the underlying mechanism of
the UAð1Þ breaking has significantly improved over time,
the actual fate of the anomaly along the complete temper-
ature axis still remains an open question.

Since the isotriplet pseudoscalar meson (π) and the
isotriplet scalar meson (a0) are related through the axial
UAð1Þ transformation, it is natural to quantify the degree
of the anomaly breaking by either the ma0 −mπ mass or
χπ − χa0 susceptibility differences. In a chirally symmetric
background, where the π and σ excitations degenerate,
one notes that the former difference is equivalent to the
disconnected part of the total chiral susceptibility, χπ −
χa0 ¼ χπ − χσ þ χdisc → χdisc [6], leaving the quantification
of the anomaly to determine χdisc.
Lattice QCD studies have not yet reached a firm

conclusion on the presence of the anomaly at the pseu-
docritical point. References [7–9], with the use of domain-
wall fermions, concluded that the anomaly is present even
beyond the pseudocritical temperature. Reference [10],
using Wilson fermions, shows that UAð1Þ symmetry is
effectively restored at Tc in the chiral limit (for Nf ¼ 2).
Eigenvalue spectrum analyses argue that the anomaly is
present even beyond the critical temperature [11], and using
highly improved staggered quark action also shows that
UAð1Þ is broken at 1.6Tc [12]. The same finding is
presented in Ref. [13] just above Tc, using analyses of
eigenvalue densities. Ensembles generated by two-flavor
(Möbius) domain wall sea quarks with the eigenvalue
analysis show, however, that the obtained results are
consistent with the UAð1Þ symmetry being restored at
Tc, at least in the chiral limit [14,15]. Predictions of the
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density of state method in the SUð3Þ pure gauge theory
show that even the jQj ¼ 2 topological sector has a non-
negligible contribution to the topological susceptibility
even at 1.5Tc [16]. For a comprehensive review on recent
developments along these directions, the reader is referred
to Ref. [17].
On top of lattice QCD simulations, there are several other

directions to tackle the problem of the thermal evolution of
the anomaly. See, e.g., studies using the nonlinear sigma
model, chiral perturbation theory, Polyakov quark meson
model [18–24], NJL models [25,26], the Witten-Di Vechia-
Veneziano model [27]. There have been attempts using the
Dyson-Schwinger approach [28,29], exploiting Ward iden-
tities [30]. One may also be interested in investigating the
issue in two-color QCD with Nf ¼ 2 flavors [31].
The order of the chiral transition for zero quark masses

may also contain information on the UAð1Þ restoration at
the critical temperature. Recently, there have been indica-
tions that the chiral phase transition is of second order for
both Nf ¼ 2, 3 in the chiral limit [32–34] in contradiction
with earlier studies [35], especially those using the pertur-
bative renormalization group in the ϵ expansion [36]. The
latter shows that forNf ¼ 3, irrespectively of the fate of the
UAð1Þ breaking at the critical point, the transition can only
be of first order. Recently, using the functional renormal-
ization group (FRG) technique, however, it was shown that
the transition can appear to be second order after all, but
only if the anomaly is very weak at Tc [37].
In our earlier studies [38,39] we argued that in the

Nf ¼ 3 low energy effective meson model, fluctuations
tend to make the anomaly stronger with respect to the
temperature. The newly found mechanism is related to the
resummation of an infinite number of anomaly breaking
operators in the functional renormalization group (FRG)
formalism, which effectively made the standard Kobayashi-
Maskawa-’t Hooft (KMT) coupling chiral condensate
dependent. Through such dependence one observed a
strengthening of the effective anomaly coupling as the
condensate evaporated, showing that mesonic fluctuations
areworking against instanton contributions, which, at least at
asymptotically large T definitely lead to the restoration
of UAð1Þ.
The standard KMT coupling and the corresponding

determinant term arise from instanton contributions of
the underlying theory that carry Q ¼ �1 topological
charge. In [40] it is explicitly shown for Nf ¼ 2 that
instantons with higher winding numbers lead to higher
powers of the determinant term, which are typically
considered nonrenormalizable, and thus entirely dropped
in the effective description. Even though one might expect
that the value of these couplings in the ultraviolet (even
being zero) does not effect significantly the physics of the
infrared, the corresponding terms do get generated at low
energies, and in principle should not be neglected in the
effective action. The main goal of this study is to derive

scale evolution equations for those anomalous terms that
arise from instantons with any winding number, and on top
of that, realize a resummation in terms of chirally invariant
operators to make the former condensate dependent. Our
aim is also to quantify the importance of the higher
topological sectors in the effective model setting.
We wish to emphasize that a consistent treatment of the

