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Utilizing the Lehmann-Symanzik-Zimmermann reduction formula, we present a new general framework
for computing scattering amplitudes in quantum field theory with quantum computers in a fully
nonperturbative way. In this framework, one only has to construct one-particle states of zero momentum,
and no wave packets of incoming particles are needed. The framework is able to incorporate scatterings of
bound states, and is ideal for scatterings involving a small number of particles. We expect this framework to
have particular advantages when applied to exclusive hadron scatterings. As a proof of concept, by
simulations on classical hardware, we demonstrate that in the one-flavor Gross-Neveu model, the fermion
propagator, the connected fermion four-point function, and the propagator of a fermion-antifermion bound
state obtained from our proposed quantum algorithm have the desired pole structure crucial to the
implementation of the Lehmann-Symanzik-Zimmermann reduction formula.
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I. INTRODUCTION

The calculation of scattering amplitudes in quantum
field theory has long been a core topic in theoretical
particle physics [1–5]. All tests of theories against experi-
ments in particle accelerators entail theoretical predictions
of scattering amplitudes. Despite the huge success of the
perturbative approach to the calculation of scattering
amplitudes [6–8], there are still circumstances in which
the perturbative framework does not work, namely the
cases where the coupling constants are large, as is the case
for quantum chromodynamics at low energies for instance.
To date, first-principle nonperturbative calculations of
scattering amplitudes in quantum field theory are not

available. The main obstacle is that real-time dynamics
cannot be simulated in traditional path-integral lattice
quantum field theory [9], while simulating real-time
Hamiltonian evolutions in quantum field theory requires
unbearable computational cost on a classical computer. In
a series of papers, Jordan, Lee, and Preskill (JLP) proposed
that, with the help of quantum computers, simulations of
Hamiltonian evolutions of scattering processes in quantum
field theory can be achieved with affordable computational
cost on the lattice, making nonperturbative evaluations of
scattering amplitudes possible [10–12]. These works have
spurred a series of research on the applications of quantum
computing in particle physics [13], ranging from time
evolutions in quantum field theory [14–22] to calculations
of nonperturbative quantities [23–33] and thermodynamics
at finite chemical potential [34–36].
Although the quantum-computational framework devel-

oped by JLP is fully general, it may encounter difficulties in
practice. One major difficulty is that one has to prepare
spatially well-separated wave packets of incoming particles
in the initial state. The central values of the 4-momenta of
these wave packets pi, as well as their Lorentz-invariant
products pi · pj, set a constraint,
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a ≪ 1=jpμ
i j; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpi · pjj

q
≪ L; ð1Þ

on the lattice spacing a and the lattice size L; while the
spatial separation distances dij between the initial-state
wave packets set a constraint,

L ≫ dij; ð2Þ

on the lattice size. In addition, the separations dij have to be
wide, meaning that dij ≫ 1=Δpμ

i , where Δpμ
i is the

uncertainty of the wave packet of the ith incoming particle
in momentum space, and we requireΔpμ

i ≪ jpμ
i j so that the

wave packets are narrow enough to mimic a scattering
process of definite incoming momenta. Constraint equa-
tion (1) is required for reliable simulations of incoming
particles with definite 4-momenta on the lattice, and can be
potentially improved by introducing factorization theorems
using the method of effective field theory [29]. Constraint
equation (2) is due to the introduction of wave packets,
which generally implies a larger lattice size than required
by Eq. (1). Another feature of the JLP formalism is that the
wave packets are first prepared with the coupling constant
turned off. Therefore, the incoming particles cannot be
bound states. The coupling constant is subsequently adia-
batically turned on before the scattering occurs and
adiabatically turned off after the scattering occurs. To
ensure adiabaticity, a long time span of evolution is
required. In addition, one has to insert backward evolutions
in order to eliminate unwanted broadening of wave packets
during the adiabatic turn on and turn off of the coupling
constant, thus increasing the time complexity. In fact, in the
strong coupling regime, most theoretical uncertainties
come from the adiabatic turn on and turn off of the
coupling constant [10].
We note that, in the conventional perturbative approach,

scattering amplitudes are computed using the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula [37],
which relates scattering amplitudes to n-point correlation
functions, which in turn can be expanded as power series in
the coupling constant using the Feynman diagram tech-
nique. The LSZ reduction formula, being a nonperturbative
relation, is a natural alternative starting point for the
evaluation of scattering amplitudes with quantum com-
puters in a fully nonperturbative way. In this work, we
propose a quantum computational framework for calculat-
ing scattering amplitudes using the LSZ reduction formula.
In this framework, in order to evaluate scattering ampli-
tudes, one calculate n-point correlation functions on a
quantum computer. We will see that, this approach is ideal
for scattering processes involving a small number of
particles, and will have potential applications in exclusive
strong-interaction processes such as 2 → 2 scatterings of
pions or nucleons.

In the following, we first give a short review of the LSZ
reduction formula. We then propose a quantum algorithm
which utilizes the LSZ reduction formula to compute
scattering amplitudes, and discuss its features and advan-
tages. After that, as a proof of concept, in a simple model,
the one-flavor Gross-Neveu model, we simulate the fer-
mion propagator, the connected fermion four-point func-
tion, and the propagator of a fermion-antifermion bound
state with our proposed quantum algorithm on classical
hardware. We give a conclusion at the end.

II. LSZ REDUCTION FORMULA

The LSZ reduction formula relates the scattering ampli-
tude of a given scattering process to correlation functions of
fields in the vacuum [37]. For instance, consider the
scattering process hðk1Þ þ � � � þ hðkninÞ → hðp1Þ þ � � � þ
hðpnoutÞ, where h is some spin-0 particle with mass m
annihilated by a scalar field ϕ. Using the LSZ reduction
formula, the scattering amplitude M can be written as

iM ¼ Rn=2 lim
p2
i
→m2

k2
j
→m2

Gðfpig; fkjgÞ

×

 
Ynout

r¼1

K−1ðprÞ
! 
Ynin

s¼1

K−1ðksÞ
!

