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We present a comprehensive analysis of the vacuum stability of the two-Higgs-doublet model, for both
type-I and type-II, augmented by vectorlike quarks in singlet, doublet, or triplet representations. We review
the model briefly before introducing the extra fermionic states and their interactions, and impose
restrictions on the parameters coming from both theoretical considerations and experimental bounds.
We then study the renormalization group equation evolution of the parameters of the model in order to
isolate the parameter regions that satisfy vacuum stability requirements. We then add the electroweak
precision observables to ensure that the resulting parameter space is consistent with the data. We include
complete expressions for the renormalization group equations and the S and T parameters used. Finally, we
summarize the effects of various vectorlike quark representations on the parameter space. We indicate the
regions constrained, highlighting the differences between representations in type-I and type-II, and
pinpoint the effects of the interplay between the extended model and the additional fermions.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2] marked a
significant milestone in particle physics, validating the
existence of the missing piece of the Standard Model (SM).
Yet the data collected supporting the Higgs discovery seem
to indicate that principles of stability, renormalizability, and
naturalness, which motivated the introduction of the Higgs
boson in the first place, appear in conflict with the
properties of the Higgs field itself. The idea of naturalness
seems to be in conflict with the surprising degree of fine-
tuning of both parameters in the Higgs field potential [3,4].
Related to this is the issue of the stability of the electroweak
vacuum that arises from the behavior of the Higgs potential
under renormalization group equations. To address this
issue, it became imperative to explore extensions of the SM
that could resolve this instability while remaining consis-
tent with experimental observations. These explorations
involve extending the particle content by additional states
and/or extending the symmetry group (which in turn, result
in the presence of new particles).
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Such additional particles can be fermions or bosons.
While the former are limited, the latter appear to have a
wider range of applicability. The issue with additional
fermions is the following. In the SM, gauge invariance does
not allow for the introduction of bare mass terms for quarks
and leptons, since these terms are not gauge invariant. So
quark and lepton masses only arise from Yukawa inter-
actions, after spontaneous gauge symmetry breaking.
Additional fermionic families (quark or lepton) are ruled
out by the Higgs data, since both the digluon production
cross section (and decay) and the diphoton decay channel
agree with the SM predictions and thus are inconsistent
with the existence of additional fermions in the loops. The
reason is the following. For the gluon fusion, the lowest
order process proceeds through a loop involving quarks.
The loop function depends on the ratio of the quark mass
over the Higgs mass, both squared. The loop function is
negligible for light quarks, where this ratio is <1, leaving
only the top contribution to be significant. However, if there
are additional generations of chiral fermions, their con-
tributions will also add to that of the top quark and enhance
the cross section, rendering it inconsistent with the exper-
imental value [5,6]. Thus surprisingly, heavy chiral quark
contributions do not decouple [7,8].

However, if the fermionic components have vectorlike
structure, rather than SM-chiral-like, their left- and right-
handed components have the same couplings, allowing for
bare mass terms that are gauge invariant. The addition of
these particles is one of the simplest extensions of the SM.
Because of their vectorlike nature, they do not contribute to
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gauge anomalies and are less restricted than their chiral
counterparts by current experimental data. They may
populate the desert between the SM and the scale of grand
unification, without worsening the hierarchy problem.
Vectorlike quarks (VLQs), allowed to mix that couple with
the third generation quarks (top and bottom partners),
appear in composite Higgs models with a partially
composite top quark [9-12]. They are naturally present
in theories with extra dimensions [13-18] and in little
Higgs models [19-21]. Finally, VLQs can be introduced in
nonminimal supersymmetric models to increase corrections
to the Higgs mass without significantly affecting electro-
weak precision observables [22-24], and they appear also
in grand unified theory (GUT)-inspired, supersymmetric
models [25].

Additionally, VLQ may explain some of the mismatch
between the SM predictions and observed data. For
instance, the Cabbibo-Kobayashi-Maskawa (CKM) matrix,
which encodes couplings for each of the three generation
quarks is, by construction, unitarity. However, the recent
dataset collected after 2018 [26] disfavors the CKM
unitarity of the first row for three generations of quarks
t0 99.998% confidence limits (C.L.), a problem confirmed
by the determination of V,; from superallowed beta decays
[27]. While improved lattice evaluations of decay constants
and form factors for kaons and pions, and corrections to the
nuclear beta decay, have shrunk the discrepancy to 3o,
referred to as the Cabibbo angle anomaly [28,29], intro-
ducing VLQs seems the most promising avenue, because
they are able to yield right-handed charged quark currents,
which can modify the CKM matrix results [30]. An
additional VLQ family could also explain quark and lepton
mass hierarchies [31].

In the context of the SM, VLQs contribute to the stability
of the vacuum, due to their strong coupling. It is well-
known that in the SM, the stability of the vacuum is
threatened by the strong coupling of the top to the Higgs
boson [32]. The simplest cure is to add a scalar singlet field,
which mixes with the SM Higgs boson and compensates
for the top quark contribution [33]. Vectorlike quarks, due
to their distinct representation under the electroweak group,
offer a promising avenue for mitigating the vacuum
stability problem. The question remains, how would the
vacuum stability be affected by the addition of VLQs to the
particle content?

In a previous work [34], we analyzed the effects of all
possible representations of vectorlike quarks and their
implications for maintaining vacuum stability within the
SM augmented by an additional scalar. We have shown
that, even with the addition of VLQs, the presence of the
additional scalar was still a necessity. We extend this
analysis to the study of the effect of introducing vectorlike
quarks into a simple extension of the SM, the two-Higgs-
doublet model (2HDM). Thus, we effectively replace the
singlet scalar by scalars in a doublet representation. Our

study involves analyzing all anomaly-free representations
of vectorlike quarks and their implications for maintaining
vacuum stability within this model. As several versions of
the model exist, we shall concentrate here on type-I (where
the fermions couple to only one Higgs doublet and the other
is inert) and type-1II (where up quarks and neutrinos couple
to one Higgs doublet, while down quarks and charged
leptons couple to the other). The latter is of particular
interest as it is consistent with the interaction structure
required in supersymmetry.

The two-Higgs-doublet models, seen as one of the
simplest extensions of the SM, have received a great deal
of attention in the literature; see, for example, [35-53]
and references therein. There are several motivations for
extending the SM to 2HDMs. The best known is, as alluded
to before, supersymmetry. In supersymmetric theories,
the scalars belonging to multiplets of different chiralities
cannot couple together in the Lagrangian, and thus a single
Higgs doublet cannot give mass to both up- and down-
type quarks. In addition, cancellation of anomalies also
requires the presence of an additional doublet. Another
motivation for 2HDMs comes from axion models [54]. It
was noted [55] that a possible CP-violating term in the
QCD Lagrangian can be rotated away if the Lagrangian
contains a global U(1) symmetry, but this is possible only if
there are two Higgs doublets. And yet another motivation
for 2HDMs comes from the fact that the SM is unable to
generate a sufficiently large baryon asymmetry of the
Universe, while 2HDMs can, due to additional sources
of CP violation [56].

In this paper, we investigate the effects of vectorlike
quarks in the context of extending the SM to the 2HDM
framework. By incorporating vectorlike quarks into
2HDM, we analyze whether we can overcome the neg-
ativity of quartic Higgs boson self-couplings by finding a
viable parameter space consistent with various theoretical
and experimental constraints in type-I and type-1I 2HDM
scenarios. Furthermore, we delve into the consequences of
these extensions on precision electroweak observables.
We focus on two separate components: first, the oblique
parameters originating from purely the 2HDM, and second,
the impact of vectorlike quark contributions on these
observables. These analyses shed light on the potential
alterations to electroweak measurements that arise from the
inclusion of vectorlike quarks in multi-Higgs scenarios.
Through numerical simulations, we demonstrate the sig-
nificant role that vectorlike quarks play in stabilizing the
electroweak vacuum while maintaining agreement with
precision electroweak measurements. Our aim is to provide
insights into the potential avenues for extending the SM to
address some of its shortcomings and set the theoretical
framework for future explorations and for experimental
validations.

Our work is organized as follows. In Sec. II we review
the 2HDM. In Sec. III we review vectorlike quarks, in
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singlet, doublet, or triplet representations, setting the
general Lagrangian responsible for their interaction, as
well as reviewing experimental searches and theoretical
considerations responsible for restricting their masses.
Section 1V is dedicated to our exploration of the parameter
space of the 2HDM with VLQs, which satisfies vacuum
stability bounds. Section V explores the constraints
imposed by electroweak precision observables on the
surviving parameter space, looking separately at the
restrictions coming from the 2HDM alone, in Sec. VA,
and from the VLQs, in Sec. VB. We summarize our
findings and conclude in Sec. VI. Finally, in the Appendix
we gather all renormalization group equations (RGE) for
the VLQ representations used in this work.

II. THE TWO-HIGGS-DOUBLET MODEL

In what follows, we present a brief summary of the
2HDM. Extensive reviews of the 2HDMs of type-I and
type-Il are in, e.g., [35,36]. The most general scalar
potential contains 14 parameters and can have CP-
conserving, CP-violating, and charge-violating minima.
We make several simplifying assumptions: that CP is
conserved in the Higgs sector, allowing one to distinguish
between scalars and pseudoscalars, that CP is not sponta-
neously broken, and that discrete symmetries eliminate
from the potential all quartic terms odd in either of the
doublets.

The 2HDM scalar potential for the two-doublet fields
with hypercharge Y = 1, which is invariant under the gauge
symmetry of the SM, SU(3). ® SU(2), ® U(1)y, and
satisfies a discrete Z, symmetry, is given by [35]

V(®,®,) = m}, @@ + m3,®;®, — my, (DD, + OJD,)
A M s
+5 (@) + 2 (0)0,)°

+ 43 (D] @) (D] D,) + Ay (] D,) (P} ;)
+5 (@] + (@), (n

where the complex doublets are perturbed around their
minimums v; as

+

w; .
®i= <_”f+m+ini.> (i=12) (2)

V2

with /7 + v3 = v =246 GeV, and the m}, term softly
breaks the Z, symmetry. The reason for introducing 2,
symmetry is to avoid tree-level flavor-changing neutral
currents. Minimizing the 2HDM potential Eq. (1) breaks
electroweak symmetry and allows the scalar potential to be
fully described in terms of seven independent parameters.
The scalar couplings at y, can be expressed in terms of the
physical masses of the two CP-even scalars, & and H, as

M3 cos’a + Misin’a

A/ - 9
! v*cos’f
I Mjcos*a + M3sin’a
T v?sin’f ’
sin 2a 2M2,
— M2 _M2 H ,
3 vzsinZﬁ( 1 W v?
M3 —2M3,.
4=
MZ
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v

along with tan # = v, /v, and a the mixing angle between
the two CP-even scalars. In contrast to the SM vacuum that
conserves CP symmetry but breaks SU(2), ® U(1), sym-
metry, there are four possible vacuum states in 2HDM.
Charge-breaking (CB) vacuum occurs when the charged
component of either of the scalars acquires a nonzero
vacuum expectation value (VEV). U(1) symmetry is spon-
taneously broken, and the photon gets a nonzero mass

@la=7( ) @a=5(0) @

CP-breaking vacuum occurs when there is a relative phase
difference between the VEVs of the neutral components of
the scalar doublets

@e=—(,) ) @a=-5(") ©

The inert vacuum state happens when either one of the
scalar fields acquires a nonzero VEV,

@iw=5(1) @w=7(y) ©

while mixed (normal) vacuum occurs when both of the
neutral components of the scalar doublets have nonzero and
positive VEVs,

on-(0) @ k()

If all different vacua could have existed simultaneously in a
2HDM potential, then one can undoubtedly think that the
probability of transition between these states is nonzero. It
was shown in Ref. [57] that if the 2HDM potential has a
CP-conserving vacuum, then the different vacua (CP and
CB) become saddle points,' with energy larger than that of

"This is not necessarily so for the CP-breaking case, though
normal vacua remain deeper.
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the CP-preserving vacuum, ensuring that normal vacua
stay global. If two different pairs of normal vacua can
coexist, for a choice of tan f value, more than one pair of
vy, v2(Dy, Dy ), might survive away from the origin [58]. The
relative depth of the potentials is given by2

1]/ M?%. M2,
AV =3 el Rl G n by —v20)% (8
szv%) <+)]< vh) (®)

However, a new pair of deeper minima (9, 9,) in a special
form of the 2HDM potential conflicts with SM phenom-
enology (the Higgs boson data) for a large region of the
parameter space while a small parameter space still survives,
preserving the mass spectrum of the SM and yet developing
a nonzero transition rate between different normal vacua
pairs. Nevertheless, the coexistence of two pairs of neutral
vacua \/v? + v3 < /% + 93 results in a particle spectrum
that might yield decays conflicting with the SM predictions,
even without RG flow, given the age of the universe exceeds
the tunneling time. A sufficient condition that the normal
vacua v? = v} + v3 remain a global minimum is [49]

m?, (m%1 - \/:Il—zm%) <tanﬂ - B—j 1/4> >0. (9)

Additionally, one-loop effects rise in the effective 2HDM
potential, and hence the relative depth of potential under the
presence of the coexistence of inert [59] and of CB vacua
[60] cases involve further corrections. Consequently, the
parameter space extracted from the relative depth of the
potential is extended. In fact, such an effect is an alternative
way for renormalized couplings to manifest themselves
according to RGEs, since the complete form of the effective
potential runs over all gauge boson, fermion, and scalar
field contributions. In return, renormalized couplings and
masses according to a cutoff scale modify the relative depth
between two effective potentials under the coexistence of
vacua. The procedure follows according to the general
structure of p-functions under the SM symmetry group,
whereas gauge and scalar couplings extend the parameter
space in a similar way. The Yukawa couplings do not affect
the inertlike minimum since the fermions remain massless.
The noncoexistence of CB and normal vacua is assured
by the relative depth between different vacua natures
Vg — Vew > 0; hence, the normal vacuum remains global
minimum at tree level. However, there exists a finite
allowed region [60] from one-loop corrections to VT, that
might develop a larger effective potential than the one of
VeiL. Since the effective potential is RG scale independent,
this phenomena is not related to the energy scale for which
the loop corrections are performed. Thus, at one-loop level,

A similar relation in terms of inert and inertlike minimum
cases is given elsewhere [59].

different from at tree level, the effective scalar potential
that measures transition rates between EW and CB
vacua is extremely dependent on particle content given.
Nonetheless, the study of the surviving rates is meaningful
in the case where Vgw — Vg > 0 and concludes remark-
ably that the tree-level relation for EW vacuum stability
may not hold for a unique choice of parameters.

