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4Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

(Received 7 November 2023; accepted 23 January 2024; published 27 February 2024)

We perform a new global analysis of spin-dependent parton distribution functions with the inclusion of
Ioffe time pseudodistributions computed in lattice QCD (LQCD), which are directly sensitive to the gluon
helicity distribution, Δg. These lattice data have an analogous relationship to parton distributions as do
experimental cross sections, and can be readily included in global analyses. We focus in particular on the
constraining capability of current LQCD data on the sign of Δg at intermediate parton momentum fractions
x, which was recently brought into question by analysis of data in the absence of parton positivity
constraints. We find that present LQCD data cannot discriminate between positive and negative Δg
solutions, although significant changes in the solutions for both the gluon and quark sectors are observed.
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I. INTRODUCTION

The decomposition of the spin of the proton in terms of its
constituent quark and gluon (or parton) degrees of freedom
has been the subject of tremendous interest over the last three
decades, ever since the discovery by the European Muon
Collaboration (EMC) [1] that the intrinsic spin carried by
quarks was only about ≲10%–30% of the proton’s spin.
These findings were confirmed by subsequent measurement
at CERN, SLAC, DESY, and more recently at Jefferson Lab
andRHIC (for reviews, see, e.g., Refs. [2,3]). Specifically, in
the Jaffe-Manohar [4] decomposition, the proton’s spin
contributions can be described in terms of the helicity of
individual partons and the collective orbital angularmomen-
tum originating from quarks and gluons,

1

2
¼ 1

2
ΔΣðμÞ þ ΔGðμÞ þLqþgðμÞ: ð1Þ

Here, 1
2
ΔΣðμÞ and ΔGðμÞ denote the net spin contributions

from quarks and gluons, respectively, while Lqþg represents

the corresponding net orbital angular momentum from
quarks and gluons. While component in the sum depends
on the scale μ due to renormalization, the sum is a scale-
invariant quantity. Utilizing the helicity basis, one can
compute the net spin contribution of partons through
moments of the helicity-dependent parton distribution
functions (hPDFs) as

ΔGðμÞ ¼
Z

1

0

dxΔgðx; μÞ; ð2Þ

ΔΣðμÞ ¼
Z

1

0

dxΔΣðx; μÞ ð3Þ

¼
X
q

Z
1

0

dx
�
Δqðx; μÞ þ Δq̄ðx; μÞ�; ð4Þ

where x is the longitudinal light-cone momentum fraction
carried by partons relative to their parent proton, and the sum
runs over all quark flavors q ¼ u, d, s, c, b.
There are several basic considerations that are relevant

to point out. First, hPDFs are of course not directly
measurable quantities. Instead, observables such as double
spin asymmetries (DSAs) measured in polarized deep-
inelastic scattering (DIS) provide constraints on hPDFs via
QCD factorization, which allows for the approximate
expression of the measured asymmetries as convolutions
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of parton-level coefficient functions and hPDFs. Second,
spin asymmetries are unable to impose constraints on
hPDFs down to x ¼ 0, as this would require prohibitively
high energies in particle collisions. Additionally, standard
QCD factorization theorems are only valid provided there
is a measurable hard scale Q in the reaction that is large
enough for the applicability of perturbative calculations.
This typically limits the lower bounds that experimental
data can impose on hPDFs. The EMC provided constraints
on hPDFs down to x ≈ 0.01 and found that the recon-
structed total quark spin ΔΣ was positive but far too small
to account for the proton spin, although constraints were
only in the region of 0.01 < x < 0.5 with large extra-
polation uncertainties. At that time, constraints onΔGwere
also rather nonexistent because the gluon hPDF only enters
the DSA at next-to-leading order in perturbative QCD.
Furthermore, constraints on Δg via evolution were limited
due to the kinematic coverage of the experiments.
With the advent of the RHIC spin experimental program,

knowledge about Δg began to emerge thanks to measure-
ment of DSAs in inclusive hadron and jet production in
polarized proton-proton collisions. Using RHIC data [5]
within a global analysis framework, the DSSV group found
the first clearly nonzero signal and a positive gluon hPDF in
the region above x ≈ 0.1 [6]. These observations were
confirmed in subsequent inclusive jet production data from
the STAR [7–9] and PHENIX [10] Collaborations, leading
to greater confidence that both the quark and gluon helicity
content of the proton were relatively well understood.
Complementary efforts were also made by the PHENIX
Collaboration to empirically determine the sign of gluon
polarization without relying on global QCD analysis.
Specifically, in Refs. [11,12] PHENIX observed an hier-
archy of DSAs in hadron production, with πþ > π0 > π−,
indicating a positive sign for Δg based on perturbative
QCD arguments.
Recently, the JAM Collaboration [13] revisited the

impact of RHIC spin data within a global analysis, with
particular focus on the theoretical assumptions that are
commonly made in such studies. Specifically, it was found
that parton-level positivity constraints play an important
role in determining the sign of Δg. These constraints
amount to demanding positivity on the individual helicity
components (hPDF�), such that g↑=↓ðxÞ > 0