; ð3Þ

where n ¼ nin þ nout. The Gðfpig; fkjgÞ is the connected
n-point function in momentum space, given by

Gðfpig;fkjgÞ

¼
 
Ynout

i¼1

Z
d4xieipi·xi

! 
Ynin−1

j¼1

Z
d4yje−ikj·yj

!

×hΩjTfϕðx1Þ���ϕðxnoutÞϕ†ðy1Þ���ϕ†ðynin−1Þϕ†ð0ÞgjΩicon;
ð4Þ

where T denotes time ordering, the subscript “con” denotes
the connected part, and jΩi is the interacting vacuum, i.e.
the ground state. The KðpÞ is the two-point function in
momentum space, also called the propagator, given by

KðpÞ ¼
Z

d4x eip·xhΩjTfϕðxÞϕ†ð0ÞgjΩicon: ð5Þ

The factor R is the field normalization, defined by

R ¼ jhΩjϕð0Þjhðp ¼ 0Þij2; ð6Þ

where jhðp ¼ 0Þi denotes the state with a single particle h
with zero spatial momentum. The generalization of Eq. (3)
to cases which involve multiple types of massive particles
with arbitrary spin is trivial, with suitable inclusions of
polarization tensors and spinors on the right-hand side of
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Eq. (3). In essence, the LSZ reduction formula Eq. (3) says
that the scattering amplitude is simply a connected n-point
function in momentum space with momenta put on-shell,
with external-leg propagators amputated. The field nor-
malization factors

ffiffiffiffi
R

p
on the right-hand side of Eq. (3)

ensure that the scattering amplitude, as a physical observ-
able, is independent of the normalization of the field
operators which create or annihilate the external particles.
It should be noted that the connected n-point function
Gðfpig; fkjgÞ has simple poles at p2

i ; k
2
j ¼ m2, and so is

divergent when the momenta are put on shell. On the other
hand, the propagator KðpÞ also has a simple pole at
p2 ¼ m2, namely

KðpÞ ⟶p
2→m2 iR

p2 −m2 þ iϵ
: ð7Þ

Therefore, in Eq. (3), the pole singularities in
Gðfpig; fkjgÞ cancel with those in the KðpÞ factors, giving
a finite scattering amplitude. In practice, when the con-
tinuum theory is approximated by a theory on the lattice,
these singularities are tamed and the pole structure 1

p2−m2þiϵ

is approximated by some bounded function of p2 that
approaches it in the continuum and infinite-volume limits.
A study of finite-volume effects on Minkowski correlation
functions has been done in Ref. [38].
According to Eq. (3), the computation of the scattering

amplitude is broken down to the computation of three
objects: the connected n-point function Gðfpig; fkjgÞ,
the propagator KðpÞ, and the field normalization R.
Implementing the computation of these objects on a quantum
computer will involve three steps: (1) the spatial dimensions
are discretized into a lattice, (2) the field degrees of freedom
aremapped to qubits, and (3) a suitable quantum algorithm is
constructed to evaluate the three objects individually. For
gauge theories, step (1) can be achieved in the standard way
under the Kogut-Susskind Hamiltonian formalism [39,40],
and alternative approaches have been proposed [41–43]. Step
(2) can be done straightforwardly for fermionic degrees of
freedom [44–46], while for bosonic degrees of freedom and
in particular gauge bosons considerable progress has been
made [42,43,47–55]. In this work, we will focus on step (3),
assuming that steps (1) and (2) have been achieved. It should
be remarked that, in step (3), the three objects to be calculated
could be ultraviolet divergent, meaning that their individual
values blow up in the continuum limit. However, the
scattering amplitude, as a physical observable, remains a
finite constant when the continuum limit is taken. The large
cancellation in the continuum limit among the components in
the LSZ reduction formula could potentially cause problems
on numerical stability in practical calculations. We leave the
detailed study of the approach to the continuum limit of the
LSZ reduction formula for the future.

III. THE QUANTUM ALGORITHM

Here we propose a quantum algorithm to compute the
three objects involved in the LSZ reduction formula Eq. (3),
namely the connected n-point function, the propagator, and
the field normalization. Accordingly to Eq. (6), the field
normalization R involves the field operator ϕ evaluated at
x ¼ 0 sandwiched between the vacuum and a single-
particle state with zero spatial momentum (p ¼ 0). Since
no time evolution of the field operator is involved, the value
of R can be readily determined once the vacuum and the
single-particle state are obtained. To obtain the vacuum and
the single-particle state, one can employ the quantum
algorithm proposed in Ref. [31], which shows that both
the vacuum and the single-particle state can be obtained
efficiently with the quantum alternating operator ansatz
(QAOA) and the quantum-number-resolving variational
quantum eigensolver [56–59]. It should be noted that, only
states with zero spatial momentum are involved in our
formalism.1 Since these states are translation invariant, the
QAOA can be applied easily: one simply uses input
reference states and alternating operators that are con-
structed to be translation invariant. Next, we need to
compute the connected n-point function and the propaga-
tor, for which again we can use the quantum algorithm
proposed in Ref. [31] developed for the evaluation of
parton distribution functions (PDFs), based on the general
method introduced in Ref. [60]. In Refs. [31] and [32], with
simulations on classical hardware, it is shown that with
such a quantum algorithm the PDF and the light-cone
distribution amplitude of the one-flavor Gross-Neveu
model can be obtained with good accuracy with only 18
and 14 qubits, respectively.
Our approach to the quantum computation of scattering