Furthermore, tree-level vacuum stability is ensured if
the following necessary and sufficient conditions are
satisfied for the potential parameters in softly broken 2,
symmetry [61]:

M) >0, Au) >0, &)+ VA4 >0,
A1) + () = [As ()] > =/ 21 (1) A2 (). (10)

While these conditions may not necessarily hold true at the
one-loop level, within the range where perturbative methods
apply, the minor adjustments in the one-loop corrections
to the effective potential should not substantially alter the
potential’s asymptotic trends. Typically, this is managed by
scrutinizing the RG evolution of scalar couplings in the
potential and ensuring that the criteria outlined in Eq. (10)
remain applicable across all scales. Throughout our work in
Sec. IV, the conditions Eqgs. (10) and (11) on all the quartic
couplings are satisfied up to the Planck scale. In principle,
assuming the most general 2HDM potential (e.g., 2, is not
preserved, and Ag, 4; # 0), it was shown [39,62,63] that
necessary and sufficient conditions for boundedness from
below (BFB) can be numerically solved for limited cases.
The inclusion of 44 and 1, extends the parameter space that
satisfies BFB conditions. Without loss of generality, the
BFB conditions for the most general 2HDM potential reduce
to Eq. (10). To this end, by adopting the Z,-conserving case
only, our scanning of complete RGEs in Sec. IV obeys
Eq. (10) at all energy scales up to y = Mp,. Additional
conditions on the parameters of the 2HDM potential at the
tree level emerge when ensuring the theory maintains
unitarity [64,65]:

|j.3 — j.4| < 877.',
|l3 + 2}.4 :t 3}.5| < 871',

|
‘5 (,11 Ay (= ) + 413)) <8,

|
‘5 (/11 a0/ (A = 2p)? +4/1§)) <8z (1)

Atthe end of Sec. III B, the tree-level expressions,3 Eq. (11),
will be further modified to one-loop corrections for pertur-
bative unitarity conditions in order to be examined through-
out the complete 2HDM + VLQ RGE scan. We consider the
case where M, < My (with h the SM-like Higgs boson), the

The analytic expressions for the most general 2HDM poten-
tial appear elsewhere [63].
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FIG. 1.
(b) My = 600 GeV, and (c) My = 700 GeV.

light Higgs masses scenario, and the normal vacuum in this
study. Based on how Z, symmetry is imposed on the 2HDM
Lagrangian, four types of Yukawa interactions arise. Here
we consider only two versions of the model:
(i) Type-I: All fermions couple to the ®, doublet, and
the discrete symmetry is described as ®, — —®,.
(i) Type-II: All charged leptons and down-type quarks
couple to @, and all up-type quarks couple to ®@,.
Although the conditions Egs. (9) and (10) are necessary,
they are not sufficient to guarantee absolute stability of the
electroweak vacuum at next-to-leading order (NLO). In fact,
the RGE running of quartic couplings 4,, in type-I and
type-II are severely affected by negative corrections of top
and bottom Yukawa couplings,

dx, 1
dlni 6 (1203 + 423 + 42304 + 223 + 242
=3 (=4y? + g1 +3g3) — 12yf — 12y} + -],
dl{l 1 2 2 2 2
T = T6r —— [122F 4 423 + 42344 + 225 + 223
= 34(g1 +393) = 124 + -,
dill 1
dlnzﬂ o (1203 + 423 + 42304 + 223 + 242

=3h(—4yi + g1 +3g3) — 1297+ (12)
where gauge portal terms are not shown here due to their
positive contributions. In Fig. 1, we present the running
couplings of the quartic couplings 4; and 4, in 2HDM
type-II by considering a toy model, without showing the RG
evolution of 43 4 5. The first two conditions in Eq. (10) are not
satisfied at the one-loop level by simply imposing the
existence of a mixing between scalars. We adopt this toy
model to show that, unlike the common misconception
rising from the absence of an additional scalar in the SM, the
model including an additional scalar also relies on the other
free parameters of 2HDM.* According to the initial value of

*Similar analyses for the Higgs singlet model (HSM) and
2HDM have been performed in Refs. [33,66].

M
Y e
/ 0.5 — /
A2 —

0.0

|
Running Couplings

-0.5

10 10¢

The RGE running of the top Yukawa and scalar couplings 4, and 4, in the 2HDM fixed at tan # = 6 for (a) My = 450 GeV,

A in Eq. (3), My = 450 GeV is insufficient to preserve the
positivity of 1, around y ~ 10° GeV. Increasing the mass to
My = 600 GeV and My = 700 GeV lifted the initial value
and ameliorated the positivity of quartic coupling up to Mp,.
Introducing additional freedom in the scalar sector proved to
be the best scenario for a remedy for the vacuum stability as
well as enlarging the allowed parameter space consistent
with the SM phenomenology so far, because the SM can be
recovered in the decoupling of the beyond the Standard
Model (BSM) scalar extension (mixing angle a = 0). We
further use the radiative decay constant on the scalar initial
conditions at the RGE level [67]
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8V 22

6 (u) = SEfiEm) + folem)+& faEm] (13)

with & = M%, /M2, G = 1.16635 x 107> GeV~2, and

23 1_/1 2

+9 25 \f
ACERETA
2 2 2
u 5 m; 3ewé
—6In0 [14+2¢2, —2-L
fO(&ﬂ) nM%|: +2cy M%:| +§_C%V

1 2\ 3¢, Ine
+2Z<—> +4czz<c—w> 42w 2
¢ ¢ Sw

15
5},

2 2 2
Ttz (1) 4 am
Mz My My

i

—6Z[=

<§>

'“2 4 mtz

fo(ép) = 6IHW [1 +2c8, _24W]
) —12¢}, Inc?, + 8(1 + 2c})
d

+12¢3 Incf, —

-3

VA V4

2

C
- 12042(—W
RN

+ [z( m; ) T
M, M,

(14)

036016-5



KIVANC Y. CINGILOGLU and MARIANA FRANK

PHYS. REV. D 109, 036016 (2024)

with
[ 24tan7'(1/A), z>1/4,
2(2) = {Aln[(l FA)/(1=4), z<1/4, (15)
A=|1-4z]')2. (16)

These corrections are taken into consideration from the
h — yy amplitude. Since the signals from the photon decay
of the Higgs also have corrections from the loop level
diagrams, we only take the account of the SM gauge bosons
and the top quark appearing in the one-loop level.

The deviation patterns in the Yukawa couplings due to
mixing effects at the tree level remain consistent with the
Standard Model predictions even when considering the
inclusion of radiative corrections. Moreover, the scale
factor corrections in the one-loop level due to extra scalars
remain under 5% due to stability and perturbativity con-
straints in the 2HDM. This emerges from

1 m/M:3
(1 - M2 MG)?

[2HDM | {SM
MET 16n? 03

hff
. 1 mpvid?
~fSM o - TS

M 16 MG,

(17)

Specifically for the top quark radiative correction, if the soft
breaking scale of the Z, symmetry is around the masses of
extra scalars H*, H, and A, then the corrections remain
under 1% for tan > 3. In fact, the peak value is around
6% for tan f = 1, and this scale becomes even smaller and
negligible for tanf > 3 [68]. This is also shown to be
correct for all the SM fermions studied therein. Hence, we
can safely assume that for tan $ and the mass range of extra
scalars we choose for this work, the following electroweak
radiative corrections to the initial condition on the top quark
for increased accuracy hold [69]:

A (to) = Aw(mo) + Agep (o) + Aqep(Ho),  (18)

with

Gpm? 2 M
Ay (g) = —E2 <—91nm—2’—4n—”+11>,

16\/§ﬂ2 Ho n,
a m2
Agep (Ho) = o (3 lnﬂ—zt - 4) ,
0
a; m?
0

Therefore, the initial condition for the top Yukawa coupling
becomes

V2m,

v

Y = [T+ A, (uo)]- (20)

We now proceed with adding the contributions of VLQs
into the model.

III. THE 2HDM WITH VECTORLIKE QUARKS

A. Theoretical considerations

Using the 2HDM potential in Sec. II, we investigate the
effect of introducing vectorlike quarks on the stability of the
electroweak vacuum. Unlike SM-like (chiral) fermions
whose left-handed and right-handed components transform
differently under SU(3). ® SU(2), ® U(1),, vectorlike
fermions have the same interactions regardless of chirality.
However, when we consider incorporating them into the SM
framework, it becomes necessary to introduce a new scalar
boson into the Lagrangian. The additional scalar boson plays
a crucial role in maintaining the stability of the 2HDM
potential up to the Planck scale. The rationale behind this
requirement stems from the fact that the inclusion of extra
fermions leads to a decrease in the effective self-coupling of
the Higgs boson. Consequently, this extension could poten-
tially exacerbate the negative evolution of the Higgs quartic
coupling when compared to the scenario within the SM
without additional particles. The presence of the new scalar
boson serves as a remedy to this situation.

The question remains, how would VLQs affect models
with different scalar representations, such as 2HDMs?
Throughout our work, we uphold the condition that the
potential of the 2ZHDM must remain positive up to the
Planck scale. Previous works analyzed several collider
signatures that would be expected in type-II 2HDM with
vectorlike quarks (singlets and doublets) [70—74]. The main
motivation for our study is to establish the limitations that
constrain the masses of vectorlike quarks and the mixing
angles with the SM quarks. Establishing these constraints is
essential in preserving the stability of the electroweak
vacuum. While VLQ are also allowed to appear in the
loop level of the radiative Higgs decay and their contri-
butions, because of their vectorlike character, they do not
affect the branching ratio. The oblique corrections to the
mass of the W-boson rely on various VLQ representations
as well, and thus making Eq. (13) model dependent.
Because of this, only the corrections from the W-boson
and the top quark are considered to slightly increase the
relevant initial conditions on the quartic couplings without
contradicting experimental data. Furthermore, if effects
from my; g~ O TeV are taken into account in Eq. (17),
effects due to VLQ break perturbativity of the top Yukawa
coupling as setting its initial value too large. Moreover, as
to be seen in Figs. 2—4, the initial value of the top Yukawa
coupling according to radiative corrections we assume
herein ensures the observed top quark mass throughout
all representations of VLQ + 2HDM — I, II. Since all the
initial conditions are set at u, = m,, any VLQ effect
contradicts with the experimental data. One might argue
that the mixing relations between the SM quarks and VLQ
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TABLE 1. Representations of vectorlike quarks, with quantum numbers under SU(2), x U(1),.
Name U 1 D 1 D2 D X DY T X Ty
Type Singlet Singlet Doublet Doublet Doublet Triplet Triplet
T B T X B X T
B Y
SU(2), 1 1 2 2 2 3 3
Y 2/3 -1/3 1/6 7/6 -5/6 2/3 -1/3

could further correct the initial condition on the top
Yukawa; however, Egs. (34) and (35) are allowed to reduce
v:(1o) only if the mixing angle (denoted below by sin 6} )
becomes larger than the constraints’ in Sec. III B.

The new VLQ states interact with the Higgs bosons
through Yukawa interactions. The allowed anomaly-free
multiplet states for the vectorlike quarks, together with their
nomenclature, are listed in Table I [75-78]. The first two
representations are U-like and D-like singlets [25,79,80],
the next three are doublets (one SM-like, two non-SM like),
and the last two are triplets. Note that the latter allow for
quarks with exotic charges, Qx =5/3 and Qy = —4/3.
The various representations are distinguished by their
SU(2), and hypercharge numbers.

The Yukawa and other relevant interaction terms
between the vectorlike quarks and SM quarks are, in the
bare (®;, ®,) basis for type-I,

L = =yuqrL PSug = y4G, Padp,
EZI,{I,D] = —yrqrP5U 1, —ypqrP:2D;,
—yu(U,, @,U,, + Dy, ®,Dy,)
~MyU,Ug—MpD, Dy,
ﬁlpz = —)’TD2L(D§MR - bequ)zdR
—yu(Dy, ®5D,, + ygDy @D, ) —MpD, D,
= _yTDXLq)2uR - )’BDYL(DEdR
— yu(Dyx, ®,Dx, + ypDy @Dy )
— MyDYy Dy, — MyDy, Dy,

I
EDX,DY

! = 7, —
Ly 7, =—yrqrt*®Ts, —ypqrt'®, 75,
—yu(Tx, v 5T+ ypTy, 7@ T4 )
—_ MX’Z_'XL TXR - MY,Z_—YL TYR’ (21)

and for type-II

Nonetheless, for the mixing scale between the SM quarks and
VLQ set here, the radiative corrections for y,(y) can always be
neglected without significantly affecting the parameter space
generated by the complete RGE analysis.

Ly = =YuqrP5ug — 44, P1dp,
‘CZI/{].D] ==yrq 1 P3U, — 4P Dy,
- )’M(U1Ld’2U1R + D1Lq)1D1R)
~MyULUg = MpD, Dy,
Egz = —YszLq)E”R - YBDZL(DIdR
— yu(Dy, ®5D,, + ypDy, ®\D,,) —MpD, D,
_yTDXLCI)ZuR - yBDYL Oidg
- yM<DXL ®,Dy, + yBDYL ®SDy,)
—MyDy, Dx, — MyDy, Dy,,

)4 —
£Dx,Dy -

LY 1 ==yrq 7 ®5T§, — ypq v ® T,
— (T x, @ 5T + ypTy, v® T4 )
—MxTy, Tx, —MyTy, Ty, (22)

where ®¢ = ic>®F (i =1, 2), y,, y4 yr» and yp are the
Yukawa couplings of the scalar fields @, , to vectorlike and
to SM quarks, while y,, is the Yukawa coupling of the
scalar fields to only vectorlike quarks.