UAð1Þ breaking, at least considering the physical point, can
only be dealt with via the Nf ¼ 3 scenario. In case of
Nf ¼ 2, the strange sector is completely decoupled as the
s-quark mass is formally taken to be infinity. In such a case,
the determinant in effect becomes a mass term, and the
corresponding anomaly parameter also needs to be set to
infinity in order for one of the Oð4Þ multiplets can be
dropped, as required by, e.g., themK < mη0 mass relation in
the physical point. (Keep inmind that because of suppressing
the strange content, by consistencymK →∞, thusmη0 →∞.)
Even if onewishes to keep both multiplets [40,41], one faces
the fact that beyond Tc, by the effective evaporation of the
(nonstrange) chiral condensate, keeping track of anomalous
contributions in the effective potential is no longer possible.
The Nf ¼ 3 model, however, does, through the very pres-
ence of the strange condensate, allow to investigate the
effective KMT coupling even beyond Tc, which proves to be
crucial in understanding characteristic features of the high
temperature meson spectrum.
The paper is organized as follows. In Sec. II, we discuss

our model setup and introduce the corresponding ansatz
for the effective potential, with particular emphasis on the
resummation that leads to condensate dependent effective
couplings. In Sec. III, we discuss how to obtain the scale
evolution of the complete effective potential via the use of
various background fields for the construction of the FRG
flow equations (presented explicitly in the Appendix).
Section IV contains the numerical results, where we used
a model parameter set that corresponds to the physical
point. The reader also finds a detailed analysis on the
temperature dependence of the mesonic spectrum in light of
the anomaly evolution. Section V is devoted for summary.

II. MODEL SETUP

Our investigations involve a mesonic dynamical variable
M ¼ ðsi þ iπiÞTi, where Ti (i ¼ 0;…; 8) are the Uð3Þ
generators, and si (πi) refer to the scalar (pseudoscalar)
fields.A chiral transformation is represented asM → LMR†,
where L (R) are left (right) handed transformations. The
effective potential, V, of our model can only depend on
chirally invariant combinations ofM. ForNf ¼ 3, a possible
set of independent operators are the usual

ρ ¼ TrðM†MÞ; ð1aÞ

τ ¼ TrðM†M − TrðM†MÞ=3Þ2; ð1bÞ

ρ3 ¼ TrðM†M − TrðM†MÞ=3Þ3 ð1cÞ
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combinations. Higher order invariants can be expressed in
terms of (1). The UAð1Þ breaking can be included via the

Δ ¼ det M† þ det M ð2Þ

Kobayashi-Maskawa-’t Hooft (KMT) term, where it is
important to mention that the plus sign in the rhs of (2) is
due to parity reasons (a minus sign would lead to a parity
odd combination), and also that Δ̃≡ ðdet M† − det MÞ2 is
not independent from (1) and (2). That is, the potential, both
classical or quantum, canonlydependonρ; τ; ρ3;Δ.Note that
in the broken phase chiral symmetry shows the Uð3Þ ×
Uð3Þ → Uð3Þ breaking pattern, which is realized by the
condensate hMi ∼ 1, i.e. it is proportional to the unit matrix.
In such backgrounds τ ¼ 0 ¼ ρ3, i.e., even if one includes
explicitly symmetry breaking terms (arising from nonzero
quark masses) that somewhat shift the vacuum expectation
value ofM, it is expected that neither τ nor ρ3 carry significant
contributions in V. Therefore, it is expected to make sense to
perform the following chiral invariant expansion [42]:

Vðρ; τ; ρ3;ΔÞ ¼ Uðρ;ΔÞ þ
X
fαg

Vα1;α2ðρ;ΔÞτα1ρα23 ; ð3Þ

where α1; α2 ∈Z. Note that in the classical version of the
model, based onperturbative renormalizability,ρ3 is dropped,
and an expansion in terms of ρ and Δ is also performed:

Vcl ¼ m2ρþ λ1ρ
2 þ aΔþ � � � þ λ2τ þ � � � ; ð4Þ

which is the usual potential of the three flavor linear sigma
model with real parameters m2; λ1; λ2; a. In the original
variable M, (4) yields

Vcl ¼ m2 TrðM†MÞ þ λ̃1½TrðM†MÞ�2
þ λ2TrðM†MM†MÞ þ aðdet M† þ det MÞ; ð5Þ

with λ̃1 ¼ λ1 − λ2=3. Note that at high momentum scales the
form of (5) is certainly correct,1 but for low scales it is very
restrictive, and thus if one includes quantum and thermal
fluctuations, themore general form, (3) should be considered,
at least via some approximation. From here onward, we
entirely drop the ρ3 dependence due to the reason described
above, but we do keep τ, as it corresponds to a renormalizable
operator that should be present at the UV scale. Its coefficient
is, in principle, ρ and Δ dependent, but we consider only the
former:

V ¼ Uðρ;ΔÞ þ CðρÞτ; ð6Þ

which will be the main starting point of our investigations.
Even though (6) looks very simple, it is only due to our
compact notations. Note that, the infinite resummation (6)
realizes is threefold:

V ¼
X
β

UðβÞðρÞΔβ þ CðρÞτ

≡X
α

X
β

Uðα;βÞραΔβ þ
X
α

CðαÞρατ: ð7Þ

Here Uðα;βÞ and CðαÞ can be thought of as usual coupling
constants. This demonstrates that the simple form of (6)
contains an infinite number of couplings. Our goal is to
determine these couplings through obtaining the functions
Uðρ;ΔÞ and CðρÞ.
A comment on the anomalous terms is now in order. It

was shown by Pisarski and Rennecke that the ∼Δα terms in
the potential arise from multi instanton contributions of
the underlying theory, with jQj ¼ α topological charges.
Emergence of these interactions for Nf ¼ 2 can be found
in [40]. In what follows, we investigate the importance of
the interactions generated by multi instanton contributions,
in terms of an effective mesonic description at finite
temperature. In the next section, using the functional
renormalization group (FRG) formalism, we derive and
then solve scale evolution equations for Uðρ;ΔÞ and CðρÞ.

