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Florian Hechenberger :

Institut fur Theoretische Physik, Technische Universitat Wien,
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

Kiminad A. Mamo®'
Physics Department, William and Mary, Williamsburg, Virginia 23187, USA

Ismail Zahed"

Center for Nuclear Theory, Department of Physics and Astronomy,
Stony Brook University, Stony Brook, New York 11794-3800, USA

® (Received 22 November 2023; accepted 24 January 2024; published 27 February 2024)

We consider the contribution of the Odderon to diffractive pp and pp elastic scattering at large center of
mass energy. We identify the Odderon and Pomeron with the Reggeized 1+~ and 2++ glueballs in the bulk,
respectively. We use for the gravity dual description the repulsive wall model, to account for the proper
Gribov diffusion for off-forward scattering. The eikonalized and unitarized amplitudes exhibit a vanish-
ingly small rho-parameter, and a slope parameter fixed by twice the closed string slope. The results for the
differential and total cross sections are compared to the empirical results reported recently by the TOTEM

collaboration.
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I. INTRODUCTION

In the Regge limit, diffractive pp and pp scattering at
large /s is dominated by the Pomeron, with a smaller
admixture from the Odderon [1], a tower of C-odd soft
gluons. The Odderon is believed to be the C-odd partner of
the C-even Pomeron. While the latter in its soft version
dominates the diffractive pp cross section at high energy,
the manifestation of the former is still being debated,
although recent results from the TOTEM collaboration
have claimed it [2].

Regge theory predicts the rise of the pp and pp elastic
cross sections at collider energies. The rise follows from
Regge poles. The dominant pole is the Pomeron with the
largest intercept and positive signature. The Odderon carries
a smaller intercept and negative signature. Negative sig-
nature Reggeons add in the pp channel, and subtract in the
pp channel.
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The hard QCD Pomeron at weak coupling is a Reggeized
BFKL ladder which resums the rapidity ordered collinear
emissions. It is a C-even and P-even gluon ladder, which is
identified with j-plane branch-points in the conformal limit.
In the same regime, the Odderon is a Reggeized BKP
ladder [3,4]. It is a C-odd and P-odd exchange of gluons,
with two nearby j-plane branch points. At strong coupling,
in dual gravity, the Pomeron is identified with a Reggeized
spin-j graviton, while the Odderon with a Reggeized spin-j
Kalb-Ramond field [5].

The purpose of this work is to explore the possible
contribution of the Odderon in diffractive pp and pp elastic
scattering, in light of the recently reported Odderon by the

D(b and TOTEM collaborations [2]. In gravity dual for-
mulations, the general aspects of the Odderon were initially
discussed in [5]. Our approach will use the gravity dual
formulation, with a repulsive wall to account for confine-
ment. Only in this case, a full Reggeization with the famed
Gribov diffusion is realized. For completeness, we note that
the Odderon contribution in pp and pp scattering was
partially analyzed using an effective string theory in [6], and
the AdS/CFT in the conformal limit in [7].

The outline of the paper is as follows: in Sec. II we briefly
review the salient features of the newly released pp and pp
data by the TOTEM collaboration. In Sec. III we will
formulate the gravity dual description using the repulsive
wall model. We will explicitly construct the bulk-to-bulk
Pomeron and Odderon propagators, and show how the

Published by the American Physical Society
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Reggeized forms of the Pomeron and Odderon emerge from
pertinent analytical resummations. Unlike the soft wall, the
repulsive wall reproduces the expected Gribov diffusion for
the Reggeons on the boundary in the confining limit. The
logarithmic diffusion in the conformal limit is shown to
hold. In Sec. IV we derive the holographic and Reggeized
amplitudes for elastic pp and pp scattering with the
associated total and differential cross sections. The slope
and rho-parameters are made explicit. In Sec. V the holo-
graphic amplitudes are eikonalized. The Froissart bound is
recovered at asymptotic energies. The eikonal results for the
slope and rho-parameters, as well as the elastic differential
cross section, are compared to the recently reported TOTEM
data. Our conclusions are in Sec. VI. More details regarding
some aspects of the repulsive and soft wall as well as
the conformal limit are given in a number of additional
Appendices.

II. ODDERON IN pp AND pp

Diffractive pp and pp elastic scattering is dominated by
Reggeized glueball exchanges as illustrated in Fig. 1. The
Pomeron and Odderon carry positive and negative C-parity,
respectively. In pQCD the Pomeron is a Reggeized
exchange of a two-gluon ladder with rung induced by
Lipatov vertices with positive parity 27, and the Odderon
a Reggeized three-gluon ladder with negative parity 17~.
Their contribution adds in the elastic pp scattering ampli-
tude, and subtracts in pp,

APP = A;F:p + Agp

Az=A0 — A% (2.1)
The difference between the two amplitudes at large +/s
stems from the Odderon exchange, as it discriminates p
from P by charge conjugation. The combined and large /s

elastic pp data from LHC and pp data from D(b, were
recently analyzed by the TOTEM collaboration, with the
results shown in Fig. 2.

The data for the differential cross section shows a clear
diffractive dip and bump pattern for the pp channel, with a
large bump-to-dip ratio that appears to be decreasing for
larger +/s. In the pp scattering data it appears to be flat
already at comparatively low ,/s. Among the new and
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FIG. 1. Feynman diagrams for diffractive pp eleastic scattering

through (a) Pomeron and (b) Odderon exchange.
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FIG. 2. pp differential cross sections from the TOTEM

collaboration (left), and pp from the D(b collaboration (right),
for different center of mass energies /s [2,8].

unexpected features of the elastic amplitude are: (1) The
persistent diffractive structure at low-t; (2) The absence of
additional secondary structures at large-t; and (3) The linear
rise of the slope parameter. We now proceed to analyze
(2.1) and their pertinent differential and total cross sections
in the context of dual gravity.

III. GRAVITY DUAL DESCRIPTION

In the QCD dual gravity approach, the precursors to the
Pomeron and the Odderon are identified with the graviton
2+* and the Kalb-Ramond 1+~ fields, each to leading order
sourced by the QCD boundary operators

R [2FH]: GG
Buu[1+—] : duchaa/)’GzﬂGcm/

c 1] d“bCG““ﬂGgﬁG“”’“ (3.1)
with all traces subtracted. The even spin-j trajectory for the
Pomeron, and the odd spin-j trajectory for the Odderon are
sourced, respectively, by the boundary operators

U2+ )] GHD,..D, G
v N\+—1. gabc aq, b (ycpy
BY[(14 j)*]: d<GuPD,...D, G,G*

CHI(1 + )]s dG*D,, ...D, Gb,G* (3.2)
with the proper symmetrization assumed. In particular, ;
has conformal dimension A;, = 4 + j and twist 7, = 2 + j,
and B;, C; have conformal dimension A;, = 6 + j and twist
7, = 5 + J, respectively.

A. Dual gravity

We now proceed to analyze the gravity dual description of
the corresponding bulk fields, using the bottom-up approach
with a repulsive wall. As we detail in Appendix A, the soft
wall model fails to capture Gribov diffusive behavior,
necessary for off-forward scattering. We will thus take a
different path and linearize the bulk equations of motion in
the dilaton, which resembles an additional potential term. To
this end we write the metric as
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ds®> = 9 (dz> + Hwdx*dx’),

eZA(z) — <§> zeaK2z2
Z

which is amenable to passing from the string frame to
Einstein frame. We also introduced a constant prefactor a, to
study the effects of a repulsive versus attractive dilaton, as
well as the open versus closed string coupling. The repulsive
dilaton bears much in common with the Nambu-Goto
analysis of the Pomeron with a hard wall [9] (and references
therein). Matching the parameters of type IIB supergravity
(SUGRA) on AdSs to A/ = 4 Super Yang-Mills we get

R* = Vad.

(3.3)

(3.4)
In the following we will set R = 1.

B. Reggeized even spin-j

The starting point for the Reggeization of the even spin-j
exchange is the graviton with spin j = 2. We recall that the
bulk equation of motion for the graviton follows from the
linearization of the Einstein-Hilbert action. The traceless
and transverse part of the metric fluctuation in physical
gauge ¢,/ h;_, is amenable to a scalar equation with
anomalous dimension

Ay(j=2)=2+/4+ miR?

with ng2 = 0. The closed string exchange resumming the
even spin-j h; fields, can be sought as a graviton exchange
with the anomalous dimension [10]

(3.5)

() =2+ \[A+mR +mR  (36)

deformed by the closed string quantized mass spectrum

. 1
In other words, the anomalous dimension (3.6) is
A,()) =2+ 1/2V2(j ~ js) (3.8)
with
4
p=2———. 3.9

Higher order corrections in 1/v/2 to the Pomeron intercept
have been analyzed in [11].