The gauge eigenstate fermion fields resulting from the
mixing can be written in general as

t b
T, p= , B, » = . 23
A <T>L,R LA (B>L,R (3)

The mass eigenstate fields are denoted as (¢, ,%,)
and (by,b,), and they are found through bi-unitary
transformations,

where
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cos® —sind’
VtL R — . s
' sin@  cos@ Jir
cos@’ —sin@®
Ve = . 25
L.k ( sinf”  cos@” >L,R (25)
In the following we abbreviate cos@; = ¢}, .... Through
these rotations we obtain the diagonal mass matrices
t oyt (v NT my, 0
Mdiag - VLM (VR) - 0 m, s
b bagb(vb\t mp, 0
Mdiag =ViM (VR) = 0 my, . (26)

By using the gauge eigenstate fields, the mass matrices in
the top and bottom sectors are given, after spontaneous

symmetry breaking,

2 _
where sin(20%) = v/2 (szi)
mg — mj

m3y = my(cos 02)> + m2(sin0%)? = m3(cos 0 )* + m?(sin 0} ),

2
mr — ny

V2(

with eigenvectors

¢ cos & sin &} t
() Conery o) (1)
/) LR —sind; cosHLYR T)Lr

Diagonalization of the mass matrices Eq. (26) is useful for
expressing the mixing angles for top and bottom sectors in
terms of the free parameters of the model,

2yrym
tan(20)) = —=—.
v -0t
2
tan(20%) = ——27 (30)

Vi +yi—yE

Charge assignments of the non-SM-like quarks do not
allow the X and Y fields to mix with the other fermions.
Therefore, these vectorlike quarks are also mass eigen-
states. The bottom sector mixing angle can be obtained
with the replacement ¢ — b and ¢’ — 6°. And solving
Eq. (30) for the Yukawa couplings we end up with the
relations between mass eigenvalues and mixing angles:

2 tan 6 > tdnaﬁ
yr P " tano? T tan6”L2 1
=5 . (31)
t mym;

The connection between mass eigenstates and mixing
angles of the SM quarks to VLQs in anomaly-free states
is unique for each representation [75]:

m% = m7(cos 0%)? + m?(sin 6%)?,

m7.(cos 0)? + m?(sin 0%)? = m3(cos 0%)* + m2 (sin 6%),

m% = m7(cos 04)? + m?(sin @ )? = m3(cos 02)% + m3(sin 672,

my
2

sin(26));

2

: .
5 ) sin(267 );

mp —my,

Y5 Y1 t
L= (2 T (),
Yr5 YmstMr ) \Tg
Y5 VB b
—Lyy = (by BL)( \? vﬁ >( R>. (27)
Y85 Yu st Mg/ \Bg
The mass eigenvalues for top partners in type-I, I + VLQ
models are
1 2yym - \?
nay = 7 07 7+ i) 0] 492 2]
(28)
J
For doublets: (XT):
(TB):
(BY): m} = m3(cos0%)? + m3(sin0%)?,
For triplets: (X7TB):
(TBY):
where sin(2607) =
and where

my p(tan 9;{’) = m, ,(tan 921’)

mr p(tan 00y = m, ,(tan 04

for singlets, triplets,

for doublets. (33)

We defined here my; = My, + ypvsin/\/2, mg = My, +
ygvcos B/\/2, m,=y,vsinf/\/2, and m;, = y,vcos /2
for type-II models (for type-I, replace vcosf and v sinf
by v), while my = My and my =M. Initial conditions for
all Yukawa couplings are modified with mixing relations.
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For type-I 4+ VLQ, all fermions acquire mass by interacting
with the VEV of ®,,

/ \/imt 1
yt(/’lO) = 5 T
v \/cos 0; + x; sin“ 0,
V(o) = V2my sinf; cos @, (1 —x2)
v \/cos?0, +x2sin?6,
; ~ V2mp sin0 cos O, (1 — x7)
v (Ho) = v ,
\/cos2 0, + x2sin’ 0,
C m; .
Vlwo) = 3 T feos20, + 2 sin 0, (34)

i=X.T,B)Y

whereas in type-II + VLQ, tanf, which is the ratio of
VEVs, modifies the initial conditions to read

) = L2 1 ,
vsinf | /cos? 0, + x?sin 6,

W () = ﬁmT sin @, cos @, (1 — x?) ,
vsinf \/cos 0, + x2sin> 0,
V2my sin@, cos@, (1 — x2

Vi (ug) = Y2ms Sin 6, cos 6, (1~ 1)

9
vecosf \/cos2 0 + x2sin’ 0,

C m; .
i) = Y0 oo 0, + 2 sin 0, (35)
i—x1BY Y

where Cp = (v/2, \%,4) is the representation dependent
weight factor with x;, = m,,/mg and as before x, = m,/my.
Since X and Y fields do not mix with other fermions
of the model, their low-energy Yukawa couplings are not
altered by mixing relations. However, yy and yy, have
indirect effects on the coupled RGEs, as seen from Eq. (7)
for type-I and type-II analyzed in this work. Furthermore,
the initial conditions on the VLQ Yukawa couplings in
type-II have different f dependences in Eq. (35) based
on which field is an up- or down-type member of the
multiplets.

B. Restrictions on VLQ masses

Bounds on masses of VLQs were established by the
direct searches at the LHC by ATLAS [81-85] and by CMS
[86-91] Collaborations, obtained from specific mecha-
nisms such as single production [92] and pair production
[93,94] at s = +/13 TeV. The constraints are sensitively
dependent on the assumed decay channels of the light
VLQs, which are allowed by kinematics to decay into a SM
quark. If VLQs decay only to the third generation quarks,

then the following channels could be observed®: T(B) —
WH(W)t(b), T(B) — Zt(b), T(B) — Ht(D); hence, the
bounds become relatively stronger due to the final states.
The constraints my > 1.27 TeV and mp > 1.2 TeV are
obtained for singlets, whereas doublets require slightly
higher mass limits my > 1.46 TeV and mp > 1.32 TeV
through pair production. Nonetheless, the lower limits on
the VLQ masses in the range of 800, 1400] GeV and
sin@ < 0.18 from Run 2 [95] are still compatible with the
data [96]. It should be noted that these limits are decreased
if the first and the second generation SM quarks are also
included. However, since the Yukawa couplings play an
essential role due to their direct relations to masses, these
models are commonly unfavored. As our work concerns
2HDMs, we consider a lowest limit on m; of 800 GeV, to
allow for the consideration of the largest parameter space
for the electroweak vacuum stability and electroweak
observables (EWPOs).

Corrections to the mass of the W-boson are calculated
using the oblique parameters. To this end, precision experi-
ments carried out at the Tevatron [97] that signal any type
of shift in AMy, are used to describe effects from new
physics (NP). Since both the scalar and the fermion sectors
contribute to EWPO, the combined corrections signifi-
cantly rely on scalar extensions in addition to vectorlike
fermions. Singlet (HSM) [98,99] and triplet (HTM) scalar
models [100,101] have already been studied. However,
for 2HDM + VLQ, we are only interested in constraints
coming from the y*(S, T)[VLQ + 2HDM] analysis in order
to generate a viable space for the electroweak vacuum
stability requirements.

There are alternative ways for corrections to Higgs self-
energies that would manifest themselves, especially when the
new particles carry SM-like color and electroweak quantum
numbers. In these scenarios, for every diagrammatic con-
tribution to the self-energies, one could replace one of the
Higgs bosons by its vacuum expectation value and attach two
SM gauge bosons to the loop. From there, one can obtain
a corresponding diagrammatic contribution to the Higgs
decays to SM gauge bosons. A rough estimation of possible
deviations from precision electroweak measurements, which
pushed new physics to Ayp ~ 1 TeV, is based on the estimate
of the size of Higgs oblique corrections roughly given by
O(v?/A?) ~5%. If VLQs enter the loop diagrams, new
fermions or charged bosons contribute to the loop-induced
diphoton decay and/or gluon fusion channels of the Higgs
bosons. The effects of VLQs on Higgs couplings have been
explored in studies for singlet [99,102], doublet [103], and
triplet models [104]. The T-singlet VLQ model established
an upper bound sin #; < 0.4 from the combined H — ggand
H — yy cross section and branching ratio, respectively, while

®For VLQs that carry non-SM-like hypercharges, the following
CC and NC channels are also allowed and searched for accordingly:
X - tWH Y - bW, T(B) - X(Y)W~(WT). See also [75].
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in the doublet (7'B) representation an upper limit sin; <
0.115 was obtained only from a contribution to the gluon
fusion cross section u,, < 1.03, while the triplet (X7B)
model contribution is p,, < 1.18 around my; g ~1 TeV.
Consequently, all these studies have shown VLQ corrections
that match the earlier correction scale from NP models.

By far the most significant constraint here comes from
B-physics, namely from b — sy, since tan f# alone varies in
a significantly large interval for the 2HDM models without
VLQ:s. Studies in literature that extend 2HDM with singlet
[105] and doublet [106] VLQs provide solid constraints
to working around tan < 12, M= = [80, 1000] GeV for
2HDM-I and M = = [580, 1000] GeV for 2HDM-II along
with my g > 1TeV and small mixings, sin€; < 0.2,
between VLQ and the SM quarks. We further explain
the difference between mass regimes regarding the charged
scalars of type-I and of type-Il as RG evolutions are
analyzed in the next section.

In what follows, we will scan the parameter space for
tan € [6, 12]. The reasons for such a restriction is as
follows:

(i) LHC data mostly constrain the tanf — cos(f — a)
plane in 2HDM-II models. This is known from [107]
within the exceptional region beyond the alignment
limit (Fig. 2 in the reference). The LHC data alone
in 2HDM do not exclude tan# < 6. However, the
addition of VLQ to 2HDM slightly extends the
space [105]. Hence, taking both the exceptional and
the ordinary regions into account, tanf > 5 is
favored for 2HDM in the alignment region and if
VLQ mixing < 0.2, although smaller values for
tan f are still possible, too.

(i) The biggest motivation to assuming tanf > 5
throughout our study is unique to us. This is because
in the regime we choose for VLQ masses, if tan
becomes slightly smaller, meaning that v, becomes
smaller with respect to vy, the initial conditions on
uplike quark Yukawa couplings (VLQ or SM)
become larger [Eq. (35)], and these break the
perturbativity of Yukawa couplings as well as violate
the stability conditions due to the excess weight of
Yukawa couplings on the evolutions of all 1’s. As a
consequence, if tan f# < 6, then VLQ masses need to
be < 0.8 TeV to satisfy perturbative unitarity and
stability conditions. This mass scale is ruled out by
the experimental data.

Unitarity requires the S-matrix for scalar scattering to be
unitary at high energy [65]. At tree level, this translates into

J;lgF = 870 GeV for

8z __
3iG, — 712 GeV

for gauge boson-scalar scattering in 2HDM. At NLO, a
unitarity condition of the S-matrix yields terms propor-
tional to O(4;4;/167?); hence, one-loop corrections to the

imposing upper limits as Mg <

scalar-scalar scattering and Mgo <

tree-level unitarity conditions are modified by f-functions
of scalar couplings. The combined perturbativity and
unitarity conditions for the quartic couplings are bounded
under RG evolutions [108]

[Ai(u)| < 4. (36)

and hence this will be required up to Mp, in the next section.
The perturbativity of the Yukawa couplings y; is one of the
weakest constraints at tree level, extending the upper bound
of the mixing angle as sin®; = [0.77,0.31] for m; =
[0.8,2] TeV [75]. Last, for VLQ mixing, we choose the
recent unitarity constraints [30] at the O(TeV) scale.

IV. RGE ANALYSIS OF THE PARAMETER
SPACE OF 2HDM WITH VLQS

The effect of fermions on the stability of the electroweak
vacuum without extending the scalar sector beyond the SM
Higgs field is to drive the Higgs self-coupling negative at
larger scales, so the potential becomes unbounded from
below, and there is no resulting stability. Theoretical
considerations indicate that if the validity of the SM is
extended to Mp,, a second, deeper minimum is located near
the Planck scale such that the electroweak vacuum is
metastable [3,4]. The additional scalar bosons maintain
positivity of the Higgs self-coupling while the renormal-
ization flow tends to decrease it further at higher-energy
scales [32]. Moreover, a common feature of both observed
and exotic fermions is that Yukawa couplings are generally
further lower scalar couplings since Yukawa couplings are
negatively affected by NLO contributions. However, this is
not always the case, and it depends on how the structure
of gauge interactions have been affected by new fields.
Through the possibility of various interaction portals,
vectorlike fermions open new ways to remedy stabilizing
the electroweak vacuum.

A straightforward approach would be to extend the gauge
sector of the SM as the gauge f-functions have positive
effects on quartic coupling RGEs [109]. However, addi-
tional gauge symmetries might also come short of being able
to express the current SM interactions as they have rela-
tively small contributions compared to other remedies.
Nonetheless, these corrections, Af; =3n;G,Gy; and
Apr3 = %npd2,3Sz(G2,3),7 are multiplicative with respect
to new fermion families, and these contributions are already
manifest at the RGE level, as we shall see in the Appendix.
Yukawa and scalar portals have shown promising results,
providing noncritical surfaces of electroweak vacuum sta-
bility [110]. As shown in Sec. III A, Yukawa portals lead to
mixing between vectorlike quarks and the SM quarks.
Because of mixing constraints, for an energy scale less than
the mass of myy q, decoupling occurs and VLQs contribute

"Here S,(G;) are Dynkin indices for the groups G, and Gj.
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to RGE running as if they were massless. Furthermore, in
the presence of VLQs, beyond-SM gauge couplings have
larger values compared to the SM ones, thus reducing the
corrections to Yukawa couplings running at energy scale
# > myyq. This could be shown, for instance, for the top
quark, where the f-function

B2 yr[Cf)’f - Cig1 — Ca9, — C393], (37)

which in turn shows that y,(u) < y?™ (). Moreover, gauge
and Yukawa couplings have opposite sign contributions in
scalar RGEs, Eq. (7), when fermions are allowed to interact
with the scalars of the model. This characteristic can be seen
from all scalar RGEs except the one that governs A/, which is
not allowed to interact with fermions through Yukawa
couplings due to Z, symmetry. Thus, from the RGE
structure, the gauge and Yukawa couplings could lead to
upward shifts in the Higgs quartic couplings though the
condition 4; , > A7 in the presence of VLQ. We note that,
in this context, vectorlike quarks have been studied with
only the SM Higgs field [111] and within the additional
Higgs singlet model [34].