III. RG FLOWS

In the core of the FRG formalism lies the scale dependent
effective action (Γ), which, throughout this paper will be
considered in the local potential approximation (LPA). That
is, Γ only contains a standard kinetic term besides the
effective potential, V. Denoting the scale variable by k, the
latter obeys the Wetterich equation [44,45], which, in d
spatial dimensions, using Litim’s regularization [46] takes
the form of

∂kVk ¼ TΩd
kd

2d

X
n

e∂k log detðω2
n þ k2 þ V 00

kÞ; ð8Þ

where T is the temperature, Ωd ¼
R
dΩd=ð2πÞd comes

from the angular integral, ωn ¼ 2πnT are bosonic
Matsubara frequencies, V 00

k is the mass matrix, meaning
the second derivative of Vk with respect to the dynamical
variables (in our case, i.e., for Nf ¼ 3 flavors its size is

18 × 18), and e∂k is a differential operator acting by
definition only on the explicit k-dependence. Note that,
the physical meaning of Vk is an effective potential, where
only fluctuations with momenta q > k are taken into
account. Practically (8) is solved by starting from a typical
hadronization scale Λ [47], where Vk→Λ is considered to be
the fluctuationless classical potential, and we integrate
down toward k → 0. We also note that (8) is derived with
an infrared regulator that only cuts off fluctuations in the

1We note that recently it has been conjectured that in the chiral
limit the Q > 1 anomaly couplings may dominate the Q ¼ 1 one
[43]. For our case it would mean that a is negligible and one
would have to start the RG flow with the inclusion of the ∼Δ2

operator at the UV scale.
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spatial directions, thus the Matsubara sum runs over all
possible frequencies.
Since we are working with the ansatz of (6), we need to

transform the right-hand side (rhs) of (8) such that it
becomes compatible with (6). We follow the same pro-
cedure developed in [38,39]. The most important obser-
vation is that in order to derive flow equations for Ukðρ;ΔÞ
and CkðρÞ, one is allowed to work in any background field
of hMi that allows for a unique reconstruction of the
dependence on the invariants, not necessarily the one,
which will be realized physically in the ground state.
We start by calculating the flow of Ukðρ;ΔÞ. Since for

any hMi ∼ 1, τ ¼ 0, in such a background the left-hand
side (lhs) of (8) equals the flow of Ukðρ;ΔÞ. (Note that,
the derivatives of τ are, in principle, nonzero in this
background.) We, therefore, choose hMi ¼ ðs0 þ iπ0ÞT0,
T0 ¼ 1=

ffiffiffi
6

p
1. In this case, the invariants become ρ ¼ ðs20 þ

π20Þ=2 and Δ ¼ s0ðs20 − 3π20Þ=ð3
ffiffiffi
6

p Þ. Note that, this back-
ground respects the SUð3Þ × SUð3Þ subgroup of chiral
symmetry, therefore, the mass matrix V 00

k has 8þ 8 degen-
erate eigenmodes in the “planes” ðsi; πiÞði ¼ 1;…; 8Þ, and
a doublet in the ðs0; π0Þ sector. It is important to note that
throughout the calculation each matrix element depends on
the background components of s0, π0, but in the 8þ 8
degenerate eigenmodes they naturally combine into the ρ
and Δ invariants, see their respective expressions above.
This is not true for the doublet, but after calculating
the corresponding 2 × 2 determinant, its contribution to
the flow equation happens to depend again only on the
invariant combinations ρ and Δ, as it should. Summing up
all terms yields the flow for Ukðρ;ΔÞ, see (A1) in the
Appendix.
For determining the scale evolution of the coefficient

function of the τ invariant, that is CkðρÞ, the purely
imaginary background hMi ¼ iðπ0T0 þ π8T8Þ is particu-
larly convenient. In this background the cubic invariant Δ
vanishes, but ρ ¼ 1

2
ðπ20 þ π28Þ and τ ¼ π2

8

3
ðπ0 − 1

2
ffiffi
2

p π8Þ2.
That is, the lhs of (8) now becomes ∂kUkðρ; 0Þ þ
∂kCkðρÞτ, and since we already obtained ∂kUk, by calcu-
lating the rhs of (8) and subtracting the ∂kUk part, we
obtain the flow of CkðρÞ. In accordance with [39], the mass
matrix breaks up into three degenerate fσi; πig doublets
(i ¼ 1, 2, 3), plus another four degenerate doublets (i ¼ 4,
5, 6, 7), with a fully coupled quartet in the subspace
fs0; s8; π0; π8g. One way to proceed with the calculations is
that one inverts the ρ and τ equations and expresses π0, π8
in terms of the latter. Then all terms in the rhs of the flow
equation can be expressed with the help of the invariants ρ
and τ, but at first sight they turn out to be non analytic in the
latter, i.e., they contain terms ∼

ffiffiffi
τ

p
. When expanding the

contribution of each sector in terms of τ, the piece that
comes from the fs0; s8; π0; π8g-sector completes the two
sets of degenerate doublets into an analytic function of both
ρ and τ, meaning that all the peculiar ∼

ffiffiffi
τ

p
terms vanish.

After a long and tedious calculation, the first nontrivial
order in τ provides the flow for CkðρÞ, see (A2) in the
Appendix.