We will seek the Reggeized bulk-to-bulk graviton propa-
gator in terms of its Mellin transform with the even-signature

contribution projected out via the Sommerfeld-Watson
transform

dj (a's) 2+ (=d's)/™2 )
G 5 t, 5 ./ - - . . G 3 t7 ’ !
2(8,4,2,7) /47ri sinz(j—2) 2, 1,2, 7)

(3.10)

and the analytical continuation in spin j = 2 — j assumed.

C. Reggeized odd spin-j

Similarly to the Reggeized even spin-j exchange, the
starting point for the Reggeization of the odd spin-j
exchanges that sums up to a closed string exchange is
the spin-1 C, ~ *xdC gauge field. For that, we first recall
that the bulk equation of motion for the rescaled gauge field
zC is the same as that of a scalar field with anomalous
dimension [12]

A(j=1)=2+ /44 miR?

(3.11)
with
miR? = -4 +m?

where we added m3 = k?, (4 + k)? for the two branches of
the Odderon [5]. The latter branch identifies with the
canonical dimensions of (3.1), (3.2). The former branch
is more sensitive to the presence of the adjoint scalars in the
SUSY version. In this spirit, the closed string exchange
resumming the odd spin-j C; gauge fields can be sought as
a vector exchange with the anomalous dimension

() =2+ \[A+mR + iR (3.12)

deformed by the closed string quantized mass spectrum
j=1+-dmi. (3.13)

In other words, the anomalous dimension (3.12) is

A, (j) =2+ \/2V2(j - jo) (3.14)
with
m2
j@:l—ﬁz. (3.15)

Higher order corrections in 1/+/4 to the Odderon intercept
have been analyzed in [11]. Similarly as for the graviton,
the Reggeized Kalb-Ramond field is given by the odd-
signature Sommerfeld-Watson transform
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dj (s)~! + (=ad's)/! )
Gi(s,t.2.7) = [ — - G (j.t.z.7).
1(s,4,2,7) /4ni sinz(j— 1) (i 2.2)

(3.16)

To conclude, the Reggeized bulk-to-bulk propagators that
resum the even and odd trajectory are given by

dj (o's)i=I= + (=ad's)/ /= .
G, (s.t.2.7)= | —— . G, (j.t.z.7),
o (8:1:2.7) /4m’ sinz(j— 1) 5 62.7)
ji=2. j_=1. (3.17)

D. Resummed bulk-to-bulk propagator

The analytically continued spin-2 and spin-0 are
related by

Gy(j,t,2,7) = e UDAQHAOG(f,1,2,7)  (3.18)
with the warped scalar propagator obtained from
L.Go(e.?) =" fv(_z)Z/) (3.19)
and the pertinent Sturm-Liouville operator
Lo= = d(w(@po(de) + pald). (3:20)
w(z)

For the background (3.3) the scalar bulk-to-bulk propagator
obeys the Sturm-Liouville equation (3.19), (3.20) with
weights

(3.21)
where
S; =miR* + m?Rz.

After carrying out the coordinate transformations and field
redefinitions laid out in Appendix A, and keeping in mind
that the dilaton has been absorbed into the metric, the scalar
bulk-to-bulk propagator is now seen to solve

Ki(v) + (— 51(141;%”) c ;;’2) mE ’2/—1?) Ko(v)
B S(v—1")
= (3.22)

where we expanded the dilaton to linear order /3 =

1 +2av/3. The independent homogeneous solutions to
(3.22) are Whittaker functions

v 1

1
K (v) = ez *M <§ +a—-p.142a, v)

. 1
K>(v) = e sprtay <5 +a—-p,1+2a, U> (3.23)

with Kummer M (regular at » =0) and Tricomi U
(irregular with branch cut at v = 0) hypergeometric func-
tions and

A(j)—2 3-8, —m2+ 31
gD =2 3 =Simmsd3a g
2 6
The inhomogeneous solution to (3.22) is then
1
Ko(v,v') = EAKQ(U)Kl(v’), v >
1
Ko(v,0v') = E.AKI(U)K2<U/), v<v (3.25)
with the normalization fixed by the Wronskian
6axl'(1 +2
A7 = —V6axW(Ky. K,) = _ VoaxI (1 +2a) (3.26)

LG +a=p)

The cost of linearizing the dilaton is a shift in the conformal
intercept resulting from the poles of the gamma function
given by

o) = jo—— 4% (3.27)
JP J+ 2 ﬂ 2 .
under the condition that 5ax’R? = 2. From this identifi-
cation it is apparent that only the repulsive dilaton with
a > 0 gives the correct diffusive Regge behavior, since the
attractive dilaton with a < O would violate unitarity. As
shown below and in Appendix A, this choice shifts the
intercept slightly below the result from the soft wall or pure
AdS, which is however to be expected since linearizing the
dilaton introduces an additional potential term. We also find
a pole with a higher intercept

a/

ip(t) =J +i+—t
JP J+ \/Z 2

(3.28)
coming from the positive root which, however, will not be
picked up by the contour integration of the Sommerfeld-
Watson transform.

Reverting the rescalings and coordinate transformations,
we obtain the resummed scalar bulk-to-bulk propagator in
the repulsive wall to be
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FIG. 3. Complex j-plane structure for the odd spin-j bulk-to-
bulk propagator. The poles give rise to the vector glueball
spectrum and the cut gives rise to the Odderon.

"2
(ZZ2) (3aK2ZZ//2)Ag(j)—2
3A,(j)+S;—6+37/a
— %)
I(A,(j) = 1)

Go(j.t.2,7') = =

I(

X M(z)U(Z') (3.29)

where we introduced the shorthand

M(z) = M<Sj + 3Ag(jé— 6—3%/a

CAG() =1L aK222>
and similarly for U(z). The branch cut of
1 : T
F(E +a-— ﬂ) =T(iy) ~ e 78 /iy

is chosen to the left of the integration contour, along the
negative real axis as in Fig. 3. In the large s/|7| limit, the
integral is dominated by the saddle point. For the Pomeron
we recall that m% =0 and we continue to carry out the
Sommerfeld-Watson transform via saddle point approxi-
mation to obtain

n2

Gas.1.2.7) = = 1)y 22 CE) ptinti-2pe 4
5 Srr 2

x (3ax?z7 /2)elr()2), (3.30)

where 7 = log(a'szz') = y + log zZ’ with y = log(d’s) the

rapidity, and we used that M(0,0, z) = U(0,0,z) = 1 and

4\/1 T

N

Note that at the saddle point the Kummer functions are
M(0,0,z) = 1,U(0,0,z) = 1 and the bulk-to-bulk propa-
gator is fully symmetric.

For the Odderon the analytically continued spin-1 and
spin-0 are related by

fFa)y=i+ (3.31)

Gi(j.t.2,7) = e U"VAQHAO G (7,1,2,7)  (3.32)
with the rescaled scalar field
Go(j.t.2.7) = (z2)'Gy(j. t.2.2).  (3.33)

We recall that
Ag(j) =244+, =2+my
and thus

o) =j M1, 4,
Jo J- 2\/1 2

(3.34)

We expect higher order corrections in 1/1/2 to the Odderon
intercept in (3.34), following the strong coupling analysis
in the conformal limit in [11].

The multiple branches of the Odderon, which are
fixed from type IIB SUGRA, are given by m? = k? and
m; = (k+4)%. The structure of (3.34) shows that the
k = 0 branch has either an intercept greater than one, or is
super diffusive. The branch with k = 1 has an intercept
precisely at one, and is the leading branch cut that will be
picked up by the saddle point. Remarkably, a similar
Odderon trajectory was noted in baryon-baryon scattering
in AdS with D5 branes [7].

Performing the Sommerfeld-Watson transform via sad-
dle point approximation along the contour of Fig. 3, the
bulk-to-bulk Odderon propagator is given by

3 3D (ZZ’) a(; 20,24 .2
N —_Zf () 7 2T =5t =1)K* (2 +2r%)
Gils.t2.2) = =555 e
x (3ax?z7' /2)elio=1)z, (3.35)
where
42 (m? =)z
() =i+ - , 3.36
=@ (m2 = 1)z 12v/2 ( )

which has a pole for the leading £ = 1 branch. We note that,
at large 4, (3.31) and (3.36) coincide for the k = 2 branch.
The conformal limit is discussed in Appendix B.

