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We present a systematic treatment of non-Gaussianity in stochastic systems using the Schwinger-
Keldysh effective field theory framework, in which the non-Gaussianity is realized as nonlinear terms in the
fluctuation field. We establish two stochastic formulations of the Schwinger-Keldysh effective field theory,
with those nonlinear terms manifested as multiple non-Gaussian noises in the Langevin equation and as
higher order diffusive terms in the Fokker-Planck equation. The equivalence of the stochastic formulations
with the original Schwinger-Keldysh effective field theory is demonstrated with nontrivial examples for
arbitrary non-Gaussian parameters. The stochastic formulations will be more flexible and effective in
studying nonequilibrium dynamics. We also reveal an ambiguity when coarse-graining timescale and non-
Gaussian parameters vanish simultaneously, which may be responsible for the unphysical divergence found
in perturbative analysis.
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I. INTRODUCTION

The Gaussian white noise has been widely used in
modeling of stochastic dynamics. If thermodynamic limit
strictly applies to the system in question, the Gaussian noise
is a consequence of ensemble average due to the central limit
theorem. On the other hand, the white noise follows from a
coarse-grained description of the system: when the coarse-
graining timescale is much longer than the microscopic
timescale of the system, the white noise becomes accurate.
In reality, deviations of both idealizations can occur.
Non-Gaussian noises have wide applications in statistical
physics [1], cosmology [2], condensed matter physics [3],
and quantum optics [4]. Colored noises generically occur
when one considers dynamics at timescale comparable to the
coarse-graining scale. Most implementations of non-
Gaussian colored noises are based on phenomenological
models to date. Microscopic derivations of stochastic
dynamics with non-Gaussian noises exist for a simple
degree of freedom [5], but generalization to more compli-
cated systems such as hydrodynamics is far from obvious.

Modern description of a stochastic system uses
Schwinger-Keldysh effective field theory (SKEFT) [6–10].
Thanks to doubling of degrees of freedom, the SKEFT
incorporates fluctuations and dissipations systematically,
going beyond the Martin-Siggia-Rose formalism for sto-
chastic models with Gaussian noise [6]. The SKEFT follows
from averaging out fast modes and governs stochastic
evolution of slow modes. The SKEFT is defined with an
implicit coarse-graining timescale separating the fast modes
and slow modes. The SKEFT is organized as a systematic
expansion in temporal gradient, which characterizes the
slowness of the dynamics, as well as expansion in the fields.
These expansions allow us to study deviations of Gaussian
white noise discussed above systematically: expansion in
temporal gradient allows one to access dynamics comparable
to the coarse-graining scale and expansion in the fields
characterizes the non-Gaussianity through nonlinear effect.
Recently there have been extensive studies on nonlinear
effect in dynamics of Brownian particle [11–16] and hydro-
dynamics [17–19].
In this paper, we use Brownian particle as an example to

illustrate formulations of non-Gaussianity from nonlinear
effect. We will establish three equivalent formulations of
non-Gaussianity: SKEFT, Langevin equation, and Fokker-
Planck (FP) equation. A crucial difference between this
study and those on related subject is that we do not assume
small non-Gaussian parameters and our formulations are
exact in these parameters. This is in contrast to [12] where
equivalence has been established at lowest order in the
parameters. We will offer caveat to the perturbative analysis
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in the non-Gaussian parameters, which contains unphysical
divergence. We suggest that the divergence is tied to the
ambiguity when the coarse-graining scale and non-
Gaussian parameters vanish simultaneously. The formula-
tions in this paper can also be straightforwardly adapted to
more interesting hydrodynamic systems.
The rest of this paper will be structured as follows. In

Sec. II we present a simple Schwinger-Keldysh effective
field theory (EFT) incorporating non-Gaussianity. We also
review its two equivalent stochastic formulations when
non-Gaussian terms in noise field are absent. In Sec. III we
establish two stochastic formulations of the Schwinger-
Keldysh EFT when generic nonlinear terms are present. In
Sec. IV, we demonstrate the equivalence of the stochastic
formulations with the original Schwinger-Keldysh EFT. In
Sec. V we make a brief summary and outlook interesting
future directions. Appendix provides further details on the
equivalence demonstration.