IV. RESULTS

A. Numerics

We do not intend to solve the flow equation for Ukðρ;ΔÞ
in its full generality, mainly due to the high numerical
cost. In what follows we are interested in the scale
evolution of the jQj ¼ 1, 2 instanton contributions. By
introducing the notationsUðρÞ ≔ Uð0ÞðρÞ, AðρÞ ≔ Uð1ÞðρÞ,
BðρÞ ≔ Uð2ÞðρÞ, using the decomposition of (7), we con-
sider the effective potential as

Vk ¼ UkðρÞ þ CkðρÞτ þ AkðρÞΔþ BkðρÞΔ2: ð9Þ

The flow equation for CkðρÞ is given by (A2), while those
for UkðρÞ, AkðρÞ, and BkðρÞ can be obtained by the zeroth,
first, and second order terms in a Δ expansion of (A1). The
choice of (9) allows us to investigate the importance of
the jQj ¼ 2 interaction [i.e., BkðρÞ] in light of the one with
jQj ¼ 1 [i.e. AkðρÞ].
The coupled differential equations are solved for three

spatial dimensions (d ¼ 3) using the grid method. All grids
are set up in ρ space with the spacing δρ ¼ 50 MeV2. Field
derivatives are calculated using the six-point formula,
except those close to the boundaries, where the five- and
four-point formulas are used. Initial conditions are chosen
to correspond to k ¼ Λ≡ 1 GeV, where, based on pertur-
bative renormalizability, we assume that

Uk¼ΛðρÞ ¼ m2ρþ λ1ρ
2; Ck¼ΛðρÞ ¼ λ2;

Ak¼ΛðρÞ ¼ a; Bk¼ΛðρÞ ¼ 0; ð10Þ

with some real UV parameters m2, λ1, λ2, a. These initial
values at k ¼ Λ are determined by the requirement of
optimally reproducing the pseudoscalar meson spectra once
all fluctuations are taken into account, see Table I. Note
that, the initial condition for the BkðρÞ coefficient function
is set to be zero, which is due to the (perturbative)
irrelevance of the Δ2 operator at high scales. We have
checked the sensitivity of the results with respect to the
variation of the UV value of the latter interaction in the
natural range of Oð½0.1–10�=Λ2Þ, and we have found no

TABLE I. Initial conditions at k ¼ Λ≡ 1 GeV.

m2 −0.95 GeV2

λ1 22.7
λ2 130
a −2.4 GeV
h0 ð285 MeVÞ3
h8 ð−310 MeVÞ3
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significant difference between the final results, as expected.
Note that, in the physical point one needs to subtract
an explicit symmetry breaking term from the potential,
i.e., h0T0 þ h8T8, where h0 and h8 are determined using
the partially conserved axialvector current relations
(PCAC), see details in [38,39]. As discussed earlier, with-
out explicit breaking, in the vacuum hMi ∼ T0 ∼ 1, but
by introducing h0 and h8 into the potential, the minimum
point of V shifts, and the actual physical background
becomes hMi ¼ v0T0 þ v8T8.
The differential equations are integrated via the fourth-

order Runge-Kutta method. We typically expect a critical
slowing down in the numerics when approaching k → 0,
therefore, we stop the flows at k=Λ ¼ 0.1. At this point we
avoid numerical instabilities, while all functions are practi-
cally converged and the scale dependence is rather mod-
erate. We also note that all Matsubara sums are performed
numerically, with a cutoff of nmax ¼ 104.

B. Ground state and anomaly

All results are split into two parts. On the one hand, we
treat the initial a parameter (which corresponds to the bare
parameter in the perturbative renormalization process) as a
constant, but on the other hand, we are also interested in a
scenario, where it explicitly depends on the temperature. The
latter ismotivated by the fact that sincewe are dealingwith an
effective theory cut off at the rather lowΛ ¼ 1 GeVscale, the
initial parameters should inherit non-negligible environment
dependence when deriving them from the underlying theory
of QCD. Denoting by Tc the pseudocritical temperature of
the chiral transition, it is known that in thedilute instanton gas
approximation, valid for T ≫ Tc, the instanton density is
exponentially suppressed, leading to recovery of the anoma-
lously broken axial UAð1Þ symmetry. When lowering the
temperature, however, an instanton liquid model is more
appropriate, and it is sometimes argued that the instanton
density is weakly dependent on the temperature below
Tc [48]. Therefore, as a working hypothesis, and motivated
by obtaining the correct large T behavior of the anomaly, we
make the initial anomaly parameter of the meson model
temperature dependent as

aðTÞ ¼ aðT ¼ 0Þ
�
1þ

��
Tc

T

�
5

− 1

�
ΘðT − TcÞ

�
: ð11Þ

This choice activates the high-temperature behavior of the
anomaly beyond the critical temperature and maintains it
constant below the critical temperature. For T > Tc, the a ∼
T−5 behavior originates from integrating over the instanton
size after applying the semi classical approximation for the
instanton density2 [40]. Note that, the remaining m2, λ1, λ2

parameters can, in principle, also carry explicit T-depend-
ence, but for the sake of our main motivation of investigating
the anomaly evolution, these parameters will be treated as
temperature independent quantities in the current study.
In Figs. 1 and 2 we show the thermal evolution of the