In Figs. 2-4 we present the RGE evolution for all
vectorlike quark representations given in Eqs. (21) and
(22), combined with 2HDM couplings, respectively, for
type-I and type-1I, in the case where the lightest CP-even
scalar is taken to be the observed 125 GeV Higgs boson.

Among various bare 2HDM constraints, the limits on
My and M, are extremely sensitive to the VEV ratios
tan f# and to experimental data from B-physics [112], which
affects how quarks are coupled in type-I and type-II
models. Electroweak corrections to the W-boson, for a
fixed value of tanf =35 in the type-I model, yield a
degenerate mass spectrum for all scalars in the model,
found to be M = [100, 1000] GeV, if these EW corrections
remain Ay, < 5% as indicated from Higgs oblique cor-
rections [113]. We have also compared our parameter space
from the oblique parameters in 2HDM, Fig. 5 indicating
that larger values of tan f reduce the upper bound of M-
and M, in good agreement with the results in Ref. [113].
The allowed parameter space from the oblique corrections
yields a solid interval for the stability and perturbativity
analyses throughout this work, as we choose some of the
fixed parameters from the scalar sector to run the RG
evolutions. However, bounds on M- as a function of tan
from B-physics constraints are different in type-I and type-
II models [114]. Lower bounds on M- are inversely
proportional to the tan f value in the type-I model, yielding
a relatively lower minimum than the LEP result M- >
80 GeV [115]. On the other hand, the lower bound on M =
in the type-II model behaves almost as tan  independent as
tan # > 2 and scales about the minimum M+ = 580 GeV.
Apart from this distinguishing feature, both types are
constrained to generate lower bounds on M- as tanp
increases. The type-II model in the heavy Higgs scenario is

affected by the lower bound on M., while the mass
difference between 2HDM scalars is required to be small
Mpys — M, <160 GeV in order for the RG evolutions to
survive about A, ~ Mp; [116]. As we run RG evolutions
from 2HDM + VLQ up to u = Mp, type-I and type-II
models can be better compared in the light Higgs scenario
while setting fixed values to RGEs. The relative difference
between masses My — M y+ and M+ — M4 is important,
though theoretical constraints do not strictly forbid large
splittings between these parameters. However, bounds from
EWPO [42] and from B-physics [41,117] strongly correlate
these mass differences if 2HDM + VLQ RGEs are to
survive without having a Landau pole up to the Planck
scale. We have investigated that large splitting between
My, Mpy=, and M, could not satisfy RG evolutions for
2HDM — II + VLQ, due to the nonperturbativity of scalar
couplings and the vacuum instability in the sub-Planckian
region. The parameter space of 2HDM that survives from
RGEs running will be discussed in detail below.

We note that the overall effect of RGE on running
couplings up to a cutoff scale A is sensitively dependent
on initial conditions given for a fixed set of parameters.
Scalar couplings tend to generate a Landau pole and break
perturbativity if they start from relatively large initial values
due to their evolution (increase with energy scales). On
the other hand, new in this work, when combined with
myrq 2 O (TeV), scalar RG evolutions also result in
vacuum instability in case the initial values are too small
and the mass limits of VLQ are too large. Although RGEs
of the fermion sector are coupled due to the Yukawa
couplings in the model, scalar RGEs are coupled due to any
free parameters in 2HDM + VLQ. The parameter space of
scalar masses that survive up to the Planck scale according
to the initial conditions given in Eq. (3) and to bare 2HDM
RGE:s scanning, spans over a wide range for tan § = [1, 50]
[117]. Nonetheless, the spectrum for tan activated from
2HDM RGEs alone faces experimental constraints related
to VLQ contributions to LHC Higgs data from diboson
channels [105] and constraints from B-physics results
[106]. The presence of VLQs at O (TeV), carrying the
SM-like quantum numbers, further constrain tanp =
[1,15] and My > 600 GeV in 2HDM —II + VLQ.
Before delving into RGEs results, we also discuss the
analytical nature of initial conditions depending on the
mass difference My — M, and on tanf. The quartic
coupling 4, (uy) rapidly grows for larger My and tanf
values; therefore, it can generate a Landau pole faster than
the rest of the couplings in the sub-Planckian scale,
particularly in the type-I model without the presence of
any Yukawa term to drive it lower. In contrast, ,(uo) and
A3(ug) become heavily suppressed for larger tanf and
smaller My values; hence, vacuum instability can occur
due to the evolution of 4,, more dominantly so in the type-I
model. The initial condition on A, is by far the most
sensitive to the constraints on the mass difference between
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the pseudoscalar and the charged scalar. Being tanf
independent, and due to a large separation between M,
and M., the quartic coupling A4, can easily reach a
Landau pole in either directions; hence, this initial
condition alone develops an approximate limit for the
separation |My+ — My|. As shown in [41], by inverting
Eq. (3) and relating the separation between scalar masses to
numerical values of 44 + A5 that survive up to Mp;, the mass
difference is bound to ~160 GeV. However, this scale is
based on scanning over all values of tanf = [1,50].
Consequently, we have cross-checked that such a separa-
tion is allowed by RG analyses, considering smaller VEV
ratios tan # = [6, 12] [117]. Taking into account that VLQs
become unfrozen at A ~ O (TeV), the strategy we follow
to search the parameter space can be summarized as
follows:

(i) We scan RGE over a large number of parameters
from 2HDM + VLQ by imposing theoretical and
experimental bounds discussed above from both
sectors.

(i) We extract the parameter space that survives from
running RGEs requiring stability, perturbativity, and
unitarity conditions up to the Planck scale.

(iii) The initial conditions for all of the couplings that
appear in the combined model are set at the energy
scale py = m;.

(iv) We calculate the corrections to the oblique param-
eters S and T from 2HDM and VLQs, and then
check if the allowed parameter space for tan f range
is consistent with the RG analyses.

The scanning ranges in the VLQ and 2HDM sectors are

the following:

(i) VLQ: m;=[0.8,2] TeV, mg = [0.85,2] TeV, my =
my = [0.9,2] TeV, sinf; p = [0.08,0.15].

(i) 2HDM-I: M- = [80,900] GeV, M, = [300,
1000] GeV, My = [400,1100] GeV, t5 = [6,12],
sina = [0.06, 0.1].

(iii) 2HDM-II: M= = [600,900] GeV, M, = [300,
1000] GeV, My = [400,1100] GeV, t5 = [6,12],
sina = [0.06, 0.1].

Note that the parameter space of VLQ + 2HDM that

satisfies the vacuum stability constraint extends to

myLg < O (TeV) and to larger mixing angle sin 921,71%

(not shown). However, the recent experimental constraints
[92,93,96,118] and constraints from EWPO, Fig. 7, discard
large mixings and the light my;, domain. The mixing
angle a # 0 (means the neutral scalars are not decoupled),
because otherwise the perturbativity and the stability
conditions are not satisfied at initial condition p as seen
from Eq. (3) with respect to the range of My and tan f we
scanned, especially for the minimum bound on M- in
type-1I.

A. Singlet VLQ: U, and D,

Type-1 2HDM + VLQ singlets yield the most stringent
mass limits for VLQs required to satisfy the stability
bounds, as expected from the form of the Yukawa terms
that appear in both scalar and fermion RGEs. We present
RG running of the couplings for singlet VLQ+2HDM —
LII in Fig. 2. The relative difference regarding the initial
condition of top Yukawa coupling between U/; and D,
occurs due to the absence of top mixing in the D; model.
For mixing angles sinf; x > 0.15, the mass scale region
my > O (TeV) leads to negative top Yukawa coupling in
the sub-Planckian region. The RGEs of singlet VLQ in
type-1 are similar, and therefore the difference between
the initial values of 1, stems from the mass difference
between the top and the bottom VLQ sectors. Although all
the initial conditions are set at the top quark mass, the
overall shift of VLQ Yukawa couplings between type-I
and type-II is always due to how strong extra fermions
couple to scalars, depending on tanf. As discussed
previously, a small separation between mass values of
scalars in type-II models together with a larger value of
the minimum bound on M+ ameliorate the stability result
compared to type-I models, and hence larger 4, values in
type-II models are allowed by extending the bounds
on scalar parameter space. In contrast to the proximity
of 1, values to the instability region, 4, evolves safer away
from the nonperturbativity region in type-Il models, as
expected from the splitting of Yukawa couplings in top
and bottom sectors. Below we list the allowed mass
ranges due to RG analyses of the combined model that
survive from stability, perturbativity, and unitarity up
to u = Mpy:

U, + type-I: my €[800,920] GeV, M- €[80,830] GeV, My, €[700,810] GeV, M, €[510,770] GeV.
U, + type-II: my € [820,930] GeV, M, € [600,840] GeV, My, € [720,860] GeV, M, €[715,600] GeV.
D, + type-I: my € [850,970] GeV, M ;- €80, 840] GeV, My, € [725,870] GeV, M, € [500,800] GeV.
D, + type-II: my €[870,980] GeV, M- € [600,840] GeV, M, € [740,870] GeV, M, € [770,860] GeV.

*We observed that for larger VLQs multiplets, 4, tends to diverge from a positive direction if |M = — M| > 150 GeV, due to a
relatively large number of Yukawa terms, though A, always starts from a negative direction.
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FIG. 2. The RGE running of the Yukawa and scalar couplings for models with vectorlike quarks. We plot results for type-I on the
left column and for type-II on the right column. Subfigures (a) and (b): singlet vectorlike representation, I/;. Subfigures (c) and (d):
singlet vectorlike representation, D;. For singlet models, we have set my = 0.8 TeV, mp = 0.85 TeV, My = 800 GeV,
My =750 GeV, M, = 650 GeV py = m;, tan f = 10, and mixing angles sina = 0.1 and sin@; = 0.08.

A few comments regarding the behavior of the couplings
for all VLQ representations are in order:
(1) The upper mass bounds on the scalars of 2HDM can
be extended further if tan f is increased according to
the RG scanning. Otherwise, larger tan f leads to 4;
suppressions by flattening all scalar RG flows and
might lead to instabilities by causing Yukawa diver-
gences for tan # > 12 beyond the range scanned. This
characteristic can always be read from the denomi-
nator term through initial conditions in Eq. (3). The
authors of Ref. [119] discuss the details of “squeez-
ing” regions of stability for VLQ in various models.

(i) The high-energy enhancement of A, in type-II
models occurs due to the presence of the Yukawa
terms yy, and y7yj, appearing in the A4 s contri-
bution to running coupling constants as y,, ap-
proaches Mp;, this being the largest correction
among all VLQ Yukawa couplings.

(iii) Because of the splitting of Yukawa terms between
@, and ®,, type-Il + VLQ models are safer for
vacuum stability as A} stays closer to zero as
compared to A4, though this distinction alone is
not enough for the stability requirements.

B. Doublet VLQ: Dy, D,, and Dy

As seen in Fig. 3, where we plot the variation of the scalar
and Yukawa coupling constants as functions of the energy
scale, the evolution of 4; in type-I+D, is safer compared to
Dy and Dy models. In fact, faster coupling increases for
these models are seen from the upper bound of scalar
masses, which exceeds the bounds extracted from D,.
Furthermore, the allowed space for the heavier CP-even
scalar M in Dy is quite restricted compared to other type-I+
doublet VLQ models; hence, 4, increases very fast, con-
sistent with its initial condition as well. Because of the fact
that B and Y VLQs are relatively heavier than 7" and X VLQs,
the evolution of 4; stays closer to zero in the Dy + type-II
model as this coupling is connected to the down-sector
VLQ. Among all the doublet models, D¥ yields the most
sensitive parameter space for the mass of heavier CP-even
scalar M, resulting in a very narrow range for the combined
RG scanning. Furthermore, as seen from the absence of
bottom and top sector mixings in Dy and Dy, respectively,
and also the fact that these VLQ are pure eigenstates, the
evolution of yy and yy is enhanced compared to y; and yp in
D,. Therefore, the quartic Yukawa cross terms proportional
to y3vky lead to positive evolution for 14, within the
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The RGE running of the Yukawa and scalar couplings for models with vectorlike fermions. As before, we plot results for

Type-I on the left column and for Type-II on the right column. Subfigures (a) and (b): doublet vectorlike representation, Dy. Middle
panel: doublet vectorlike representation, D,. Subfigures (c) and (d): doublet vectorlike representation, Dy. For doublet models, we have
set my =0.85 TeV, mp=1TeV, my =1TeV, my=1TeV, My =800 GeV, My =750 GeV, M, =650 GeV, py = m;,

tan # = 10, and mixing angles sina = 0.1 and sind; = 0.08.

perturbative range for VLQ models with non-SM-like
quantum numbers. Actually, this reciprocal RG connection
between 4, and A5 determines how stringent the scalar
parameter space is constrained. This will be further shown in

Dy + type-I: my € [800, 1040] GeV,
M, € [520,860] GeV.

Dy + type-Il:  my €[880, 1050] GeV,
M, € [760,880] GeV.