II. SCHWINGER-KELDYSH EFFECTIVE
FIELD THEORY

We begin with the following effective Lagrangian for a
Brownian particle

L ¼ iTΔ2
a − Δa∂tΔr −mΔaΔr þ iϵ1Δ4

a − ϵ2Δ3
aΔr

þ iϵ3Δ2
aΔ2

r − ϵΔaΔ3
r ; ð1Þ

where Δr ¼ 1
2
ðΔ1 þ Δ2Þ and Δa ¼ Δ1 − Δ2 with Δ1;2

being real scalar fields on the SK contour. Δr is identified
with momentum of Brownian particle, and Δa encodes
the fluctuation. We have only expanded L to the leading
order in temporal gradient and to quartic order in the fields.
Structure like (1) has been obtained from holographic
model calculations [20,21]. The first three terms are
Gaussian, which determine two-point correlation functions.
With T identified as the temperature, the first two terms
satisfy the Kubo-Martin-Schwinger (KMS) symmetry [8]

ΔaðtÞ → −Δað−tÞ − iT−1ð∂tΔrÞð−tÞ;
ΔrðtÞ → −Δrð−tÞ ð2Þ

Indeed, (2) leaves the third and last terms invariant up
to a total derivative. The remaining non-Gaussian terms
determine higher-point correlation functions. One may
further constrain these terms using KMS symmetry,
which amounts to choosing an equilibrium state [18].
Nevertheless, we choose to not impose the KMS symmetry
for the non-Gaussian terms, which is applicable to a
nonequilibrium state. Indeed, model calculations have
shown violation of the KMS symmetry in higher-point
correlation functions from non-Gaussian terms once the
condition of equilibrium state is relaxed [15]. All nonlinear
parameters ϵ1;2;3, ϵ are real by Z2-reflection symmetry of
SKEFT [8].

Equation (1) can be inspected as a series expansion in
Δa. At linear order, the action variation with respect to Δa
gives the deterministic equation for Δr:

∂tΔr ¼ −mΔr − ϵΔ3
r : ð3Þ

We readily identify (3) as a nonlinear damping equation of
particle’s momentum. Stability requires m > 0 and ϵ > 0
so that the corresponding terms act like restoring force
when Δr moves away from the origin. The quadratic terms
in Δa encode stochastic property of the system, turning the
deterministic equation (3) into a stochastic one with
Gaussian noise. As we shall show, the remaining cubic
and quartic terms in Δa give rise to non-Gaussian noises.
For completeness, we will review the derivation of two
well-known formulations of stochastic dynamics: Langevin
equation and FP equation from the Gaussian terms (linear
and quadratic in Δa). Then we will extend the analysis by
including non-Gaussian terms (cubic and quartic in Δa).
Before proceeding, we remark that (1) also contains

nonlinearity in Δr. However, this nonlinearity exists
generically in interacting systems without stochasticity,
thus not affecting the noise. It is well known how to treat
this with standard perturbative method. So the non-
Gaussianity inherent to stochastic systems arises from
the nonlinear ϵ1;2 terms.
We start by converting the first term in (1) into a noise

term added to (3). Following standard procedure, we
rewrite the first term in the path integral as [6]

e−
R

dtTΔ2
a ¼

Z
Dξe−

R
dtðξ24T−iξΔaÞ: ð4Þ

With ξ introduced, it is easy to integrate out Δa

Z
DΔae

i
R
dtL ¼

Z
Dξe−

R
dtξ

2

4Tδð−∂tΔr−mΔr−ϵΔ3
r þξÞ;

which gives rise to the following Langevin equation with a
nonlinear damping term

∂tΔr ¼ −mΔr − ϵΔ3
r þ ξ: ð5Þ

ξ is identified as a Gaussian noise whose variance is

determined by the exponent e−
R

dtξ
2

4T as

hξi ¼ 0; hξðtÞξðt0Þi ¼ 2Tδðt − t0Þ: ð6Þ

The ϵ3 term can be included straightforwardly, which
turns (5) into a multiplicative form

∂tΔr ¼ −mΔr − ϵΔ3
r þ ð1þ ϵ3T−1Δ2

rÞ1=2ξ: ð7Þ
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We require ϵ3 > 0 so that prefactor of the noise is real [22].
It is well known that (7) with (6) is ambiguous. We will
adopt the Ito regularization [6]

Δr;i − Δr;i−1 ¼ δt½−mΔr;i−1 − ϵΔ3
r;i−1

þ ð1þ ϵ3T−1Δ2
r;i−1Þ1=2ξi�; ð8Þ

in which the multiplicative factor of noise at step i depends
on the field at one step earlier. The noise is normalized as
hξiξji ¼ 2Tδijδ−1t [23], with ξi being the discretized noise
at step i. δt is the time step used in discretization, which is
also the coarse-graining timescale.
It is convenient to pass from SKEFT to the FP equation,

which governs the evolution of probability function
Pðt;ΔrÞ. The probability satisfies the following evolution
equation from the discretized path integral

