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We study the spontaneous emission of a photon during the transitions between relativistic Landau states
of an electron in a constant magnetic field that can reach the Schwinger value of Hc ¼ 4.4 × 109 T. In
contrast to the conventional method, in which detection of both the final electron and the photon are
implied in a certain basis, here we derive the photon state as it evolves from the process itself. It is shown
that the emitted photon state represents a twisted Bessel beam propagating along the field axis with a total
angular momentum (TAM) projection onto this axis l − l0, where l and l0 are the TAM of the initial
electron and of the final one, respectively. Thus, the majority of the emitted photons turn out to be twisted,
with l − l0 ≳ 1, even when the magnetic field reaches the critical value ofH ∼Hc. The transitions without
a change of the electron angular momentum, l0 ¼ l, are possible, yet much less probable. We also compare
our findings with those for a spinless charged particle and demonstrate their good agreement for the
transitions without change of the electron spin projection even in the critical fields, while the spin-flip
transitions are generally suppressed. In addition, we argue that whereas the ambiguous choice of an
electron spin operator affects the differential probability of emission, this problem can partially be
circumvented for the photon evolved state because it is the electron TAM rather than the spin alone that
defines the TAM of the emitted twisted photon.

DOI: 10.1103/PhysRevD.109.036017

I. INTRODUCTION

According to classical electrodynamics, an electron
moving along a helical path in an external electromagnetic
field—such as a magnetic field, that of a helical undulator,
etc.—emits electromagnetic waves possessing helical phase
structure and carrying orbital angular momentum (OAM)
[1–4]. In quantum theory, the emitted field comprises the so-
called twisted photons [5–8]. The quantum description of
this phenomenon is complicated by the entanglement
between the photon and the electron, which is rarely given
attention in theoretical works [9]. Furthermore, the conven-
tional quantum theory of synchrotron radiation [10,11] deals
with the so-called detected states of the final particles,
silently implying that both the electron and the photon are
detected, and the photon detector state is usually chosen to
be a planewave.More recently, the photon detector statewas
chosen to be a Bessel beam with a definite projection of the
total angular momentum (TAM) onto themagnetic field axis
[12–14]. However, an even more general problem would be

to derive a quantum state of the photon as it has evolved from
the emission process itself, without specifying the detector.
In particular, such calculations in the scalar QED show that a
spinless charged particle in themagnetic field indeed emits a
Bessel beam [15], the parameters of which can be derived
rather than postulated. Here, we present an analogous
evolved state analysis for a spin-1

2
Dirac electron and

compare it to the scalar case.
The magnetic-field-induced Landau levels of charged

particles are integral to the quantum theory of synchrotron
radiation, which is essential in describing astrophysical
objects like neutron stars, operating modern storage rings,
and producing spin-polarized electron beams. These states
also have significant implications in solid-state physics,
particularly in graphene [16–18], including the quantum
Hall effect [19], in the diamagnetism of metals, in plasma
[20], and in the quantum dynamics of charged particles in
Penning traps [21,22]. Therefore, the fact that it is the
twisted photons that are mostly emitted by electrons in
magnetic fields—both in the astrophysical and terrestrial
environments—could put a new twist on several fields. In
this paper, we study single-photon emission in the first
order of the perturbation theory by an electron moving
along the field lines of a constant and homogeneous
magnetic field H ¼ f0; 0; Hg of an arbitrary strength
H > 0 [10,11]. The magnetic field is taken into account
exactly in the calculations, and the electron is described
with the relativistic Landau states [10,11,23,24].
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One of our main findings is that the evolved state of the
emitted photon is always twisted—i.e., its total angular
momentum (TAM) projection onto the magnetic field axis
is well defined, exactly like in the scalar QED [15]. The
distinction between the “evolved” photon state and the
traditional “detected” state (see Refs. [12,13,25,26]) is
similar to the difference between a polarization state that
arises from the process itself and a polarization state that is
measured by a detector (for instance, in Ref. [27]). The
evolved photon state is determined by a complex-valued
S-matrix element Sfi, whereas the emission probability and
intensity only rely on its absolute value, jSfij. Therefore,
the evolved-state formalism clarifies the significance of the
S-matrix element phase and enriches the analysis of the
emission process.
The paper is organized as follows: In Sec. II, the concept

of the evolved states is briefly introduced. In Sec. III, we
derive the S-matrix element, which is further used in the
analysis of the photon evolved state in Sec. IV and the
radiation probability and intensity in Sec. V. Finally, in
Sec. VI, we draw a conclusion. In Appendix A, we explain
a straightforward approach to solving the Dirac equation in
a uniform magnetic field and analyze the spin properties of
the obtained electron states.
We use a natural system of units throughout the paper,

with ℏ ¼ c ¼ 1 unless stated otherwise, whereas the
electron mass and charge are denoted as m and e < 0,
respectively. The Coulomb gauge is used for the four-
vector potentials of the background and the radiation fields.

II. EVOLVED PHOTON STATE: DEFINITION

Let us consider the emission e → e0 þ γ of the photon by
the electron in a constant homogeneous magnetic field. The
initial state of the electron jiei and the evolved (preselected)
state of the final photon and electron jfi are connected via
the first-order S-matrix in the Furry picture Ŝð1Þ, with the
interaction of the electron with the magnetic field being
taken into account exactly:

jfi ¼ Ŝð1Þjiei: ð1Þ

If the final electron is projected to a state jfei, the state of
the whole system becomes

jf0i ¼
X
λ¼�1

Z
d3k
ð2πÞ3 jfe; k; λiS

ð1Þ
fi ; ð2Þ

where Sð1Þfi ¼ hfe; k; λjŜð1Þjiei is the transition matrix
element. Plane waves with the momentum k and helicity
λ ¼ �1 are used here as a complete set of the one-particle
photon states. As the final electron is supposed to be
measured, the evolved state jf0i is factorized into a product
of the photon state and that of the electron. Thus, the
evolved state of the photon alone is

jγiev ¼
X
λ¼�1

Z
d3k
ð2πÞ3 jk; λiS

ð1Þ
fi ; ð3Þ

and the corresponding photon wave function [28] in the
momentum representation becomes [9,15]

AðevÞðkÞ ¼
X
λ¼�1

Sð1Þfi eλðkÞ; ð4Þ

where eλðkÞ are the polarization vectors of the plane-wave
photon. The first-order S-matrix element in the Furry
picture is given by the expression

Sð1Þfi ¼ −ie
Z

d4xjμfiðxÞA�
μðxÞ; ð5Þ

where Aμ is the four-potential of the plane-wave photon and
jμfi is the transition current. We emphasize that although the
emitted photon is generally not necessarily a plane wave,
its vector potential is expressed in terms of the plane-wave

transition amplitudes Sð1Þfi . This is simply due to the fact that
we choose the plane waves as a convenient basis for
expansion of the photon states.

III. MATRIX ELEMENT FOR PHOTON EMISSION

Let us now derive the S-matrix amplitude with the
emission of a plane-wave photon described by the state
jk; λi. In the Furry picture of QED, the first-order transition
matrix element is given by Eq. (5), where the four-potential
of the plane-wave photon is

AμðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ωV

p eμλe
−ikνxν ; ð6Þ

with the polarization four-vector in the Coulomb gauge

eμλðkÞ ¼ f0; eλðkÞg ð7Þ

and the wave vector

kν ¼ ωf1; sin θ cosφk; sin θ sinφk; cos θg ¼ fω; kg: ð8Þ

Note that in the cylindrical coordinates, k ¼ kzez þ k⊥ and
k · r¼ kzzþ k⊥ρcosðφk −φÞ ¼ kzzþωr sinθ cosðφk −φÞ.
The transition current reads

jμfiðxÞ ¼ Ψ̄fðxÞγμΨiðxÞ; ð9Þ

where ΨiðxÞ and ΨfðxÞ are the initial and the final
(detected) electron states, respectively.
In the Coulomb gauge with k · eλðkÞ ¼ 0, one can

expand the photon polarization vectors in terms of the
photon spin operator eigenfunctions as [8]
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eλðkÞ ¼
X

σ¼0;�1

e−iσφkdð1Þσλ ðθÞχ σ;

χ 0 ¼ ð0; 0; 1Þ; χ�1 ¼ ∓ 1ffiffiffi
2

p ð1;�i; 0Þ; ð10Þ

where dð1Þλλ0 ðθÞ are the small Wigner functions [29].
Let us now briefly discuss the electron states that we use

to calculate the transition amplitudes. We employ the
stationary relativistic Landau states obtained as an exact
solution to the Dirac equation in the given magnetic field in
the so-called symmetric gauge with the following potential:
A ¼ H