amplitudes differs in many ways from the JLP formalism.
The essential difference is that, the JLP formalism is a
direct Hamiltonian simulation of the scattering process, for
which the outgoing particle states are unknown; while in
our approach we specify the ingoing and outgoing states,
and aim at calculating the amplitude of the specified
scattering process by evaluating relevant correlation func-
tions. In this regard, computational cost is reduced in our
approach in two ways. First, in our framework, the contra-
int equation (2) is relaxed and a smaller lattice is allowed.
Second, since there is no adiabatic turn on or turn off of the
coupling constant in our formalism, there is no associated
extra time evolution and corrections to broadening of wave
packets, and thus the associated theoretical errors can be
avoided.
It should be noted that, in the JLP formalism, the

outgoing state is unknown, and measurements of momen-
tum-space occupation numbers are performed on the final
state in order to extract information on the outgoing

1In this work, we only consider massive particles, for which a
rest frame exists.
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particles. The scattering amplitude of a specific scattering
process is obtained only after enough statistics is obtained for
the specific process. In our approach, the outgoing state is
known. However, this does not necessarily mean that our
approach involves a fewer number of gates. In fact, according
to Eq. (4), we have to evaluate the position-space connected
n-point function at every spacetime point and then perform a
Fourier transform. We can estimate the computational com-
plexity in our approach as follows. Supposewe haveN lattice
sites andT temporal sites,withd spatial dimensions. Suppose
we need nq qubits at each lattice site, then the total number of
qubits for storage of the state is nqN. To prepare the vacuum
or a one-particle state with the QAOA and the variational
quantum eigensolver, the number of gate operations is
OðnqNÞ [31,58]. The complexity of preparing n one-particle
states is therefore OðnnqNÞ. With the Trotter formula,
conservatively the time evolution is estimated to cost
OðnqN2TÞ operations [48,61]. From this, we infer that each
evaluation of the position-space n-point function has com-
plexity OðnnqN2TÞ [60], and so the complexity for evalu-
ating the position-space n-point function at all spacetime
points isOðnnqN2TðNTÞn−1Þ¼OðnnqNnþ1TnÞ. Assuming
OðTÞ ¼ OðN1=dÞ, the subsequent Fourier transform can be
done efficiently using the multidimensional quantum Fourier
transform with complexity Oð 1

ðn−1Þðdþ1Þ log
2ðNðn−1Þðdþ1Þ=dÞÞ

[62], which is negligible compared toOðnnqNnþ1TnÞ. To get
the connected part of the n-point function, we also have to
calculate its disconnected part, the evaluation of which
according to what we have just derived has complexity
OðPn−1

k¼1ð nk ÞknqNkþ2Tkþ1Þ ≤ Oð2nnnqNnþ1TnÞ. Similarly,
evaluating the n propagators in Eq. (3) costs OðnnqN3T2Þ
operations. Consequently, the overall complexity in our
approach is Oð2nnnqNnþ1TnÞ, which is exponential in n.
In the JLP formalism, it was shown that the complexity scales
with n polynomially [10]. Therefore, our approach is ideal
only when the number of external particles is small, e.g., in
2 → 2 scatterings.
With the estimate of complexity above, we can see how

the complexity scales with the largest energy scale in the
scattering process, denoted by Λmax. In general, in order to
satisfy constraint equation (1), both N and T are taken to be
proportional to Λmax. For fermionic degrees of freedom, nq
is fixed and does not depend on Λmax. For bosonic degrees
of freedom, nq is chosen as a finite number which is large
enough so that modes of energy or momentum of orderΛmax
are properly represented. It is found that nq can be taken as
OðlogΛmaxÞ for scalar fields [47] and gauge fields [48], if
we estimate the maximum value of the field strength tensor
as ∼Λ2

max. Therefore, the complexity scales at most as
∼Λ2nþ1

max logΛmax, which is polynomial in Λmax. A poly-
nomial dependence of the complexity on energy was also
obtained in the JLP formalism [10,12].

An important feature of our approach using the LSZ
reduction formula is that bound states are allowed as
incoming or outgoing particles. This is because the inter-
action coupling constant is never turned off in our approach,
as opposed to the JLP formalism. In Eqs. (4)–(6), the field
operator ϕ is not necessarily a fundamental field of the
theory. In fact, any operator which has the same quantum
numbers as the external particle h can be used. For instance,
in a theory with only a spin-1=2 fundamental field ψ , there
might exist a spin-0 scalar bound state h made of a
fundamental fermion and its antiparticle. One can then
simply take the composite operator ϕ ¼ ψ̄ψ as the operator
which annihilates h in the LSZ reduction formula for
scattering processes involving h as external particles. This
is an ideal feature of our formalism, since in the most
interesting potential application of quantum computing in
particle physics, namely quantum chromodynamics, all
incoming and outgoing particles are bound states owing to
quark confinement. Our framework is therefore most useful
for scattering processes involving a small number of com-
posite particles in a strongly coupled theory, such as 2 → 2
scatterings of pions or nucleons in quantum chromodynam-
ics, for which first-principle calculations are currently only
possible below the three-hadron thresholds [63–65].