IV. SCATTERING AMPLITUDES

Elastic pp and pp scattering in the Regge limit with the
exchange of Reggeons P, O are depicted in Fig. 1 using
standard Feynman graphs. In dual gravity, the Feynman
graphs are replaced by the Witten diagrams in Fig. 4. The
Pomeron P is identified with a sum of massive even-spin
glueballs, while the Odderon is identified with a sum of
massive odd-spin glueballs. The wavy-lines are the bulk-to-
bulk G;, (j) propagators defined above. The bulk-to-boun-
dary Dirac fermions are represented by solid lines, and
follow from the chiral Kaluza-Klein modes for the bulk
Dirac fermions discussed in Appendix C.
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(@)

(b
FIG. 4. Witten diagrams for diffractive pp eleastic scattering through (a) Pomeron and (b) Odderon exchange

The even and odd spin-j contributions to Fig. 1 are

and
pp—)pp Z AP ] s, t Z A@(] s, t 1 2
J=24... J=13.. ;waﬂ(k) 2 P Puﬂ+PpﬁPba_§PuvPaﬁ (k)
A s pp( ZAp]st ZA@]st (4.1) kK
J=24. J=13 P;m(k) = MNya + L

2 (4.7)
A. Even spin- In the Regge limit the amplitude reduces to

The even spin-j contribution to diffractive pp scattering

in Fig. 4(a) is given by

3 3D k2
As,t:—w\/i P b5
i-AP(jvSJ)Z(—i)V’;f;,\p(ql,qz,k,mn) p(s.1) 5f (4) e
G N% t—4m?
X Guuiap (k) (=) Vg (Pr. P2 ko) (4.2) x (1+ sm”)e< P25 8o,
with the bulk Pomeron-nucleon vertex for the repulsive =N f*(/l)e(f (’)_2)’Vp(s, 1), (4.8)
wall [12]
o v/ Z3A(: where
V[P"Y\P(plvp%k ny 2i? /dz\/ﬁe
x ‘P(PZ’ZW PP n(ma ) 729 fgm, kx(n} + n}) N \/?5,<
(43) T A0G +8(p(0) —2)0) 5V 52
(4.9)
where
e 3 o= lin(N-2)ax’2*/2
Jh(mn,z) = ZaKZ e~ Upll)=2)ak"z

and we used a = 4 for the closed string exchange and a =1
(4.4)  for the open string fields as well as u(p,)y*u(p,)

(pl + pZ)ﬂéslsz
and the reduced even spin-j Reggeized graviton exchange

. . B. Odd spin-j
Gyu.aﬂ(mn’ k’ <, ZI) = ‘]h (mn’ Z)G/w,aﬂ(mn (.])7 k)‘]h (mn’ ZI)

The odd spin-j contribution to diffractive pp scattering is
(4.5)
with the Pomeron i iAp(s.1) = Z(_i)v('n)”< k.m,)
propagator given by o\, jew\d1,4q2, K, My,
m<n
3 /3D z —iplme
/waﬁ(m k) = —2fH(A) ] e (o 7( i) ﬂyaﬁ(k) XHW(mn,k)( Z>V]‘P‘P(P17P2’k m,)  (4.10)
5 Sat
(4.6)

with the bulk Odderon-nucleon vertices
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1
Vg\)yﬁ\y(Pan,k,mn):—&—\/ 2,<2§/dz\/§e—2A(z)
X ¥(py, 2) 0Py P(p1.2)kad 4 (1,.2))
(4.11)

Vg;ﬂly(l?hpz,k m,) =

1
-V 2K? 3 / dz\/ge™()

X W(pr. )Y P ¥ (p1.2) ]y (my. 7))
(4.12)

corresponding to a Pauli and Dirac coupling, where

3 .
Jp(m,,z) = \/ZaKZZe‘W() Da?22/2 - (4.13)

and the reduced odd spin-j Reggeized spin-1 exchange

Hﬂb(mn’kvz’ ZI) = Jh(mn’z) ~ﬂv(k7z’zl)‘]h<mn’zl)’ (414)

where

H,(kz2) :—%f—(z)q /gem}() Vr(=i)P,, (k). (4.15)

projection onto the spin 1 content is obtained via utilizing
the field strength C,, =3 \/7 €upeF??. The normalization

is implied by the normalized kinetic term in the closed
string SUGRA action, which we omit in the following. A
similar reasoning holds for B,,.. Note that the Pauli coupling
vanishes in the forward limit, even with the normalization
included, and is strongly suppressed in the Regge limit. The
Dirac coupling does not and allows for the study of
potential contributions of the Odderon as a spin-1 exchange
in the forward region. Recall that the BKP Odderon is a
Reggeized 4-vector (%%) representation of the complexi-
fied SO(3, 1). For completeness, we note that in [7] the
Odderon is identified with an exchange of the B,
component of the Kalb-Ramond field in AdSs x Ss5. The
self-dual 2-form corresponds to the (0, 1) representation of
the complexified SO(3, 1), and is found to have nonzero
coupling to the baryon vertex.

Similarly, after reducing the chiral Dirac spinors to 4D
and utilizing the LSZ formula, we obtain for the Odderon

98%{, = /dzx/ﬁe_ZA(Z) (wr(2)? +wr(z)?)Jp(m,. 2))

_ TT76fgmykyk(ng + ng)

= 4.16
(9, + 320jo(0) - e)° (@10
The vertices arise from the sources By and C,y of the
boundary operators in (3.1) which are assumed to mini- @
mally couple to the chiral Dirac fermion current Yo*5¥ vy / dz\/ge™ 2’l/L( Wr(2)I4(m,, 2))
in the bulk with 4% = L[ TF), eM = =AM TA =
2 ’ ’ A / 4
(y*, —iy®), {T4, T8} = 2i*8. The corresponding 1=~ fluc- = 155252f0m1’. 3”KKNnLZ’1, (4.17)
tuations, which are tied through a topological mass term in (9xy + 32(jo(0) — 1)x7)
type IIB SUGRA, are given by C,, and B, [13]. The latter
already corresponds to a spin-1 exchange, while for C,, a  In the Regge limit the amplitude is given by
|
Aofs.) = 2|22 eio0 e (402 4tk (po)ou(py) Py (g0l
57z 7 \Yowy P2)o7u(py q2)07"u\q,
v y 1 2 77 Q v
t+ o (P1+ P2 P () (@1 + 02) 6,805, + i G (Kali(02)0%u(q1) Py (p1 + p2)*6,.s,
R u(pn) P00 e + 425 )
= Nf=(A)ele=DrV g (s, 1) (4.18)

where we again used @(po)r'u(pi) = (pi + p2)'d,
for s —» co. In particular we obtain for the forward
amplitude

- 2) 2 (o()=1)r Amy
Ao(s5,0) = Nf7(2)(gpy) €V° 2s I_Ts :

(4.19)

C. Total cross sections

For the computation of the total cross section, we recall
that the signature factors are given by

RO %ﬁ—ﬁ
N 4V _(mg =)
S0 =it o (4.20)
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For the discussion of the analytical results we will drop the subleading piece in A and only include it in the numerical analysis.
In both cases the real part dwarfs the imaginary part at very strong coupling, but both imaginary parts are equal to 1.
The total cross sections in pp and pp follow from the optical theorem

1
o.(s) = ;Im(Ap(s, 0) £ Ag(s,0)), (4.21)
and is given by
6 [2D«? m . 4m?
=4 /Z= (p(0)-Dr [ — 2P (12 (o)== 2P
o.(s) = 5 VSm' 5 (29[@\1’\{'6 s <1 g > +tg o ele (1 > >>
. _ 4m2 12 . . 4m2
— 2N elip(0)=1)z (%@P (1 _ s1’> + gfo)@ye(m(o) Jp(0) <1 _ 2;’)) (4.22)
where we expanded for large s. The rho-parameters for both channels read
ReA. (s, 0) %(1 - 4m%,/s)g2_\ye(fp(0)‘1)7 + (”3\/_) (1 —4m3/2s)g _‘Pe(fﬂ(o) Dz 4V
p=(s) = ImA, (5,0) (1 —4m2/s) G eUrO=17 £ (1 —4m?2 /25)g?_ elio(0)=1)7 T (4.23)
= ! 5) Iy ! =5 )9opy
with a constant asymptotic in the large rapidity limit. The high energy scattering data suggests p(s) ~ 0.1 for /s >

100 GeV [14] (and references therein). Below we show that after the eikonal resummation, the strong shadowing caused by
the exchanged Reggeons will deplete (4.23) to zero in the large rapidity limit, in qualitative agreement with the data.