2
f−y; x; 0g (see Appendix A). As the QED in the

Furry picture is foremost used in problems with the very
strong fields H ∼Hc ¼ m2=jej that can be found in
astrophysical environments (say, in neutron stars) and
the final electron stays inside the same unperturbed field,
it is natural to describe its state in terms of the same basis as
the initial one.
Although spin is a fundamental property of the electron,

the corresponding operator in relativistic quantum theory is
defined ambiguously due to the nonuniqueness of the way
that the total angular momentum operator is split into an
external (orbital) part and an internal (spin) part [30,31]. In
some works, it is argued that the operator obtained with the
Foldy-Wouthuysen transformation is the most promising
candidate for a proper relativistic spin operator [30,32].
However, the simplest spin operator—the so-called Pauli
operator—1

2
Σ̂, where

Σ ¼
�
σ 0

0 σ

�
; ð11Þ

with σ being the Pauli matrices, is also not devoid of
meaning in relativistic theory [30,31]. Since the discussion
of the spin-related phenomena is not the aim of this work,
in the following derivations we use two orthogonal sol-
utions, Ψ↑

s;l and Ψ↓
s;l, which can be relatively easily

obtained by the procedure described in Appendix A.
Here, it is not especially significant whether these states
are the eigenstates of some specific spin operator (such an
operator, however, is introduced, for example, in Ref. [10]).
The key point is that they possess a definite value of the

total angular momentum projection onto the field axis. In
the limit of a weak magnetic field, H ≪ Hc, they tend to
the eigenstates of the spin operator 1

2
Σ̂z with the eigenval-

ues� 1
2
; that is why we refer to these states as “spin-up” and

“spin-down,” respectively.
As an example, let us consider the transition between the

“spin-up” states

ΨiðxÞ ¼ N↑
i

0BBB@
ðmþ εÞΦs;l−1=2ðρÞe−iφ=2

0

pzΦs;l−1=2ðρÞe−iφ=2
−ieHΦs;lþ1=2ðρÞeiφ=2

1CCCAe−itεþilφþipzz

ð12Þ

and

ΨfðxÞ ¼ N↑
f

0BBB@
ðmþ ε0ÞΦs0;l0−1=2ðρÞe−iφ=2

0

p0
zΦs;l0−1=2ðρÞe−iφ=2

−ieHΦs0;l0þ1=2ðρÞeiφ=2

1CCCAe−itε
0þil0φþip0

zz;

ð13Þ

where the radial function is

Φs;lðρÞ≡ ρlLl
s ð2ρ2=ρ2HÞe−ρ2=ρ2H ; ð14Þ

with ρH ¼
ffiffiffiffiffiffiffi
4

jejH
q

and Ll
s being the associated Laguerre

polynomials. The normalization constants Ni;f are calcu-
lated in Appendix A [see Eq. (A27)]. The energy ε is given
by Eq. (A8). The independent quantum numbers of this
state are the continuous longitudinal momentum pz, a
radial quantum number s ¼ 0; 1; 2;… and the z component
of the total angular momentum l ¼ �1=2;�3=2;…,
provided l ≥ −sþ 1

2
.

The corresponding transition current components
[Eqs. (B1)–(B4)] and the details of the derivation are
presented in Appendix B. After the integration, we obtain
the final expression for the transition amplitude (5):

Sð1Þ↑↑ ¼ ei−lþl0þ1ð2πÞ3 N
↑
i N

↑
fffiffiffiffiffiffiffiffiffiffi

2ωV
p δðωþ ε0 − εÞδðkz þ p0

z − pzÞeiðl−l0Þφk

× ½dð1Þ0λ ðθÞρlþl0þ1
H ½mðpz þ p0

zÞ þ p0
zεþ pzε

0�Fl−1=2;l0−1=2
s;s0 ðyÞ

þ 4
ffiffiffi
2

p
ρlþl0
H ½ðmþ ε0Þdð1Þ−1λðθÞFlþ1=2;l0−1=2

s;s0 ðyÞ − ðmþ εÞdð1Þ1λ ðθÞFl−1=2;l0þ1=2
s;s0 ðyÞ��: ð15Þ
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Here, y ¼ k⊥ρH, and Fl;l0
s;s0 is defined in Eq. (B8). The

remaining three S-matrix elements, Sð1Þ↑↓ , Sð1Þ↓↑, and Sð1Þ↓↓,

which describe the transitions Ψ↑
s;l → Ψ↓

s0;l0 , Ψ
↓
s;l → Ψ↑

s0;l0 ,

and Ψ↓
s;l → Ψ↓

s0;l0 , respectively, are obtained in a similar
fashion. Therefore, we skip the details of the derivation and
come straight to the final expressions (see Appendix B).

IV. EVOLVED PHOTON STATE: ANALYSIS

Each of the four transition amplitudes obtained in the
previous section can be written in a form

Sð1Þfi ¼ ð2πÞ3δðωþ ε0 − εÞδðkz þp0
z −pzÞ

× eiðl−l0ÞφkF ðϵ; ϵ0;pz;pz
0; s; s0;l;l0; k⊥;θ;λÞ; ð16Þ

where F ðϵ; ϵ0; pz; pz
0; s; s0;l;l0; k⊥; θ; λÞ ¼ F is some

scalar function that does not depend on φk [see
Eqs. (15) and (B9)–(B11)]. Note that the conservation of
the energy and the longitudinal momentum provided by the
corresponding delta functions automatically leads to the
conservation of the transverse momentum:

δðωþ ε0 − εÞ ¼ δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ ðpz − p0
zÞ2

q
þ ε0 − ε

�
¼ ε − ε0

κ
δðk⊥ − κÞ; ð17Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε − ε0Þ2 − ðpz − p0

zÞ2
q

≥ 0 ð18Þ

is the transverse momentum of the photon. The photon
spectra here coincide with those in the standard quantum
synchrotron radiation theory, described, for instance, in
[10,11,15].
Let us now return to the derivation of the evolved state of

the emitted photon. The integral over momenta in Eq. (3)
can be taken in cylindrical coordinates over kz and k⊥ with
the aid of Eq. (17), resulting in

jγiev ¼ ðε − ε0Þ
X
λ¼�1

F
Z

2π

0

dφkjk; λieiðl−l0Þφk : ð19Þ

In this expression, the following equalities are understood:

θ ¼ arctan

�
κ

pz − p0
z

�
; ð20Þ

k ¼ ðκ cosφk; κ sinφk; pz − p0
zÞ; ð21Þ

such that in the integrand of Eq. (19) only the exponential
eiðl−l0Þφk and the state jk; λi depend on φk.

Note that the expression (19) is essentially an expansion
of the state jγiev in terms of the plane-wave states jk; λi
with the same energy ω ¼ ε − ε0, longitudinal momentum
kz ¼ pz − p0

z, and a transverse momentum κ. This means
that the emitted photon possesses a definite energy, and
definite longitudinal and transverse momenta, but not an
azimuthal component of the momentum, which hints that
jγiev is a so-called Bessel beam propagating along the field
axis on average [8]. This can be confirmed by the explicit
calculation of the photon TAM projection. One can easily
check that due to the chosen expansion (10) of the
polarization vector eλðkÞ (see discussion on this choice
in Ref. [9]), it does not contribute to the TAM of the
photon:

ĵðγÞz eλðkÞ ¼ 0; ð22Þ

where ĵðγÞ ¼ l̂ðγÞ þ ŝðγÞ is the TAM operator for a photon.