IV. POLOLOGY IN THE ONE-FLAVOR
GROSS-NEVEU MODEL

With simulations using the proposed quantum algorithm
on classical hardware, we can demonstrate the feature of
poles of the propagator and the connected four-point
function in a simple model, the (1þ 1)-dimensional one-
flavor Nambu-Jona-Lasinio model [66,67], also known as
the one-flavor Gross-Neveu model [68]. The Lagrangian of
this model is given by

L ¼ ψ̄ðiγμ∂μ −mqÞψ þ gðψ̄ψÞ2; ð8Þ

where ψ is a Dirac field in 1þ 1 dimensions, which we will
refer to as the quark field, and mq and g are the bare quark
mass and the bare coupling constant, respectively. Both mq

and g are free parameters. We choose the values of them in
such a way that the particle states hwe consider below have
masses mh satisfying π

L < mh <
π
a, where a and L are the

lattice spacing and the lattice size, respectively. In the
following, we take mqa ¼ 0.84 and g ¼ 0.40.
Consider the propagator of the quark field,

KψðpÞ ¼
Z

d2x eip·xhΩjTfψðxÞψ̄ð0ÞgjΩi: ð9Þ

Similar to Eq. (7), near the mass shell of a particle state
h which has the same quantum numbers as the quark field,
we have
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KψðpÞ ⟶
p2→m2

h iRhð=pþmhÞ
p2 −m2

h þ iϵ
; ð10Þ

where Rh > 0 is the field normalization defined by

hΩjψð0ÞjhðpÞi ¼
ffiffiffiffiffiffi
Rh

p
uðpÞ; ð11Þ

where uðpÞ is the positive-energy solution to the free Dirac
equation ð=p−mhÞuðpÞ¼0, normalized to ūðpÞuðpÞ¼2mh.
The field normalization Rh can be calculated using our
proposed method by taking p ¼ 0 in Eq. (11).
According to Eq. (10), when we take p1 ¼ 0 and treat

Kψ ðpÞ as a function of p0, KψðpÞ should have poles at
p0 ¼ �mh. We evaluate Kψ ðpÞ as a function p0, with p1

taken to be zero, with the proposed quantum algorithm
using classical hardware. The calculation is performed on a
desktop workstation with 16 cores, using opensource
packages QuSpin [69] and projectQ [70], with 14 qubits
(seven lattice sites), using seven temporal sites, with the
temporal spacing taken to be the same as the lattice spacing.
We follow the mapping of the Gross-Neveu model onto
qubits and the method to evaluate the correlation function
with a quantum algorithm as discussed in Ref. [31]. To
obtain KψðpÞ, we first calculate the integrand in Eq. (9) in
position space and then implement a discrete Fourier
transform to perform the Fourier integral. In order to show
the main features of our result, we present our result for
TrKψðpÞ, which according to Eq. (10) takes the following
form near a particle mass shell:

TrKψ ðpÞ ⟶
p2→m2

h 2Rhmh½ϵþ iðp2 −m2
hÞ�

ðp2 −m2
hÞ2 þ ϵ2

: ð12Þ

Equation (12) shows that Re½TrKψ ðpÞ� → þ∞ and
Im½TrKψðpÞ� → 0 as p2 → m2

h. Figure 1 shows our results
for the real part (solid line) and the imaginary part (dashed
line) of TrKψðpÞ as a function of p0a. The peaks of the real
part at p0a ¼ �1.14 (solid blobs) correspond to the poles
from the lowest-lying state with the same quantum numbers
as the quark field, as is verified by solving for the mass
spectrum with direct numerical diagonalization of the
discretized Hamiltonian, which gives mha ¼ 1.18 (�mha
shown by dotted vertical lines). This state can be inter-
preted as a quark.2 In the continuum limit, a pole corre-
sponds to a peak of infinite height, while in the discretized
model we consider here the peaks have finite height.
According to Eq. (12), when viewed as a function of p0

with p1 ¼ 0, Im½TrKψ ðpÞ� has zeros at p0 ¼ mh and
p0¼−mh, at which points the derivative of Im½TrKψðpÞ�
with respect to p0 is positive and negative, respectively.
These features are exhibited in our result for the imaginary

part of TrKψ ðpÞ, shown by the dashed line in Fig. 1. In
Fig. 1, the dashed line has positive and negative derivative
at the zeros at p0a ¼ 1.28 and p0a ¼ −1.28 (hollow
circles), respectively. These zeros are close to �mha,
and are expected to be there by virtue of Eq. (12) in the
continuum theory.
For the 2 → 2 scattering of a quark and an antiquark,

qðk1Þq̄ðk2Þ → qðp1Þq̄ðp2Þ, one has to calculate the follow-
ing connected four-point function:

Gαβγδ
ψ ðp1; p2; k1Þ

¼
Z

d2x1d2x2d2y1 eiðp1·x1þp2·x2−k1·y1Þ

× hΩjψαðx1Þψ̄βðx2Þψ̄ γðy1Þψδð0ÞjΩicon: ð13Þ

Similar to KψðpÞ, the connected four-point function

Gαβγδ
ψ ðp1; p2; k1Þ is expected to have a pole structure of
1

k2
1
−m2

hþiϵ when k1 is close to the mass shell of particle h

which has the same quantum numbers as the quark field. To
demonstrate this feature, with the same method as we
evaluate KψðpÞ, we evaluateGαβγδ

ψ ðp1; p2; k1Þ as a function
of k01 with the external-leg momenta set to k1 ¼ ðk01; 0Þ;
p1 ¼ ð0; 0Þ; p2 ¼ ðk01; π=aÞ. This setting of external-leg
momenta makes sure that k2, p1, p2 are off shell. Figure 2
shows our results for the real part (solid line) and the
imaginary part (dashed line) of Gαβαβ

ψ ðp1; p2; k1Þ as a

FIG. 1. Real part (solid line) and imaginary part (dashed line) of
TrKψ ðpÞ in the one-flavor Gross-Neveu model as a function of
p0a with p1 ¼ 0, simulated with the proposed quantum algo-
rithm on classical hardware. The solid blobs on the solid line and
the hollow circles on the dashed line, respectively, show the peaks
of the real part and the zeros of the imaginary part of TrKψ ðpÞ
corresponding to the pole structure due to the quark. The dotted
vertical lines show the locations p0a ¼ �mha with the quark
mass mh obtained from exact diagonalization of the discretized
Hamiltonian.