Pðti;Δr;iÞ¼
Z

dΔr;i−1dΔa;iexp½−δtTΔ2
a;i−iΔa;iδr

−iδtmΔa;iΔr;i−1−δtϵ3Δ2
a;iΔ2

r;i−1−iδtϵΔa;iΔ3
r;i−1�

Pðti−1;Δr;i−1Þ; ð9Þ

with δr ¼ Δr;i − Δr;i−1. In the limit δt → 0, the exponent

suggests Δa;i ∼ δ−1=2t and δr ∼ δ1=2t . We may regard t and
Δr as continuous variables and expand

Pðti−1;Δr;i−1Þ ¼ Pðti;Δr;iÞ − δtṖðti;Δr;iÞ

− δrP0ðti;Δr;iÞ þ
1

2
δ2rP00ðti;Δr;iÞ

þ � � � ; ð10Þ

with dot and prime denoting derivatives with respect to t
and Δr, respectively. Plugging (10) into (9) and making a
change of field dΔr;i−1 ¼ dδr, we can perform the integrals
easily to obtain the following FP equation from the
coefficient of δt:

∂tP¼T∂2ΔPþm∂ΔðΔPÞþ ϵ3∂
2
ΔðΔ2PÞþ ϵ∂ΔðΔ3PÞ: ð11Þ

We have renamed Δr → Δ for notational simplicity. Here,
in accord with (8), Ito regularization has been assumed so
that ∂Δ is always later than Δ.

III. NON-GAUSSIAN LANGEVIN
AND FP EQUATIONS

So far what has been presented is textbook materials [6].
Now we wish to generalize the Langevin and FP equations
to the non-Gaussian case. Naive application of the method
outlined above encounters immediate difficulties. The
derivation of the Langevin equation relies on Gaussian
integration, which cannot treat cubic and quartic terms in
Δa; the derivation of FP equation seems to involve potential

divergence. If we still choose Δa ∼ δ−1=2t as in the Gaussian
case, then the term iϵ1Δ4

a for example becomes singular in
the continuum limit δt → 0.
The difficulties associated with the two equations are in

fact related: the technical difficulty of the non-Gaussian
integration is tied to the fact that there is no simple scaling
of Δa with δt in the multiscale integral, thus we would not
have a simple noise with ξ ∼ δ−1=2t like in the Gaussian
case. Similarly, if we were able to perform the non-
Gaussian integral based on (1) in full, i.e., without assum-
ing a simple scaling of Δa, we would not expect any
divergence. Indeed the Lagrangian (1) is essentially a
quantum mechanical one with all the couplings having
mass dimension one, so the SKEFT is superrenormalizable.
The analysis above suggests that we should treat non-

linear term separately rather than assume a uniform scaling.
Below we shall derive the non-Gaussian Langevin and FP
equations and demonstrate their equivalence with the
SKEFT formulation.
Let us begin with the non-Gaussian Langevin equation.

Note that (4) for an infinitesimal time interval reads

e−δtTΔ
2
a;i ¼

Z
dξieiδtξiΔa;ie−δt

ξ2
i
4T; ð12Þ

which allows us to trade Δa;i with ξi. Note that this is
nothing but an inverse Fourier transform. We can apply the
same transform to the cubic and quartic terms (omitting
subscript i for notational simplicity)

e−δtϵ1Δ
4
a ¼

Z
dηeiδtηΔafðηÞ;

e−iδtϵ2Δ
3
aΔr ¼

Z
dχeiδtχΔagðχÞ; ð13Þ

with

fðηÞ ¼ 1

2π

�
2

�
δ3t
ϵ1

�
1=4

Γ
�
5

4

�
0F2

�
1

2
;
3

4
;
η4δ3t
256ϵ1

�
−
�
η2

4

�

×

�
δ3t
ϵ1

�
3=4

Γ
�
3

4

�
0F2

�
3

2
;
5

4
;
η4δ3t
256ϵ1

��
;

gðχÞ ¼
�

δ2t
3ϵ2Δr

�
1=3

Ai

�
−χ

�
δ2t

3ϵ2Δr

�
1=3

�
: ð14Þ

Here 0F2 and Ai are the generalized hypergeometric
function and Airy function, respectively. As in the
Gaussian case, fðηÞ and gðχÞ are interpreted as weight
of noises η and χ, respectively.
Note that the non-Gaussian parameters appear in the

weight functions as δ3t =ϵ1 and δ2t =ϵ2, which are ambiguous
in the limits δt → 0 and ϵ1;2 → 0. We suggest that the
unphysical divergence found in earlier studies may be due
to improper implementation of the limit in perturbative
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analysis in the continuum form [12,14]. Our derivation
indicates that it is crucial to proceed in discretized form and
not to use perturbation. We also note that η and χ scale
differently with δt: η ∼ δ−3=4t , χ ∼ δ−2=3t .
The weight functions are plotted in Fig. 1. Two com-