Thus, the operator ĵðγÞz acts on the vector potential of the
evolved state (4) simply as the differentiation operator

l̂ðγÞz ¼ −i∂φk
. Therefore, we finally find that in addition to

the energy, the transverse momentum, and the longitudinal
momentum, the emitted photon also has a definite TAM
projection:

ĵðγÞz AðevÞðkÞ ¼ ðl − l0ÞAðevÞðkÞ: ð23Þ

This equation illustrates that the emitted photon generally
represents a twisted state rather than a plane wave. The
value of l − l0 can, however, be zero in the case of a
transition with a change of the radial quantum number s
only. Transitions without changes of either l or s are also
possible, but only for the fixed value of the longitudinal
momentum p0

z. As we are interested in the probability
integrated over p0

z in the following section, such transitions
are not considered here. The conservation of the TAM
projection during the photon emission is of no surprise due
to the azimuthal symmetry of the problem and the electron
states (12) and (13) being the eigenstates of ĵz. Importantly,
the TAM of the above Bessel beam cannot be unambig-
uously split into orbital and spin parts. In this problem, this
ambiguity is closely related to the same nonuniqueness of
separation of the electron TAM into the OAM and the spin,
which is why the operator of the latter is also ambiguously
defined (see Appendix A).
We would like to stress that the Bessel beam naturally

emerged in our derivations as the state of the electromag-
netic field evolving directly from the process. In contrast, in
Refs. [12–14], the four-vector potential of a Bessel photon
was explicitly substituted into the S-matrix amplitude (5),
meaning that the photon was supposed to be detected as a
Bessel state with the definite parameters. An advantage of
the current approach is that it allows one to derive all the
parameters (the transverse momentum, the TAM, and so
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forth) of the Bessel beam as they evolve from the process
itself instead of making an ansatz.
The reader may well ask why we have obtained the

Bessel beam, which is the simplest, and a somewhat
idealized, model of a twisted photon. Indeed, the fact that
the Bessel beam naturally arises in this problem may seem
surprising, because it is known to be nonintegrable in the
transverse plane. Since both the initial and the final states of
the electron are transversely localized wave packets, one
may expect the emitted photon to be localized as well,
representing a normalizable Laguerre-Gaussian-like beam,
or at least a weighted superposition of the Bessel states [8].
Clearly, this is not true—nor is it the case for a scalar
charged particle in a magnetic field [15]. This is because we
consider the initial and final electron states possessing
definite longitudinal momenta, pz and p0

z, respectively,
which means that they are delocalized along the z axis. This
results in a delta function δðkz þ p0

z − pzÞ in Eq. (16) and
allows us to use Eq. (17), which gives rise to the definite
transverse momentum of the emitted photon—a hallmark
of a non-normalizable Bessel beam.
Let us analyze what happens if the initial electron

represents a longitudinally localized packet with a mean
momentum value hpzi. For simplicity, we take a Gaussian
distribution only over pz and consider the final electron
with a definite p0

z. An example of the “modified” initial
electron state can be

Ψ0
iðxÞ ¼

Z
∞

−∞
dpz

1ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q e
−ðpz−hpziÞ2

2σ2p

× Ni

0BBB@
ðmþ εÞΦs;l−1=2ðρÞe−iφ=2

0

pzΦs;l−1=2ðρÞe−iφ=2
−ieHΦs;lþ1=2ðρÞeiφ=2

1CCCAe−itεþilφþipzz:

ð24Þ

In this expression, ε depends on pz, making the state
nonstationary. The integration over pz in Eq. (24) is
successively transferred to the S-matrix element and to
the evolved state. Thus, the modified evolved state simply
becomes

jγi0ev ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q Z
∞

−∞
dpze

−ðpz−hpziÞ2
2σ2p jγiev: ð25Þ

Note that here, jγiev given by Eq. (19) is a function of pz.
Since κ included in the expression for jγiev depends on pz,
jγi0ev represents an intricate superposition of the Bessel
beams with some distribution over both the longitudinal
and transverse momenta. Although it is impossible to
explicitly factor out the Gaussian distribution over the

κðpzÞ in this expression, it is tempting to say that Eq. (25) is
a Bessel-Gauss-like state, which is normalizable [8]. Thus,
the “unphysical” Bessel beam would not emerge in our
derivation if we considered the nonstationary and longitu-
dinally localized states of the electron. This underlines the
importance of nonstationary states for the correct descrip-
tion of the electron in an external field, which has already
been noted in [33] and applied to the dynamics of the
electron rms radius in a solenoid.

V. EMISSION PROBABILITY AND INTENSITY

Having derived and analyzed the state jγiev in which
the photon is emitted, we now turn to the radiation
probability. Recalling the expression (3) for the evolved
state of the photon, we can find the probability of transition
between the electron states with some fixed quantum
numbers as

Wð1Þ
s0;l0 ðpz

0Þ ¼ evhγjγiev

¼
X

λ;λ0¼�1

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3 hk
0; λ0jk; λiSð1Þfi ðk; λÞ

× Sð1Þ�fi ðk0; λ0Þ ¼
X
λ¼�1

Z
d3k
ð2πÞ3 jS

ð1Þ
fi j2; ð26Þ

where we have used the orthogonality relation for plane
waves.
The total radiation probability is then given by the

summation over all possible quantum numbers of the final
electron state (s0;l0) and the integration over the final
longitudinal momentum p0

z:

Wð1Þ ¼
X
s0;l0

Z
Wð1Þ

s0;l0 ðp0
zÞ
dp0

z

2π
L; ð27Þ

where L is the normalization length. However, since we are
interested in the emission of the photons with definite
values of the TAM, we will not sum over the discrete
quantum numbers, and we only integrate Eq. (26) over p0

z,
introducing the following probability:

Wð1Þ
s0;l0 ≡

Z
L
dp0

z

2π
Wð1Þ

s0;l0 ðp0
zÞ ¼

X
λ¼�1

Z
dp0

z

2π
L

d3k
ð2πÞ3 jS

ð1Þ
fi j2:

ð28Þ

When squaring the delta functions in the matrix element,
we use the rule

ðδðωþ ε0 − εÞÞ2ðδðpz − p0
z − kzÞÞ2

→
T
2π

δðωþ ε0 − εÞ L
2π

δðpz − p0
z − kzÞ; ð29Þ
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and for the integration over d3k in cylindrical coordinates, we use Eq. (17). The corresponding emission probability per unit
time is found as

Ẇð1Þ
s0;l0 ¼

Wð1Þ
s0;l0

T
¼ 1

ð2πÞ4L
Z

dp0
z

Z
k⊥dk⊥dφkdkz

X
λ¼�1

jSð1Þfi j2: ð30Þ

For instance, for the “up-up” (no spin flip) transition, substituting the amplitude (15) into Eq. (30) yields

Ẇð1Þ
s0;l0 ¼ πL2e2N2

i

Z
dp0

zN2
f

X
λ¼�1

jdð1Þ0λ ðθÞρlþl0þ1
H ½mðpz þ p0

zÞ þ p0
zεþ pzε

0�Fl−1=2;l0−1=2
s;s0 ðyÞ

þ 4
ffiffiffi
2

p
ρlþl0
H ½ðmþ ε0Þdð1Þ−1λðθÞFlþ1=2;l0−1=2

s;s0 ðyÞ − ðmþ εÞdð1Þ1λ ðθÞFl−1=2;l0þ1=2
s;s0 ðyÞ�j2; ð31Þ

where Nf, ε0, sin θ ¼ κ=ω, and κ depend on p0
z.

Correspondingly, the radiation intensity is obtained by
multiplying the integrand by the photon energy ω ¼ ε − ε0,
which also depends on p0

z:

Ið1Þs0;l0 ≡
Z

L
dp0

z

2π
ωẆð1Þ

s0;l0 ðp0
zÞ: ð32Þ

The integration over p0
z in Eqs. (31) and (32) is to be carried

out numerically over the region allowed by the condition
κ ≥ 0 [see Eq. (18) and Ref. [15] for more detail]:

p0
z ∈

�
pz −

p2⊥ − ðp0⊥Þ2
2ðε − pzÞ

; pz þ
p2⊥ − ðp0⊥Þ2
2ðεþ pzÞ

�
: ð33Þ

The radiation probability Ẇð1Þ
s0;l0 for three other types of

possible transitions can be obtained similarly from the
amplitudes (B9)–(B11). For the sake of brevity, we do not
present the corresponding expressions here.