1, where

g↑=↓ ¼ 1

2
ðg� ΔgÞ; ð5Þ

and g is the unpolarized gluon PDF. Relaxing these
constraints in a global analysis reveals a possible second
set of solutions in which Δg is negative. Furthermore, the
vast majority of the positive solutions also violate the naive

positivity bounds in the very large-x region. Zhou et al. [13]
showed that all the jet DSA data can be equally well
described by the negative Δg solutions and by the positive
solutions. This emphasizes the lack of constraints on
hPDFs at large values of x from experimental data, mostly
due to the growing statistical uncertainties in DSA mea-
surements at large x.
In addition, Whitehill et al. [14] demonstrated that the

negative Δg solutions can equally well describe the pion
DSA data measured by the PHENIX Collaboration [11,12].
In view of these observations, the PHENIX Collaboration
recently presented a new analysis of DSAs in isolated
prompt-photon data, from which they concluded that the
negative Δg solutions can be ruled out with a more than
2.8σ confidence level. However, in the PHENIX analysis
the unpolarized cross sections that are part of the denom-
inator of the DSA are only describable for photon trans-
verse momentum pT ≳ 10 GeV (see Fig. 1 of Ref. [15]).
This leaves only three out of seven DSA data points above
pT ¼ 10 GeV that are describable within a perturbative
QCD framework. These remaining data points have suffi-
ciently large uncertainties that the disagreement with
negative Δg solutions would very likely be significantly
below the 2.8σ confidence level, so the question remains
unresolved.
Given the lack of clarity about the sign of the gluon

hPDF in the absence of parton positivity constraints, one
may be tempted to ask whether it would be prudent to
impose such constraints at present until future data can
make them redundant. Recently Collins et al. [16] pointed
out that PDFs in general do not need to be positive definite,
even though physical cross sections, as well as individual
cross section components in spin asymmetries, must always
be positive. In the DSA ALL ¼ ðσþ − σ−Þ=ðσþ þ σ−Þ,
where σ� represents the two longitudinal spin configura-
tions of the interacting beams, QCD factorization requires
both σþ and σ− to be positive. Negative components in
PDFs can, in principle, induce negative σ� contributions,
which could be eliminated by imposing the positivity
constraints. However, other sources, such as large loga-
rithms in fixed-order perturbative calculations or significant
power corrections that go beyond standard leading-power
treatments, could also bring about such scenarios.
Furthermore, the negative Δg found in Ref. [13] obviously
does not violate the positivity of σ�, since all the DSAs are
well described and fall within the physical bounds,
jALLj < 1. Therefore, at present there is no clear data-
driven evidence that rules out the negative solutions for Δg.
One could argue that the phase space coverage of the

existing data is not a sufficient condition to accept the
negative Δg as a physical solution. It is of course possible
to compute hypothetical observables outside the current
experimental reach and find violations of positive cross
sections. The challenge with this strategy, however, is that it
assumes strict validity of factorization and perturbative

1We use “hPDF” to denote Δq ¼ q↑ − q↓ and “hPDF�” for
q↑=↓, with q labeling a generic parton flavor.
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stability across the entire physical phase space. Even if only
a conservative region of phase space, where the theoretical
framework is expected to operate relatively well, is con-
sidered, the lack of empirical evidence that demonstrates
that theory can describe a given hypothetical data with the
same universal sets of hPDFs describing existing data
prevents us from testing universality and the predictive
power of the reconstructed hPDFs.
While determining the sign of the gluon polarization will

require new experiments at planned facilities, such as those
at Jefferson Lab and the future Electron-Ion Collider, an
alternative strategy for the present time is to explore off-the-
light-cone matrix elements calculable in lattice QCD
(LQCD). A pioneering approach was introduced by Ji [17]
(for recent reviews see, e.g., Refs. [18,19]) within the
framework of large momentum effective theory (LaMET),
which allows matrix elements of operators with spacelike
separation to be related to PDFs. A complementary
approach introduced by Radyushkin [20,21] allows for
this relationship even when the spacelike separation is
small, removing the formal requirement of large momen-
tum, albeit large momentum is still necessary in order to
obtain LQCD calculations sensitive to hPDFs at small x, as
well as to mitigate power corrections. Practically, however,
in both approaches a high precision, purely LQCD
reconstruction of PDFs is limited by current computational
resources, since access to larger momenta and smaller
separations incurs greater costs. Synergistic activities are
currently underway to make use of LQCD data as potential
sources of information complementing hadron structure
studies where the reach of experiments is limited. For
instance, growing efforts to combine LQCD and exper-
imental data within a global analysis framework have taken
place [22–25], which have illustrated that combining
information from LQCD with experimental data can lead
to stronger constraints on PDFs than those obtained from
either LQCD or experimental data alone.
In the context of hPDFs, the quark helicity contribution

can be approximately reconstructed from proton matrix
elements of the axial current [26], although determining the
gluon helicity and orbital angular momentum contributions
is more challenging. One approach to extracting these
quantities requires the computation of matrix elements of
local operators which while approximating in the infinite
momentum limit are related to ΔG within the LaMET
formalism [27–29]. All of these approaches pose signifi-
cant difficulties, and currently lattice data only provide
weak constraints on the gluon helicity contributions to the
proton’s spin [30,31].
Recently, the HadStruc Collaboration has provided new