2Note that in this model there is no quark confinement.
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function of k01a. Similar to the case of the propagator, the
peaks of the real part of Gαβαβ

ψ ðp1; p2; k1Þ at k01a ¼ �1.01
(solid blobs) correspond to the poles from the lowest-lying
state with the same quantum numbers as the quark field,
namely the quark. The imaginary part of Gαβαβ

ψ ðp1; p2; k1Þ,
shown by the dashed line in Fig. 2, has positive and
negative derivative, respectively, at the zeros at k01a ¼ 0.87
and k01a ¼ −0.87 (hollow circles). These zeros, being close
to �mha, are expected by the pole structure of the
connected four-point function in the continuum theory.
In order to demonstrate the power of the LSZ reduction

formula in handling scatterings of bound-state particles, we
also simulate the propagator of the composite operator
OðxÞ ¼ ψ̄ðxÞψðxÞ, given by

KOðpÞ ¼
Z

d2x eip·xhΩjTfOðxÞOð0ÞgjΩicon: ð14Þ

Figure 3 shows our results for the real part (solid line) and
the imaginary part (dashed line) of TrKOðpÞ as a function
of p0a, with p1 ¼ 0. The peaks of the real part at p0a ¼
�2.02 (solid blobs) correspond to the poles from the
second lowest-lying state hO with the same quantum
numbers as the vacuum, as is verified by solving for the
mass spectrum with direct numerical diagonalization,
which gives mhOa ¼ 1.96 (�mhOa shown by dotted
vertical lines). This state can be interpreted as a

quark-antiquark bound state. As expected again from the
pole structure of KOðpÞ in the continuum theory, the
imaginary part has positive and negative derivative, respec-
tively, at the zeros at p0a ¼ 1.89 and p0a ¼ −1.89 (hollow
circles), which are close to �mhOa. Note that the peak of
the real part at p0a ¼ 0 does not correspond to any single-
particle pole, since the pole structure due to such a massless
state would imply that the imaginary part has a zero at
p0a ¼ 0 which is a local minimum, in contrary to the local
maximum we found.
This simple example shows that our proposed quantum

algorithm succeeds in recovering the expected pole struc-
ture of both the propagator and the connected n-point
function, which is crucial to the implementation of the LSZ
reduction formula.
It should be noted that, although we find that both the

quark propagator and the connected four-point function
exhibit convergent behavior when the number of qubits is
increased to 14 from a smaller number, the speeds of their
convergence are quite different, with the propagator con-
verging faster. For 2 → 2 quark-antiquark scattering, since
the scattering amplitude involves four powers of the ratio of
peak values of the connected four-point function and the
quark propagator, its convergence requires that both the
quark propagator and the connected four-point function
reach a similar speed of convergence. In our initial attempt
to calculate this scattering amplitude, owing to the limited
number of qubits one can use in simulations on classical

FIG. 2. Real part (solid line) and imaginary part (dashed line) of
Gαβαβ

ψ ðp1; p2; k1Þ in the one-flavor Gross-Neveu model as a
function of k01a, with k1 ¼ ðk01; 0Þ; p1 ¼ ð0; 0Þ; p2 ¼ ðk01; π=aÞ,
simulated with the proposed quantum algorithm on classical
hardware. The solid blobs on the solid line and the hollow circles
on the dashed line, respectively, show the peaks of the real part
and the zeros of the imaginary part of Gαβαβ

ψ ðp1; p2; k1Þ corre-
sponding to the pole structure due to the quark. The dotted
vertical lines show the locations p0a ¼ �mha with the quark
mass mh obtained from exact diagonalization of the discretized
Hamiltonian.

FIG. 3. Real part (solid line) and imaginary part (dashed line) of
TrKOðpÞ in the one-flavor Gross-Neveu model as a function of
p0a with p1 ¼ 0, simulated with the proposed quantum algo-
rithm on classical hardware. The solid blobs on the solid line and
the hollow circles on the dashed line, respectively, show the peaks
of the real part and the zeros of the imaginary part of TrKOðpÞ
corresponding to the pole structure due to the quark-antiquark
bound state. The dotted vertical lines show the locations p0a ¼
�mhOa with the bound-state mass mhO obtained from exact
diagonalization of the discretized Hamiltonian.
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hardware with reasonable computational time cost, a sat-
isfactory convergence has not been observed.However, with
the quantum advantage, in a quantum computer with more
than a hundred qubits in near future, we believe that a
convergent result for the scattering amplitude can be
expected for a (1þ 1)-dimensional model.

V. CONCLUSIONS

In this work, we proposed a new framework for
evaluating scattering amplitudes in quantum field theory
on quantum computers in a fully nonperturbative way. The
framework was based on the LSZ reduction formula, which
relates scattering amplitudes to correlation functions. In this
framework, as opposed to a direct Hamiltonian simulation
of the scattering process, no preparation of wave packets of
incoming particles is required, and one only has to prepare
one-particle states of zero momentum. The framework is
capable of incorporating scatterings of bound-state particles

and is ideal for scatterings that involve a small number of
particles. This framework is expected to have potential
applications in exclusive processes in a strongly coupled
theory, such as 2 → 2 scatterings of pions or nucleons. As a
proof of concept, in a simple model, the one-flavor Gross-
Neveu model, we demonstrated by simulations on classical
hardware that the propagator and the connected four-point
function obtained from the quantum algorithm has the
desired pole structure crucial to the implementation of the
LSZ reduction formula.