ments of the weight functions are in order. First, they are
not positive definite. This is unavoidable: by taking
derivatives with respect to Δa in (13) and then setting
Δa ¼ 0, we can show the first nonvanishing moments are
hη4i and hχ3i, respectively [24]. Therefore, region with
negative weight must be present such that hη2i ¼ hχ2i ¼ 0.
Second, gðχÞ depends on Δr. In the Ito regularization
scheme, the weight of χi depends on Δr;i−1. In the special
limit Δr → 0, we can see from the definition (13) that
gðχÞ → δðχÞ.
It is then straightforward to integrate out Δa;i to arrive at

the Langevin equation with multiple noises

Δr;i − Δr;i−1 ¼ δt½−mΔr;i−1 − ϵΔ3
r;i−1

þð1þ ϵ3T−1Δ2
r;i−1Þ1=2ξi þ ηi þ χi�: ð15Þ

Now we turn to the derivation of the FP equation. Note
that in (1) only Δr is the dynamical field and Δa is an
auxiliary one that we wish to integrate out. By performing
the Legendre transformation, we find Δa and Δr form a
conjugate pair

p ¼ ∂L
∂ð∂tΔrÞ

¼ −Δa: ð16Þ

The corresponding Hamiltonian is expressed as

H ¼ −iTΔ2
a þmΔaΔr − iϵ1Δ4

a þ ϵ2Δ3
aΔr

− iϵ3Δ2
aΔ2

r þ ϵΔaΔ3
r : ð17Þ

In order to describe evolution of probability distribution,
we need to promote the classical Hamiltonian to a quantum

one, in which the conjugate fields have the commutator
½p;Δr� ¼ −i. This allows us to represent the operator
p ¼ −i∂Δr

. It is convenient to use p̃ ¼ −ip. Then, the
Hamiltonian appears purely imaginary

H ¼ iðTp̃2 −mp̃Δr − ϵ1p̃4 þ ϵ2p̃3Δr þ ϵ3p̃2Δ2
r − ϵp̃Δ3

rÞ:
ð18Þ

Recall in the Gaussian case, the probability distribution

P evolves according to the phase factor ei
R

dtL, which is
equivalent to the Schrödinger equation i∂tP ¼ HP.
However, in the non-Gaussian case, the equivalence is lost
due to cubic and quartic terms in p̃. We should resort to the
Schrödinger equation for the evolution. Upon using
p ¼ −i∂Δ, we have

∂tP ¼ T∂2ΔPþm∂ΔðΔPÞ − ϵ1∂
4
ΔP − ϵ2∂

3
ΔðΔPÞ

þ ϵ3∂
2
ΔðΔ2PÞ þ ϵ∂ΔðΔ3PÞ: ð19Þ

We have renamed Δr → Δ for notational simplicity. Again
the ordering of operator ∂Δ andΔmatters. We have adopted
the Ito regularization so that ∂Δ is always later than Δ, to be
consistent with the regularization in Langevin equation.
Equation (19) generalizes (9) to the non-Gaussian case.
Here the term −ϵ1∂4ΔP can be viewed as a higher order
diffusive term in addition to the diffusive term T∂2ΔP.
Stability of the diffusion requires ϵ1 > 0. The sign of ϵ2 is
not constrained.

IV. EQUIVALENCE DEMONSTRATION

Now we demonstrate the equivalence of the three
formulations by calculating a same set of equal-time
correlation functions. As simple examples, we consider
hΔ2ðtÞi and hΔ4ðtÞic ≡ hΔ4ðtÞi − 3hΔ2ðtÞi2, in which the
latter is the connected part of the four-point correlation
function. These correlation functions are directly compa-
rable among the three formulations. We have argued below
(3), (7), and (19) that all parameters except ϵ2 are con-
strained to be positive.
Let us first calculate them by solving the FP

equation (19). Multiplying dΔΔ2 on both sides of (19)
and integrating by parts, we obtain the following equation
for the second moment

∂thΔ2i ¼ 2T − 2mhΔ2i þ 2ϵ3hΔ2i − 2ϵhΔ4i: ð20Þ

The equation for hΔ2i does not close as it involves hΔ4i.
This is of course allowed, reflecting effect of nonlinearity in
Δr. Since our focus is on nonlinear terms in Δa, we will set
ϵ ¼ 0 to simplify the comparison. Then, the equation for
the fourth moment reads

f[η]

g[ ]