Due to dependence of the radiated photon energy on l
and l0, the emission probability and the intensity depend
slightly differently on l0. For “up-up” transitions, this
dependence is shown in Figs. 1–3. The electron is supposed
to be nonrelativistic, with pz ¼ 10−3m and H ¼ Hc,
H ¼ 10−1Hc, and H ¼ 10−2Hc, respectively. Note that
the results in Figs. 1, 2, and 5 are presented for the same
parameters as in Ref. [15] for a spinless particle. It is
important to note that the absolute values of probability and
intensity agree with the predictions of the scalar QED
within at least 15%, while qualitatively the dependencies
are absolutely the same. While the probability of the
transitions l → l0 ¼ l − 1 always dominates, their inten-
sity becomes slightly less than that of l → l0 ¼ l − 2,
starting from l0 ≥ 20 at H ∼ 0.1Hc. Moreover, in a
subcritical magnetic field H ¼ 0.1Hc, even the intensities
of the transitions l → l0 ¼ l − 3;l − 4 also exceed that
for l → l0 ¼ l − 1 starting from l0 ≥ 50 (see Fig. 2). As
can be seen from Figs. 1–3, the transitions with radiation of

FIG. 1. The emission probability (31) (left) and the corresponding intensity (32) (right) for H ¼ Hc, pz ¼ 10−3mc, and no spin flip.
For the solid lines, s ¼ s0 ¼ 20; the dashed lines correspond to the twisted photons with a simultaneous change of the radial quantum
number, s → s0 ≠ s; and the dash-dotted lines correspond to the untwisted photons with the TAM jz ¼ l − l0 ¼ 0.
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“untwisted” photons are generally suppressed compared to
those with l → l0 ≠ l. The transitions with the increase of
the electron TAM l → l0 > l are even more damped, as
demonstrated in Fig. 3.
Let us now evaluate the probabilities of three other

types of the transitions—“up-down,” “down-up,” and
“down-down”—and compare these results with those
obtained in [15], where the same process is considered
for a scalar charged particle. Since the initial and final states
of a spinless particle in a magnetic field are characterized
by the integer values of TAM (l and l0, respectively), it
seems sensible to compare a “scalar” transition l → l0 with
the “spin” transitions lþ 1=2 → l0 þ 1=2 (shown in
Fig. 4) or l − 1=2 → l0 − 1=2. The latter comparison is
not presented in the figures, as it does not qualitatively
differ from the former. Thus, we consider the ratio

Ẇð1Þ
s0;l0=Ẇ

ð1Þ
s0;l0þ1=2, where Ẇð1Þ

s0;l0 is the radiation probability
per unit time for a scalar charge. Two regimes are presented
in Fig. 4: H ¼ 10−3Hc (left) and H ¼ Hc (right). It can be
seen that generally, the probabilities of “up-up” and “down-
down” transitions are both of the same order and are in
good agreement with the predictions of the scalar QED. On
the contrary, the probabilities of “up-down” and “down-up”
transitions are significantly suppressed as compared to the
transitions without the spin flip. The “up-down” proba-
bilities, in turn, exceed those for the inverse spin flip by
many orders, which is a manifestation of a well-known
effect of self-polarization predicted by Sokolov and Ternov
[10] and lately investigated for the case of weakly excited
electron states in ultrastrong magnetic fields [12]. Due to
the spin-flip transitions being considerably damped, the
probabilities of “up-up” transitions shown in Figs. 1–3 can

FIG. 2. The same as in Fig. 1, but for H ¼ 0.1Hc and s ¼ 5.

FIG. 3. The emission probability (31) (left) and the corresponding intensity (32) (right) for H ¼ 0.01Hc, pz ¼ 10−3mc, and no spin
flip. For the solid lines s ¼ s0 ¼ 5, the dashed lines correspond to the twisted photons with a simultaneous change of the radial quantum
number s → s0 ≠ s. The magenta dash-dotted line corresponds to the transitions with an increase of the electron OAM, so that the photon
TAM is l − l0 ¼ −1. Other dash-dotted lines correspond to the untwisted photons with jz ¼ l − l0 ¼ 0.
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be viewed as summed over the spin states of the final
electron with good accuracy.
Figure 5 illustrates the radiation probability per second

and the intensity for the definite discrete quantum numbers
of the final electron as a function of the initial momentum
pz along the magnetic field. Similarly to Figs. 1–3, we
consider here only “up-up” transitions. Both probability
and intensity turn out to be symmetric functions of pz with
a maximum at pz ¼ 0, although the bispinors (A23) and
(A24) depend on the sign of pz. Whereas the momentum-
dependent probabilities for the untwisted photon emission
are not necessarily the lowest ones, the intensities are
almost independent on the momentum pz and demonstrate
the domination of the twisted radiation with the TAM
l − l0 ∼ 1, 2 and unchanged s. In scalar QED, however, the

radiation intensity is shown to be completely independent
of pz [15].

VI. DISCUSSION AND CONCLUSION

The dynamics of electrons in magnetic fields and the
synchrotron radiation have been studied for a very long
time, both in classical and quantum formalisms. However,
the transfer of the quantized angular momentum from
electrons to the electromagnetic field has only recently
been discovered and analyzed within classical [1–4] and
quantum [15,34] frameworks. Here, we have ascertained
that the definite TAM projection is a natural property of the
photon state evolving from the process itself rather than a
consequence of the choice of the detector.

FIG. 4. The ratio of four possible types of transition probabilities to the probability of emission by a scalar charge derived in [15].
H ¼ 10−3Hc (left) and H ¼ Hc (right); l − l0 ¼ 3, s ¼ s0 ¼ 20 for all transitions.

FIG. 5. The dependence of the emission probability (left) and the intensity (right) on the electron momentum pz for H ¼ 0.1Hc,
s ¼ s0 ¼ 20. The transition 20 1

2
→ 19 1

2
means l ¼ 20 1

2
, l0 ¼ 19 1

2
, s ¼ s0 ¼ 20; those with l∶20 1

2
→ 20 1

2
correspond to the untwisted

photons with jz ¼ 0. The green line overlaps with the pink dashed one on the left; the cyan line on the left overlaps with the blue one on
the right. The magenta dash-dotted line corresponds to an increase of the electron OAM during the emission (so that the photon TAM is
l − l0 ¼ −1).
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We have found that the vast majority of the emitted
photons are indeed twisted, representing the Bessel beams
with the TAM projection jz ¼ l − l0, although a small part
of them are emitted due to the transitions without a change of
the angular momentum. The radiation of such nontwisted
photons is not predicted by classical electrodynamics. For
critical fields, H ≲Hc, the energies of the twisted photons
can belong to the hard x-ray and γ-ray range [15].
We have also argued that the reason why the transversely

localized electron packet emits a delocalized Bessel photon
is that here, we do not account for the longitudinal
localization of the electron. Considering the longitudinally
localized packets would lead to the radiation of fully
localized, yet diffractively spreading photon beams.
Spatial localization of the electron Landau states in all
three dimensions can be especially important for proper
description of the transitions in metals and solids exposed
to magnetic fields, as well as in Penning traps, because the
resultant twisted photon packets will also be localized. Say,
in the critical magnetic fields, their transverse coherence
length can be as small as the order of the electron Compton
wavelength [15]. Depending on the spatial coherence, these
twisted photons can interact differently with other elec-
trons, ions, phonons, cosmic plasma, and so forth.
Although the spin states of the electron in magnetic field

can be defined ambiguously, the emitted photons turn out to
be twisted regardless of the electron polarization descrip-
tion. The choice of the concrete spin operator corresponds
to the specific separation of the TAM operator, the latter
being uniquely defined, into its orbital and spin parts.
However, it is the TAM projection of the photon that is
observable in this problem, and its value is determined only
by the TAM of the initial and final electron states, which do
not depend on the choice of the electron spin operator. The
differential probability and intensity of transitions, never-
theless, depend on the electron polarization, revealing the
self-polarization effect.
In conclusion, we note that the angular momentum of the

emitted photons does not usually manifest itself at the
terrestrial experiments (e.g., at storage rings), as it is
quantized along the field, while the photons are being
detected at the angles close to the orbital plane, where the
wave front looks almost flat. The helical structure of the
wave front can be noticed only when observing the radiation
at angles close to the magnetic field axis, especially in the
critical and subcritical fields,H ≲Hc, typical formagnetars.
The importance of twisted photons in astrophysics lies
primarily in their ability to interact with the medium
differently from the plane waves—e.g., to excite the
Landau electrons to higher angular momentum states or
induce stimulated emission, which can have implications for
studying stellar nucleosynthesis [13]. Finally, the dynamics
of the spreading photon packets emitted by the localized
electron states—say, during the propagation through the
interstellar medium—may also be an interesting problem,

because the cross section of elastic scattering of twisted
photons on charged particles usually has a maximum at
much larger angles than it is for the plane-wave photons.
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APPENDIX A: ELECTRON STATES
IN A MAGNETIC FIELD

1. Solution of the Dirac equation

In this section, we describe a simple method of obtaining
a solution of the Dirac equation in a constant homogeneous
magnetic field utilizing an approach of [27]. A slightly
different realization of the procedure described below was
lately proposed in [37].
First, let us define the Klein-Gordon operator:

K̂ ≡ ðp̂ − eAÞ2 −m2 ¼ ði∂μ − eAμÞ2 −m2

¼ −□ − 2ieAμ∂
μ þ e2A2 −m2: ðA1Þ

The Klein-Gordon equation then simply reads as

K̂ΦðxÞ ¼ 0: ðA2Þ

We consider a constant magnetic field H ¼ f0; 0; Hg,
which can be described by a vector potential in two
different gauges—the Landau gauge and the symmetric
one—resulting in the Hermite-Gaussian beams and the
axially symmetric Laguerre-Gaussian packets, respectively.
We choose the four-vector potential in the later symmetric
gauge:

Aμ ¼ f0;Ag;

A ¼ Hρ

2
eφ ¼ H

2
f−y; x; 0g: ðA3Þ

Then, the Klein-Gordon in cylindrical coordinates takes the
following form:
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�
−∂2t þ

1

ρ

∂

∂ρ

�
ρ
∂

∂ρ

�
þ 1

ρ2
∂
2

∂φ2
þ∂

2
z − ieH∂φ−e2

H2ρ2

4
−m2

�
×ΦðxÞ¼ 0: ðA4Þ

By taking the following ansatz for the solution:

ΦðxÞ≡ΦðρÞe−iεtþilφþipzz; ðA5Þ

we obtain the equation for the transverse part of the wave
function:�
∂
2
ρ þ

1

ρ
∂ρ −

l2

ρ2
þ elH −

�
eHρ

2

�
2

þ ε2 − p2
z −m2

�
×ΦðρÞ ¼ 0: ðA6Þ

Following [10], the solution of (6) can be written as

ΦðρÞ ¼ N
�
2ρ2

ρ2H

�
l=2

Ll
s ð2ρ2=ρ2HÞe−ρ2=ρ2H ; ðA7Þ

where N is a normalization constant, ρH ¼
ffiffiffiffiffiffiffi
4

jejH
q

and Ll
s

are the associated Laguerre polynomials, and the energy
dispersion is

ε2s;l −m2 − p2
z ≡ p2⊥ ¼ 2jejHðsþ lþ 1=2Þ: ðA8Þ

Let us define the transverse functionwithout the prefactor as

Φs;lðρÞ≡ ρlLl
s ð2ρ2=ρ2HÞe−ρ2=ρ2H : ðA9Þ

Second, we consider the Dirac equation

½γμðp̂μ − eAμÞ −m�ΨðxÞ ¼ 0; ðA10Þ

where γμ are the gamma matrices in the standard representa-
tion. Instead of solving the first-order equation (A10) directly,
one can first transform it into a second-order equation by
applying the “projection” operator γμðp̂μ − eAμÞ þm [27]:

½ðp̂ − eAÞ2 −m2 þ eΣ ·H − ieα · E�ΦðxÞ ¼ 0: ðA11Þ

Here, matrices α and Σ are defined as follows:

α ¼
�
0 σ

σ 0

�
; Σ ¼

�
σ 0

0 σ

�
; ðA12Þ

where σ are the Pauli matrices. The third and the fourth
terms here arise from the products of gamma matrices and
the electromagnetic tensor. The solution of the first-order
equation ΨðxÞ is then obtained by applying the projection
operator to ΦðxÞ:

ΨðxÞ ¼ ½γμðp̂μ − eAμÞ þm�ΦðxÞ: ðA13Þ

Substituting the expression for the magnetic field into (A11),
we get26664ðp̂−eAÞ2−m2þeH

0BBB@
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1CCCA
37775ΦðxÞ¼0: ðA14Þ

This is a system of four Klein-Gordon-like equations,26664K̂
0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCAþeH

0BBB@
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1CCCA
37775ΦðxÞ¼0; ðA15Þ

that leads to two independent equations:

	 ðK̂ þ eHÞΦKGþ ¼ 0

ðK̂ − eHÞΦKG
− ¼ 0:

ðA16Þ

Then, the solution of Eq. (A15) is

ΦðxÞ≡

0BBB@
c1ΦKGþ
c2ΦKG

−

c3ΦKGþ
c4ΦKG

−

1CCCA; ðA17Þ

where ci are the arbitrary complex-valued constants. A naive
choice of ΦKG

� could be

ΦKG
� ¼ Φs;lðρÞe−itεs;l∓1=2þilφþipzz: ðA18Þ

However, such a solution is not physically relevant, because
ΦKGþ and ΦKG

− should correspond to the same energy. To
satisfy this condition, one should choose ΦKG

� in another
form:

ΦKG
� ¼ Φs;l∓1=2ðρÞe−itεs;lþiðl∓1=2Þφþipzz ðA19Þ

(here, l is a half-integer).
First, we consider the following two “auxillary”

solutions of (A15):

Φ↑
s;lðxÞ¼N↑Φs;l−1=2ðρÞe−itεs;lþiðl−1=2Þφþipzz

0BBB@
1

0

0

0

1CCCA ðA20Þ

and
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Φ↓
s;lðxÞ¼N↓Φs;lþ1=2ðρÞe−itεs;lþiðlþ1=2Þφþipzz

0BBB@
0

1

0

0

1CCCA ðA21Þ

(the notation ↑ and ↓ will become clear later on). These are
clearly the eigenfunctions of the operators 1

2
Σ̂z, l̂z ¼ −i∂φ

and ĵz ¼ 1
2
Σ̂z þ l̂z, but not yet the solutions of the Dirac

equation (A10). By acting with the projection operator on
Eq. (A20) and using the relations

xLl
s ðxÞ ¼ ðsþ lÞLl−1

s ðxÞ − ðsþ 1ÞLl−1
sþ1ðxÞ;

Ll
s ðxÞ ¼ Llþ1

s ðxÞ − Llþ1
s−1 ðxÞ;

d
dx

Ll
s ðxÞ ¼ −Llþ1

s−1 ðxÞ; ðA22Þ

we obtain the following solution of the Dirac equation:

Ψ↑
s;lðxÞ ¼N↑

0BBB@
ðmþ εÞΦs;l−1=2ðρÞe−iφ=2

0

pzΦs;l−1=2ðρÞe−iφ=2
−ieHΦs;lþ1=2ðρÞeiφ=2

1CCCAe−itεs;lþilφþipzz;

εs;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

z þp2⊥
q

;

p2⊥ ¼ 8

ρ2H
ðsþlþ1=2Þ

¼ 2m2
H
Hc

ðsþlþ1=2Þ: ðA23Þ

One can similarly consider second auxiliary solution: after
applying the projector to Eq. (A21), we find

Ψ↓
s;lðxÞ ¼ N↓

0BBB@
0

ðmþ εÞΦs;lþ1=2ðρÞeiφ=2
−2iðlþ sþ 1=2ÞΦs;l−1=2ðρÞe−iφ=2

−pzΦs;lþ1=2ðρÞeiφ=2

1CCCA
× e−itεs;lþilφþipzz: ðA24Þ

Notably, the energy εs;l here is the same as that in
Eq. (A23): it is determined by the TAM projection l rather
than by the spin or the orbital momentum separately. These
states are exactly the solutions obtained in [10] with
another method and coincide with those described in
[37] when the TAM projection l is positive. We employ
these states for all the calculations in the main text of the
paper. Let us normalize the states as follows:

Z
d3x j0ðxÞ ¼

Z
2π

0

dφ
Z

L=2

−L=2
dz

Z
∞

0

ρdρΨ↑
s;lðxÞ†Ψ↑

s;lðxÞ

¼ 1: ðA25Þ

Note that according to Eq. (7.414) in [38],Z
∞

0

Φ2
s;lðρÞρdρ ¼ ρ2lþ2

H

2lþ2

ðsþ lÞ!
s!

: ðA26Þ

Then, the normalization constants are

N↑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l−1=2s!
Lπðsþ l − 1=2Þ!

s
ρ−l−1=2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðεþmÞp ; ðA27Þ

N↓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ1=2s!
Lπðsþ lþ 1=2Þ!

s
ρ−l−3=2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðεþmÞp : ðA28Þ

One can easily check that the states Ψ↑
s;l and Ψ↓

s0;l0 are
orthogonal in the sense of the integralZ

∞

0

ρdρΨ↑
s;lðxÞ†Ψ↓

s0;l0 ðxÞ ¼ 0; ðA29Þ

even for s ¼ s0 and l ¼ l0. The states of the same type with
the different quantum numbers s, l, and pz are also
orthogonal:Z

2π

0

dφ
Z

∞

−∞
dz

Z
∞

0

ρdρΨ↑;↓
s;l ðxÞ†Ψ↑;↓

s0;l0 ðxÞ

∝ δss0δll0δðpz − p0
zÞ: ðA30Þ

Importantly, Ψ↑;↓
s;l are the eigenfunctions of the z projection

of the total angular momentum (TAM) operator:

ĵzΨ
↑;↓
s;l ¼

�
l̂z þ

1

2
Σ̂z

�
Ψ↑;↓

s;l ¼ lΨ↑;↓
s;l ;

Σ̂z ¼
�
σz 0

0 σz

�
; ðA31Þ

but clearly not the eigenfunctions of blz and Σ̂z separately.