ACKNOWLEDGMENTS

This work is supported by the Guangdong Major Project
of Basic and Applied Basic Research No.
2020B0301030008 and No. 2022A1515010683, and by
the National Natural Science Foundation of China (NSFC)
under Grants No. 12035007 and No. 12022512.

[1] R. P. Feynman, Space-time approach to quantum electro-
dynamics, Phys. Rev. 76, 769 (1949).

[2] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C.
Polkinghorne, The Analytic S-Matrix (Cambridge Univer-
sity Press, Cambridge, England, 1966).

[3] Z. Bern, L. J. Dixon, and D. A. Kosower, One-loop correc-
tions to two-quark three-gluon amplitudes, Nucl. Phys.
B437, 259 (1995).

[4] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct proof
of the tree-level scattering amplitude recursion relation in
Yang-Mills theory, Phys. Rev. Lett. 94, 181602 (2005).

[5] Z. Bern, L. J. Dixon, and D. A. Kosower, On-shell methods
in perturbative QCD, Ann. Phys. (Amsterdam) 322, 1587
(2007).

[6] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP
Electroweak Working Group, SLD Electroweak Group,
SLD Heavy Flavour Group Collaborations), Precision
electroweak measurements on the Z resonance, Phys.
Rep. 427, 257 (2006).

[7] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F.
Herzog, A. Lazopoulos, and B. Mistlberger, High precision
determination of the gluon fusion Higgs boson cross-section
at the LHC, J. High Energy Phys. 05 (2016) 058.

[8] G. Aad et al. (ATLAS Collaboration), Measurement of the
transverse momentum distribution of Drell-Yan lepton pairs
in proton-proton collisions at

ffiffiffi
s

p ¼ 13 × TeV with the
ATLAS detector, Eur. Phys. J. C 80, 616 (2020).

[9] A. Alexandru, G. Basar, P. F. Bedaque, S. Vartak, and N. C.
Warrington, Monte Carlo study of real time dynamics on the
lattice, Phys. Rev. Lett. 117, 081602 (2016).

[10] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
algorithms for quantum field theories, Science 336, 1130
(2012).

[11] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum com-
putation of scattering in scalar quantum field theories,
Quantum Inf. Comput. 14, 1014 (2014).

[12] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algo-
rithms for fermionic quantum field theories, arXiv:1404
.7115.

[13] C. W. Bauer et al., Quantum simulation for high-energy
physics, PRX Quantum 4, 027001 (2023).

[14] E. A. Martinez et al., Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature
(London) 534, 516 (2016).

[15] Z. Hu, R. Xia, and S. Kais, A quantum algorithm for
evolving open quantum dynamics on quantum computing
devices, Sci. Rep. 10, 3301 (2020).

[16] B. Nachman, D. Provasoli, W. A. de Jong, and C.W. Bauer,
Quantum algorithm for high energy physics simulations,
Phys. Rev. Lett. 126, 062001 (2021).

[17] W. A. de Jong, M. Metcalf, J. Mulligan, M. Ploskon, F.
Ringer, and X. Yao, Quantum simulation of open quantum
systems in heavy-ion collisions, Phys. Rev. D 104, L051501
(2021).

[18] Z.-Y. Zhou et al., Thermalization dynamics of a gauge
theory on a quantum simulator, Science 377, 311 (2022).

[19] W. A. de Jong, K. Lee, J. Mulligan, M. Ploskon, F. Ringer,
and X. Yao, Quantum simulation of nonequilibrium dy-
namics and thermalization in the Schwinger model, Phys.
Rev. D 106, 054508 (2022).

[20] K. Bepari, S. Malik, M. Spannowsky, and S. Williams,
Quantum walk approach to simulating parton showers,
Phys. Rev. D 106, 056002 (2022).

[21] Y. Y. Atas, J. F. Haase, J. Zhang, V. Wei, S. M.-L. Pfaendler,
R. Lewis, and C. A. Muschik, Simulating one-dimensional
quantum chromodynamics on a quantum computer: Realtime

SCATTERING AMPLITUDE FROM QUANTUM COMPUTING WITH … PHYS. REV. D 109, 036025 (2024)

036025-7

https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1016/0550-3213(94)00542-M
https://doi.org/10.1016/0550-3213(94)00542-M
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1016/j.aop.2007.04.014
https://doi.org/10.1016/j.aop.2007.04.014
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1007/JHEP05(2016)058
https://doi.org/10.1140/epjc/s10052-020-8001-z
https://doi.org/10.1103/PhysRevLett.117.081602
https://doi.org/10.1126/science.1217069
https://doi.org/10.1126/science.1217069
https://doi.org/10.26421/QIC14.11-12-8
https://arXiv.org/abs/1404.7115
https://arXiv.org/abs/1404.7115
https://doi.org/10.1103/PRXQuantum.4.027001
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/s41598-020-60321-x
https://doi.org/10.1103/PhysRevLett.126.062001
https://doi.org/10.1103/PhysRevD.104.L051501
https://doi.org/10.1103/PhysRevD.104.L051501
https://doi.org/10.1126/science.abl6277
https://doi.org/10.1103/PhysRevD.106.054508
https://doi.org/10.1103/PhysRevD.106.054508
https://doi.org/10.1103/PhysRevD.106.056002


evolutions of tetra- and pentaquarks, Phys. Rev. Res. 5,
033184 (2023).

[22] X. Yao, Quantum simulation of light-front QCD for jet
quenching in nuclear environments, arXiv:2205.07902.

[23] H.-H. Lu et al., Simulations of subatomic many-body
physics on a quantum frequency processor, Phys. Rev. A
100, 012320 (2019).

[24] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collabo-
ration), Parton physics on a quantum computer, Phys. Rev.
Res. 2, 013272 (2020).