–10 –5 5 10

–0.3

–0.2

–0.1

0.1

0.2

0.3

0.4

FIG. 1. Nonpositive definite weight functions fðηÞ and gðχÞ,
with ϵ1=δ3t ¼ ϵ2Δr=δ2t ¼ 1.
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∂thΔ4i¼ 12ðTþ2ϵ2ÞhΔ2i−24ϵ1þ4ð3ϵ3−mÞhΔ4i: ð21Þ

From (20) and (21), we see that in order for the moments
not to blow up, we need m > ϵ3 and m > 3ϵ3. In fact, we
can obtain the condition for the 2nth moment would be
m > ð2n − 1Þϵ3, which will eventually fail for sufficient
large n. The reason for the failure can be seen from the
Langevin equation (15): for large Δ, the multiplicative
noise always win over them term, but it can be cured by the
ϵ term we choose to turn off. Consequently to ensure
stability of the FP equation, we should set ϵ3 ¼ 0 in (20)
and (21) as well. This leaves us with ϵ1 and ϵ2 being the
only nonvanishing parameters. We stress that they are also
the full non-Gaussian parameters in the SKEFT.
In fact, we can show ϵ2 is also constrained to be positive

from the equation for the 2nth moment

∂thΔ2ni¼ 2nð2n−1ÞðTþ ϵ2ð2n−2ÞÞhΔ2n−2i−2nmhΔ2ni
−2nð2n−1Þð2n−2Þð2n−3Þϵ1hΔ2n−4i: ð22Þ

Since all even moments are positive, a negative ϵ2 combined
with the other two terms on the right-hand side implies a
negative ∂thΔ2ni for large enough n. Consequently the final
state can only have vanishingmoments for largen.We do not
consider this trivial possibility. Belowwe take all parameters
to be positive.
To solve (20) and (21), we need to specify initial

condition [25]. In fact, as t → þ∞, stability of the FP
equation ensures that any initial state will approach the
unique steady state, with all the moments tending to
constants. We stress that the steady state reached in the
presence of non-Gaussian noise is nonequilibrium in the
absence of KMS condition, see also [26,27] for examples in
phenomenological models. With this in mind, we take
initial condition hΔ2ð0Þi ¼ hΔ4ð0Þi ¼ 0 and easily obtain

hΔ2ðtÞi ¼ T
m
ð1 − e−2mtÞ;

hΔ4ðtÞic ¼ −
6ϵ1
m

ð1 − e−4mtÞ þ 6Tϵ2
m2

ð1 − e−2mtÞ2: ð23Þ

It is worth pointing out that (23) is exact in the non-
Gaussian parameters ϵ1 and ϵ2.
Now we attempt to solve the Langevin equation (15). The

usual method is to generate an ensemble of solutions to
Langevin equation with random noises and then take the
ensemble average. There is no conceptual difficulty with this
method. The issue of negative weight can be treated with
technique like in [28]. However, the introduction of the
multiple noises makes the practical computation expensive.
For the purpose of demonstrating the equivalence, we will
use a hybrid method, in which the ensemble average is taken
analytically and we only simulate the moments equation
derived from the Langevin equation (15).

From (15), we easily obtain

hΔ2
iþ1i ¼ ð1 −mδtÞ2hΔ2

i i þ hξ2i iδ2t ;
hΔ4

iþ1i ¼ ð1 −mδtÞ4hΔ4
i i þ 6ð1 −mδtÞ2δ2t hξ2i ihΔ2

i i
þ δ4t hξ4i i þ 4ð1 −mδtÞδ3t hΔiχ

3
i i þ hη4i iδ4t ; ð24Þ

where various noise averages are [29]

hξ2i i ¼ 2T=δt; hξ4i i ¼ 12T2=δ2t ; hη4i i ¼ −24ϵ1=δ3t
hχ3i i ¼ 6ϵ2Δi=δ2t ⇒ hΔiχ

3
i i ¼ 6ϵ2hΔ2

i i=δ2t : ð25Þ

Then, it is easy to show that (24) leads to

hΔ2
iþ1i − hΔ2

i i
δt

¼ −2mhΔ2
i i þ 2T þOðδtÞ;

hΔ4
iþ1i − hΔ4

i i
δt

¼ −4mhΔ2
i i þ 12ThΔ2

i i þ 2ϵ2hΔ2
i i − 24ϵ1

þOðδtÞ: ð26Þ

which are obviously discretized forms of (20) and (21)
(with ϵ3 ¼ ϵ ¼ 0 as we have reasoned). Therefore, we are
guaranteed to arrive at the same results as (23) in the
limit δt → 0.
Finally, we calculate the same quantities within the