2. Spin properties of the electron

In a longitudinal magnetic field, the spin projection onto
the field is not conserved, in the sense that the Pauli spin
operator Ŝ ¼ 1

2
Σ̂ does not commute with the Dirac

Hamiltonian. Many attempts have been made to introduce
other spin operators that commute with the Hamiltonian
and adequately describe the polarization of the particle
[10,30,32]. Since the TAM operator ĵ ¼ r̂ × p̂þ 1

2
Σ̂ is well

defined for the Dirac equation and undisputed, different
definitions of the spin operator imply different position
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operators, and hence different orbital angular momentum
operators [30,31]. Thus, any specific choice of the spin
operator is equivalent to the splitting of the TAM into spin
and orbital parts, which is ambiguous.
As the investigation of the polarization phenomena, such

as the well-studied Sokolov-Ternov effect [10,12], is not
the purpose of this work, we do not follow the approach
mentioned above. Alternatively, we claim that two types of
states obtained in the previous section are sufficient to
describe the states of the relativistic electron in magnetic
field and derive the evolved state of the emitted photon,
because it is the total angular momentum projection jz of
the electron that is observable in this problem and not
Sz alone.
Let us, however, evaluate the mean values of the spin

operator Ŝz for the above states Ψ↑
s;l and Ψ↓

s;l:

S↑;↓z ≡ 1

2

Z
d3rðΨ↑;↓

s;l Þ†Σ̂zΨ
↑;↓
s;l

¼ � 1

2

�
1 −

p2⊥
εðεþmÞ

�
: ðA32Þ

Importantly, when the transverse momentum p⊥ becomes
nonrelativistic, p⊥ ≪ m, in the limit H ≪ Hc, the spin
projections tend to the values �1=2. For this reason, we
refer to the stateΨ↑

s;l as “spin-up” and toΨ
↓
s;l as “spin-down.”

3. Alternative choice of the solutions

The bispinors (A20) and (A21) are simple and intuitive,
yet certainly not the only possible solutions of the Dirac
equation (A10). One can generally choose arbitrary con-
stants ci in Eq. (A17) (see the discussion in [10]), but this
arbitrariness does not affect the main property of the
emitted photon: it represents a twisted Bessel beam with
the TAM projection transferred from the initial electron,
regardless of the values of ci. The constants in Eq. (A17),
however, govern the spin properties of the states and the
transition probabilities. Let us now consider another pair of
“auxillary” solutions of (A15) as, for instance,

Φ̃↑
s;lðxÞ¼ Ñ↑Φs;l−1=2ðρÞe−itεs;lþiðl−1=2Þφþipzz

0BBB@
0

0

1

0

1CCCA; ðA33Þ

Φ̃↓
s;lðxÞ¼ Ñ↓Φs;lþ1=2ðρÞe−itεs;lþiðlþ1=2Þφþipzz

0BBB@
0

0

0

1

1CCCA: ðA34Þ

The corresponding “projected” solutions of the Dirac
equation are

Ψ̃↑
s;lðxÞ¼ Ñ↑

0BBB@
−pzΦs;l−1=2ðρÞe−iφ=2
ieHΦs;lþ1=2ðρÞeiφ=2

ðm− εÞΦs;l−1=2ðρÞe−iφ=2
0

1CCCAe−itεs;lþilφþipzz;

ðA35Þ

Ψ̃↓
s;lðxÞ ¼ Ñ↓

0BBB@
2iðlþ sþ 1=2ÞΦs;l−1=2ðρÞe−iφ=2

pzΦs;lþ1=2ðρÞeiφ=2
0

ðm − εÞΦs;lþ1=2ðρÞeiφ=2

1CCCA
× e−itεs;lþilφþipzz: ðA36Þ

The mean value of the spin projection is [compare with
Eq. (A32)]

S̃↑;↓z ¼ 1

2

Z
d3rðΨ̃↑;↓

s;l Þ†Σ̂zΨ̃
↑;↓
s;l

¼ � 1

2

�
1 −

p2⊥
εðε −mÞ

�
: ðA37Þ

For these states, the orthogonality relations (A29) and
(A30) are also satisfied, and still ĵzΨ̃

↑;↓
s;l ¼ lΨ̃↑;↓

s;l . Although
the probabilities and intensities shown in Fig. 6 differ from
those in Fig. 4—in the left figure, the ratio of the “up-
down” transition probability to the “down-up” one is 2
orders of magnitude lower—the self-polarization effect is
present, and qualitatively the picture is the same. Another
comparison of the emission probabilities calculated for
different polarization states is presented in Fig. 7, demon-
strating their qualitative agreement. This fact, alongside
with the orthogonality, does not allow us to say that any of
the two sets of states—either fΨ↑

s;l;Ψ
↓
s;lg or fΨ̃↑

s;l; Ψ̃
↓
s;lg—

is more preferable for describing an electron in the
magnetic field without discussing the spin detector proper-
ties. We stress, however, that these spin subtleties only
affect the differential probability, but not the total one, and
not the evolved state of the emitted photon, which is
defined by the difference of the electron total angular
momenta, l − l0.
Let us also discuss the auxiliary solutions which re-

present the sums of Φ↑;↓
s;l and Φ̃↑;↓

s;l :

ϕ↑
s;lðxÞ¼ n↑Φs;l−1=2ðρÞe−itεs;lþiðl−1=2Þφþipzz

0BBB@
1

0

1

0

1CCCA; ðA38Þ
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ϕ↓
s;lðxÞ¼n↓Φs;lþ1=2ðρÞe−itεs;lþiðlþ1=2Þφþipzz

0BBB@
0

1

0

1

1CCCA: ðA39Þ

The corresponding “projected” solutions of the Dirac
equation are

ψ↑
s;lðxÞ ¼ n↑

0BBBBB@
ðm − pz þ εÞΦs;l−1=2ðρÞe−iφ=2

ieHΦs;lþ1=2ðρÞeiφ=2
ðmþ pz − εÞΦs;l−1=2ðρÞe−iφ=2

−ieHΦs;lþ1=2ðρÞeiφ=2

1CCCCCA
× e−itεs;lþilφþipzz; ðA40Þ

ψ↓
s;lðxÞ ¼ n↓

0BBBBB@
2iðlþ sþ 1=2ÞΦs;l−1=2ðρÞe−iφ=2
ðmþ pz þ εÞΦs;lþ1=2ðρÞeiφ=2

−2iðlþ sþ 1=2ÞΦs;l−1=2ðρÞe−iφ=2
ðm − pz − εÞΦs;lþ1=2ðρÞeiφ=2

1CCCCCA
× e−itεs;lþilφþipzz: ðA41Þ

These states, however, have certain shortcomings. First of
all, ψ↑

s;l and ψ↓
s;l are not orthogonal:

Z
∞

0

ρdρ ψ↑
s;lðxÞ†ψ↓

s;lðxÞ ≠ 0; ðA42Þ

which does not allow us to speak about two distinct
polarization states, yet the orthogonality with respect to
s, l, and pz [see Eq. (A30)] still holds. Second, the

FIG. 6. The ratio of four possible types of transition probabilities to the probability of emission by a scalar charge for the alternative
choice of “spin-up” and “spin-down” states given by Eqs. (A35) and (A36). H ¼ 10−3Hc (left) and H ¼ Hc (right); l − l0 ¼ 3 for all
transitions. The same as in Fig. 4, but for the alternative choices of “spin-up” and “spin-down” states given by Eqs. (A35) and (A36).