D, + type-I: my € [800,930] GeV,

M, €[490,870] GeV.

my €[850,970] GeV,
my € [870,1000] GeV, M, €[600,865] GeV,

mg €[860,970] GeV,

the analysis of the parameter space for triplet
VLQ + 2HDM. The complete allowed mass ranges for
doublet models that survive from stability, perturbativity,
and unitarity up to u = Mp, are as follows:

M, €[80,840|GeV, M €[690,870] GeV,
M, €[820,890] GeV,

M, €[80,810|GeV, M €[670,830]GeV,
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FIG.4. The RGE running of the Yukawa and scalar couplings for models with vectorlike fermions. As before, we plot results for type-I
on the left column and for type-II on the right column. Subfigures (a) and (b): triplet vectorlike representation, 7 y. Subfigures (c) and
(d): triplet vectorlike representation, 7 y. For triplet models, we have set my = 0.9 TeV, mg = 1 TeV, my = 1 TeV, my =1 TeV,

My =850 GeV, My= =800 GeV, M, = 650 GeV, uy = m,, tan f = 10, and mixing angles sina = 0.1 and sin@; = 0.08.

D, + type-II:  my €[840,1010] GeV,

M, € [640,860] GeV.

my €[900,1040] GeV, M- €[600,840] GeV, M, € [810,980] GeV,

Dy +type-I: mz €[900,970] GeV, my €[900,990] GeV, M- €[80,840] GeV, M, €[750,890] GeV, M, €[610,875] GeV.

Dy + type-Il:  mpz €[925,1010] GeV,

M, €[670,890] GeV.

C. Triplet VLQ: 7y and 7y

Finally, for triplets, plotted in Fig. 4, our RGE scanning
indicates that the mass of the CP-even scalar exceeds
1 TeV, whereas M+ approaches an upper limit <1 TeV,
which is in good agreement with the mass limits extracted
from the deviation of the oblique parameters according to
CDF W-mass anomaly [120]. For triplet VLQs, a unique
feature of the Yukawa couplings is that due to the
dependence on y,,, their evolution becomes less suppressed
as the energy scale grows. In fact, y,;, which is the Yukawa
representation of Dirac mass terms for VLQs, surpasses
the top Yukawa coupling at a scale around 10'3 GeV. The
parameter space for triplet VLQ + 2HDM extends the
|

Ty +type-l:  my €[900, 1070] GeV,

my € [870,990] GeV,

my €[950,1050] GeV, M- €[600,870] GeV, M, €[750,930] GeV,

upper bounds compared to other representations, because
the opposite convolution of 4, and A5 always occurs for
triplet VLQs due to the abundance of coupled terms. We
also note that the stability condition on the electroweak
vacuum is at its most critical state around 10% GeV
regardless of the 2HDM type for triplet VL.Qs. This critical
proximity to the instability case occurs at almost the
same energy level regardless of all the parameters that
satisfy the combined stability, perturbativity, and unitarity
conditions.

The allowed parameter space for VLQ + 2HDM-LII that
survives from stability, perturbativity, and unitarity up to
1 = Mp is as follows:

my €[900,1040] GeV, M, €[80,890] GeV,

My, €[780,1030] GeV, M, € [560,930] GeV.
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my €[925,1040] GeV, M, €[600,890] GeV,

my € [880, 1020] GeV, M- € [80,900] GeV,

Ty +type-Il:  my €[950,1100] GeV, my€[890, 1000] GeV,
M), €[790,910] GeV, M, € [700,890] GeV.

Ty+type-l:  mp€[840,950] GeV, mp€[890,970] GeV,
M,, €[740, 1050] GeV, M, € [525,940] GeV.

Ty +type-ll:  my€[860,975] GeV, mpe[910,1035] GeV,

my €[950, 1100 GeV, M, €[600,890] GeV,

My €[820,1020] GeV, M, €[580,910] GeV.

For completeness, explicit expressions for all the rel-
evant RGE for the Yukawa couplings, the couplings
between the bosons and coupling constants, are included
in the Appendix.

V. ELECTROWEAK PRECISION CONSTRAINTS

Signals from new physics are also constrained through
electroweak precision observables, which are highly corre-
lated to large logarithms of extra masses when the scale of
a new model is significantly larger than the electroweak
scale [121-123]. The modifications to electroweak gauge
boson loops at loop level are calculated through the oblique
parameters, S, T, and U, defined as [124]

S = 16aR[2(M3) — T133(0)],
42
ﬁg{

e

U = 1629 [[13(0) — 1L} (0)]. (38)

T= 12 (0) — 1" (0)].

The S and T parameters in new physics models, such as VLQ
scenarios and 2HDMs, are different from those in the SM due
to extra scalars and fermions appearing in gauge boson self-
energies at the loop level. Additionally, the mixing between
the SM fields and the new particles modifies the Higgs and
electroweak couplings as well. Consequently, electroweak
precision observables are universal. The current experimen-
tal values [125] are obtained by fixing the differences
between the new physics and the SM contributions by
setting AU = 0, yielding AT =0.09 £0.07 and AS =
0.05 4 0.08 (and pg 7 = 0.92 + 0.11). For the work carried

gauge boson self-energies using LoopTools and FormCalc [126],
and implemented analytical expressions of Passarino-
Veltman (PV) functions in FeynCalc [127] to obtain oblique
parameters.

A. Contributions to the S and T parameters
from 2HDM

Further expanding Eq. (38) explicitly in terms of the
scalar loop contributions to the gauge boson two-point
functions

o (M) | T (M3)
SZHDM — 167T.§)t|: 2HDM Z 2HDM
SwcC WQ% C%vg%
_ fom (M7) - 115om(0) _ 2SWH%DM(O)
95 cwdy
Z
_ 4\/EGF R H%DM(O) ZSWHZI}—/IDM(O)
Tonpm = : > + >
e 97 w9z
T, (0) “
2 2 : (39)
‘w9z

The coupling factors are g, = g/cw and the photon two-
point function in the 2HDM is

H%DM(PZ) = ezBs(Pz, M

HisM%_]i)

— €’ p?|5By(p*, M3y M3,)

2
out here, we can split the oblique parameters calculation of +12B3(p*, M3, M3,) + —] . (40)
. L . 3
S, T, and U parameters via loop contributions into two
independent contributions, one due to bosons and the other to
fermions circulating in self-energy diagrams. We extracted =~ The photon-Z mixing is given by
|
7 eg 11 2
H2I}jIDM(p2) = TZBS(pZ,Mzi,MZi) —egzp® <—BO(P2’M2 , M7,) + 10B5(p?, M5, ’M%V) +§>
s 2
== &Bs(ph My M) = &7 [530(,92, My, M3y) + 12B3(p?, M3y, M3,) + g] ] Y
w

The Z-boson two-point function in the 2HDM is
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2

2 A Ay b 2 2 A2 2p?
Bs(p*. My, M3) + == Bs(p*. Mj,. M)

3

Sha Iy
4 RE

(pZ,MZ

Hi7M2Hi) -

(P = 0 [
1
+ 554 [M%Bo(pz, Mj, M) + 7 Bs(p*, Mj, M%)] + ¢y {M%Bo(pz, Mp, M3)

1 23p?
+—Bs =P

L BS(12.M3.5) | 2005 B0 M ) -

Bo(p*. My, M) —9p*Bs(p*, M3 ,M%v)}

53 [ 2]
"3 <e235(p2,M§,i,MiIi) = ¢2p? |5By(p?, Miy, Miy) + 12B5(p?, My, M) + 3 )
W L J
25w (€92 2 a2 2 (1 2 2 a2 2 2 a2 2
. TBS(p My ML) —egzp ?Bﬂ(p . My, M) + 10B3(p*, My, M) T3
_ 57
—z—W <ezBs(p2,M§,i,M§{i) = ¢?p?|5Bo(p?, Miy, Miy) + 12B5(p*, Miy. Miy) + 3 )] (42)
W L J
The W-boson two-point function in the 2HDM follows as
WW_ (2 2|1 2 2 a2 s%’—a 2 2 g2 Clzf—a 2 a2 a2 2p?
Mypm(P?) =g ZBS(p vMA’MHi) 4 Bs(p ,MHyMHi>+TBS(p 7M117MH1)_T
1
S| MR B M3 M)+ B2, 03,083 | = 823 B . . )
1 1
+ G MR B2 M5, 03 + B 05 03| + (4 268 ) B2 M3 )
+ My (1 = 4sy)Bo(p*, M7, M) + M3Bo(p*, M7, M§,) + 253, Bs(p, 0, Myy)
£ 2B (12, 0.3) ~ 407812 0.M3) 3)

The Passarino-Veltman functions and relevant identities are given in Appendix A 5. Subtracting the SM contributions from
the S and T parameters of the 2HDM yields the new physics contributions to oblique parameters:

1
AToupm = m [Boo(0, M3, M3,.) + Boo(0, M5, M3,) = Boo(0, My, M) = Boo (0, My, M7)
+ (dsty = 1)Bog(0, M2, M%) = 2M2 sty [1 + By (0. M2, M2.] + 53_, [Boo (0, M3y M2, )

+ Boo(0, M3, Miy) = Boo (0, M3, M3)] + ¢_ [M3,Bo(0, M3, My,) + Boo(0, M7, M)
— M3B (0, M}, M%) + Boo(0, M5, M3, ) — Boo(0. M3, M3) + Boo (0, M3, M3,

— M7, By (0, M, M3y,) + M3Bo(0, M3y M7) — Boo(0. M7, M3)]]. (44)
1
AS:upm = pve 253 ¢ipAo(M3,.) = Boo (M7, M3, M3.) + (¢ — 57)*Boo (0, M3, M3,
+ S5l Boo(M%, M. M3) = Boo(0. M7, M3)] + cj_o[Boo (M7, M3y M3)
+ Boo(0. Mj, M%) + Boo (M3, Mj, M7) — Boo (M7, M3y, M%) — Boo (0, M7, M3)
= Boo(0. M7 M) + M5By (M7, M3z, M%) + M7B,(0, M7, M7)
— M3By(0, Mj,, M) — M3By(M3. My M3)]]. (45)

In Fig. 5 (left panel), the correlation between M, and M =
due to EWPO does not constrain the masses in a stringent
way, though when M, > 550 GeV, the -correlation
becomes significantly important. The red region has

already been discarded by direct searches at LEP [115].
Considering the imposing theoretical bounds only, the
findings from EWPO are consistent with the unitary
bounds in the M, — My plane [65]. Note that tanf
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The allowed mass regions from EWPO for the pseudoscalar boson mass M, and charged Higgs mass M+ subfigure (a). The

allowed parameter space from EWPO for scalar mass My and scalar mixing angle with the SM Higgs sin a subfigure (b) in 2HDM. The
sina = 0 limit of CP-even scalars mixing is allowed by EWPO but excluded due to the vacuum stability constraint. We have set

tanff = 6.

dependence of the oblique parameters alone is more
relaxed, allowing a wide mass spectrum. This is due to
the fact that the mixing between CP-even scalars can be
shifted away from the sin @ = 0 (decoupling) limit; hence,
the variation in tanf compensates for the Higgs data
requirement of the near-alignment limit, cos(f — a) ~ 0.
Consequently, imposing the alignment limit on the mass
spectrum of scalars is by choice (to fit the Higgs data) rather
than a requirement of the theory when RG running
u <1 TeV. This consequence is highlighted particularly
for type-1 with various tanf values [116]. On the other
hand, as seen from Fig. 5 (right panel), the limit is stronger
in the My — sina plane for a fixed value of tanf in both
types of 2HDMs. It is seen that for tanf = 6, EWPO
constrain the masses in a way that the decoupling limit of
CP-even scalars occurs in a natural way at a scale
~QO (TeV). Although the sina = 0 (decoupling) limit is
not forbidden by EWPO, we combined it with the mini-
mum stability requirement on sina near the decoupling
limit. Moreover, the constraints on My obtained from
EWPO and from the vacuum stability match with the
constraint for signal rates of H > WW* — e [128,129].
Furthermore, we excluded the sin @ = 0 region because a
nonzero mixing between CP-even scalars (sina # 0) is
required to preserve the vacuum stability up to the Planck
scale. As keeping cos(ff — a) closer to zero is motivated by
the alignment limit from the Higgs data [42], we impose
this along with the requirement that the couplings evolved
with the RGEs remain away from the vacuum instability.
Hence, using the mass spectrum allowed from EWPO
constraints fits with the stability analysis. It is important

that the theoretical constraints align with each other as the
limits rising from vacuum stability become stronger at the
scale [10°,10'°] GeV [119], thus restricting M- >
580 GeV with smaller mass differences between extra
scalars, as the cutoff scale increases in type-II. However,
the mass limits in type-l1 are weaker. Favored also by
collider bounds [41], there exists a parameter space for
which the mass separation between scalars remains small
for 2HDM, while validated up to the Planck scale. Our
results from the oblique parameters do not conflict with the
parameter space obtained from RGE in Sec. IV; however,
the effects of VLQs on RGE slightly shift the upper limits
compared to the findings of EWPO.

In Fig. 6, we have considered the energy scale
u = [800-1000] GeV in self-energy diagrams, and scan

30 400 50 600 700 80 900 1000
My (GeV)

FIG. 6. The allowed mass regions extracted from EWPO for
My versus cos(ff—a) mixing between CP-even scalars in 2HDM.

036016-18



VACUUM STABILITY AND ELECTROWEAK PRECISION IN THE ...

PHYS. REV. D 109, 036016 (2024)

over values up to 1 TeV with respect to the oblique
parameters. The upper limit of My is chosen to be in a
good agreement with the limits from vacuum stability on
scalars + VLQs at tan # = [6, 12]. The current experimen-
tal data constraining £ to having SM-like Higgs behavior
restrict values of cos(ff — @) much closer to the decoupling
limit. Consequently, the electroweak vacuum stability
requirements and EWPO impose a naturally occurring
near decoupling limit when M,, My > 600 GeV. We
should also note that type-I and type-1I dependent effects
are highly manifestable through Higgs channels, for which
the signal strengths K, Ko also favor regions slightly
beyond the decoupling limit, particularly for tan § ~ [2, 12]
[42]. The contribution to Toypy is twofold, depending on
the mass parameter space of scalars and on sin(f — a),
whereas a negative contribution to Trypy can always be
generated by varying My.. For the general scale of
sin(f—a), M, and My splitting has to be small for
pushing T,oypy to be large and negative values. Hence,
negative corrections to T in 2HDM can render overall
positive corrections rising from various fermion represen-
tations and further enhancing limitations on additional
scalars and mixing among Higgs bosons.