SKEFT. Note that the effective Lagrangian in the absence
of external sources corresponds to the steady state dis-
cussed above, which is reached by evolving the Langevin
and FP equations till the limit t → ∞. Then, hΔðtÞ2i and
hΔðtÞ4ic are represented by hΔrðtÞ2i and hΔrðtÞ4ic, which
are most conveniently calculated diagrammatically in the
ra basis. We treat the first three terms in (1) as the free part,
giving the following propagators:

Drrðt; t0Þ ¼
T
m
e−mjt−t0j; Draðt; t0Þ ¼ −ie−mðt−t0Þθðt− t0Þ;

Darðt; t0Þ ¼Draðt0; tÞ: ð27Þ

The remaining terms give two vertices −4!ϵ1 and −4!iϵ2.
The two-point correlation function is trivially given by

the symmetric propagator hΔrðtÞΔrðtÞi ¼ T
m. The con-

nected four-point correlation function receives contribution
from diagrams in Fig. 2. Note that possible loop diagrams

FIG. 2. Feynman diagrams for hΔrðtÞ4ic when ϵ3 ¼ ϵ ¼ 0. The
ends of propagator can be of either dashed type or solid type,
corresponding to a and r indices, respectively.
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vanish identically because a loop involves only retarded (or
advanced) propagators. The diagrams in Fig. 2 are easily
evaluated to give

hΔrðtÞ4ic ¼
Z

t

−∞
dt0Draðt; t0Þ4ð−4!ϵ1Þ

þ
Z

t

−∞
dt0Draðt; t0Þ3Drrðt; t0Þð−4!iϵ2Þ;

¼ −
6ϵ1
m

þ 6Tϵ2
m2

: ð28Þ

Equation (28) is in full agreement with (23) in the
limit t → ∞.
To further corroborate the equivalence, we have

also performed a more sophisticated demonstration in
the Appendix, in which we turn on both ϵ and ϵ3.
Performing calculations perturbatively in these two param-
eters, we still find perfect agreement among three formu-
lations with

hΔrðtÞ2i ¼
T
m
−
3T2ϵ

m3
þ Tϵ3

m2
þ 6ϵ1ϵ

m2
−
6Tϵ2ϵ
m3

;

hΔrðtÞ4ic ¼ −
6ϵ1
m

þ 6Tϵ2
m2

þ 6ðT2 − 3mϵ1 þ 4Tϵ2Þϵ3
m3

−
6ðT3 − 12Tmϵ1 þ 15T2ϵ2 − 26mϵ1ϵ2 þ 26Tϵ22Þϵ

m4
: ð29Þ

Equation (29) contains extra contributions at OðϵÞ and
Oðϵ3Þ. In field theoretic approach, those contributions arise
fromabout 30 loop diagrams,while in stochastic approaches,
they are obtained simply by solving the FP and Langevin
equations perturbatively in ϵ and ϵ3. Thus the stochastic
formulations provide a very efficient method of resumming
diagrams, a notable virtue of the stochastic approaches.

V. SUMMARY AND OUTLOOK

We studied effect of nonlinear terms in a SKEFT
expanded up to quartic order in the fields. There are
nonlinearities in both the mean field Δr and the fluctuation
field Δa. The nonlinearity in Δr is not specific to stochastic
system and is known how to treat perturbatively. Our
emphasis is on the cubic and quartic terms of Δa, which are
generically present in a complete theory but usually ignored
in literature. We established two stochastic formulations of
the SKEFT: non-Gaussian Langevin equation and FP
equation. In the former case, the cubic and quartic terms
of Δa are manifested as two non-Gaussian noises in
addition to the Gaussian noise corresponding to the
quadratic terms of Δa. These two non-Gaussian noises
have distinct scalings with the time step δt of the discrete
Langevin equation. In the latter case, the nonlinear terms
are manifested as higher order diffusive terms in the FP
equation. Our formulations reveal an ambiguity as δt and
non-Gaussian parameters tend to zero simultaneously,
shedding light on the origin of unphysical divergence
found in early studies. We demonstrated the equivalence
among the three formulations for arbitrary non-Gaussian
parameters subject to stability conditions.
The stochastic formulations established in this work will

be found useful in addressing nonequilibrium dynamics with
more flexibility and efficiency.On the one hand, it allows one
to study nonequilibrium states by simply changing initial
conditions. On the other hand, numerical implementation

will help to efficiently resum diagrams in field theoretic
approach. Moreover, by solving the non-Gaussian Langevin
or FP equations, we could obtain unequal-time correlators
[11,12,30], which would contain more important informa-
tion about nonequilibrium physics.
The method outlined in this work can be generalized to

more interesting theories such as hydrodynamics. Rapid
progresses have beenmade in studying the effect of nonlinear
Gaussian terms (quadratic in fluctuation field) [17,18]. Effect
of non-Gaussian terms has also been discussed recently [19].
It would be useful to implement stochastic hydrodynamics
with non-Gaussian noise, which would allow us to study a
complete hydrodynamics out-of-equilibrium.
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APPENDIX: EQUIVALENCE
WITH NONVANISHING ϵ3 AND ϵ