[25] N. Mueller, A. Tarasov, and R. Venugopalan, Deeply
inelastic scattering structure functions on a hybrid quantum
computer, Phys. Rev. D 102, 016007 (2020).

[26] A. Roggero, A. C. Y. Li, J. Carlson, R. Gupta, and G. N.
Perdue, Quantum computing for neutrino-nucleus scatter-
ing, Phys. Rev. D 101, 074038 (2020).

[27] M. G. Echevarria, I. L. Egusquiza, E. Rico, and G. Schnell,
Quantum simulation of light-front parton correlators, Phys.
Rev. D 104, 014512 (2021).

[28] M. Kreshchuk, S. Jia, W. Kirby, G. Goldstein, J. Vary, and P.
Love, Light-front field theory on current quantum com-
puters, Entropy 23, 597 (2021).

[29] C. W. Bauer, B. Nachman, and M. Freytsis, Simulating
collider physics on quantum computers using effective field
theories, Phys. Rev. Lett. 127, 212001 (2021).

[30] Y. Y. Atas, J. Zhang, R. Lewis, A. Jahanpour, J. F.
Haase, and C. A. Muschik, SUð2Þ hadrons on a quantum
computer via a variational approach, Nat. Commun. 12,
6499 (2021).

[31] T. Li, X. Guo, W. K. Lai, X. Liu, E. Wang, H. Xing, D. B.
Zhang, and S. L. Zhu (QuNu Collaboration), Partonic
collinear structure by quantum computing, Phys. Rev. D
105, L111502 (2022).

[32] T. Li, X. Guo, W. K. Lai, X. Liu, E. Wang, H. Xing, D. B.
Zhang, and S. L. Zhu (QuNu Collaboration), Exploring
light-cone distribution amplitudes from quantum comput-
ing, Sci. China Phys. Mech. Astron. 66, 281011 (2023).

[33] D. Gallimore and J. Liao, Quantum computing for heavy
quarkonium spectroscopy, Phys. Rev. D 107, 074012
(2023).

[34] A. M. Czajka, Z.-B. Kang, H. Ma, and F. Zhao, Quantum
simulation of chiral phase transitions, J. High Energy Phys.
08 (2022) 209.

[35] A. M. Czajka, Z.-B. Kang, Y. Tee, and F. Zhao, Studying
chirality imbalance with quantum algorithms, arXiv:2210
.03062.

[36] X. D. Xie, X. Guo, H. Xing, Z. Y. Xue, D. B. Zhang, and
S. L. Zhu (QuNu Collaboration), Variational thermal quan-
tum simulation of the lattice Schwinger model, Phys. Rev. D
106, 054509 (2022).

[37] H. Lehmann, H. Symanzik, and W. Zimmerman, Zur
Formulierung quantisierter Feldtheorien, Nuovo Cimento
1, 205 (1955).

[38] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and A. M.
Sturzu, Role of boundary conditions in quantum computa-
tions of scattering observables, Phys. Rev. D 103, 014506
(2021).

[39] J. B. Kogut and L. Susskind, Hamiltonian formulation of
Wilson's lattice gauge theories, Phys. Rev. D 11, 395
(1975).

[40] J. B. Kogut, The lattice gauge theory approach to quantum
chromodynamics, Rev. Mod. Phys. 55, 775 (1983).

[41] R. Anishetty, M. Mathur, and I. Raychowdhury, Prepotential
formulation of SUð3Þ lattice gauge theory, J. Phys. A 43,
035403 (2010).

[42] I. Raychowdhury and J. R. Stryker, Loop, string, and hadron
dynamics in SUð2Þ Hamiltonian lattice gauge theories,
Phys. Rev. D 101, 114502 (2020).

[43] A. J. Buser, H. Gharibyan, M. Hanada, M. Honda, and J.
Liu, Quantum simulation of gauge theory via orbifold
lattice, J. High Energy Phys. 09 (2021) 034.

[44] P. Jordan and E. P. Wigner, Über das Paulische Äquiva-
lenzverbot, Z. Phys. 47, 631 (1928).

[45] S. Bravyi and A. Y. Kitaev, Fermionic quantum computa-
tion, Ann. Phys. (Amsterdam) 298, 210 (2002).

[46] S. Backens, A. Shnirman, and Y. Makhlin, Jordan-Wigner
transformations for tree structures, Sci. Rep. 9, 2598 (2019).

[47] N. Klco and M. J. Savage, Digitization of scalar fields for
quantum computing, Phys. Rev. A 99, 052335 (2019).

[48] T. Byrnes and Y. Yamamoto, Simulating lattice gauge
theories on a quantum computer, Phys. Rev. A 73,
022328 (2006).

[49] J. Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov, S.-W.
Tsai, and Y. Meurice, Quantum simulation of the universal
features of the Polyakov loop, Phys. Rev. Lett. 121, 223201
(2018).

[50] J. F. Unmuth-Yockey, Gauge-invariant rotor Hamiltonian
from dual variables of 3D Uð1Þ gauge theory, Phys. Rev. D
99, 074502 (2019).

[51] A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm, S.
Lawrence, and N. C. Warrington (NuQS Collaboration),
Gluon field digitization for quantum computers, Phys. Rev.
D 100, 114501 (2019).

[52] Y. Ji, H. Lamm, and S. Zhu (NuQS Collaboration), Gluon
field digitization via group space decimation for quantum
computers, Phys. Rev. D 102, 114513 (2020).

[53] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collabo-
ration), General methods for digital quantum simulation of
gauge theories, Phys. Rev. D 100, 034518 (2019).

[54] R. C. Brower, D. Berenstein, and H. Kawai, Lattice gauge
theory for a quantum computer, Proc. Sci. LATTICE2019
(2020) 112.