B. VLQ contributions to the S and T parameters

The contributions of VLQs to S and T parameters are
different for each representation (singlets, doublets, or
triplets) in the current framework. Since the electroweak
Lagrangian is constructed with gauge eigenstate fields, any
mixing of fermions with extra anomaly-free fields alters the
structure of the bare electroweak Lagrangian, as seen from
Eq. (46). As we have already seen in Sec. III A, the mixing
regime is model dependent. Reference [130] highlighted the
emergence of disagreement of the oblique parameters for
triplets in [131], where the external momenta of gauge

2SW
TIVLQ—_ [ Z]:Zr 70,00 %%0,0,Qimi . p* =0) +M225@ ~Q))F22(Qg,0,- 0,0,

+WZfZZ(QIZQiQi’Q§QiQi’m m%’pZ:O)
Z i

] _4s%Vc%V<,ch%V
VLQ — N
a, chwM

1
+M—%V25(@i - Qj)]:WW(QIWQ,-Q,’Q{fVQ,-Q,’m
i#j

bosons are omitted in self-energy diagrams ITy,y,. This leads
to a discrepancy in the S parameter, which becomes positive
in triplet representations in the large logarithm of my ~ O
(TeV), as in Ref. [132]. Following the corrections carried in
Ref. [130], we obtained better approximations to AS7, 7,
and AT, 7,.Consequently, in our calculations AS < 0 and
AT > 0, and we found agreement with the results in [133].
As we mentioned in Sec. VA, the self-energies of gauge
bosons are extracted so that UV divergences are properly
canceled. Here we present the contributions of VLQs to the
oblique parameters in terms of PV functions, and more
complete expressions are available in the Appendix.

The couplings to W-boson and Z-boson have been
modified by the VLQs through their mixing with SM quarks

»C a (CéinPL + CZ;Q/PR)QJW; + H.C.,

swm

ﬁ PR - 25,1@S%V)QJZM,

[\.)
<

. L R
—0ir"(NG,0,PL+Nog,
(46)

where Q; ; are any type of quarks in our convention of the
electroweak Lagrangian. The condition |Q; —Q;|=1 holds
for all forms of W — Q; — Q; interactions.

Further compression of the modified electroweak cou-
plings take the following forms:

Ly 27" ( Qg0 L+ Qg0 RIW;

L, D y”(QéQinI]_ + Qggigju;e)zﬂ. (47)

For the cases i = j of Z—Q; — Q] interactions, the last
term of Eq. (46) is absorbed in Q 70,0, throughout all VLQ
representations:

2 p2 — O)
Z i#j

mf,pzzm], (48)

2
><ZJTZV 50,0 20,0, Qi mi. M) +Z}—ZV(QéQiQ;’QgQiQ,’Qi’ml‘z’o))
i

2
Z.F @ @ m m2 Mz) + WZ(S(@I - @j)fZZ(QéQin’ Q§Qin’ m?, m12'7 M%)

Z'i#j

Mzza@ Q) F22(R0.0,, X0,0,-mi m3.0) +
Z i#j

M Z}-ZZ(QZQQ’QZQQ’m m} 0)]

szZZ Q0,00 Yoo, M M7 M7)

(49)
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where the fermion functions Fyy 7, contributing to the gauge boson two-point functions are calculated as

N,
Fz,(Q1,Q,,Q,m? p?) = Py [Q(Q) + ) (2Bg(p*, m*, m*) — p*B,(p*, m*, m*) — Ag(m?))],
N,
Fyy(Q, Qo mi, m3, p?) = Py S1((QF + QF)mi — 2Q,Qym my)By(p?, m}, m3)
+ (QF + Q3)(p?Bi(p*. mi. m3) — 2Boo(p*, mi, m3) + Ag(m3))]. (50)

Complete expressions of the oblique parameters for doublets and triplets are lengthy. Thus, we give the full contributions to
S and T parameters from singlet VLQ representations U/, and D;, while approximated expressions for all multiplets are
given in Appendix A 3. The deviations AT and AS of the oblique parameters from their SM values are

N mi(sh)? m% —m? m3 + m? m?
ATy, = < O ) 4L (ch)? L 2-2x%|, 51
e T ot (5) " () n(ar) +2- 24 (51)

ASy, = 1217\:—1\4%
— 18m7(s)*(c1)*Bo(0.mi. m7) + 6(s.)*(cf.)*Bo(MZ. mi. m7) (M7 (mi + m7) = 2M7 + (m3 — m7)?)
+ (s1)* A0 (m7)(MZ(9(s1.)* = 10) = 6mz(cp)* + 6m (cf,)*) + mz((sy)* + 32syciy) — (s7.)°m7
= 3m7(s7)*Bo(0,m7, m7)(3(sp,)* = 10) + m7By (0, m7, m7)(32s3,cyy — 12(s7,)?)
+2(s,)*Bo(MZ. mi, m7)(mi((s1.)* + 8) — M5(3(s.)* - 4))
+2(s7)*Bo(MZ. m, m7)(m7(3(s7,)? — 16) — M5(3(sp.)* — 4))]. (52)

[(s1.)?Ag(m?)(6m3(c1)* = 6mi(c))? = M7(9(s],)* = 10)) = 324 (m7) M7 siyciy

m2 m2(s2)2(cb)2
ATp, :LZ |:<(SZ)Z(CIL7)2 {300(0, m2, m3) _A0(2 3)} _ b L;( L) B, 0, m%m%)>

1 453 \2  4sy
+< <1——W> + 9W>[Ao(mz) 2B(0, m7, m7)]

452\2  m? 2 453
R e I

2 4

. %W) Aa() 280, )

2 m2st mis?, [2s2
e (20 ()2 ) ) o0, )

)

253 >2 S

( w_(sg)z> +_W>[A0(m§)—2Boo(o,mé,m%)]>
)

9

2 2 4 2 2
010 (B (4 12) )0,

s B =

9 3 3

_|_
“"N/\/\/-g/-\/—\

S4 2 S2
(%55 = 58 ) o) = 20,2, )]+ (53 = ()2 ) o) = 2000, )

(— - <s'z>2> [Ag(m3) — 2By (0. 3, m3)] +

m2(ch)? sP)2 m2(sh)2
+%BO(O,m%,m%) + (s2) [Ag(m%) — 2By (0, m?, m3)] +MBO(O,mt2,m%) , (53)

[\
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N, [2 [(m?
ASD] = IZ”M% |:§11'1 (m_%> -2 + (S2)2(62)2(6300(m%,

+my(s7)*(c])*(Bo(MZ. my. mp) —

oY

By(0. mj. m3))

mj, mg) — 6By (0, my, mp) 4+ 3m% By (M7, mj, mp))

ZBOO(M%7 mt ’ mt) + MZBI(M%7 mt ’ m%)])

2 B0
w
4S%V 2 ?) 2

- +t—= {MZBl(MZ’mt’mt)‘FZBOO(O mt’mt) ZBOO(Mvat’mz)}

4s
=) ) 013 ) B2 )

2 s

—(Cf)2> +Tw> [M%B\(M%, m}, m;) + 2Boy(0, m, mj) = 2Boo (M5, my, mj )]

m? [2s2 2 2mist 252
(B (e ) 2 oy (250 ()7 ) ) oM ) = B0, )

2 254
= (SIZ)Z> ‘|‘> [MZB (MZ’mB’mB) + 2B (0, vamB) 2BOO(MZ7vam%3)]

- A
C%VS%[/<3 [ O(mt)
1 /4
-t (5 003) ~ 28013 ) 3 043 ) )
WS
I (4 2 0 0 2
ETAE [Ag(mg) = 2Boo(MZ. my, mp) + M7
3 sty
+ (E 3 3
3m? 453\2  8m?s])
*( 2t(1_TW) Ty ZSW<1
3 (253,
* (z 3
(3
+
3 (253,
+<2 3 3
n (321% <2;%V_(slz)2)2+2m§sw s, <2s%v

E = (50)2) ) Bul03. 3. 3) = B0, )

2>[M23 (M%mnmz) 2BOO(M%’mt1 ) 2B/(0, mtsmz)]

452
+ (—W— (c2)2> [M%ZB|(M%, m3, m3) — 2Boy(M%, m3%, m7) — 2By (0, mb,mb)}}

+(——<sz>2>w28 (M2 3. 103) = 2Bog(M2. m3. 1) — 2B 0, mB,mén]

Contributions to S and T parameters from doublet and
triplet VLQ representations follow from Egs. (48) and (49)
by a straightforward calculation with the relevant electro-
weak couplings as in Appendix A 4.

In Fig. 7, we plot the parameter space restricting the
mixing between ¢ — T and b — B versus the corresponding
VLQ masses satisfying EWPO, in accordance with the
expressions given before. The largest deviations arise from
the T parameter due to the large logarithm of (m;/m,)?,
yielding a wide range for the mass-mixing spectrum
compared to the S parameter for all multiplets. In analogy
with the case of sina = 0 behavior in the scalar sector,
decoupling between the VLQs and the SM quarks becomes
more prominent as myy o — O (TeV) scale. The behavior
of the decoupling zone due to larger values of 1y,  can be

2 .
seen from Eq. (51), -2~ ~ 7. This consequence can
myLq

always be viewed as a rule-of-thumb to explain why
EWPO constraints are already satisfied in the decoupling

(54)

limit. However, regardless of my; g, there are no model
parameter contributions to S and T parameters in the zero
mixing (sin @ = 0) domain.

The mixing angle in the singlet D; model, Fig. 7(b), is
much more relaxed compared to that in the /; model due to
the fact that up- and down-type mixings are exclusively
dependent on mass splitting between VLQ and the SM
quark as seen from Eq. (30). In fact, this holds true for all
models if the parameter space allows for b — B mixing. The
allowed space for r — 7" mixing in the {/; model matches
input values we used to assure the stability in type-I and
type-1I models, whereas scenario D; lifts the upper bound
of b — B mixing to a scale that cannot stabilize the
electroweak vacuum around mp > 1 TeV. Hence, the
stability requirements are more severe than the oblique
parameter requirements for singlets. The values of ATy g
in U, are always positive and accordingly have more
potential to compensate for the negative effect of
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©s00 1000 1500 ) 2000 500 1000 1500 2000
mT(GeV) mB(GeV)

(a) th (T) (b) D1 (B)

w0 1000 1500 200 500 1000 1500 2000
mT(GeV) mT(GeV)

(c) Dx (XT) (d) D2 (TB)

500 1000 1500 2000
mB(GeV)

(e) Dy (BY)
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mT(GeV) mT(GeV)

(f) Tx (XTB) (g) Tv (TBY)

FIG. 7. The allowed parameter space from EWPO: T fermion mass and mixing angle with the top quark for the singlet ¢/; model (a),
doublet Dy (c), doublet D, (d), triplet 7 y (f), and triplet 7 y (g) models. The B fermion mass and mixing angle with the bottom quark for
the singlet D; model (b) and doublet Dy model (e). Loop functions are calculated at energy scale u = m,.
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ATouapm, whereas D; features negative corrections to
ATy q. Thus, in terms of the oblique corrections between
both sectors, U, is capable of imposing more bounds on
My, My, and cos(f — a).

For doublets, the parameter space is larger than and
similar to D; except for D, where AS contributes negative
values. We should emphasize that, for cases where Syiq
contributes negatively to cancel the positive effect of
the T parameter, the allowed parameter spaces are effec-
tively enlarged as seen in Figs. 7(c) and 7(e) for Dy
and Dy models. In contrast, AS is positive in D, for
my > 645 GeV. We also observe the behavior from
Eq. (49), where the D, model does not contribute to
[flavor-changing-neutral-currents (FCNC) case] ZtT and
ZbB channels; hence, S is relatively larger than those in
other doublets. Among all doublet models only Dy has a
negative ATy contribution. On the other hand, ATy q
stays close to zero in the Dy model, making it more limited
for rendering AT,ypy negative, compared to the D, model,
where the correction ATy g > 0.08 yields my > 1 TeV.

Furthermore, at the TeV scale, the EWPO parameter
space of the D, model is in good agreement with the
vacuum stability requirements for 7 — 7 mixing, while
constraints in Dy and b — B mixing in Dy allow angles
beyond the maximum allowed in the stability analysis.

The parameter space of the triplet 7y model is quite
restricted, and ¢t — 7T and b — B mixing allowed by the
oblique parameters do not cross beyond the vacuum
stability requirements. However, for the model 7y, con-
straints are more relaxed, though sin@; > 0.2 only exac-
erbate the constraints on vacuum stability. The relaxation of
the mixing in the 7"y scenario compared to that in 7 y can
be described in terms of mixing relations Eq. (32). Since
up- and down-type mixing angles are not independent for

triplets, s} =~ f/_};i’g which enhances the Zbb coupling over

the one in 7y, and thus leads to more severe corrections in
S [133]. ATyyq is always positive in 7y, while 7 x has
positive corrections to the T parameter for my > 400 GeV.
As a consequence, the 7y model is more relaxed as it
compensates for the negative corrections in 2HDM, and it
expands the parameter space through combined analysis of
the oblique parameters.