ground state (i.e. the minimum point of the effective
potential V) in terms of the nonstrange (vns) and strange
(vs) condensates for both scenarios described above.3 The
prediction for the pseudocritical temperature, defined as the
inflection point of the vnsðTÞ function, is Tc ≈ 160 MeV,
being very close to lattice simulations [9,49]. The break
point in case of the second scenario has no physical
meaning, it is due to the fact that aðTÞ is a nondifferentiable
function at T ¼ Tc. The choice we made for the activation
point of the T-dependence is somewhat arbitrary, and
furthermore, had we chosen a smoother interpolation
between the two regimes, we would have obtained a curve
without breaking points. Note that while the nonstrange
condensate shows a significant evaporation, the strange
component loses less than 20% of its T ¼ 0 value
at T ≈ 2Tc.
Now let us focus on the fate of the axial anomaly as the

function of the temperature. In Fig. 3 we show, for a
temperature independent initial a anomaly parameter, the
absolute value of the dimensionless, ĀðρÞ ¼ AðρÞ=k,
B̄ðρÞ ¼ BðρÞk2 anomaly coefficient functions (note that
both A and B are negative). First, we note that, the shape of
each function does not depend very strongly on the
temperature, but the actual anomaly strength does, as the
evaporation of vns and vs yields the chirally invariant
combination ρmin to show a decreasing tendency with T.
This is in agreement with our earlier findings [38,39]

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

Tc � 160 MeV

co
nd

en
sa

te
s 

[M
eV

]

T [MeV]

vs
vns

FIG. 1. Thermal behavior of the nonstrange and strange
condensates with a temperature independent initial anomaly
parameter. Prediction for the pseudocritical temperature
is Tc ≈ 160 MeV.

2Note that had one retained a nonzero initial value forBk¼Λ ≡ b,
for the same reasons as described in the main text, one would have
had bðTÞ ¼ bðT ¼ 0Þ½1þ ððTc=TÞ14 − 1ÞΘðT − TcÞ�.

3The nonstrange and strange components are defined through

the usual vns ¼
ffiffi
2
3

q
v0 þ

ffiffi
1
3

q
v8, vs ¼

ffiffi
1
3

q
v0 −

ffiffi
2
3

q
v8 relations.
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showing that mesonic fluctuation effects strengthens the
anomaly. Now we see that on top of the jQj ¼ 1 sector, the
same applies for interactions coming from instantons with
jQj ¼ 2 topological charge. Second, Fig. 3 also tells us that
in order to reproduce the correct high-T behavior of the
axial anomaly, we absolutely must include the damping
effects through the explicit temperature dependence of the
initial anomaly coefficient, as already announced in the
previous paragraph. This is illustrated in Fig. 4, where
the effective anomaly strength,

AeffðTÞ ¼ AðρminðTÞÞ þ BðρminðTÞÞΔminðTÞ ð12Þ

is plotted against the temperature. The “min” subscripts
refer to the actual minimum point of the complete effective

potential, that is where the effective interaction is defined.
We see that by neglecting the explicit temperature depend-
ence of the initial a anomaly parameter, Aeff would
monotonically increase with T even beyond Tc. To avoid
such a scenario did we employ the assumption (11). As a
result, we still see an intermediate strengthening of the
UAð1Þ anomaly toward T → Tc, however, including the
jQj ¼ 2 interactions somewhat moderates the effect com-
pared to our earlier findings,which includedonly the jQj ¼ 1
sector [39].
One may now wonder about the importance of the

jQj ¼ 2 interactions, and this is what is shown in Fig. 5.
We plot the ratio between the jQj ¼ 2 contribution to the
effective anomaly coupling and the latter itself.
Interestingly, for this quantity both discussed scenarios
show quite a rapid decrease (obviously the one that
corresponds to an initially temperature dependent anomaly
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coupling is faster), but the most important observation is
that for T ≲ Tc the jQj ¼ 2 topological sector provides
around 10% of the anomaly strength. This confirms that for
T ≲ Tc, instanton interactions with jQj ¼ 2 topological
winding are definitely important, and we also see, however,
that, for T ≳ Tc it is safe to keep only the jQj ¼ 1 sector, as
expected from a dilute instanton gas approximation in the
underlying theory. Finally, we define

rE ¼ jAðρminÞΔmin þ BðρminÞΔ2
minj

UðρminÞ þ CðρminÞτmin

≡ jAeffΔminj
UðρminÞ þ CðρminÞτmin

; ð13Þ

as the absolute value of the ratio between the chirally
symmetric and anomalous contributions in the effective
potential.4 Interestingly, as it can be seen in Fig. 6, for lower
temperatures they are almost of the same order, but for
T ≳ Tc, the anomalous contributions rapidly disappear,
much faster than the effective anomaly coupling itself. This
is easily understood, since the numerator of rE contains an
extra factor of v2ns evaporating fast at high T, compared to
Aeff . This comes from the cubic invariant being Δ ∼ vsv2ns.
Before moving on to the mass spectra we note that in

[43] it is not entirely ruled out that in the chiral limit, at the
critical point all anomaly couplings may simultaneously
vanish. In the light of the present results this would mean a
rather radical change in the behavior of the topological
fluctuations compared to those at the physical point.