FIG. 7. Comparison of the emission probability (left) and the corresponding intensity (right) for “up-up” transitions calculated for the
“spin-up” states (A20) (solid lines), and for the alternative states (A33) (dashed lines). Parameters: H ¼ 0.01Hc, pz ¼ 10−3mc, and
s ¼ s0 ¼ 20, unless stated otherwise.
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dependence of the mean values of ŝz on the sign of pz
arises:

s↑;↓z ¼ 1

2

Z
d3rðψ↑;↓

s;l Þ†Σ̂zψ
↑;↓
s;l

¼ � 1

2

�
1 −

p2⊥
εðε ∓ pzÞ

�
: ðA43Þ

If pz ≫ ε or pz ≪ ε, Eq. (A43) enables the effective spin
flip, meaning that s↑z → − 1

2
and s↓z → 1

2
, respectively, which

means that the sign of sz is frame dependent, and thus, sz
itself is not a good quantum number.
Finally, although the mean spin projections (A43) tend to

�1=2 for the weak field, these states do not predict the self-
polarization effect even when H ≪ Hc. Figure 8 demon-
strates that the probabilities of “up-down” and “down-up”

transitions are indistinguishable, both in critical and sub-
critical magnetic fields. Moreover, in a critical field, the
transition probabilities of all four types are close to those
for a “scalar electron,” which confirms that any effects
associated with the spin alone are not adequately described
with these states. It is also noteworthy that according to
Figs. 4, 6, and 8, the probabilities of no spin-flip transitions
are of the order of the probability for a scalar particle,
regardless of the spin states basis and the field strength.

APPENDIX B: TRANSITION CURRENTS
AND AMPLITUDES

The transition current components for a transition
between two “spin-up” states (12) and (13) are

j0↑↑ðxÞ ¼ N↑
i N

↑
fρ

lþl0−1e−2ρ
2=ρ2Hþiðpz−p0

zÞzþiðl−l0Þφ−iðε−ε0Þt

× ½ðmðmþ εþ ε0Þ þ pzp0
z þ εε0ÞLl−1=2

s ð2ρ2=ρ2HÞLl0−1=2
s0 ð2ρ2=ρ2HÞ þ 4ρ2=ρ2HL

lþ1=2
s ð2ρ2=ρ2HÞLl0þ1=2

s0 ð2ρ2=ρ2HÞ�;
ðB1Þ

j1↑↑ðxÞ ¼ −ieHN↑
i N

↑
fρ

lþl0e−2ρ
2=ρ2Hþiðpz−p0

zÞzþiðl−l0Þφ−iðε−ε0Þt

× ½eiφðmþ ε0ÞLlþ1=2
s ð2ρ2=ρ2HÞLl0−1=2

s0 ð2ρ2=ρ2HÞ − e−iφðmþ εÞLl−1=2
s ð2ρ2=ρ2HÞLl0þ1=2

s0 ð2ρ2=ρ2HÞ�; ðB2Þ

j2↑↑ðxÞ ¼ −eHN↑
i N

↑
fρ

lþl0e−2ρ
2=ρ2Hþiðpz−p0

zÞzþiðl−l0Þφ−iðε−ε0Þt

× ½eiφðmþ ε0ÞLlþ1=2
s ð2ρ2=ρ2HÞLl0−1=2

s0 ð2ρ2=ρ2HÞ þ e−iφðmþ εÞLl−1=2
s ð2ρ2=ρ2HÞLl0þ1=2

s0 ð2ρ2=ρ2HÞ�; ðB3Þ

j3↑↑ðxÞ ¼ N↑
i N

↑
fρ

lþl0−1e−2ρ
2=ρ2Hþiðpz−p0

zÞzþiðl−l0Þφ−iðε−ε0Þt

× ðmðpz þ p0
zÞ þ p0

zεþ pzε
0ÞLl−1=2

s ð2ρ2=ρ2HÞLl0−1=2
s0 ð2ρ2=ρ2HÞ: ðB4Þ

FIG. 8. The same as in Figs. 4 and 6, but for the “spin-up” state (A40) and the “spin-down” state (A41): the ratio of four possible types
of the transition probabilities to the probability of emission by a scalar charge. H ¼ 10−3Hc (left) and H ¼ Hc (right); l − l0 ¼ 3,
s ¼ s0 ¼ 20 for all transitions. In contrast to Figs. 4 and 6, the scale here is not logarithmic.
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To calculate the S-matrix amplitude, we first take the
integrals over t, z, and φ in Eq. (5) and leave the radial part
unevaluated. The azimuthal integral can be taken by employ-
ing the integral representation of the Bessel functions:Z

2π

0

dφ
2π

eilφþix cosφ ¼ ilJlðxÞ: ðB5Þ

Thus, we arrive at the following expression:

Sð1Þ↑↑ ¼
Z

∞

0

S̃ð1Þ↑↑dρ; ðB6Þ

where the integrand is

S̃ð1Þ↑↑ ¼ ei−lþl0þ1ð2πÞ3 N
↑
i N

↑
fffiffiffiffiffiffiffiffiffiffi

2ωV
p δðωþ ε0 − εÞδðkz þ p0

z − pzÞeiðl−l0Þφk−2ρ̃2

× ½ðmðpz þ p0
zÞ þ p0

zεþ pzε
0Þdð1Þ0λ ðθÞρ̃lþl0ρlþl0

H Jl−l0 ðyρ̃ÞLl−1=2
s ð2ρ̃2ÞLl0−1=2

s0 ð2ρ̃2Þ
−

ffiffiffi
2

p
eHðmþ ε0Þdð1Þ−1λðθÞρ̃lþl0þ1ρlþl0þ1

H Jl−l0þ1ðyρ̃ÞLlþ1=2
s ð2ρ̃2ÞLl0−1=2

s0 ð2ρ̃2Þ
þ

ffiffiffi
2

p
eHðmþ εÞdð1Þ1λ ðθÞρ̃lþl0þ1ρlþl0þ1

H Jl−l0−1ðyρ̃ÞLl−1=2
s ð2ρ̃2ÞLl0þ1=2

s0 ð2ρ̃2Þ�: ðB7Þ

Here, we have denoted ρ̃≡ ρ=ρH and y≡ k⊥ρH. Then, we use the following integral from [38] (there is, however, a
misprint m ↔ n):Z

∞

0

dxxlþl0þ1Ll
s ð2x2ÞLl0

s0 ð2x2ÞJl−l0 ðyxÞe−2x2 ¼ ðs0 þ l0Þ!
s!

1

23ðs−s0Þþ2l−l0þ2
y2ðs−s0Þþl−l0Ls−s0þl−l0

s0þl0 ðy2=8ÞLs−s0
s0 ðy2=8Þe−y2=8

≡ Fl;l0
s;s0 ðyÞ; ðB8Þ

to obtain the expression (15).
The S-matrix elements for three other types of transitions are

Sð1Þ↑↓ ¼ ei−lþl0 ð2πÞ3 N
↑
i N

↓
fffiffiffiffiffiffiffiffiffiffi

2ωV
p δðωþ ε0 − εÞδðkz þ p0

z − pzÞeiðl−l0Þφk

× ½dð1Þ0λ ðθÞρlþl0þ1
H ½−ðmþ εÞð1þ 2s0 þ 2l0ÞFl−1=2;l0−1=2

s;s0 ðyÞ þ 4ðmþ ε0ÞFlþ1=2;l0þ1=2
s;s0 ðyÞ�

−
ffiffiffi
2

p
ρlþl0þ2
H ðmðp0

z − pzÞ þ p0
zε − pzε

0Þdð1Þ1λ ðθÞFl−1=2;l0þ1=2
s;s0 ðyÞ�; ðB9Þ

Sð1Þ↓↑ ¼ ei−lþl0 ð2πÞ3 N
↓
i N

↑
fffiffiffiffiffiffiffiffiffiffi

2ωV
p δðωþ ε0 − εÞδðkz þ p0

z − pzÞeiðl−l0Þφk

× ½dð1Þ0λ ðθÞρlþl0þ1
H ½−ðmþ ε0Þð1þ 2sþ 2lÞFl−1=2;l0−1=2

s;s0 ðyÞ þ 4ðmþ εÞFlþ1=2;l0þ1=2
s;s0 ðyÞ�

−
ffiffiffi
2

p
ρlþl0þ2
H ðmðp0

z − pzÞ þ εp0
z − ε0pzÞdð1Þ−1λðθÞFlþ1=2;l0−1=2

s;s0 ðyÞ�; ðB10Þ

Sð1Þ↓↓ ¼ ei−lþl0þ1ð2πÞ3 N
↓
i N

↓
fffiffiffiffiffiffiffiffiffiffi

2ωV
p δðωþ ε0− εÞδðkzþp0

z−pzÞeiðl−l0Þφk

× ½dð1Þ0λ ðθÞρlþl0þ3
H ðmðpzþp0

zÞþp0
zεþpzε

0ÞFlþ1=2;l0þ1=2
s;s0 ðyÞ

−
ffiffiffi
2

p
ρlþl0þ2
H ½ð1þ2s0 þ2l0Þðmþ εÞdð1Þ−1λðθÞFlþ1=2;l0−1=2

s;s0 ðyÞ− ð1þ2sþ2lÞðmþ ε0Þdð1Þ1λ ðθÞFl−1=2;l0þ1=2
s;s0 ðyÞ��: ðB11Þ

EMISSION OF TWISTED PHOTONS BY A DIRAC ELECTRON … PHYS. REV. D 109, 036017 (2024)

036017-15



[1] M. Katoh, M. Fujimoto, N. Mirian, T. Konomi, Y. Taira, T.
Kaneyasu, M. Hosaka, N. Yamamoto, A. Mochihashi, Y.
Takashima et al., Sci. Rep. 7, 6130 (2017).