LQCD calculations of matrix elements that have direct
sensitivity to Δg [32]. In their analysis, it was argued that
the negative Δg solutions were significantly disfavored by
LQCD data. Motivated by these findings, in this paper we
explore the full extent to which LQCD data can impose

constraints on gluon polarization in the proton in terms of
QCD factorization approach, and seek a potential resolu-
tion regarding its sign. In Sec. II we review the LQCD
calculations of the Ioffe time pseudodistributions, and
summarize the experimental data used in our analysis in
Sec. III. In Sec. IV we present the results of the combined
analysis of the LQCD and experimental data, offering
detailed comparisons of the results before and after the
inclusion of the LQCD data. Our concluding remarks are
found in Sec. V.

II. LATTICE QCD DATA

In this sectionwe review theLQCDcalculations of pseudo-
PDFs, as introduced by Radyushkin [20]. This method
involves the computation of Lorentz invariant amplitudes
(or linear combinations of them) called Ioffe time pseudodis-
tributions (pseudo-ITDs). The pseudo-ITDs can be matched
to the PDFs in the MS scheme when the invariant separation
between the field operators z2 is sufficiently small. We
consider matrix elements of the form [32–36]

eMμν;αβðp; zÞ ¼ hpjFμνð0ÞWð0; zÞeFαβðzÞjpi; ð6Þ

where Fμν and eFαβ represent the gluon field strength tensor
and its dual, with color indices implicitly contracted, andW is
a straightWilson line in the adjoint representation. In the limit
where z is a lightlike separation, this matrix element can be
used to provide the operator definition for Δg that is
accessible experimentally. The Lorentz decomposition for
thegenericmatrix element inRef. [37] is rather involved,with
fourteen terms that remain after considering the antisymmetry
in indices μ ↔ ν and α ↔ β, though two constraints exist
betweenmultiple terms. In the operator definition ofΔg, only
three of the terms contribute. With spacelike separations, it is
useful to consider the combination,

eM00ðp; zÞ ¼ p0p3½ eMti;itðp; zÞ þ eMij;jiðp; zÞ� ð7aÞ

¼ fMðν; z2Þ þm2z2

ν
Mppðν; z2Þ; ð7bÞ

where ν ¼ p · z is the Ioffe time [38], and i, j are spatial
directions transverse to z. Theprimary reason to consider such
a combination in the spacelike separations is that it contains
the very same linear combination of the Lorentz invariants

that appear in the light-cone case, represented by fM, along-
side a power correction term,Mpp, proportional to m2z2=ν,

wherem is the proton mass. It is the fM term which survives
the small-z2 limit and will be related to the parton distribu-
tions. The particular combination defining eM00 also happens
to be multiplicatively renormalizable [39], where the renorm-
alization constant contains an exponential dependence from
theWilson line and a logarithmic dependence determined by
the specific choices of indices.
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Following the proposal in Ref. [37], we construct the
reduced pseudo-ITD as

fMðν; z2Þ ¼
eM00ðp; zÞ=½p0p3ZLðz3=aÞ�

M00ðp ¼ 0; zÞ=m2
: ð8Þ

Note that this quantity is finite in the continuum limit. The
combination M00 ¼ Mti;it þMij;ji represents the matrix
element for the unpolarized gluon PDF defined in
Ref. [40] which contains the same Wilson line renormal-
ization constant. The factor ZL cancels the remaining
logarithmic ultraviolet divergences. After cancellation of
the renormalization constants, the denominator is given by
the average gluon momentum fraction hxig. The purpose of
this ratio is to construct a calculable observable, finite in the

continuum limit, which reduces to the renormalized fM
amplitude in the small-z2 limit where it can be related to the
PDFs, or equivalently their Ioffe time distributions. The
gluon and quark-singlet Ioffe time helicity distributions,
IΔg and IΔΣ, respectively