C. Mass spectrum

The mass spectrum is obtained by diagonalizing the
second derivative tensor of Vk¼0 [see (9)] at the minimum
point of the complete effective potential, computed in the

background of the physical condensates v0ðTÞ; v8ðTÞ [or,
equivalently, vnsðTÞ and vsðTÞ]. For this we have to obtain
numerically the first and second derivatives of the UðρÞ,
CðρÞ, AðρÞ, and BðρÞ functions, and make use of the
derivatives of the ρ, τ and Δ invariants with respect to all
field variables. Analytical formulas for the latter can be
found in [39].
The T-dependence of the spectrum for our two scenarios

can be seen in Figs. 7 and 8, respectively. One notices the
different high temperature behavior for each case. In Fig. 7,
at high T the anomaly coupling Aeff stays nonzero, though
among the condensates, vns practically disappears. The
strange condensate vs is still significant. As for Fig. 8, Aeff
is damped according to (11) and it practically vanishes
together with vns, but vs is still alive. In what follows, we
provide a semiquantitative analysis of the observed high
temperature spectra based on these remarks.
The basic multiplet structure is the same for both cases in

the two component ðvns; vsÞ background. We have both in
the pseudoscalar and scalar sectors one triplet (π and a0),
one quartet (K and K�

0), and the mixing ðη; η0Þ pair in the
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pseudoscalar, and ðσ; f0Þ in the scalar sector, respectively.
We do not list here exact but lengthy mass formulas
separately, instead restrict ourselves on the presentation
of useful relations, which can clarify the behaviors
observed in Figs. 7 and 8, reflecting especially on the
survival/suppression of the anomaly coupling. For the
sake of transparency and simplicity, in the forthcoming
analysis we neglect the ρ dependence of the AðρÞ, BðρÞ,
and CðρÞ coefficient functions, and restrict ourselves to
UðρÞ ¼ m2ρþ λ1ρ

2. Still, one can nicely interpret some of
the characteristic features of the observed high-T spectra.
First, we have two compact expressions for the scalar-

pseudoscalar difference in the triplet and the quartet
sectors:

M2
a0 −M2

π ¼ −
ffiffiffi
2

p
ðAþ 2BΔÞvs þ Cv2ns; ð14aÞ

M2
K�

0
−M2

K ¼ −ðAþ 2BΔÞvns þ
ffiffiffi
2

p
Cvsvns: ð14bÞ

As we saw already, near and above the pseudocritical
temperature, the nonstrange condensate quickly dimin-
ishes, while vs stays nearly constant. This means that in
the triplet sector a nonzero mass difference in the high
temperature region signals the persistence of the anomaly.
Below, in the high temperature region we set vns ≈ 0, and

then even the expressions of the actual masses become
rather simple (see also [50]):

M2
π ¼ m2 þ λ1v2s −

1

3
Cv2s þ

1ffiffiffi
2

p Avs; ð15aÞ

M2
a0 ¼ m2 þ λ1v2s −

1

3
Cv2s −

1ffiffiffi
2

p Avs; ð15bÞ

M2
K ¼ M2

K�
0
¼ m2 þ λ1v2s þ

2

3
Cv2s : ð15cÞ

The D discriminant constructed from the eigenvalue
equation of the mixing matrix in the pseudoscalar (0 − 8)
sector determines the η − η0 mass difference, which, for a
vanishing nonstrange condensate is rather transparent:

M2
η0 −M2

η ≡
ffiffiffiffi
D

p
¼ 1ffiffiffi

2
p Avs þ Cv2s : ð16Þ

This difference and also the above mass formulas can be
discussed assuming two limiting situations, depending on
the relative magnitude of the mass contribution from the
nonanomalous and anomalous parts of the potential. When
Cv2s ≫ −Avs, which is certainly true when A is suppressed
by its explicit T-dependence, one finds asymptotically

M2
η0 ¼ m2 þ λ1v2s þ

2

3
Cv2s ; M2

η ¼ m2 þ λ1v2s −
1

3
Cv2s :

ð17Þ

This means that in this case the levels of M2
a0 ;M

2
π;M2

η and
M2

K�
0
;M2

K;M
2
η0 group separately. This can be clearly

observed in Fig. 8.
On the other hand, when the anomaly survives and

dominates, i.e., −Avs ≫ Cv2s , one finds

M2
η0 ¼ m2 þ λ1v2s −

1ffiffiffi
2

p Avs; M2
η ¼ m2 þ λ1v2s : ð18Þ

In this case the lighter excitation of the pseudoscalar (0–8)
sector, i.e., η, becomes nearly degenerate with K and K�

0,
while the heavier η0 will be located close to a0. Note that,
the anomaly sustains a mass difference between π and a0.
This characteristics is observed in Fig. 7, where one
assumed no explicit temperature dependence for the initial
anomaly coefficient a.
Based on the above analysis, by observing the variation of

the meson masses as the temperature is gradually increased,
such rearrangement of η and η0 would clearly indicate the
onset of anomaly suppression. We also note that the current
setup shows that the drop in the η0 mass at Tc becomes larger
compared to our earlier results, hinting that if this is
maintained at the partial recovery of chiral symmetry at
the nuclear liquid-gas transition, the η0-nucleon bound state
might indeed be observable in a nuclear medium [51,52].
Also, we note that a similar analysis in the scalar (0–8)

sector shows that, the σ and f0 masses in the vns ≈ 0 limit
become

M2
σ ¼ m2 þ λ1v2s −

1

3
Cv2s þ

1ffiffiffi
2

p Avs; ð19aÞ

M2
f0

¼ m2 þ 3λ1v2s þ 2Cv2s : ð19bÞ

Both scenarios Cv2s ≫ −Avs and −Avs ≫ Cv2s show that σ
degenerates with π at high T, and it is also revealed that the
f0 mass is insensitive to the anomaly even when the latter
dominates.
Finally we comment on the mixing angles in the scalar