[2] M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K.
Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi,
and Y. Takashima, Phys. Rev. Lett. 118, 094801 (2017).

[3] V. Epp and U. Guselnikova, Phys. Lett. A 383, 2668
(2019).

[4] V. Epp, U. Guselnikova, and I. Kamenskaya, Phys. Rev. A
105, 023511 (2022).

[5] L. Allen, M.W. Beijersbergen, R. Spreeuw, and J.
Woerdman, Phys. Rev. A 45, 8185 (1992).

[6] D. L. Andrews and M. Babiker, The Angular Momentum of
Light (Cambridge University Press, Cambridge, England,
2012).

[7] J. P. Torres and L. Torner, Twisted Photons: Applications of
Light with Orbital Angular Momentum (John Wiley & Sons,
New York, 2011).

[8] B. A. Knyazev and V. G. Serbo, Phys. Usp. 61, 449
(2018).

[9] D. V. Karlovets, S. S. Baturin, G. Geloni, G. K. Sizykh, and
V. G. Serbo, Eur. Phys. J. C 83, 372 (2023).

[10] A. Sokolov and I. Ternov, Relativistic Electron (Moscow
Izdatel Nauka, Moscow, 1974).

[11] V. A. Bordovitsyn et al., Synchrotron Radiation Theory
and its Development: In Memory of IM Ternov (World
Scientific, Singapore, 1999), Vol. 5.

[12] K. van Kruining, F. Mackenroth, and J. B. Götte, Phys.
Rev. D 100, 056014 (2019).

[13] T. Maruyama, T. Hayakawa, T. Kajino, and M.-K. Cheoun,
Phys. Lett. B 826, 136779 (2022).

[14] C. Zhang, P. Xu, and X. Jiang, AIP Adv. 10, 105230
(2020).

[15] D. Karlovets and A. Di Piazza, Phys. Rev. D 108, 063007
(2023).

[16] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and
W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).

[17] G. Li and E. Y. Andrei, Nat. Phys. 3, 623 (2007).
[18] C. H. Yang, F. M. Peeters, and W. Xu, Phys. Rev. B 82,

075401 (2010).

[19] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M.
Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and
P. Kim, Phys. Rev. Lett. 96, 136806 (2006).

[20] H. A. Shah, M. J. Iqbal, N. Tsintsadze, W. Masood, and
M. N. S. Qureshi, Phys. Plasmas 19, 092304 (2012).

[21] D. J. Larson, C. J. Edge, R. E. Elmquist, N. B. Mansour, and
R. Trainham, Phys. Scr. 1988, 183 (1988).

[22] H.-J. Kluge, K. Blaum, F. Herfurth, and W. Quint, Phys. Scr.
2003, 167 (2003).

[23] V. G. Bagrov and D. Gitman, The Dirac Equation and its
Solutions (Walter de Gruyter GmbH&CoKG,Berlin, 2014),
Vol. 4.

[24] U. D. Jentschura, Phys. Rev. D 108, 016016 (2023).
[25] O. V. Bogdanov, P. O. Kazinski, and G. Y. Lazarenko, Phys.

Rev. A 97, 033837 (2018).
[26] O. V. Bogdanov, P. O. Kazinski, and G. Y. Lazarenko, Phys.

Rev. D 99, 116016 (2019).
[27] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quan-

tum Electrodynamics: Volume 4 (Butterworth-Heinemann,
Oxford, 1982), Vol. 4.

[28] M. O. Scully and M. S. Zubairy, Quantum Optics
(Cambridge University Press, Cambridge, 1999).

[29] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (1988), https://api
.semanticscholar.org/CorpusID:117798939.

[30] H. Bauke, S. Ahrens, C. H. Keitel, and R. Grobe, Phys. Rev.
A 89, 052101 (2014).

[31] K. Y. Bliokh, M. R. Dennis, and F. Nori, Phys. Rev. A 96,
023622 (2017).

[32] I. A. Aleksandrov, D. A. Tumakov, A. Kudlis, V. M. Shabaev,
and N. N. Rosanov, Phys. Rev. A 102, 023102 (2020).

[33] G. K. Sizykh, A. D. Chaikovskaia, D. V. Grosman, I. I.
Pavlov, and D. V. Karlovets, arXiv:2306.13161.

[34] V. Epp andU.Guselnikova, Phys. Lett.A 469, 128764 (2023).
[35] https://rscf.ru/en/project/21-42-04412/.
[36] https://rscf.ru/en/project/23-62-10026/.
[37] K. van Kruining, A. G. Hayrapetyan, and J. B. Götte, Phys.

Rev. Lett. 119, 030401 (2017).
[38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,

Series, and Products (Academic Press, New York, 2014).

I. PAVLOV and D. KARLOVETS PHYS. REV. D 109, 036017 (2024)

036017-16

https://doi.org/10.1038/s41598-017-06442-2
https://doi.org/10.1103/PhysRevLett.118.094801
https://doi.org/10.1016/j.physleta.2019.05.038
https://doi.org/10.1016/j.physleta.2019.05.038
https://doi.org/10.1103/PhysRevA.105.023511
https://doi.org/10.1103/PhysRevA.105.023511
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.3367/UFNe.2018.02.038306
https://doi.org/10.3367/UFNe.2018.02.038306
https://doi.org/10.1140/epjc/s10052-023-11529-4
https://doi.org/10.1103/PhysRevD.100.056014
https://doi.org/10.1103/PhysRevD.100.056014
https://doi.org/10.1016/j.physletb.2021.136779
https://doi.org/10.1063/5.0019899
https://doi.org/10.1063/5.0019899
https://doi.org/10.1103/PhysRevD.108.063007
https://doi.org/10.1103/PhysRevD.108.063007
https://doi.org/10.1103/PhysRevLett.97.266405
https://doi.org/10.1038/nphys653
https://doi.org/10.1103/PhysRevB.82.075401
https://doi.org/10.1103/PhysRevB.82.075401
https://doi.org/10.1103/PhysRevLett.96.136806
https://doi.org/10.1063/1.4752416
https://doi.org/10.1088/0031-8949/1988/T22/028
https://doi.org/10.1238/Physica.Topical.104a00167
https://doi.org/10.1238/Physica.Topical.104a00167
https://doi.org/10.1103/PhysRevD.108.016016
https://doi.org/10.1103/PhysRevA.97.033837
https://doi.org/10.1103/PhysRevA.97.033837
https://doi.org/10.1103/PhysRevD.99.116016
https://doi.org/10.1103/PhysRevD.99.116016
https://api.semanticscholar.org/CorpusID:117798939
https://api.semanticscholar.org/CorpusID:117798939
https://api.semanticscholar.org/CorpusID:117798939
https://doi.org/10.1103/PhysRevA.89.052101
https://doi.org/10.1103/PhysRevA.89.052101
https://doi.org/10.1103/PhysRevA.96.023622
https://doi.org/10.1103/PhysRevA.96.023622
https://doi.org/10.1103/PhysRevA.102.023102
https://arXiv.org/abs/2306.13161
https://doi.org/10.1016/j.physleta.2023.128764
https://rscf.ru/en/project/21-42-04412/
https://rscf.ru/en/project/21-42-04412/
https://rscf.ru/en/project/23-62-10026/
https://rscf.ru/en/project/23-62-10026/
https://doi.org/10.1103/PhysRevLett.119.030401
https://doi.org/10.1103/PhysRevLett.119.030401