D. Elastic differential cross-section

The spin averaged squared elastic amplitude is given by

2 ) 2t — 8m?
+ 2 S 2jp(1)7 A P
Mz (s OF = 4¢2 [e " G <1 LIRS

5

4

+ - (1) +jo(1)

2
(gp\ylyg@lpp)

where we note that the interference term is highly sup-

pressed in the Regge limit but still leading compared to the

(98%)2 piece. Hence we will drop 98%\],

analysis. The elastic differential cross sections for pp and
pp follow from

in our numerical

do 1
—== 2|Aj:(sat)‘2'

= 4.26
dt  16zxs ( )

The elastic slopes are identical in the large rapidity limit

“alnae).

S (% jp(t)>lo —arn (427)

20 (1\2 10mde\ L (g)!
- + 4o ’ (4.24)
S N
2j W (1)
+ 64¢%olt (g(ﬁ\P) . (4.25)

The squared string length o = 1 GeV~2, is comparable to
the canonical logarithmic value of the slope parameter [14]
(and references therein)

. s
B(s.t=0) =1 GeV 21n<1 Gev2) (4.28)

for both the Pomeron and the Odderon as closed string
exchanges.

V. EIKONAL ELASTIC SCATTERING

The single Pomeron and Reggeon exchanges violate
unitarity at large /s. A simple remedy is to resum the
s-channel exchanges or a process known as eikonalization,
which is dominant in the Regge limit. With this in mind and
following [15], we write the holographic total cross section
for the Reggeons as
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or(s) = %/dszdZle(\/g(Z>l//l2(jR7Z))(VQ(ZI)W34<ijZ/)>23 Imy (jr.s.b1.2.2') (5.1)

where y;;(jg. z) are the holographic wavefunctions for the in-out states in the Regge limit, with the metric factors e340)

(Pomeron) and e~24)  =AR) (Odderon) for each vertex implicit. Here y(jp, s, b, z,7') is the eikonal phase-shift for the
Reggeon R =P, 0

x(jr.8.b1.2.2) = s+ 'G(jr.5.b . 2.2) (5.2)

with j. =2, 1 for the Pomeron and Odderon, respectively. In the following we will use the shorthand
xr =x(r,s,b1,z,7). More specifically, from (3.30)—(3.35) we have

3 3D (z7)? 4. > A "4
s'G(jp,s.b1,2,7) == fT(A)y lﬁg e‘i(./P(O)_z)K“(ZZ+Z/2)(3aK2ZZ//2)e(./P(O)_1)Te_ﬁ/} Z

5 at
3 3D " . 4
SOG(j@, s, bJ_, Z Z’) _ gf—(/l) S_f_(’l) (Z§ ) 6_5(10(0)—1)K2(12+1/2) (3aK2ZZ//2)e(j@(O)—1)re Zj% Z (5.3)
T
|
with by analogy with the scattering amplitude in quantum
mechanics, with Jy. =1(yp + yo) playing the role of
~ 1 7224+72 the phase shifts. Note that when reverted to momentum
= T<] “5; R? > space, the eikonalized elastic amplitudes are

The eikonalized elastic amplitudes for pp and pp  App(s.1) =—2is / d*by emrPr(efre o) 1)

scattering in impact parameter space are
App(s.t) = _21'5/deLe—iql-hl(eiw—m) -1).
App = _2i5(€i(1m+)(@) -1)

e (5.5)
A5 = =2is(e'lrro) — 1) (5.4)
|
To evaluate (5.5) we write
il
xr(s,b1,2,7) = age >
N3
ap = Nf+(l)3a](2 7(ZZ) e_%(jlp’(o)_z)Kz(z2+Z/2)e(jP(O)_UTS_jJrVP(s’ L Z, Z/)
N2
a@ = Nf—(l)3aK2@e—%(A]'@(())—l)KZ(ZZ‘FZ/Z)e(]‘@(o)—l)Ts—j,V@(s’ t’ Z, Z/)
~ 6 372D
N = 54V 50 50

with R =P, 0 and Vp(s, t,z,7), Vo(s, t,z,7) the unaveraged versions of the vertex and kinematical factors defined in
(4.8) and (4.18), respectively. Defining a, = ap + ag, we continue to carry out the angular integration to get

. 0 (iai)" _ub2 . - - (iaj:)n o 2=
/ 5 Ta / — T
Ai(s.t,z2,7) = —4zs7r/ bdbJy(gb) WEZI e = —dizsa't nEZI P 54T (5.7)

The exchange of sum and integration follows from the absolute convergence of the series and the integrability of the ensuing
function. For numerical evaluations, we will mostly use (5.5) for faster numerical convergence.
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A. Eikonalized cross sections

In the forward limit, the remaining sum in (5.7) can be
carried out analytically with the result

) (;ai’j'n = —(In(—iay) +ye + (0, —iaL)),

(5.8)

where I'(a, b) is the incomplete Gamma function. For fixed
Z, 7, the forward scattering amplitudes are then
A, (5,0,2,7) =4dind s7(In(—ias) +yg + O(e'+)) (5.9)

where the incomplete Gamma function is seen to be
suppressed exponentially, in the large rapidity limit.
In terms of (5.9), the total cross sections (5.1) are

o.(s) = <§Im(Ap(s,O,Z,Z') + A@(S,O,Z,Z'))> (5.10)

where the averaging is over the in-out states using

/ dzd?' (\/ 9(2)p12(ir- 2)) (V92 )w34(r. ) (5.11)

for each of the Reggeon exchanged R = P,0. The
averaging procedure in (5.10) amounts to replacing a by

(az) = N (eUrO=07 £+ ()57 Vip (5, 1)

+ U007 £=(2)571-Vg (5, 1)). (5.12)
Hence, the total cross sections are
0. (s) = 4nad'iRe(In(=i(aL)) + yp + O(e'e+))),  (5.13)
or, more explicitly,
. 3
6.(s) =4dndr| (jp(0) — l)r—ilnr +1In|h,
+ h_e(j@(o)—jp(0)>f| +yp+ (’)) (5.14)
with
hy = s7+Vp(s,0)f* () = Eifi(/l) (5.15)

which is seen to asymptote the Froissart bound in the large
rapidity limit

o1(s) = 4nd (jp(0) — 1)72 (5.16)
in conformity with unitarity. The bound is fixed by the

Pomeron intercept, which is larger than the highest
Odderon intercept for k = 1.

The difference between the pp and pp cross sections is
exponentially small at large rapidities

1+ Z; elio—ip)t

_ _ / +
0, —0_=4na'tln 1_%e(j@—jp)r
| 4161 —
= Srdr— IR oo (s.17)

The pp cross section is smaller than the pp cross section
for the Odderon branch m? = k* — 0, which yields the
Odderon trajectory with intercept jg(0) = 1 + 2—\1/1 which
is, however, not picked up by the contour in Fig. 3. This
situation is reversed for the higher k > 1 contributions and
also the branch m? = (4 + k)?, which are Odderons with
intercepts below 1.

B. rho- and B parameters

The corresponding rho-parameters following from the
eikonal amplitudes are now given by

_ ReA.(s.0) —3ImIn(=i(ay)/ + i{as)*)

pls) = ImA,(s,0)  Reln|(a )| +7z+0O
(5.18)
In particular, at large rapidity
21+ O
) o 2006
(J/p(0) = 1)z
O(%)
N
_(s) > —7F— 5.19
P o) - 1ye 1)

which asymptote 0. This is seen to follow from the strong

shadowing brought about by the eikonal resummation.
To proceed numerically, we fix the strong 't Hooft

coupling by setting the soft Pomeron intercept to the

Luscher contribution from the Nambu-Goto string
timelike [9]
3 1
2———==1+4+- 5.20
Wi F (5.20)

which is close to the soft phenomenological Donnachie-
Landshoff Pomeron intercept [16]. Remarkably % is
precisely the entanglement entropy of free bosons (string
bits) with a fixed (open) boundary in 1 + 3-dimensions.
Further, due to the intercept of the Odderon being below 1,
as enforced by the signature factor f~(4), the dependence
. 2
on the Odderon coupling gé)%\y
g%lp to the data and instead use
different input values to obtain an upper bound on the

is very subtle. We thus

refrain from a fit of ¢
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FIG. 5. Total cross sections for pp and pp scattering, with the

parameters given in Table I.

coupling, which will later serve as input for the differential
cross section.