and pseudoscalar sectors. Note that, at first, one usually
defines the scalar and pseudoscalar mixing angles, Θs=π ,
in the 0–8 basis, which are then transformed into φs=π ,
corresponding to the ns − s coordinate system, through the
ideal mixing matrix (see, e.g., the Appendix of [19]).
Depending on the orientation (i.e., the sign) of Θs=π , one
ends up with curves for the temperature dependence of φs=π

that are similar to either [18] or [19]. Since our model and
method are closer to that of [19], we adopt their convention,
which, in the pseudoscalar sector leads to

sin 2Θπ ¼ −
2M2

π;08

M2
η0 −M2

η
; ð20aÞ

cos 2Θπ ¼
2M2

π;88 −M2
η0 −M2

η

M2
η0 −M2

η
: ð20bÞ
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The second formula is especially convenient for calculating
the angle, as it is not sensitive to either its orientation, or a
possible level crossing between M2

π;00 and M2
π;88. As the

numerics show that M2
π;08 < 0, in the above convention

bothΘπ > 0 and φπ > 0. Our results are very similar to that
of Fig. 8 in [19]. We see an almost completely identical
behavior for φs, but more interestingly, temperature depen-
dence of φπ via our aðTÞ ansatz is very close to that of the
LPA’+Y approximation of [19], showing that φπ goes to
zero at high temperature. It seems that the effect of the wave
function renormalization is similar to a temperature de-
pendent bare anomaly parameter, introduced in (11).

V. SUMMARY

In this paper we analyzed the thermal behavior of the
axial anomaly using the functional renormalization group
method. Compared to our earlier study [39], we applied an
enlarged set of terms in the effective potential of theNf ¼ 3

meson model. We derived scale evolution equations for the
effective potential that include interactions originated from
instantons of the underlying theory of QCD with arbitrary
topological charge [see Eq. (A1)]. We discussed two
distinct scenarios: (1) the initial jQj ¼ 1 anomaly coupling
is an environment independent constant, and (2) the initial
jQj ¼ 1 anomaly coupling inherits explicit temperature
dependence from QCD interactions occurring above the
initial momentum scale.
We numerically solved the flow equations for the chiral

condensate dependent anomaly couplings coming from
instantons with jQj ¼ 1, 2 topological charges and found
that for low temperatures the jQj ¼ 2 interaction contrib-
utes around 10% to the effective UAð1Þ coupling Aeff . The
ratio between the jQj ¼ 2 and jQj ¼ 1 contributions to Aeff
rapidly decreases once the temperature hits Tc, showing
that at high temperatures it is sufficient to include instanton
interactions with jQj ¼ 1. For T ≲ Tc, however, jQj ¼ 2
interactions cannot be dropped.
In accordance with our earlier findings we saw that

mesonic fluctuations tend to strengthen the anomaly cou-
plings toward the critical point, which are then suppressed
for T ≳ Tc by instanton effects. We also calculated numeri-
cally the mass spectrum and provided semi-quantitative

analytical formulas to understand its high temperature
behavior. In particular, we showed that the η and η0 mass
difference, on top of the anomalous terms, also contains one
of the quartic couplings through the strange condensate. As a
result, we argued that the η and η0 clustering with other
excitations occur differently for weak (temperature sup-
pressed) and strong (temperature sustained) anomaly.
Observing the finite temperature spectrum in lattice simu-
lations may, therefore, hint on the actual thermal behavior of
the UAð1Þ anomaly coupling.
Our analysis could be extended in a straightforward

fashion for couplings that correspond to jQj > 2 instanton
interactions by expanding (A1) to higher order in Δ. Our
method also offers the possibility of treating all anomalous
interactions on an equal footing by solving the flow
equation for Uðρ;Δ) on a two dimensional grid. Though
numerically this might be very demanding, it would
certainly provide the most general answer to the question
of the importance of all anomalous interactions.
Furthermore, it could be interesting to apply our method
to two-color QCD with Nf ¼ 2, where the global sym-
metry of the system turns into SUð4Þ (Pauli-Gursey
symmetry) [31]. The technique presented here, equipped
with the corresponding lattice data could provide new
insight into the behavior of the anomaly in such a system.
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APPENDIX: FLOW EQUATIONS

Here we list the explicit flow equations that were solved
numerically. The flow equation forUkðρ;ΔÞ, determined in
Sec. III, using the hMi ¼ ðs0 þ iπ0ÞT0 background is the
following:

∂kUkðρ;ΔÞ ¼ Ωd
4kd

d
T
X
n

e∂k log
�
ðω2

n þ k2 þ Uk;ρÞ2 þ
4

3
ðω2

n þ k2 þ Uk;ρÞρCk −
1

3
ρU2

k;Δ þ 2ΔCkUk;Δ

�

þ Ωd
kd

2d
T
X
n

e∂k log
�
ðω2

n þ k2 þ Uk;ρ þ 3ΔUk;ρΔÞ2 þ ðω2
n þ k2 þ Uk;ρÞ

�
2ρUk;ρρ þ

2

3
ρ2Uk;ΔΔ

�

− 6ΔUk;ΔUk;ρρ −
4

3
ρUk;ΔðUk;Δ þ 2ρUk;ρΔÞ −

4

3
ρ3U2

k;ρΔ

−Uk;ΔΔ

�
2ρΔUk;Δ −

1

3
ð4ρ3 − 27Δ2ÞUk;ρρ

��
; ðA1Þ
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where the subscripts ρ and/or Δ refer to partial derivatives with respect to the corresponding variable. The flow equation for
CkðρÞ, which was calculated in the purely imaginary hMi ¼ iðπ0T0 þ π8T8Þ background, takes the form of