We extend the equivalence demonstration to the case
with nonvanishing ϵ3 and ϵ. As we remarked in the main
text, these parameters capture nonlinear effect in Δr. We
will work perturbatively to Oðϵ3ϵ0Þ and Oðϵ03ϵÞ, respec-
tively. We begin with the FP equation. Following the same
method as described for the case with ϵ3 ¼ ϵ ¼ 0, we can
derive the following moment equations up to hΔ6i:

∂thΔ2i ¼ 2T − 2mhΔ2i þ 2ϵ3hΔ2i − 2ϵhΔ4i;
∂thΔ4i ¼ 12ThΔ2i − 4mhΔ4i − 24ϵ1 þ 24ϵ2hΔ2i

þ 12ϵ3hΔ4i − 4ϵhΔ6i;
∂thΔ6i ¼ 30ThΔ4i − 6mhΔ6i − 360ϵ1hΔ2i þ 120ϵ2hΔ4i

þ 30ϵ3hΔ6i − 6ϵhΔ8i: ðA1Þ
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For the steady state solution approached at t → ∞, we
simply set the left-hand side of (A1) to zero. We will
solve the moments equation (A1) perturbatively by the
expansion

hΔ2ni ¼ hΔ2niLO þ hΔ2niNLO þ � � � ; ðA2Þ

with the leading order (LO) solution hΔ2niLO ∼Oðϵ03ϵ0Þ
and the next-to-leading order (NLO) solution hΔ2niNLO
includes both Oðϵ3ϵ0Þ and Oðϵ03ϵÞ. By setting ϵ3 ¼ ϵ ¼ 0

in (A1), we easily obtain the LO solution:

hΔ2iLO ¼ T
m
; hΔ4iLO ¼ 3TðT2 − 2mϵ1 þ 2Tϵ2Þ

m2
;

hΔ6iLO ¼ 15ðT3 þ 6T2ϵ2 − Tð6mϵ1 − 8ϵ22ÞÞ − 8mϵ1ϵ2
m3

:

ðA3Þ

Now we proceed to the NLO solution, which satisfies

0 ¼ −2mhΔ2iNLO þ 2ϵ3hΔ2iLO − 2ϵhΔ4iLO;
0 ¼ 12ThΔ2iNLO − 4mhΔ4iNLO þ 24ϵ2hΔ2iNLO

þ 12ϵ3hΔ4iLO − 4ϵhΔ6iLO: ðA4Þ

Here we only keep the moments we need. The equations
can be solved as

hΔ2iNLO ¼ Tϵ3
m2

−
ð3T2 − 6mϵ1 þ 6Tϵ2Þϵ

m3
;

hΔ4iNLO ¼ −
3ð−4T2 þ 6mϵ1 − 8Tϵ2Þϵ3

m3
−
3ð8T3 − 36Tmϵ1 þ 42T2ϵ2 − 52mϵ1ϵ2 þ 52Tϵ22Þϵ

m4
: ðA5Þ

Immediately, (A3) and (A5) give

hΔ4icLO ¼ −
6ϵ1
m

þ 6Tϵ2
m2

;

hΔ4icNLO ¼ 6ðT2 − 3mϵ1 þ 4Tϵ2Þϵ3
m3

−
6ðT3 − 12Tmϵ1 þ 15T2ϵ2 − 26mϵ1ϵ2 þ 26Tϵ22Þϵ

m4
: ðA6Þ

Then we solve the Langevin equation. Similar to the
simple example in the main text, we derive the following
evolution equations for moments

hΔ2
jþ1i¼ ð1−2mδtÞhΔ2

jiþð1þ ϵ3T−1hΔ2
jiÞhξ2i iδ2t

−2ϵhΔ4
jiδt;

hΔ4
jþ1i¼ ð1−4mδtÞhΔ4

jiþ6ðhΔ2
jiþ ϵ3T−1hΔ4

jiÞhξ2i iδ2t
þ4hχ3jΔjiδ2t þhη4jiδ4t −4ϵhΔ6

jiδt;
hΔ6

jþ1i¼ ð1−6mδtÞhΔ6
jiþ15ðhΔ4

jiþ ϵ3T−1hΔ6
jiÞhξ2jiδ2t

þ15hΔ2
jihη4jid4t þ20hΔ3

jξ
3
jiδ3t −6ϵhΔ8

jiδt: ðA7Þ

In the above we have used the scaling properties of
noises with δt and kept only terms up to OðδtÞ. Treating
hΔ2n

j i as a continuous variables and using the expansion
hΔ2n

jþ1i ¼ hΔ2n
j i þ δt∂thΔ2n

j i, we find the coefficients of δt
give nothing but the discretized version of (A1). It follows
that (A7) give the same steady state solution as (A3)
and (A5).