In Fig. 5 we show the total cross section for pp and pp
for a global fit to the pp, pp total cross sections, rho-
parameter and B(s) data with /s > 1 TeV [17-24]. The
parameters are listed in Table I. The fit results confirm
the very subtle dependence on the Odderon coupling. For
2
2, -
squares error and simultaneously showed the best numerical
behavior in the rho-parameter, which is only poorly con-
strained by the data in the considered energy regime. In
addition to the parameters @, gy We introduced an overall
scale factor V', for the total cross section and N\, for the
rho-parameter. A more meaningful fit will follow from the
differential cross sections below.

In Fig. 6(b) we show the empirical fit for the elastic slope
parameter in (4.27). Note that the slope parameter can be
recast as a measure of the rms radius

the plots we fixed g 15, which minimized the mean-

0.15 .
?—_\ e pp
010 ’

100 1000 10* 10°

(@)

FIG. 6.

TABLE I.  Best-fit parameters for forward quantitites in pp and
pp scattering for different input values of ng)p.p« See text.
Gomy @ (GeV?) gogy N, N,
0 1.098(2)  2.1856(40) 4.6 x 1073(07) 0.787(190)
15 1.098(2)  2.1856(40) 4.6 x 1073(07) 0.787(190)
25 1.098(2)  2.1857(40) 4.6 x 1073(07) 0.787(190)
1,
Bi(s) = 5 {b1)+(s) (5.21)

where the averaging is understood using the T-matrix (5.26)
below. Recall that for a Gaussian T-matrix

(5.22)

We have also introduced an overall scale N , In the
numerical analysis of the p parameter, as listed in
Table I. In Fig. 6(a) we show the fit results for the p

parameter in (5.18).

C. Elastic differential cross section

Away from the forward limit, the spin averaged elastic
differential cross sections in the eikonal approximation, are

doi(s,t) 1
idt = 16ns? (JAL(s, 1,2, 2) %)

(5.23)

with the Reggeon amplitudes for fixed impact parameter
and z, 7’ given in (5.7), and the averaging carried using the
weight (5.11). More specifically,

221 e

1ol . . . . Vs
500 1000 5000  1x10* 5x10*

(b)

Rho- (a) and slope (b) parameters versus +/s.
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FIG. 7.

20F

I b, =0.8 [fm]
15F b, =1 [fm]

b, =1.2 [fm]

Y 2 2 A L sat.
1.0+
0.5F

1 1 1 11 1 11 1 F—l X
40 50 60

(b)

(a) The real part of the pp T-matrix approaches a step function at large rapidities and large 4; (b) the differential pp cross

section in (5.28) crosses the saturation dashed-line at large rapidities and fixed b, for pp.

doi(s.t) _ (2ra'%)? io: (grai™y AL
dt 16752 S~ mnm!n!
(2zd'%)? .
- ons <|a¢|2>3w (5.24)

with the rightmost result following from the large
rapidity limit. Note that the spin-tracing is trivial in the
eikonal limit. It follows that the slope parameter (4.27) is
unchanged after the eikonal resummation at asymptotic
rapidities.

To understand the diffractive nature of the elastic differ-
ential cross section, we can recast (5.23) in the form

doy(s,t) 1
dt  4n

2
/ d’b emi1b1L(] —e'%iw)’ > (5.25)

with 1 = —¢? . For large +/s, the Froissart bound (5.16) is
reached in the eikonal approximation. In this limit, we may
approximate the Fourier inverse of the T-matrix in (5.25) by
a black disc

TABLE II.  Best fit parameters for the differential cross section
data from TOTEM [25-29] and DO [30] with a fixed Odderon

2 _

coupling of ¢ 15. The standard error on Ny, is negligible.

ovY
Vs o (GeV~?) Ippy N o
1.96 TeV 0.640(21) 1.071(15) 0.003
2.76 TeV 0.715(27) 1.009(3) 0.007
7 TeV 0.607(5) 1.089(3) 0.002
8 TeV 0.626(15) 1.046(9) 0.003
13 TeV 0.587(5) 1.0782(3) 0.002

(ReT . (s.b1)) = (Re(l — &!Wr*40))(s, b))

— 0(b(s) —1|by]) (5.26)
with a growing radius with rapidity
b(s) =+/2d(jp(0) = 1)z (5.27)

for both pp and pp.

In Fig. 7(a) we show the behavior of T-matrix versus
b, for fixed /s, with vertices set to 1. The black-disc limit
is reached for /s =1 PeV. The parameters used are
those listed in Table II for ggzy = 15. They follow from
a global fit to the empirical differential cross sections from

TOTEM [25-29] and DO [30]. Note that the ratio 7/v/Z,
which we argued to be large to carry out the integrals via
saddle point approximation above, is between 4.2 and 5.3
for the datasets used in the fits.

In Fig. 7(b) we show the behavior of the differential cross
section

do
d’b,

=2(Re7 ,(s,b))) (5.28)

versus rapidity y =Ins, for b, =0.8,1,1.2 fm. The
dashed line refers to the saturation line set by the condition

do
&b

=2(1-e7) =0.79. (5.29)

For b, =0.8,1,1.2 fm the crossing takes place in the
rapidity range yg = 14-20, in agreement with a recent
estimate using the standard Nambu-Goto string [31] (see
their Fig. 2).

036029-12



HOLOGRAPHIC ODDERON AT TOTEM?

PHYS. REV. D 109, 036029 (2024)

10° 710°

r o s =1.96 TeV (extrap.) E

L A s =276TeV ]

[ o \s=7Tev 4

{\; [ o s =8Tev B
§ 10 v s =13Tev d1o

E E

I \H'HJHHHH' TR
07 % ~~102

L 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

04 05 06 07 038 09 1

t[GeV?
(a)
FIG. 8.

10°

TTTTTT
L

T T T

TR

do/dt [mb/GeV?]
2

T T T T T

TTTTTTT

1

t[GeV?]

(b)

(2) Results for the differential pp cross section (5.25), together with a linear extrapolation of the results to /s = 1.96 TeV,

with a comparison to the corresponding TOTEM data and extrapolation [25-29]; (b) Results for the differential p p cross section (5.25),

compared to the data from D(b [30].

Inserting (5.26) into (5.25) yields asymptotically

do (s, 1)
dt

Ji(V11lb(s))

7

with the expected diffraction oscillations. Note that in the
black-disc limit, the first minimum in (5.30) corresponds to

— nb*(s) (5.30)

14.67
tmin(s) = bz(s)

. (5.31)

The diffractive minimum shifts down with increasing /s, a
pattern that is consistent with the reported measurements in
Fig. 8(a). We can readily check that (5.30) recovers the
Froissart bound. Indeed, the total cross sections o, (s) are
tied to the elastic differential cross sections by

0x(s) = (1 +1p62:(S) (daid(: | t)> ),0

where the rightmost result follows asymptotically, since the
rho-parameters in (5.19) vanish in this limit. Recall that in
the black-disc limit, the elastic and inelastic cross sections
are equal to zbh?(s). (5.32) is in agreement with (5.16).
In Fig. 8(a) we show the fit results for the holographic
eikonalized elastic differential pp cross section (5.25) at
center of mass energies of /s = 2.76,7, 8, 13 TeV [25-29],
as well as a linear extrapolation of the fit parameters from
Table II with weighted errors to /s = 1.96 TeV. The
extrapolation is in qualitative agreement with Fig. 2. The
diffractive tail is very well reproduced for the scattering data
with /s > 7 TeV. For the data sets above /s = 7 TeV, the
model parameters seem to be converging to common values.
The bump-dip region is not well pronounced, and with

— 27b%(s)

(5.32)

relatively large errors in the scattering data sets from
TOTEM at /s = 2.76 TeV. We performed the same fit

g%\y and found that, due to
the low intercept, the dependence on this coupling is even
less pronounced as for the forward quantities in Table 1.

Our result for pp at /s = 1.96 TeV are shown in

Fig. 8(b), and compared to the results reported by the D(b
collaboration. We note that the diffractive peak is almost
absent in this channel and at this center of mass energy. In
Fig. 9 we show the extrapolations of the pp differential
cross section to /s =2.76, 7, 8, 13 TeV, with the
diffractive pattern still visible. Data at these higher
energies will be welcome.