VI. CONCLUSIONS

We analyzed the stability of the electroweak vacuum
resulting from the interplay between vectorlike quarks and
the extended bosonic sector of the two-Higgs-doublet
model by adopting various representations to scrutinize
the potential effects of vectorlike quarks on the Higgs
sector. In particular, our work zooms in the effects of
renormalization group flow that governs the energy scale

This relation is valid for the triplet model 7 .

and flavor dependent behavior of interactions in the theory.
Our investigation remains agnostic to specific parameter
choices, while restricting the mixing of vectorlike quarks to
solely with the third generation SM quarks. The core of the
analysis revolves around the delicate balance of the Higgs
potential stability. It has long been assumed that the SM lies
in a metastable state or there is an alternative mechanics
behind the absolute stability of the vacuum. In fact, there
is an effective approach to extend the Higgs sector of the
SM with additional scalar bosons, as allowed by certain
symmetries of the model. To this end, an auxiliary scalar
doublet is introduced here to ameliorate the SM vacuum
predicament. Using RGEs in 2HDM, we showed the
additional degree of freedom in the scalar sector enlarges
the parameter space that might preserve the absolute
stability of vacuum up to the Planck scale.

We then added all anomaly-free representations of
vectorlike quarks (two singlet, three doublet, and two
triplet representations). We showed that the inclusion of
vectorlike quarks, although analogous in their couplings
to SM quarks, has complicated consequences. Although
fermions contribute negatively to the couplings at the RGE
level, vectorlike quarks effectively modify pf-functions
through the gauge and Yukawa portals. Even though the
gauge portal effects are weaker than those of the Yukawa
couplings, the corrections are multiplicative with respect to
the number of fermions in the family included. A natural
and straightforward attempt could be to add more vector-
like quarks, considering their effect on gauge coupling
modifications. However, there is a relationship between the
number of vectorlike quarks and their masses that imposes
an upper bound on each, for which the vacuum can be
stabilized. If myy g is too large and n is too small, then RG
evolutions fall into the negative perturbativity region before
lifting it up. On the other hand, if ny is too large and my;
too small, RG evolutions are too strong and abruptly
diverge; thus, predictability is lost due to a Landau pole
around u < Mp;. Considering the strong gauge portal
alone, this imposes the upper bounds: my;q < 106 TeV
and np = [2,18]. Additionally, the hypercharge portal
vanishes either by increasing myy g, thus leaving insuffi-
cient RG evolution for the parameter space restrictions to
be operative, or by increasing ny causing a sub-Planckian
theory breakdown. Increasing the hypercharge limits ny to
small values and to a narrower interval. Thus, allowed
hypercharge values are obtained for the smallest number
of flavors np, and there is a fine-tuned mutual relation
between mass, flavor, and hypercharge of vectorlike quarks
that is capable to generate absolute stability of the vacuum.

We imposed perturbative unitarity and stability con-
straints for A;(x) and y;(u) in both type-I+ VLQ and
type-1I + VLQ up to the Planck scale. All VLQ represen-
tations require tan f§ € [6, 12] for the mass regime assumed
from both sectors, with small fermionic mixing
sind; < 0.2. Although larger tanf values might satisfy
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the stability requirements, we observed that they lead to a
heavy suppression of the quartic couplings in small
perturbation regions due to the coupled nature. Initial
conditions on A, in type-II + VLQ are stronger due to
the split of the Yukawa terms coupling to different scalar
doublets. Generally, type-1I + VLQs models require larger
scalar masses compared to type-I model counterparts.
Accordingly, for a given set of fixed parameters in both
types, the vacuum stability conditions are safer in
VLQ + type-II. Compared to T vectorlike quarks, con-
straints on the B-like fermion masses and mixing angles are
much more relaxed. This is simply a consequence of the
fact that the mixing between vectorlike quarks and the SM
quarks is described in terms of the inverse of mass splitting
between two quarks. Because of the excessive number of
negative quartic Yukawa terms appearing at the RGE level,
the constraints arising in bare 2HDM have to be enlarged
from the considerations above. To this end, we checked
both theoretically and experimentally allowed regions of
2HDM and VLQ models by preserving the validity of
2HDM up to the Planck scale.

We also scanned over EWPO and found the space for¢t — T
and b — B mixings versus the mass of vectorlike quarks that
includes stability regions, especially in the near decoupling
limit. Furthermore, since the scalar and fermion parts of the
oblique parameters are calculated separately and then com-
bined, we found that the upper bound on the heavier CP-even
scalar extends while preserving the vacuum stability con-
ditions, especially when combined with triplet VLQs. For
this reason, we assumed mass values of the heavier neu-
tral scalar beyond the limits of 2HDM oblique para-
meters. However, the extension of the upper limit of My
as cos(f} — a) approaches the alignment limit also confirms
the stability requirement on scalar masses near the Te'V scale.

Although mixing between CP-even states cos(ff — a) # 0
is allowed by the oblique parameters, the stability requires at
least near-alignment limit as cos(f — a) remains close to
zero. In fact, we observed that RGE running of 4, and 4,
deteriorate, and the condition for the potential to be bounded
from below cannot be satisfied as cos(ff — ) strays away
from the alignment limit. Accordingly, the lower limit on the
CP-even mixing angle from the stability and EWPO require-
ments also match the experimental Higgs bounds.

For the VLQ part of the oblique parameters, the allowed
parameter space for t — 7 and b — B mixing is largest for
cases where AS contributes negatively and we have shown

that, for all vectorlike multiplets, the EWPO constraints
lead to the alignment limit occurring naturally as
mypq > 1 TeV. In turn, constraints at a higher TeV range
from the oblique parameters become more consistent with
the stability requirements. Thus, the constraints to oblique
parameters from vectorlike quarks, combined with AS and
AS from the 2HDM, are VLQ representation dependent as
well as different for type-I and type-II 2HDM and can be
used to distinguish among different scenarios. In a specific
representation and model-type, these corrections may
indicate an allowed deviation from the required cancella-
tions, and this would impose further restrictions on the
extra scalar and its mixing with the SM Higgs boson.
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APPENDIX

In the appendix sections below, for completeness, we
give the renormalization group equations with respect to
type-I and type-II models studied in the text, as well as
expressions for the contributions of VLQs to the S and T
parameters, together with the Passrino-Veltman integrals
used. We also list the electroweak couplings of the VLQs of
different representations.

1. RGEs for 2HDM + VL Q: Type-I
a. Singlet U (T), Y=2/3

The relevant RGEs for the Yukawa couplings are

dy; _ yi (9 %_179%_%_892
ding> 1622\ 2 2 12 4 3
dy%:y% 97)]’24_%_‘_%_179%_979%_892
ding?> 1622\ 2 = 2 2 12 4 )
ding? 16227 " 2 20 )

(A1)

The Higgs sector RGEs, describing the interactions
between the two bosons, are

di, 1 391 , 993 391,99 39193
=—— =4 [ S 22 ) 1203 4442 Adgdy 247 222 T 2 g T
dln > 16712[ 1<4+4 M e e R I R
d 1 32 943
dlniﬂ: T [412 <6y,2+6y%—%—%> 1202 4 422 + Adsdy + 202 + 222
3 4 9 4 3 2.2
LT 9592—12y;‘—24y‘}—24y%y%],
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dis 1 391 993 2 ng2 g2
Jin 2 =17 225( 6y? + 6y% + 12y2, —5 =5 + 425 4+ 245 4+ 245 + (A + 42) (643 + 244)
391, 99 39153
da 1 397 945
dln‘; =162 {2/14 <6y, + 6y% + 12y2, — 71 5 ) +3g3g3 + 423 + 822 + 84344 + 244 (4 +/12)},
d 1 3¢ 95
dlnjﬂ T [215 <6y,2 + 6y2 + 12y3, — 7‘ 72 + 245(A) + Ay + 445 + 644) . (A2)
b. Singlet D,(B), Y=-1/3
The relevant RGEs for the Yukawa couplings are
dy;  yi (9 3z 1Tt 99 .,
3=\ T, T, T4 89 )
dinyu 167 2 2 12 4
ik (W 9% WSt 98
din2 1622\ 2 2 "2 T2 a4 %)
dyy Yie (i, gt 2
diny®>  167° o T — 895 ). (A3)
The Higgs sector RGEs, describing the interactions between the two bosons, are
d 1 397  9g 391 945 3929
=—— =40 [ S+ 22 ) 1223 + 43+ ddgA + 223 + 222 + =L 2
dln/’ 167:2[ 1<4+4+ AR T AT A +4+4+2
dA 1 32 9
= 6 [4/12 <6y? + 635~ = - fz> + 1223 + 403 + Ay + 202 + 202
391 992 39192 4 4
— 4 == —12y; =24
+ 16 + 4 0 3 Vi YB|»
dA 1 3 993
dln; 1622 [2/13 <6y, + 6y% + 123 —%—7> + 4253+ 223 + 222 + (A + Ay) (643 + 244)
391 99 3919
t T
dA 1 3¢ 93
dln‘/: pET [2/14 <6yt + 6y% + 12y3 —% —%) + 39795 + 447 + 822 + 84344 + 224 (4 +/12)}
dA 1 37 9¢3
dln; 62 [2/15 <6yt + 6y% + 12y2 —%—%) +205(A1 + A + 445 + 6/14)] (A4)

Finally, the coupling constants gain additional terms due to the new fermion, for both models ¢/; and D; with singlet

fermions as follows:
4 2
7 , -7+=].
(+%) (-7+3)

15

dg; 9

gt _ _gi _ 9%
diny® 16x°

_ di 43
ding 167

diny?® 1672

(=3), (AS)
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c. Doublet D, (T.B), Y=1/6

The relevant RGEs for the Yukawa couplings are

dyt vt 9y? ot | 3 1797 9¢5
= R Ty 72 )
dln 2 16n'2 Tt Py
dyz 9yt 9yT 3y3 1797 9¢5
= e e T J -l
dln 12 167z Tyt Ty T80
A 9y 3yT 9y% 508 94
- 3 2 — _1 _ _2 _ 8 ,
ding® 1622\ 2 i m T, Ty 8%
dy3 11y2 19¢>  9¢2
e " 1 n2<y R T T8 ) (A6)
The Higgs sector RGEs, describing the interactions between the two bosons, are
di, 1 32 983 391 | 99 | 3919
=—— (=44 [ =+ 2 ) + 1203 + 422+ ddsdy + 203 + 22 + =1 2 1921
din 2 16;12[ <4+4 T2 AL A A 24 25
di, _ 1 391 993
in2 " 162 [4,12 <3y,2 + 6y7 + 6y3 iyl s 1223 + 423 + 42324 + 223 + 222
391 99 | 3919
ot T 12y] = 24y) - 24y - 24y]yE - 245 |
d: 1 32 942
dmLZ o [2,1 ( Vi + 637 63 + 1255 =t = TF ) + 42 4+ 20 + 25 + (4 + 4) (643 + 2A4)
391, 993610
4 ' 4 2 |
dl 1 3 2 9 2
pTyrbT [2/14 <3y? + 633 + 633 + 123, — 5 - 292> +3G2GE + 402 + 82 + 82y + 2y + /12)} ,
di 1 32 942
—dlnjﬂ = 1o |:215 <3y1 + 6yT + 6)’3 + 12)’M 21 22 +225(A + Ay + 423+ 644) |. (A7)
d. Doublet Dy (X.T), Y=7/6
The relevant RGEs for the Yukawa couplings are
dy;  yi (9 | 37 % 179t 9¢3
dngZ T62\ 2 T2 T PMT T T T
L%: y% 9_))%4_%_'_%4_3);2 _5_9%_9_9%_8!]2
ding® 1672\ 2 2 2 M2 4 )
dyx  yx (9 9%, 37 173 93
= = | — -4 P 3 2 _ _1 — _2 _ 8 2 ,
ding le2\ 2 T2 T M T T 0
Ay Y 1y}, 6791 993
ding? 1622 VYRt g T, T8 ) (A8)
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The Higgs sector RGEs, describing the interactions between the two bosons, are

di, 1 391 99 2 2 2 2 391 993 39192
= A () 1222 4 422 4 Adgdy 223 + 222 + L ,
i, 16”2[ 1<4+4 + 120 A+ Ak + 205+ 25 + T 2
d 1 32 9
dln; o [4,12 <3y, +6y2 + 6y% — % f) 128 + 422 + Adghy + 243 + 222
30 9gt 3
+%+%+ gég%—IZy?—24y§—24yr 24y7yt - 24)’){)’4,
dls 1 3¢ 943
ding 162 [% <3yz + 6y7 + 6% + 12y3 —71—1—02 AR5+ 225 + 222 + (A + A) (645 + 244)
REL UKL
4 "4 2 |
diy 1 3¢ 9¢3
2,3y +6 6 12y3, - =21 =22 13 422 4 822 + 8A3dy + 244 (2 + 4
dIn 2 162[ 4<yz+ yF + 6y% + > T 10 + 39195 + 445 + 843 + 84344 + 244 (41 + Ao) |
d 1 3¢ 93
dln; o [215 <3y, +6y2 + 6y% + 12y2 —%—1%2> +25(4 +/12+4/13+6/14)].

e. Additional non-SM-like quark doublet Dy (B,Y), Y=-5/6
The relevant RGEs for the Yukawa couplings are

R 9)71 9% | 3 17gi 993

— 22t ZVB 3y2, ——JL_ 772 _ g ,
dng l62\ 2 T2 T WM T Ty &
dyy V1 9)71 g . 3y 1748 943
ding® 1622 2 T Wy — 8
dyy ¥y 3)71 9y, 3vE 59 99

— RCANNTNGCS Ty R NV =0 W R ,
ding 162\ 2 T2 T T T Ty %
dyi _ Y y2+y2+%—£g%—9—g%—8g2
ding? 1622 \"" 7B 2 40 2 3