[55] M. Kreshchuk, W.M. Kirby, G. Goldstein, H. Beauchemin,
and P. J. Love, Quantum simulation of quantum field theory
in the light-front formulation, Phys. Rev. A 105, 032418
(2022).

[56] E. Farhi, J. Goldstone, and S. Gutmann, A quantum
approximate optimization algorithm, arXiv:1411.4028.

[57] S. Hadfield et al., From the quantum approximate optimi-
zation algorithm to a quantum alternating operator Ansatz,
Algorithms 12, 34 (2019).

[58] R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla,
Y. B. Kim, and H. Yuen, Exploring entanglement and
optimization within the Hamiltonian variational Ansatz,
PRX Quantum 1, 020319 (2020).

[59] K. M. Nakanishi, K. Mitarai, and K. Fujii, Subspace-search
variational quantum eigensolver for excited states, Phys.
Rev. Res. 1, 033062 (2019).

[60] J. S. Pedernales, R. Di Candia, I. L. Egusquiza, J. Casanova,
and E. Solano, Efficient quantum algorithm for computing

LI, LAI, WANG, and XING PHYS. REV. D 109, 036025 (2024)

036025-8

https://doi.org/10.1103/PhysRevResearch.5.033184
https://doi.org/10.1103/PhysRevResearch.5.033184
https://arXiv.org/abs/2205.07902
https://doi.org/10.1103/PhysRevA.100.012320
https://doi.org/10.1103/PhysRevA.100.012320
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1103/PhysRevD.102.016007
https://doi.org/10.1103/PhysRevD.101.074038
https://doi.org/10.1103/PhysRevD.104.014512
https://doi.org/10.1103/PhysRevD.104.014512
https://doi.org/10.3390/e23050597
https://doi.org/10.1103/PhysRevLett.127.212001
https://doi.org/10.1038/s41467-021-26825-4
https://doi.org/10.1038/s41467-021-26825-4
https://doi.org/10.1103/PhysRevD.105.L111502
https://doi.org/10.1103/PhysRevD.105.L111502
https://doi.org/10.1007/s11433-023-2120-1
https://doi.org/10.1103/PhysRevD.107.074012
https://doi.org/10.1103/PhysRevD.107.074012
https://doi.org/10.1007/JHEP08(2022)209
https://doi.org/10.1007/JHEP08(2022)209
https://arXiv.org/abs/2210.03062
https://arXiv.org/abs/2210.03062
https://doi.org/10.1103/PhysRevD.106.054509
https://doi.org/10.1103/PhysRevD.106.054509
https://doi.org/10.1007/BF02731765
https://doi.org/10.1007/BF02731765
https://doi.org/10.1103/PhysRevD.103.014506
https://doi.org/10.1103/PhysRevD.103.014506
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/RevModPhys.55.775
https://doi.org/10.1088/1751-8113/43/3/035403
https://doi.org/10.1088/1751-8113/43/3/035403
https://doi.org/10.1103/PhysRevD.101.114502
https://doi.org/10.1007/JHEP09(2021)034
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1038/s41598-018-38128-8
https://doi.org/10.1103/PhysRevA.99.052335
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevLett.121.223201
https://doi.org/10.1103/PhysRevLett.121.223201
https://doi.org/10.1103/PhysRevD.99.074502
https://doi.org/10.1103/PhysRevD.99.074502
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.102.114513
https://doi.org/10.1103/PhysRevD.100.034518
https://doi.org/10.22323/1.363.0112
https://doi.org/10.22323/1.363.0112
https://doi.org/10.1103/PhysRevA.105.032418
https://doi.org/10.1103/PhysRevA.105.032418
https://arXiv.org/abs/1411.4028
https://doi.org/10.3390/a12020034
https://doi.org/10.1103/PRXQuantum.1.020319
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1103/PhysRevResearch.1.033062


n-time correlation functions, Phys. Rev. Lett. 113, 020505
(2014).

[61] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cam-
bridge University Press, Cambridge, England, 2010),
10.1017/CBO9780511976667.

[62] P. Pfeffer, Multidimensional quantum Fourier transforma-
tion, arXiv:2301.13835.

[63] M. Luscher, Two-particle states on a torus and their relation
to the scattering matrix, Nucl. Phys. B354, 531 (1991).

[64] R. A. Briceno, J. J. Dudek, and R. D. Young, Scattering
processes and resonances from lattice QCD, Rev. Mod.
Phys. 90, 025001 (2018).

[65] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, The
I ¼ 1 pion-pion scattering amplitude and timelike pion form
factor from Nf ¼ 2þ 1 lattice QCD, Nucl. Phys. B939, 145
(2019).

[66] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. I, Phys. Rev. 122, 345 (1961).

[67] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. II, Phys. Rev. 124, 246 (1961).

[68] D. J. Gross and A. Neveu, Dynamical symmetry breaking in
asymptotically free field theories, Phys. Rev. D 10, 3235
(1974).

[69] P. Weinberg and M. Bukov, QuSpin: A Python package
for dynamics and exact diagonalisation of quantum many
body systems part I: Spin chains, SciPost Phys. 2, 003
(2017).

[70] D. S. Steiger, T. Häner, and M. Troyer, ProjectQ: An open
source software framework for quantum computing, Quan-
tum 2, 49 (2018).

SCATTERING AMPLITUDE FROM QUANTUM COMPUTING WITH … PHYS. REV. D 109, 036025 (2024)

036025-9

https://doi.org/10.1103/PhysRevLett.113.020505
https://doi.org/10.1103/PhysRevLett.113.020505
https://doi.org/10.1017/CBO9780511976667
https://arXiv.org/abs/2301.13835
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49