Finally, we turn to diagrammatic computations of
hΔðtÞ2i and hΔðtÞ4ic. The LO results have been obtained
in the main text. For the NLO results, we need diagrams
with one vertex of either aarr type or aaar type and
arbitrary number of other vertices. We first look at
hΔðtÞ2iNLO, which receives contributions from one-loop
and two-loop diagrams shown, respectively, in Figs. 3 and
4. The evaluations of them are straightforward. We obtain
in the end

hΔðtÞ2iNLO ¼ −
3T2ϵ

m3
þ Tϵ3

m2
þ 6ϵ1ϵ

m2
−
6Tϵ2ϵ
m3

; ðA8Þ

which is in perfect agreement with (A5). The situation of
hΔðtÞ4icNLO is more complicated: it receive contributions
from both tree-level diagrams and loop diagrams; more-
over, the latter contain both reducible and irreducible ones.

FIG. 3. One-loop Feynman diagrams for hΔrðtÞ2ic.
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The full tree-level diagrams are shown in Fig. 5. The first
two are shown already in Fig. 3 of the main text and give
the LO result (27) of the main text. The last two are easily
evaluated to give the NLO result

hΔðtÞ4ic;treeNLO ¼ 6T2ϵ3
m3

−
6T3ϵ

m4
: ðA9Þ

The reducible and irreducible one-loop diagrams are
shown, respectively, in Figs. 6 and 7. The reducible
diagrams (Fig. 6) are evaluated to give

hΔðtÞ4ic;1 loop-redNLO ¼ 18Tϵ1ϵ
m3

−
36T2ϵ2ϵ

m4
þ 6Tϵ2ϵ3

m3
: ðA10Þ

The irreducible diagrams (Fig. 7) give rise to the following
results:

hΔðtÞ4ic;1 loop-irredNLO ¼ −
18ϵ1ϵ3
m2

þ 18Tϵ2ϵ3
m3

þ 54Tϵ1ϵ
m3

−
54T2ϵ2ϵ

m4
: ðA11Þ

At two-loop level, the reducible and irreducible diagrams
are shown, respectively, in Figs. 8 and 9. Two-loop
irreducible diagrams of a different topology are excluded
by the presence of loop containing only ra type propa-
gators. Being careful with the combinatoric factors, we
arrive at

FIG. 6. Reducible one-loop Feynman diagrams for hΔrðtÞ4ic.

FIG. 7. Irreducible one-loop Feynman diagrams for hΔrðtÞ4ic.

FIG. 8. Reducible two-loop Feynman diagrams for hΔrðtÞ4ic.

FIG. 4. Two-loop Feynman diagrams for hΔrðtÞ2ic.

FIG. 5. Tree-level Feynman diagrams for hΔrðtÞ4ic.

FIG. 9. Irreducible two-loop Feynman diagrams for hΔrðtÞ4ic.
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hΔðtÞ4ic;2 loop-redNLO ¼ 48ϵ1ϵ2ϵ

m3
−
48Tϵ22ϵ
m4

: ðA12Þ

for the reducible diagrams (Fig. 8) and

hΔðtÞ4ic;2loop-irredNLO ¼ 108ϵ1ϵ2ϵ

m3
−
108Tϵ22ϵ

m4
; ðA13Þ

for the irreducible diagrams (Fig. 9). The final result for
hΔðtÞ4icNLO is the sum of (A9), (A10), (A11), (A12), and
(A13), which reads

hΔðtÞ4icNLO ¼ 6T2ϵ3
m3

−
6T3ϵ

m4
þ 72Tϵ1ϵ

m3
−
18ϵ1ϵ3
m2

þ 24Tϵ2ϵ3
m3

−
90T2ϵ2ϵ

m4
þ 156ϵ1ϵ2ϵ

m3

−
156Tϵ22ϵ

m4
: ðA14Þ

This is also in full agreement with (A6). The agreement
serves as a nontrivial demonstration of the equivalence
among the three formulations.
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