The agreement of our holographic results for pp and
pp elastic cross sections at large center of mass energies
with the reported TOTEM data does not support the
contributions of both a Pomeron and Odderon. Which
is, however, mostly due to not being able to fix the
Odderon intercept at 1.

with different input values for g

10°
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Lo

T T T
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® 8TeV (extrap.)

o
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FIG. 9. Extrapolated differential pp cross section.
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VI. CONCLUSIONS

At large center of mass energies, the elastic pp and pp
amplitudes receive contributions from C-even Pomeron and
C-odd Odderon exchanges. In dual gravity, these exchanges
follow from the Reggeization of the graviton and the Kalb-
Ramond bulk fields [5].

We have used a bottom-up approach gravity dual
construction with a repulsive wall, with bulk gravitons
and with vector and Dirac fields. The vector fields, arising
from the form fields B, and C,, are allowed to couple
through a Pauli coupling as expected for antisymmetric
fields. We recall that the BKP Odderon in QCD, is
vectorlike, with a nonvanishing forward coupling, as
supported by our computation.

Using the leading Witten diagrams in dual gravity, we
have explicitly derived the diffractive scattering amplitudes
for both pp and pp scattering in the Regge limit. The
graviton-nucleon coupling is tensorial (one coupling), while
the Odderon-nucleon coupling is vectorial (two couplings).
The resulting amplitudes were eikonalized by resumming
the leading Pomeron and Odderon contributions.

The model is characterized by the standard dual gravity
parameters o, 1, gs and «x the size of the confining and
repulsive wall. We further introduced x to account for the
different mass scale involved for the nucleon trajectory.
These parameters are in principle fixed by the nucleon mass
and even 2*" and odd 17~ glueball trajectories, but we
have elected to trade them for the Pomeron and Odderon
couplings and fixed them by the scattering data.

The eikonalized holographic results for the forward pp
and pp slope and rho-parameters are in relatively good
agreement with the world data, including the recently
reported data from TOTEM. Remarkably, the differential
cross sections for elastic pp scattering in the range v/—t <
1 GeV are well reproduced for all reported center of mass
energies including the most recent TOTEM result at
/s =13 TeV, with a very weak dependence on the
Odderon coupling. The agreement with the data seems
to be better with larger /s. The first diffractive oscillations
(dip-bump) are reproduced. In our model these diffractive
patterns require only a strong Pomeron exchange.

To the order in 1/ \//—1 considered and due to the pole in
f~(4), we are unable to fix the Odderon intercept at I,
which would in principle allow for a stronger dependence
of the amplitude on the Odderon coupling. Hence, at high
energies, its contribution is obscured by the Pomeron. The
spurious pole at an intercept of 1 appears to be independent
of the chosen background, as shown in (3.31), (3.36)
and (B9)—(B10). This may be removed by retaining further
higher order corrections in 1/+/4, using the strong coupling
analysis in [11].

In contrast, our eikonalized holographic differential
cross section for pp appears to reproduce the empirical
results quite well for \/—f < 1 GeV and already at the

center of mass energy of /s = 1.96 TeV. Our holographic
analysis in the pp channel exhibits the same diffractive
pattern as in the pp channel. This is chiefly due to the
absence of a cancellation between the Pomeron and
Odderon exchange contributions with an intercept below
1. Therefore, we conclude that an underlying holographic
Odderon exchange is not present in the currently reported
TOTEM data.

In addition, the empirical TOTEM data for diffractive pp
scattering indicate that the proton saturates for rapidities in
the range 14 < yg¢ < 20, in overall agreement with a recent
estimate using the Nambu-Goto string in 4-dimensions
[31]. The lower bound translates to parton-x saturation for
xg > 107 in deep inelastic scattering, a challenging range
for the upcoming electron-ion colliders.

Finally, the questions we raised in the introduction can
now be answered in the context of dual gravity: (1) the
persistent diffractive structure at low-t in the pp data is due
to the exchange of mostly eikonalized Pomerons with strong
shadowing; (2) the absence of secondary structure at large-t
is due to strong shadowing; (3) the linear rise of the forward
slope measures is a measure of the rise of the Pomeron slope
which is intimately related to the rise of the 2" glueball
Regge trajectory.

ACKNOWLEDGMENTS

This work is supported by the Office of Science, U.S.
Department of Energy under Contract No. DE-FG-
88ER40388. It is also supported in part within the frame-
work of the Quark-Gluon Tomography (QGT) Topical
Collaboration, under Contract No. DE-SC0023646. F. H.
has been supported by the Austrian Science Fund FWEF,
Project No. P 33655-N and the FWF doctoral program
Particles & Interactions, Project No. W1252-N27. K. M. is
supported by U.S. DOE Grant No. DE-FG02-04ER41302.

APPENDIX A: BULK-TO-BULK PROPAGATOR
IN THE SOFT WALL MODEL

For comparison with the repulsive wall results used
earlier, we will present a detailed derivation for the bulk-to-
bulk scalar propagator using the soft wall model. While
many of the repulsive wall features are recovered, Gribov
diffusion in the nonconformal limit is not. To see this,
consider the soft wall model with the fixed dilaton profile
#(z) = (2kz)?, the Reggeized scalar propagator associated

to the Sturm-Liouville problem L_y(z) = 5(;(_;)'/) with
L. = ——d.(w(x)po(2)d) + p2(2) (A1)
=——d (w(x ,
z W(Z) z Polz)a; P2

and
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w(z) = \/§E—¢<Z)
po(2) = —g%(2)

pa(z) = §; —12%, (A2)
with §; = miR* + m%Rz, is solution to
3 4kzzza 1 —4K2zza Sj Gl i /
—7e e 8 —t+? 0(J.1,2.2)
=27 5(z - 7)) (A3)

with 7 = K* and S; = m3R*> + m3R>.
The two independent homogeneous regular and singular
solutions Ly, ,(z) = 0 to (A3) can be used to obtain

1
wpoW

G(z,7) = y1(z<)y2(25) (A4)

with the Wronskian W = (y|y, — y5y;). Note that the
combination wpyW is a constant independent of z, 7/,
and that (A4) is symmetric in z, z’. This is more evident if
we use the solutions to the eigenvalue problem L.y, =
Ay, with

, Ya(2)yn (@
6(z.2) = Y L) (43)
with the normalizations
[ dw(@yi@m(z) = o (A6)

following from the hermiticity L, = Ll in R. To
rearrange the differential form (A3), we redefine the
spin-j propagator

Go(j.1.2.2) = (22 )2 EHGy(jotuu') (A7)
with u = kz and k* = §x?, which is now seen to solve
d* iTE L9,
—WG()‘F( M2 +ZM ——2+3>
é(uz_u/z) u 3/2 /
= — olu—u). A8
o= (1) o= (a8)

Evaluating the right hand side at the delta function, the u
dependence is seen to drop out and we arrive at a standard
Green’s function problem. Using the rescaling u — v/3u
and 7 = t/3k?, (A8) reads

& Si+%  ur
GO+<’24+” —t+1>G0: (u—u).

1
-4 5
du? V3K
(A9)

If we define v = %uz and rescale the resulting propagator

1
Go(j.t.v.0") = —=Ko(j.t.0.0')  (A10)
(vv)i
(3.19) can be mapped on the Whittaker equation
&PKy (1= p 1 S(v—1")
— ———|Ky=—"—F+— All
d112+<2)2 +1) 4> 0 V6K (Al1)
with
1 . 1 .
a=3(8,()=Dp=5(-1.  (A12)

The independent homogeneous solutions to (All) are
Whittaker functions

v 1
K, (1)) — eyt <§ +a—-p,1+2a, U>

v o1

1
K, (v) = e7202™oU (5 +a—p.142a, v) (A13)

with Kummer M (regular at v =0) and Tricomi U

(irregular with branch cut at v = 0) hypergeometric func-
tions. The inhomogeneous solution to (A11) is then

/

Ko(v,v') = %AKZ(U)KI(U/>, V>0

Ko(v,v') = %AKl(v)Kz(v’), v<v (A14)

with the normalization fixed by the Wronskian

4k (1 4 2a)

A_l = —\/EKW(Kz, Kl) = —m.
2

(A15)

The confining bulk-to-bulk propagator is thus given by

Go(j,t,2,7) = —(22')?(4K%z7' )2 U)=2
x M(z)U(z'),

where we introduced the shorthand
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In order to recover the gravitational form factor, obtained
in [10], we need to perform a Kummer transformation
U(a,b,z) = z'?U(a = b + 1,2 — b, z) and take the limit
z — 0. Which coincides with the bulk-to-boundary propa-
gator quoted in [10] once the z> term from G, is taken into
account.