IΔgðν; μ2Þ ¼
Z

1

0

dx x sinðxνÞΔgðx; μ2Þ; ð9Þ

IΔΣðν; μ2Þ ¼
Z

1

0

dx x sinðxνÞΔΣðx; μ2Þ: ð10Þ

The matching between the reduced pseudo-ITD and the
Ioffe time helicity distributions, is given by [37]

fMðν; z23Þhxigðμ2Þ ¼ IΔgðν; μ2Þ −
αsNc

2π

Z
1

0

duIΔgðuν; μ2Þ
�
log

�
z23μ

2
e2γE

4

���
2u2

ū
þ 4uū

�
þ
−
�
1

2
þ 4

3

hxiΣðμ2Þ
hxigðμ2Þ

�
δðūÞ

�

þ 4

�
uþ logð1 − uÞ

ū

�
þ
−
�
1

ū
− ū

�
þ
−
1

2
δðūÞ þ 2ūu

	

−
αsCF

2π

Z
1

0

du IΔΣðuν; μ2Þ
�
log

�
z23μ

2
e2γE

4

�eBgqðuÞ þ 2ūu
�

þOðm2z2Þ þOðΛ2
QCDz

2Þ; ð11Þ

where hxiΣðμ2Þ is the average momentum fraction of the
unpolarized quark singlet distribution, ū ¼ 1 − u, andeBgqðuÞ ¼ 1 − ū2 is the quark-gluon mixing term of the
evolution kernel. Note that the factorization is only valid in
the limit where Mpp does not contributing to fM. As will
be discussed later, multiple ways were tested in Ref. [32] to
remove its contribution.
The presence of the structure-dependent momentum

fractions hxigðμ2Þ and hxiΣðμ2Þ in the matching relation
is atypical in the analogous factorization of cross sections.
It appears entirely due to the evolution of the momentum
fraction on the left-hand side of Eq. (11), which must be
included due to the normalization offM. This normalization
is convenient for two reasons. Not only does the expo-
nential renormalization of the Wilson line cancel, but it
does so in such a way so as to cancel the statistical
fluctuations of eM00 and M00, which are highly correlated.
Note that Eq. (11), as all factorization relationships, is

valid up to the power correction terms, which in this case
are Oðz2Þ. However, it was found [32] that these correc-
tions were actually the dominant contribution to the
matrix element. To address this, two approaches were
used to remove such contributions; one approach involved
modeling the two terms in Eq. (8) with polynomials in ν,
while the other involved subtracting the rest frame matrix
element which is exclusively given by the contaminating
power correction term. The rest frame subtracted data

were found to be consistent with the model of fM
from the first approach, giving confidence that both
approaches provide consistent results. This agreement
implies that the residual contamination from the power
corrections has been significantly reduced relative to the
overall uncertainty on the leading power contribution in
Eq. (8). In this study we will apply the factorization (11) to
relate a model PDF to the rest frame subtracted data.
Furthermore, in Ref. [31] both terms were modeled with a
neural network functional form, showing relatively good
agreement with the polynomial approach (see Fig. 3
in Ref. [31]).
Calculations in LQCD are limited in the maximum

momentum that a hadron can carry. Large momentum
calculations are plagued by polynomially growing lattice
systematic errors and, worse, exponentially growing stat-
istical noise. This issue limits calculations to momenta
jpj ≲ 3 GeV. With a limited range of p, or equivalently ν,
the pseudo-ITD cannot constrain the full x region of the
PDF. It has been shown [41] that increasing the range of ν
allows for more accurate reproduction in the low-x region.
Even with only ν < 10, the hPDF can be determined
accurately for x≳ 0.25. In Ref. [24] this feature was
exploited by combining experimental results, sensitive to
low x, and lattice results, sensitive to large x, to obtain
stronger constraints on the unpolarized quark PDF in the
pion. It is the goal of this study to explore whether the
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polarized gluon pseudo-ITD has sufficient constraining
power to discriminate between the sign of Δg in the large-x
region.
In our study, we include LQCD data that were generated

on 1901 configurations of an ensemble with (2þ 1)-
dynamical clover Wilson fermions with stout-link smearing
and tree-level tadpole-improved gauge action with a lattice
volume 323 × 64. The lattice spacing is a ¼ 0.094ð1Þ fm,
determined using the w0 scale [42], and the pion mass is
mπ ¼ 358ð3Þ MeV, respectively. While the quarks, and
thereby pions, have unphysically large masses, this is not
expected to be a dominant systematic error for gluon matrix
elements compared to discretization effects and other
systematic uncertainties. The two-point correlation func-
tions are constructed using the distillation approach [43]
with sources on all possible time slices. Wilson gradient
flow [44] was used to control statistical errors, with an
extrapolation to zero flow time. The scale dependence
entering in Eq. (11) is set as

μ2 ¼ max
�
m2

c;
4

e2γEz23

�
; ð12Þ

where z3 ¼ an is the spacelike separation of the gluon
fields, expressed in terms of the lattice spacing a, and n is
an integer. We choose this scale to optimize the perturbative
expression in Eq. (11) to remove the logarithmic contri-
butions. The hPDFs are evolved from the model scale mc
consistently across all observables, including LQCD data,
using next-to-leading logarithmic accuracy in perturba-
tive QCD.