∂kCkðρÞ ¼ Ωd
kd

d
T
X
n

e∂k
�
U2

k;Δ

2ρ

�
1

D0

−
1

2D8

−
ðω2

n þ k2 þ Uk;ρÞ2
2D0D8

�
þ 3

4ρ
ðω2

n þ k2 þ Uk;ρÞ
�
Uk;ρρ −

2

3
Ck

��
1

D8

−
1

D0

�

þ 1

2D0

�
ρUk;ΔΔ

�
2

3
Ck − Uk;ρρ

�
þ Uk;ρΔð2Uk;Δ þ ρUk;ρΔÞ

�

−
1

2D0D8

�
ðω2

n þ k2 þUk;ρÞ
�
2Uk;ρρ

�
1

2
Uk;Δ − ρUk;ρΔ

�
2

þ 2

3
ð2Ck þ ρUk;ΔΔÞ

�
1

2
Uk;Δ þ ρUk;ρΔ

�
2
�

þ 2ðω2
n þ k2 þ Uk;ρÞ2ρU2

k;ρΔ þ 2

9
ρ2Uk;ΔΔCðUk;Δ þ 2ρUk;ρΔÞ2

��

−Ωd
kd

2d
T
X
n

e∂k
�

1

3D0D8

�
ðω2

n þ k2 þUk;ρ þ 2ρUk;ρρÞ
�
ω2
n þ k2 þ Uk;ρ þ

4

3
ρC

�
ð2Ck − ρUk;ΔΔÞ2

þ
�
ω2
n þ k2 þ Uk;ρ þ

2

3
ρ2Uk;ΔΔ

�
ðω2

n þ k2 þ Uk;ρÞð3Uk;ρρ þ 4ðCk þ ρCk;ρÞÞ2
�

−
1

3D0D8

ð3Uk;ρρ þ 4ðCk þ ρCk;ρÞÞ
�
Uk;Δ

�
ω2
n þ k2 þ Uk;ρ þ

2

3
ρ2Uk;ΔΔ

�
ð2ρUk;ρΔ þ Uk;ΔÞ

þ 2ðUk;Δ þ ρUk;ρΔÞðω2
n þ k2 þ Uk;ρÞð2ρUk;ρΔ −Uk;ΔÞ

�

þ 1

3D0D8

ð2Ck − ρUk;ΔΔÞ
�
ðω2

n þ k2 þ Uk;ρ þ 2ρUk;ρρÞUk;Δð2ρUk;ρΔ −Uk;ΔÞ

þ 2

�
ω2
n þ k2 þUk;ρ þ

4

3
ρC

�
ðUk;Δ þ ρUk;ρΔÞð2ρUk;ρΔ þUk;ΔÞ

�

−
4

3D0D8

�
1

4
U2

k;Δ − ρ2U2
k;ρΔ þ ρð2Ck − ρUk;ΔΔÞ

�
Uk;ρρ þ

4

3
ðCk þ ρCk;ρÞ

��
Uk;ΔðUk;Δ þ ρUk;ρΔÞ

�

þ Ωd
kd

d
T
X
n

e∂k
��

7

D8

�
C2
k þ ðω2

n þ k2 þUk;ρÞCk;ρ þ
2

3
ρCkCk;ρ

�

−
8

3D2
8

�
1

2
U2

k;Δ þ 2

3
ρC2

k þ 2Cðω2
n þ k2 þ Uk;ρÞ

�
2
�
þ 1

2D0

��
Ck;ρ −

3

2
Uk;ΔΔ

�
ðω2

n þ k2 þUk;ρ þ 2ρUk;ρρÞ

þ ð5Ck;ρ þ 2ρCk;ρρÞ
�
ω2
n þ k2 þ Uk;ρ þ

2

3
ρ2Uk;ΔΔ

�
þ 3Uk;ρΔðUk;Δ þ ρUk;ρΔÞ

�

þ 1

2D8

�
ðω2

n þ k2 þ Uk;ρÞ
�
6Ck;ρ þ

1

2
Uk;ΔΔ

�
−Uk;ΔUk;ρΔ þ 2C2

k þ
4

3
ρCk

�
Ck;ρ þ

1

2
Uk;ΔΔ

�

−
1

3D8

�
4Ckðω2

n þ k2 þ Uk;ρÞ þU2
k;Δ þ 4

3
ρC2

k

�
2
��

; ðA2Þ

where

D0 ¼ ðω2
n þ k2 þ Uk;ρ þ 2ρUk;ρρÞ

�
ω2
n þ k2 þ Uk;ρ þ

2

3
ρ2Uk;ΔΔ

�
−
4

3
ρðUk;Δ þ ρUk;ρΔÞ2; ðA3aÞ

D8 ¼ ðω2
n þ k2 þUk;ρÞ

�
ω2
n þ k2 þUk;ρ þ

4

3
ρCk

�
−
1

3
ρU2

k;Δ: ðA3bÞ
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