In light of the preceeding calculations to evaluate the
Sommerfeld-Watson transform via saddle point we rewrite
the Whittaker function involving the Tricomi U to better
display its singular character. This is best seen by
rewriting it in terms of Kummer M functions, using the
identity

N(—2a)M( 4+ a—f,1+2a,v)

K,(v) = e‘gvi+“<

IG—a-p)
IRa)MGE—a—p.1-2a,v) o
(2+a—ﬂ) v ) (A16)

The singular part in » is subleading in the saddle point
approximation and hence will be dropped in the following.
Reverting the rescalings and coordinate transformations,
we arrive again at the symmetric spin-j bulk-to-bulk
propagator

Go(j. t.2.7) = —(27)?

where we introduced the shorthand

1. Conformal limit
In the confining case, the bulk-to-bulk propagator is given by

P
)2 (422 ) Al F(4 }(

2 - A,())
NT(8,(j) - 1)

Go(j, t.2.7') = =(zz M(a, b, 4x*z2)M(a, b, 4x%7'%)

where a = AJ( )" and b = A ,(J) = 1. As k > 0 we have 7 = 1/8x* — oo and we can rewrite

limM(a, b, —x/a) = T(b)x'7 J,_; (2v/x) (A17)
where in our case x = |t|z>/4. For small x we thus obtain
G (] tz Z/) _ _(ZZI)2(4K2ZZ/)A9(]')—2 F(Z_Ag(j)) |t|ZZ 2-8,(j J Z J /—Z
The Regge trajectory can again be resummed by means of a Sommerfeld-Watson transform
dj (14 e ‘ .
G,(s,t.2,.7) = — AV Bt B N O /142>/A_q(])—2
2(s,t,2,7) = —(z7) /47”.( Sn ) (osz2')! (4x*22)
[(2—=A,0))) (|t|lzz"\ 220
' J (Vt|2)Taza(\/ |2 Al8
XF(Ag(j)—l) 7 A-2 |2)J a2 ') (A18)
to obtain
(A D . og 22/ |1])2
Galj.t) ==L g 2 522 (Vi) (VD). (A19)
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In the Regge limit the Bessel functions become trivial at the
saddle point and hence we recover the conformal result in
(B8). It is interesting to note that the Regge limit must only
be carried out after evaluating the Sommerfeld-Watson
transform, otherwise the ¢ dependence would fully drop out
as can be seen from (B6). There is also an ambiguity in the
sign of a in (All) and (B1) since a=(A—-2)/2=
\/m/ 2 and both the Whittaker as well as the Bessel
equation are symmetric under @ — —a. This ambiguity also
vanishes in the saddle point approximation and limit of
small v/A/z since the order of the Bessel function is then
integer and we can use the reflection formulas to obtain the
correct symmetry in z and 7' as required by the Green’s
function of a self-adjoint operator. The Whittaker function
My, which is K; in our case is symmetric under a — —a
for all a.

2. Mode sum

The mode decomposition for the spin-j bulk-to-bulk
propagator is [10]

Rl AVEIAVES)

Gy(j,K,z,7) = A20
0(] < Z) e K2 +m%<]) ( )
with the wavefunctions vy, (j, z) given by
(i, 2) = c,,(j)zAv(f)Lf”m_z(4K222), (A21)
with
Ay(j) =2+ \/2VA(j = je) (A22)

and normalized by

22O (n 3
() = (2(4 ) [n + U) . (A23)

C(n+A4,0()—1)

The squared mass spectrum is

ma(j) = 16x* (n +%Ag(j)>. (A24)
In this casting, the role played by the Regge poles is
transparent. However, the Reggeization requires summing
over the full Regge trajectory.

Starting from the Sommerfeld-Watson transform of the
bulk-to-bulk propagator in impact parameter space we have

. dj (1—e U= . e~m(Nb /4 3
G, (s,t, 2z, " d4’b —lqu/ - = /577 j-1 i 7 | / .
ey [ enee [ () s ) 5 (g

| dj (1— el
Gi(s.1.2.2) = [ &% _lqbl/ 4zi \sin(x(j - 1))
1(s.t.2.2) / L€ n, 4mi \sin(z(j — 1))

x (o522 ) 1Go(j, b, 2,7'), (A25)

where the scalar bulk-to-bulk propagator in impact param-
eter space is given by

~ . . . KO(mn(J)b>
Go(j. b, z,7) = W W (. 2) —5==7—. (A26
0(jsb,2.2) ;w (i 2w(j ) =5, 25— (A26)
obtained by the Fourier transform
4. K )b
/dzq 5 € .2: O(mn(.]) ) (A27)
q* + m,(j) 27

The wavefunctions follow from (A21) for odd spin, with
the Reggeized odd spin glueball mass spectrum

(i) = e (4 58,0 )

= (n4 145y /2VAG=Go) ). (29

The dominant contribution in (A25) stems from the large b
asymptotic of K, where

T

K / b ~ _’nu(j)b _.

(A29)

Due to the soft wall, the bulk wavefunctions will be
localized at small z. To consider the Laguerre polynomials
in this limit we can write

2,7
- e —X yn+a
ZALQ 2(Z2) :m/dxe Xt /ZJA_Z(Z\/XZ)

A
Z
~ dxe® n+A-2
r(n+1)r(A—1)/ e
Mn+A-1
_pa_Llntad-l) (A30)

T(A—1I(n+1)

From the discussion of the conformal limit, we know that
the Gamma functions will thus give a subleading contri-
bution in the saddle point approximation. Continuing with
the evaluation of the Odderon propagator we now have

(A31)
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The contour C; in (A25) is defined to the left of the branch point j = jg as in Fig. 3. In light of the arguments in the main
text and for 7/4/A > 1, we carry the j-integration along C; by saddle point, with the result

m()b

1
G(s,t,2,7)~—f(A) | d®b et~

APPENDIX B: CONFORMAL LIMIT

In the Regge limit s > —t, the conformal limit, x — 0, is
best sought by noting that (3.19) reduces to

—ﬁGo + (S/ + 3
dz? 7

—t>GO(z) =6(z—-7), (Bl)
where we employed the rescaling
Go(j.t.2,7) = (z7)*?Gy(j, 1,2, 2).

The two independent homogeneous solutions are Bessel
functions J (regular at the origin) and Y (singular at the
origin)

Gi(z) = \/ZJ_\/W(\/EZ)

Gy(z) = \/EY_\/W(\/EZ) (B2)
and hence
Go(j.t.2.7) = A2 I, (Viz2). Y, (Viz. )
v=A4,0) -2 (B3)
with the normalization fixed by the Wronskian
AT =W(G1(2).Ga(2)) == (B4)

After reverting the rescaling, in the AdS limit, the bulk-to-
bulk scalar propagator is
Go(j.1.2.7) = = (z2/)/* 5 A,

(\/_Z<)Y2 Ayl (\/_Z>)

(BS)

b4
2

In the Regge limit we also have x = /tz < 1, for which
the Bessel functions simplify

()

Yo, ()~ %Cos(vﬂ)r(v) @ ”

J_,(x) ~
(B6)

With this in mind, the Sommerfeld-Watson transform
(3.17) becomes

3 v,(jo, ¥, (jo.7) plio=D=moby/FT—g]

/

n+l Dr A32
= (A32)

|
dj 1+ enU32) cos a(A, (/) = 2)

Gji(s, 1,2, Z/) == -

dzisinz(j—j.) T(3- Ay()))
xT(2-4A,())) (tsz’) 2_Ay(1)(a,szz/)j—ji'
(B7)

We will evaluate (B7) again via saddle point approxima-
tion. The branch cut of I'(2 — A (j)) = [(iy) &~ e~ /iy
at Ay(j) — 2 = —iy = is chosen to the left of the integration
contour, along the negative real axis. In the large s/|¢| limit,
the integral is dominated by the saddle point

A () =2 = <71°g2(g(|t|)>2 -0

with the result
D (ZZ/)]i
G' .’ta b :t
LU.tzd)=f ()\/4”1 3

for fixed but large rapidity y, with jp,q given by (3.9),
(3.15) and where

) o _log(ed|)?
(aISZZ,)JP/@_./ie 4Dy

(B8)

4 . ﬂ_ T
fr(A) =i +—ﬂ 73\//_1 (B9)
and
IR 4ﬂ_ mim
) =i +_7zm% Vi (B10)

The signature factor for the k = 2 branch again coincides
with the Pomeron signature factor. As is the case for the
repulsive wall, due to the pole the intercept cannot be fixed
at 1 with m7 = 0. In the conformal limit the diffusion is
logarithmic in z, with the latter identified with the size of
the transverse dipoles or string bits composing the
exchanged Pomeron/Odderon.