III. EXPERIMENTAL DATA

From the experimental side, in the current analysis we
restrict ourselves to using only spin observables that are
directly sensitive to hPDFs, in contrast to the recent JAM
analysis [45], where PDFs, hPDFs and fragmentation
functions were all simultaneously extracted from data.
Here, we summarize all the experimental data in our
analysis:

(i) DSAs in inclusive DIS: We include all data from
fixed-target experiments conducted by the EMC
[46], SMC [47,48], COMPASS [49–51], SLAC
[52–57], and HERMES [58,59] Collaborations.
We apply identical cuts on W2 and Q2 as those
used for unpolarized DIS data [60,61]. Whenever
available, we use DSAs rather than the reconstructed
g1 structure function to ensure consistent propaga-
tion of uncertainties include those from PDFs enter-
ing in the denominator of the asymmetries. To
ensure that the asymmetries are dominated by the
leading twist g1 structure function, with negligible
contributions from g2, we impose constraints on the
four-momentum transfer squared Q2 > m2

c, and the
hadronic final state masses W2 > 10 GeV2.

(ii) DSAs in semi-inclusive DIS (SIDIS): With the same
cuts as in the inclusive DIS case, we include pion,
kaon, and unidentified hadron SIDIS measurements
on polarized proton, deuteron, and 3He targets from
HERMES [62,63], COMPASS [64,65] and SMC
[66]. The fragmentation variable z is restricted to the
range 0.2 < z < 0.8 to ensure the applicability of the
leading-power formalism and avoid hadron mass
corrections and threshold effects [67,68].

(iii) DSAs in inclusive jet production in polarized pp
collisions: We include DSAs from the STAR
[5,7,9,69,70] and PHENIX [10] Collaborations at
RHIC. The pT range is restricted to be the same as
the minimum pT for which the corresponding
unpolarized jet data are describable [13]. This
ensures a faithful description of the denominator
in the asymmetries.

For all the observables we employ a next-to-leading
order framework for the parton level cross sections and
asymmetries. The scale settings for DIS and SIDIS are all
set equal to the scale of the virtual photon. In the case of jet
data, we use the scale settings equal to 1

2
pT, which

generally yields the best agreement for both unpolarized
and polarized data.

IV. GLOBAL ANALYSIS WITH LQCD DATA

Our numerical approach to infer hPDFs in the combined
analysis follows the same Monte Carlo strategy as in
previous JAM analyses [13,45]. Specifically, we employ
a data resampling technique where pseudodata are gen-
erated by sampling the original data with Gaussian dis-
tributions within the uncertainties. In the case of LQCD
pseudo-ITD data, we utilize the full covariance matrix for
generating pseudodata. For each set of pseudodata, we
optimize the hPDF parameters while assigning prior
parameters for the PDFs and fragmentation functions from
an earlier JAM analysis [45]. The resulting ensemble of
optimized hPDFs represents the posterior density of the
combined LQCDþ experimental global analysis.
After collecting all the hPDF Monte Carlo samples,

including the LQCD data, we find that the negative Δg
solutions still persist, although with significant changes in
their shape. To assess the significance of the results, we first
discuss the quality of the agreement between the data and
theory. Figure 1 displays the reduced χ2 for the individual
datasets, defined as χ2red ¼ χ2=N, where N represents the
number of points. We present results both before (from
Ref. [45]) and after the inclusion of LQCD data. The results
are separated by different types of datasets and arranged in
increasing order of χ2red. We tabulate the datasets and their
labels in Table I. In addition, we categorize the results
based on the sign of Δg to illustrate the global agreement
of the negative solutions in the absence of positivity
constraints.
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In Fig. 2, we provide standardized Z-scores based on the
Gaussian hypothesis, computed as Z ¼ ffiffiffi

2
p

erf−1ð1 − 2pÞ,
where p is the p-value estimated from a χ2 distribution with
N as the degrees of freedom. This allows us to assess the
statistical significance of the reduced χ2 values and
diagnose instances where the χ2 values deviate from the
ideal value of unity. In both figures, the error bars indicate
the 50% percentiles and their neighborhoods of �1σ
percentiles.
Prior to the inclusion of LQCD data, most of the

experimental datasets exhibit relatively good agreement
with the theory, with Z-scores confined within 1σ in most
cases, regardless of the sign of Δg. However, the LQCD
data shows a significant tension for the negative Δg
solutions. After the inclusion of the LQCD data, one finds
the same agreement across most of the datasets as before,
with a possible exception in one of the polarized jet datasets
labeled as dataset 51 in Fig. 2. This dataset corresponds to
DSAs in polarized jets from the STAR Collaboration. To
examine this, in Fig. 3, we show the data and theory
comparisons. The inclusion of the LQCD data forces the
negative solutions to deviate further from a few ALL data
points around pT ∼ 20 GeV at the 0 < jηj < 0.5 bin,
causing an increase in the Z-score from < 1σ to 2σ, which
is however not statistically significant.
Note that in principle it is possible to obtain physical

jALLj < 1 DSAs with σþ and σ− both negative. However,
this would imply that the spin-averaged cross sections,

proportional to σþ þ σ−, would also be negative. Since we
agree with the unpolarized cross section data, including at
RHIC kinematics, this scenario can be ruled out in our
analysis.
Taking the same polarized jet dataset 51, it is instructive

to decompose its numerator into the three possible partonic
subprocesses: qq, qg, and gg, to understand the role of the
linear term with Δg that can discriminate its sign. This is
shown in Fig. 4 for the 0 < jηj < 0.5 bin for the two
solutions of Δg and compares the results before and after
the inclusion of LQCD data. In the case of Δg > 0, it is
clear that the linear contribution qg is the leading sub-
process of the DSAs at larger values of pT relative to the
other subprocesses, and the inclusion of LQCD data does
not significantly alter the relative contributions of the
subprocesses. In contrast, prior to the inclusion of
LQCD data, the negative Δg solutions enhance the role
of the gg channel at the expense of making the qg channel
more negative in order to balance out the relative contri-
butions to the DSAs and describe the data. This situation
changes with the inclusion of LQCD data where the qg and
gg channels contribute positively at larger values of pT at
the expense of turning the qq channel negative. This means
that the quark hPDFs have undergone changes at large x,
despite the fact that all the DSAs from DIS up to x ∼ 0.66
considered in this analysis are well described.
We also find that the inclusion of the LQCD data admits

negative solutions for Δg that can describe the LQCD

FIG. 1. Distribution of reduced χ2 values from PDF replicas per dataset ordered by types of data and increasing values of χ2red from
positive gluon polarization. The negative gluon case for entry 54 has been rescaled by a factor of 20 to fit within the graph in the upper
panel, and it corresponds to predictions for LQCD data using the hPDFs that were inferred without the LQCD data. The dataset labels
are given in Table I.
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results relatively well, with Z-scores ranging from 1 − 3σ,
which, in turn, prevents the complete elimination of the
negative solutions from the posterior distribution. To
understand the situation, in the top panels of Fig. 5, we
display the lattice data as a function of the Ioffe time ν. The
data points are available at different values of z23 for each
value of ν, which requires us to use different values for the
scale settings in Eq. (11). The calculations of Eq. (11) are
performed at discrete values of ν and z23, and we have
linearly connected the points to show the trends for the
positive (red) and negative (blue) Δg solutions. Prior to the
inclusion of the LQCD data, the positive solutions exhibit
relatively good agreement with the data, while the negative
solutions display a peculiar oscillatory behavior that is
inconsistent with the data. This inconsistency is particularly
noticeable in the lower ν regions, where LQCD calculations
are expected to be more reliable. After the inclusion of the
LQCD data, the variance of the positive solutions
decreases, indicating a level of constraint on the hPDFs.
However, the negative solutions persist, albeit with a shape
that exhibits fewer oscillations. These two solution sets
clearly have distinctive signs for fM. Since the majority of
the LQCD data is positive, the negative solutions are
disfavored. From a global analysis perspective, these

negative solutions do not disappear entirely due to the
contribution of the χ2 function from the LQCD data, which
includes a covariance matrix with nonzero off-diagonal
components not included in Fig. 5. When considering the
full covariance matrix of the LQCD data, one finds that the
negative solutions agree within approximately 1σ confi-
dence level, as shown in Fig. 2. We can understand this
more clearly by considering the residuals in the eigenspace
of the covariance matrix. Specifically, one can write the χ2

as a sum of independent residuals in the diagonalized space
of the covariance matrix, Σ, i.e.,

χ2 ¼ ðd − tÞTΣ−1ðd − tÞ
¼ ðd − tÞTUD−1UTðd − tÞ
¼

X
i

res�i
2: ð13Þ

In the second line of Eq. (13) the inverse of the covariance
matrix, Σ−1, has been written in terms of U and D−1, where
U is a matrix with columns that are the normalized
eigendirections of the inverse of the covariance matrix,
and D−1 is a diagonal matrix with the corresponding
eigenvalues. The vector d − t is the difference between

TABLE I. Labels of the datasets in Figs. 1 and 2. Datasets 1–18 are from polarized DIS, datasets 19–45 are from polarized SIDIS,
datasets 46–53 are from jets in polarized pp collisions, and dataset 54 is from LQCD. Further information on the lattice and
experimental data can be found in Secs. II and III, respectively.