1. Alternative derivation: forward region

Alternatively and in the conformal limit with x — 0 and
t = 0, the ensuing scalar propagator is a superposition of
conformal plane waves
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dl/ eiy(p—p/)

—_— B11
2n 4 + 4+ m3 (B11)

Go(j.0.2.2) = /
with z=e¢? and m} =miR?> m2 = m}R* + m3R%.
Inserting (B11) in (3.17) gives

| D . e
Gji (S,O,Z,Z/) = @(ZZ/)&((Z/SZZ/)M/P Jre™ D0

(B12)

with the shifted Pomeron, jp, and Odderon, jg, intercepts.
The shift is caused by the diffusion in rapidity

7 =log(d'sz7') ~ y = log(d's)

in warped AdS, with a diffusion constant D = 21W’ in

agreement with the original analysis in [5,32].

2. Alternative derivation: Finite impact parameter

The forward bulk-to-bulk part propagator can also be
obtained from its explicit form for a finite impact param-
eter. For that, consider the bulk equation

1 -

(‘ \/—__gazgzz\/—gaz —2%07 + Sj> Go(j, b, z,b',7')
8(z—72)

- (b, - b

(B13)

which is the Fourier inverse of (B1). For simplicity, we will
restrict our discussion to the Odderon propagator, the
Pomeron propagator follows similarly. The solution to
(B13) is

Goljboz b ) = — eV B4

0(.]’ » 3y ’Z>747ZZZI Sinhé ( )
with £ fixed by the chordal distance in AdS
_ 2 bh—b 2

coshcle—k(Z ) +,( ) . (B15)

2zz

We note that §; = 2v/A(j — jo) develops a branch point at
Jj = Jjo as seen in Fig. 3. Using the Sommerfeld-Watson
formula (3.17), we have

o dj (7" + (=)
G0 = [ dnseen [ L (i
x (dz2)1Go(j. by, 2. b\, 2) (B16)

with the contour integral to the right of the branch point jg,
and summing over the odd poles j=1,3,.... In the

forward limit with t = ¢g*> = 0, we can switch b, — & with
the measure

d*b, = 277 sinh EdE

and deform the contour to the left along the cut C;, to
obtain

. d] 1 — e—i”(j_l)
Gils.0.2.2) = | 2m22dE | o\ Gn = 1))
1(5,0,2,2) /50 72z dg ¢, 4xi <s1n(ﬂ(j -1))

o(2-8,(1)¢

e (B17)

x (a/sz7')/~!
with &, = |log z/Z/|. In the double limit of large rapidities
v =log(a'szz’) > 1 and strong coupling /2> 1, the
j-integration can be evaluated in leading order in

V1)1 < 1, following the original arguments in [33], with
the result

2

&
® e~
/ dees
& 72

(B18)

=

Gl (S, 0,z, Z/) ~ %Z/ (a/szz/)/@—lf—</1) <\2/_j>

We can unwind the remaining Gaussian integral, to have

. " ID _4
Gi(5.0.2.2) ~ f~(A)(elszz Yo 22\ [—e~  (B19)
2 Vdnt
and similarly for the Pomeron
) 2 D &
G,(s.0,2,7) zf*(l)(a’szz’)fp‘zgy/meﬂ_gr (B20)

in agreement with (B12).

APPENDIX C: BULK DIRAC FIELDS
WITH A REPULSIVE WALL

To construct the full pp and pp scattering amplitudes, we
identify the proton (antiproton) with bulk Dirac fermions.
The bulk nucleon as a Dirac field is described by the chiral
pair W;,, with 1,2 referring to the boundary chirality
1,2=4+ =R, L. They are dual to the boundary sources
¥, < O, with anomalous dimension £M = £(A - 2) =
+(z —3/2). For that, consider the action of a free Dirac
fermion in 5D curved space

1 I — < —
S :?/d%\/g(i‘l‘l.zeﬁ”F“DM‘P,.z - (iM)‘Pl.z‘Iﬁz),
5
(C1)

with
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1 R
5In 9(z) = 2A(z) = 2log— + ax*z*
Z
and the covariant derivative given by
1 s
Dy =0y +§a)§?4 T4, Tal-

More specifically we have

1 -
Sp= _2/ d*xdze*t) {—%‘Pl,zw - 2i7’5A/(Z) - i?’saz]‘yl,z

Is

+ eA(Z)M@Lz‘Pl.z} (C2)

which, upon the field redefinition ¥ — gse2ARW,
reduces to

Sp = /d4XdZ{—é¢1,2w— ir50.]¥1 2
+ AOMYP | L, + Hc} (C3)
The equation of motion is thus given by
[—id — 750, + MA@ = 0. (C4)

Performing a chiral Kaluza-Klein decomposition as

¥ (p.z:in) = wr(z:n)¥%(p) + v (z:n)¥) (p)
W, (p.z:n) = wr(z:n)¥) (p) + v (z:n)¥3(p)
W = e L () ) (©5)

n

we obtain the coupled equation of motion

(az + M) )fL/R = jImnfR/L (C6)
which can be decoupled by iteration to give
(02 = MA'(2)e*S) = M2V 1 (z) =m2 frr(2). (CT)

Linearizing the dilaton contribution

R\ 2
) » () (1 + ax3,z%),

Z

we obtain

MM +1
<—a§ + (Z—z) + CIZK?VZZ - I’h%)fL/R (Z) =0, (CS)

where 7% = m2 + M(M + 1)ax3, and we did not expand

¢4 to obtain a chirally symmetric mass spectrum. Note the
introduction of a new mass scale, ky, to account for the
different Regge trajectories of the baryon and the glueball
spectrum. Upon performing the coordinate transformation

u = akyz* and a further field redefinition of f g(u) =
, 1T

eu + f1/r(u) we arrive at the equation

ufy g(u) +(a+1—u)fy g(u) +nfrru) =0, (C9)

where

1
a=o\/T+aMM£1)
2+ 1T+ 4M(M £ 1)
. .

iy

= C10
" dax3, (C10)
This is the Sturm-Liouville normal form for the associated
Laguerre polynomials L%(u). Hence the eigenvalues are
given by

1 MM=+1/2
m%:4a1<]2v<n+§— ( /2)+

1+4M(M£1)
4 .

For fermions with positive parity we have M = A —4,
t=3and A =7+ giving M = 1 for d = 5 and hence

3
m? = 4ax3, (n + Z)

21

Cl1
a== (1)
Reverting the rescalings we thus obtain
wr(n.z) = ”LaKzsz“e_%aK%’ZzLi/z(aKzZsz)
wr(n,z) = nRaK%,z“e_%“KﬁZZL,l/z (ax%z?). (C12)
The normalization is fixed by the condition
[ e 71 1@ = b (€13)
which gives
2+/akn!
ng =\|l=———=—
I'(n+5/2)
ng =nj\/n+3/2. (C14)

From the mass eigenvalues it is apparent that one needs
to use the positive linearized dilaton in order to not obtain a
tachyonic solution. We will refer to this background as
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repulsive wall. As is the case for the bulk-to-bulk propa-
gator, the fermionic spectrum still Reggeizes properly in
the repulsive wall model. When the spectrum is matched to
the proton mass, the comparison is less desirable, resulting
in an increase of the coupling by more than 60% compared
to the soft wall.

The non-normalizable modes for the bulk Dirac fields
are given in terms of Kummer functions

Wr(n,z) = NpU(-n,3/2, ax%z?)

Fu(n.2) = NoU(=n,1/2,a2),  (CL5)
which can be recast as a sum over Regge poles
N o~ PR (1. 2)
Wr(p.2) = B R
! 2
. o~ SR (n, 2
Fr(p.2) =Y 5 R(z ), (C16)
n=0 p—m

with f, = ky/ng. When calculating the amplitude, the
LSZ reduction will pick up the residue of the corresponding
pole, effectively reducing the bulk to boundary propagator
for the proton to

rr(psz) = fompw/r(0,2). (C17)
Further, in the Regge limit, we can utilize
u(p2)r'u(pr) = o(p2)r*vp1) = (p1 + p2)'dss,  (CIB)

where we introduced the shorthand u(p;) = u, (p;) and
analogously for v.
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