(1) HERMES A1ðnÞ [58,59] (2) EMC A1ðpÞ [46]
(3) SMC A1ðpÞ [47,48] (4) SLAC(E154) AkðhÞ [52–57]
(5) HERMES AkðpÞ [58,59] (6) SMC A1ðdÞ [47,48]
(7) COMPASS A1ðdÞ [49–51] (8) SLACE80E130 AkðpÞ [52–57]
(9) SLAC(E143) AkðpÞ [52–57] (10) COMPASS A1ðpÞ [49–51]
(11) SLAC(E155) AkðdÞ [52–57] (12) SLAC(E142) A1ðhÞ [52–57]
(13) HERMES AkðdÞ [58,59] (14) SLAC(E143) AkðdÞ [52–57]
(15) COMPASS A1ðpÞ [49–51] (16) SMC A1ðpÞ [47,48]
(17) SLAC(E155) AkðpÞ [52–57] (18) SMC A1ðdÞ [47,48]
(19) COMPASS A1ðp;KþÞ [64,65] (20) COMPASS A1ðp;K−Þ [64,65]
(21) HERMES A1ðp; π−Þ [62,63] (22) COMPASS A1ðd; πþÞ [64,65]
(23) COMPASS A1ðd; KþÞ [64,65] (24) COMPASS A1ðd; π−Þ [64,65]
(25) HERMES A1ðh; h−Þ [62,63] (26) HERMES A1ðp; h−Þ [62,63]
(27) HERMES A1ðd; Kþ þ K−Þ [62,63] (28) SMC A1ðd; hþÞ [66]
(29) HERMES A1ðh; hþÞ [62,63] (30) HERMES A1ðp; hþÞ [62,63]
(31) COMPASS A1ðd; K−Þ [64,65] (32) COMPASS A1ðd; hþÞ [64,65]
(33) HERMES A1ðd; h−Þ [62,63] (34) HERMES A1ðd; K−Þ [62,63]
(35) HERMES A1ðd; KþÞ [62,63] (36) COMPASS A1ðd; h−Þ [64,65]
(37) COMPASS A1ðp; πþÞ [64,65] (38) SMC A1ðp; h−Þ [66]
(39) SMC A1ðd; h−Þ [66] (40) COMPASS A1ðp; π−Þ [64,65]
(41) HERMES A1ðd; πþÞ [62,63] (42) HERMES A1ðp; πþÞ [62,63]
(43) HERMES A1ðd; hþÞ [62,63] (44) SMC A1ðp; hþÞ [66]
(45) HERMES A1ðd; π−Þ [62,63] (46) PHENIX ALL

ffiffiffi
s

p ¼ 200 GeV (2005) [10]
(47) STAR ALL

ffiffiffi
s

p ¼ 200 GeV (2015) [5,7,9,69,70] (48) STAR ALL
ffiffiffi
s

p ¼ 200 GeV (2005) [5,7,9,69,70]
(49) STAR ALL

ffiffiffi
s

p ¼ 510 GeV (2012) [5,7,9,69,70] (50) STAR ALL
ffiffiffi
s

p ¼ 200 GeV (2003) [5,7,9,69,70]
(51) STAR ALL

ffiffiffi
s

p ¼ 200 GeV (2006) [5,7,9,69,70] (52) STAR ALL
ffiffiffi
s

p ¼ 510 GeV (2013) [5,7,9,69,70]
(53) STAR ALL

ffiffiffi
s

p ¼ 200 GeV (2009) [5,7,9,69,70] (54) HadStruc fMðpÞ [32]
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the LQCD data points d and the corresponding calculations
t from Eq. (11). The vector res� ¼

ffiffiffiffiffiffiffiffi
D−1

p
UTðd − tÞ con-

tains the residuals in the eigenspace of the covariance
matrix. The absolute values of res� are shown in the lower
panels of Fig. 5, ordered by increasing eigenvalues of the
covariance matrix. As expected, before the inclusion of
LQCD data the positive Δg solution displays residual

values near unity, while the negative solutions give larger
values, indicating a poor agreement with the LQCD data. In
contrast, after the inclusion of LQCD data the residuals
show marginal differences between both classes of solu-
tions in the eigenvalue-residual space, which, in turn,
prevents us from conclusively eliminating the negative
Δg solutions.

FIG. 3. DSAs from STAR Collaboration. The figure compares
theory and data before and after the inclusion of LQCD data.

FIG. 4. Quark and gluon subprocesses contributing to DSAs
data from the STAR Collaboration. The figure compares theory
and data before and after the inclusion of LQCD data.

FIG. 2. Distribution of Z-scores values from PDF replicas per dataset ordered by types of data and increasing values of χ2red from
positive gluon polarization. In the case of the negative gluon for entry 54, the upper panel indicates an approximately infinite value,
suggesting an extremely poor prediction of the LQCD data using the prior hPDFs that were inferred from experimental data alone. The
dataset labels are given in Table I.
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We now discuss the results at the hPDF level. In Fig. 6,
we present the replicas of Δg and ΔΣ before and after the
inclusion of LQCD data, categorizing the hPDFs by the
sign of Δg. In the gluon sector, we observe significant
changes for the negative solutions for x > 0.3, where the
behavior of the replicas tends to violate the positivity
constraints less. Nevertheless, negativity in the gluon
helicity is still visible in the region x < 0.2, which cannot
be ruled out by the positivity constraints or any of the
present data from experiments or LQCD included in the

present analysis. Interestingly, for the quark singlet sector,
we find, in contrast to the no-LQCD case, differences inΔΣ
for x > 0.3, where negative solutions appear which corre-
sponds to negative Δg solutions. As mentioned before, our
DIS DSAs are in the region with W2 > 10GeV2 with the
highest value of x ∼ 0.66 hence insensitive to most of the
negativeΔΣ above x > 0.7 and in turn it prevents the DSAs
from single jet productions to discriminate against the
negative solutions of Δg.
In terms of moments, the constraining region of data

used in this analysis is 0.007 < x < 0.66, which gives
values for

R
0.66
0.007 dx xΔΣðxÞ at μ2 ¼ 10 GeV2 of 0.10(1) and

0.03(3) for the positive and negative Δg scenarios, respec-
tively, after inclusion of the LQCD data. Contributions
from the extrapolation regions outside this range do not
significantly affect the full moment for the positive Δg
scenario, leaving its value at 0.11(1). The moment for the
negative Δg scenario becomes significantly more negative,
−0.21ð7Þ, which contrasts with the LQCD moment result
0.136(23) from Ref. [71]. However, at present, without the
inclusion of additional data sensitive to large-x hPDFs,
definitive conclusions on such disagreement cannot be
drawn due to the inherent bias in the extrapolation when
reconstructing the full moment.
Finally, in Fig. 7, we display the individual components

of the gluon helicity PDF, namely g↑ and g↓. In the case of
Δg > 0, we observe violations of positivity, mostly for the
spin antialigned PDF g↓, above x ∼ 0.4. For the mirror
version, Δg < 0, this violation occurs earlier, around
x ∼ 0.3, for the spin-aligned PDF g↑. As mentioned before,
positivity constraints are violated regardless of the sign
of Δg.

FIG. 5. Top panels: Comparison of LQCD data with Eq. (11)
using hPDFs from global analysis without LQCD data (left) and
with LQCD data (right). Lower panels: Absolute value of
residuals in the eigenspace of the covariance matrix.

FIG. 6. Impact of LQCD’s Ioffe time pseudodistributions on the
gluon (upper) and quark singlet (lower) helicity distributions. The
left column represents prior to lattice QCD data was included and
the right represents after.

FIG. 7. Impact of LQCD’s Ioffe time distributions on the
individual gluon helicity components in absolute value. The left
and right columns show the results prior to and after the inclusion
of LQCD data, respectively.
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V. CONCLUSIONS

We have performed a new global analysis of spin-
dependent parton distribution functions, incorporating
Ioffe time pseudodistributions computed in lattice QCD,
which directly probe the gluon helicity PDF. Our analysis
critically examines the overall agreement between data and
theory. We find that the inclusion of the LQCD data does
not significantly alter the quality of the results. At present,
LQCD data do not definitively rule out the negative
Δg solutions, which were recently found by the JAM
Collaboration at moderate values of x. Nevertheless, we
observe changes in the shape and magnitude of the gluon
helicity PDF and the quark sector. LQCD data reduces the
magnitude of the negative Δg solutions at high x, leading to
a sign change in the corresponding quark singlet solutions
at x ∼ 0.4, necessary to describe the polarized jet data
from RHIC.
The changes induced by LQCD data do not impact the

description of inclusive DIS data extending up to x ≈ 0.66.
Future work should include the large-x data from Jefferson
Lab, which requires additional treatment of power correc-
tions. However, these data are likely to exhibit tension with
the negative Δg and negative ΔΣ solutions at high x,
providing an empirical test of the sign of Δg. Nevertheless,
we emphasize the importance of including additional large-
x data that are less sensitive to power corrections in order to
comprehensively assess the universality of the result-
ing hPDFs.
For future work, we look forward to incorporating dijet

data from RHIC, which may help constrain the sign of Δg
at high x. The proposed JLab 24 GeV upgrade would also
give greater discriminating power at larger x values [72].
Furthermore, forthcoming LQCD calculations sensitive to
the singlet distribution ΔΣ may provide new insights into
the high-x behavior of hPDFs. We should also note that this
study is limited by the data currently available, and
anticipate collecting additional information from the future
Electron-Ion Collider [73], which is expected to provide
constraints on hPDFs in the previously unexplored region
of small x and large Q2, with observables sensitive linearly
to Δg.
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