The Higgs sector RGEs, describing the interactions between the two bosons, are

dﬂl 1 391 992 2 2 2 2 391 992 39192
= (PR ER) 0 42 Aaga 22 422 4T T
dln 2 16;#[ <4+4 M R e A R R T
da 1 3¢ 9g2
dln; =2 [4/12 (3y, +6y2 +6)2 —?—f) 1222 + 422 + Asdy + 202 + 222
391 995 3919
+Tl+ 42+ é — 12yf = 24y — 24y5 — 24y3yy |,
da 1 3¢ 9g
dT;z:@[2/13<3y,2+6y%+6y§+12yﬁ4—71 22>+412+212+2,12 (A1 + A2) (645 + 244)
391 995 39195
4 s T2 |
da, 1 397 993
dlnjﬂ = [2/14 <3y,2 +6y3 + 63 + 12)3, — % - %) 3PP + 42 + 822 + 83y + 204 (4 +/12)},
dl 1 3¢ 9g2
s 122532 693 4 633 123, — 2 2R 0002y 4 A+ 4+ 60) -
diny®> 167> 2 10
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The coupling constants gain additional terms due to the new fermion in all doublet models as follows:

dgi _ 4t 6 dg3 _ 9 dii 4 4
_ 742), - —342), = “T4+=). Al12
dlny®> 167° +5 d1n p? 1671'2( +2) diny® 167° +3 ( )
f. Triplet 7y (X,T.B), Y=2/3
The relevant RGEs for the Yukawa couplings are
dy% — ytz %+%+%+%+%_17g%_97g%_8g2
ding?  167%\ 2 2 2 2 2 12 4 )
dy% — y% %+%+%+%+%_17g%_9ig%_892
ding?  167% \ 2 2 2 2 2 12 4 )
Di (0 0% 9% W b as 98
ding?  162%\ 2 2 2 2 2 20 4 )
dy% — y% 3_ﬁ+%+%+%+%_ﬁ_9_g%_892
dlny®  167% \ 2 2 2 2 2 12 4 )
dyy Vit 2 2 2 15y 4lgi 993
M _ M — L 2R g2, Al3
ding 1672 WX TPV TT m T 00 (AL3)
The Higgs sector RGEs, describing the interactions between the two bosons, are
d, 1 391 99 391 993 39193
=—— [=4A =+ =2 ) + 1243 + 403 + dhsdy + 205 + 222 + = =2 22
ding® — 167* | ‘<4+4 R R e e R A R
dA | 3¢ 943
dlnjﬂ T 4,12<3y,2+6y§+6y%+6y§— gl —292) + 1223 + 423 + 42304 + 205 + 222
341 , 995 4 4 4 4 2.2 2.2 2.2
- + > + 39%9% — 12y} = 24y% = 24y = 24y, — 24yryy — 24y — 24yyy7 |
dis L 2 2 2 2 2 2 2 2 2 2
dln/ﬂ = @ 2/13(3)% + 6y7 + 6yx + 6y + 12y3, — 397 — 992) +445 + 225 + 2}“5 + (/11 "‘/12)(6/13 + 2/14)
3¢t 9g?
+71+72—39%9% )
dlq 2 2 2 2 2 2 2 2.2 2 2
in )2 =l [224(3y7 + 6yx + 6y7 + 6y5 + 12y5, — 397 — 9g3) + 69795 + 445 + 845 + 8344 + 244 (A + 4],
dA 1
dlniﬂ = T2 (2As(3yi 4 637 + 635 + 635 + 12y = 391 = 93) + 245 (41 + 4o + 445 + 644)]. (A14)
g. Triplet 7y (T.B,Y), Y=-1/3
The relevant RGEs for the Yukawa couplings are
dy; vt (97, 9, 3k 3y 179 99
= [, = D 1 3 2 _71_72_8 2 ,
dng 162\ 2 T2 T Ty PN T T
dyr _ vi (1 9t 3 Dy 179t 99
_r o Jr (22 20T OB 2UY 32——1——2—82,
ding 162\ 2 T2 Ty Ty PN T T T
dys _ vp (3% 3r O, O, Wu S0 9% g,
ding?>  167% \ 2 2 2 2 2 12 4 3
dyy vy (v W i 3% 1791 993
= = = - 4 3 2 __1__2_8 2 ,
ding 162\ 2 T2 T Ty M Ty T, T
Ay _ Y (220 Y g 99
M — LR g2, Al5
ding? 16 \MT YT T T 50 T T 0 (AL3)
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The Higgs sector RGEs, describing the interactions between the two bosons, are

dhy ! 391, 99 39 995 3445
=—— | =4 S+ 22 ) 41223 + 43+ Ahshg + 223 + 222 + S =2 1)
din 2 167:2[ (4+4 R R I R C I R S
di, 1 37 945
ding 1622 [4/12 <3y? + 6y7 + 6y + 6y5 —7'—— + 1203 + 423 + 4304 + 223 + 242
3¢t 94?
+7'+7+39292— 12yf = 24y‘}—24y‘1‘;—24y‘}—24y?y2r—24y%y%—24y%y2y],
s ! 2 2 2
din 162 23(3y7 + 6y3 + 6% + 6y3 + 12y3 — 37 — 9g3) + 443 + 243 + 222 + (A + A) (645 + 244)
3g1 992 5 5
2L ) 3 ,
+=+
dhs 2 2
ding? ~ 16x 5 [224(3y7 + 6y7 + 6y + 6y5 + 123, = 397 — 993) + 64795 + 425 + 823 + 8Aa3dy + 224 (A + o)),
di
dln; 167 5 [225(3y7 + 67 + 65 + 6yF + 12v3; — 397 = 993) + 245(4) + Ay + 443 + 644)]. (A16)

The coupling constants gain additional terms due to the new fermions in both triplet models as follows:

dgi g 1 dg 6 dgs 4
= T+<). =5 (344), =5 (-T4+2). Al7
diny®  16x° T3 dlny? 16ﬂ2( +4) dln 2 167:2( +2) (A17)

2. RGEs for 2HDM + VLQ: Type-1I
a. Singlet U (T), Y=2/3
The relevant RGEs for the Yukawa couplings are

dy? y? <9y? 0 179t 995 2)
9yi 2),

ding®  16x° 2 12 4

i A (%% % 2 TR 9,

ding® 1622 2 T2 T2 T 7))

Ay v (o, u_ 4ag

ding 162 T T2 "0 7% (A18)

The Higgs sector RGEs, describing the interactions between the two bosons, are

iy, 1 32 9 391 995 39193

=—— =4 1203 + 43 + 40304 + 203 4222 + = 4 =24 =122
diny? 16;:2{ 1<4+4 LR R e R R T R
d 7?9
dln; ok P {4/12 3y? 1 jz>+12,12+4,12+4/13/14+2,12+2,12

391,99, 39195

+1—61+ =~ 12y =24y =24y, = 2417 |
A 1] (324652462 3095 | 4z 40224202 4 (4 ) (60 4+ 200) + 20 1 092 BTGBy 0 0
ding? 1622 | Oy Oy — =T | A AL 5+ (A1 +42) (645 + 4)+T+4 o T2
di 1 32 9g
dln;2:167[2 2/14<3yt +6yT+6yM—71—72 +3g]gz+4/12+812+8/13/14+2/14(11+/12)—|—24yTyM
d 1 32 9g2
dlniﬂ:@ 2/15<3y,+6yT+6yM 21 22>+2/15(/11+/12+4/13+6/14)]. (A19)
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b. Singlet D,(B), Y=-1/3

The relevant RGEs for the Yukawa couplings are

dy? ¥} <9_y? v 1748 943 892)
3 k]

ding? 1622\ 2 2 12 4

dyy _ i (¥ b Wy 5% 9% g,

ding> 1672 \2 2 2 12 4 )

dvii _ v (9 2 g1 2 (A20)
ding® 1672\ 2 B 20 )

The Higgs sector RGEs, describing the interactions between the two bosons, are

dA 1 I 3¢ 92 3¢ 94 32
dln;ﬂ = |4 (%Jr%—@%) 1202 4422+ Adyhy + 202 + 222 +%+%+%_24y2 _ 24%}
b ] -4,1 3y2_ﬁ_9_g% + 1223 + 423 + 4434 +212+232+ﬁ+9—£+—3g%g%—12y4
ding? 1622 | 2\ 4 4 SO R e S R TR 2 ik

dA 1 3¢ 9¢3
dlnjﬂ =162 | (3y% + 6y3 + 6yy, —7‘— 72 + 423 4227 + 222 + (A4 + 22) (643 + 244)

3 4_ 9 4 3 2.2
+ 2 —24y%y%4],

da 1 32 9%
dln;:z =162 [2/14 <3y% 6y + 6y = =t =7 ) 39103 + 445 + 843 + 82y + 224(h1 + 42) + 24¥53 |

di 1 3 2 9 2
pTyr R [2/15 <3y% +63% + 6% — 51 - %) +205(Ay + dy + 4y + 6/14)} (A21)

Finally, the coupling constants gain additional terms due to the new fermion, for both models ¢/; and D; with singlet
fermions, as follows:

dgi 4 4 dgs 45 dgi 43 2
_ = 7 _— s == —3 N = —7 - . A22
diny®> 167° + 15 dlnp? 167:2< ) diny*> 167° + 3 (a22)

c. Doublet D, (T,B), Y=1/6
The relevant RGEs for the Yukawa couplings are

dy? i (Wi Y7, VB 179 9g3
U (2 T By 32 DI 292 g ,
dng 1622\ 2 T2 T M %

dy;  yi (9, 97 Vi 179t 993
- 20 DT Ve g0 T Zh g
dng 162\ 2 T2 TR My Ty %
dyg  yi (3 v 9 59 993
— “Jt )T | 7B 3 2 __1__2_8 2 ,
ding 162\ 2 T2 Ty PN Ty T T
dyy Y (2, o 1y 199 993
M M Pl TI2 g2 ). A23
ding 162 T T Ty Ty T (A23)
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The Higgs sector RGEs, describing the interactions between the two bosons, are

dln; =13 {411 (6 2 % §2>+12@2+4A2+413z4+2ﬂ2+242+%+ fu 95"2 24yt —24y232 |,
dl, 1 3 92
din 1622 {%( —ﬂ—%> 123+ 423+ ddydy+ 273+ 22
3 A 9 3 2.2
H T =20 -2 24yTyM}
Ay 1

391 993
= (223 ( 3y2 6y} +6y3 +6y3 — 21— 22 ) 4 A3 4223+ 222 + (A + A) (643 +244)
ding? 16z 2 2

3g1 945 39193
T Ty T A 24y |

A, 1 3¢ 93
S 120, (392 4 62+ 6y 6y, =22 3202 4 432 4 8A2 4 8y 20 (A ) + 24303, +24y20, |
ding® 167 2 2

dis 1 391 993

d. Doublet Dy (X,T), Y=7/6
The relevant RGEs for the Yukawa couplings are

- (P B -2 g),
s
dciryl’z;:%(%+y§+112y%4—6z—g%—97g%—8g%)- (A25)

The Higgs sector RGEs, describing the interactions between the two bosons, are

dﬁ;tz :# :411 <6y% —349%—9295> + 1227 + 425 +43A + 225+ 275 +%+9jz +@_24 4 —24yTyM}
dﬁ; :# :4/12 <3y? +6)% —349% 9%) 122342+ A dy + 203+ 202 +%+952 +3’§gz— 12y} - 24y} —24yxyM]
dcllj;z :# :2&3 <3y% +6y2 +6y% +6y3, —33% 9{%) FAB 4224222+ (A +42) (645 +224)

258 I3 - z4y;y§4 ,
dcllj;z —ﬁ [ z <3yt +6y7+6y% +6yi, —379%—91—@ +3G1 5 +425+ 83482344 + 244 (A1 +42) +24y%v% +24yTyM]
dclljiz —# [2/15 <3y? +6y7 +6y% +6y3 —%g% 9]g02> + 225 (A + A2 +445+644) . (A26)
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e. Additional non-SM-like quark doublet Dy (B)Y), Y=-5/6

The relevant RGEs for the Yukawa couplings are

dy% — ytz 97))’2+%+y7%+3y2 _1779%_97*9%_
ding® 16722\ 2 2 2 Mo 12 4
dy% — y% 3_))%_’_%4_&_’_3)72 __179%_9_‘93_
ding® 16722\ 2 2 2 M2 4
dyy ¥y (3 97 VB 591 99
_y _Jy (2 Y JB 32 Tl 7I2 g2
dng 162\ 2 T2 T M Ty T T
iy Yu (o, o, 1y 439 99

= —_____8 2 X
ding 162 YT T T T T

The Higgs sector RGEs, describing the interactions between the two bosons, are

(A27)

dy, 1] 3¢ 952 391 993 3419
o _ 1y (324632022 4 1231422 1 41y, 22 422+ 204 22 30T 154 out_oaiaia
W—@_ 2 v+ VBT T4 + 124 443+ 44344 + 245 + 5+T+T+T— Vi —24Yp—24YpVum | »
dA 1| 3¢ 9¢3
dT;Q:@ 2z3<3y%+6y§+6y2y+6yﬁ4—7'—72 +423+ 2234222+ (4 +42) (643 +244)
391 995 39195
Ty AR 24 |
a1 (3524633 + 633653~ 22 L3R 1 422 1 872+ 81y + 24 (s 1 Ao) - 249302, + 24393
a2 1622 | Vit Oyy FOYp OV =57 =57 | T9G1G5 T 445 T 045 T 04344 F 4(A1+42) +24y5vi + 2497y |
dis 1 391995
dinZ 167 [2/15 <3Yt2+6)’%/+6)’23+6)’12w—7—7 +245(A +2 +423+644) |- (A28)
The coupling constants gain additional terms due to the new fermion in all doublet models as follows:
dgi _ gt 6 dgs _ 9 dgs 43 4
= 7+-, = -3+4+2), = -7+-). A29
dlny?> 167° +5 dlnp? 167[2( +2) diny®> 167° +3 (429)
f. Triplet 7y (X.,T.B), Y=2/3
The relevant RGEs for the Yukawa couplings are
dy% — y’z %+%+%+ﬁ+%_l7g%_9ig%_8g2
ding?  167%\ 2 2 2 2 2 12 4 )
dy% — y% 9_)’?+%+9L%+@+%_17g%_9_9%_892
dlny?  167% \ 2 2 2 2 2 12 4 )
D3 _h (9 9% 9% Y 4R 98,
ding®  1672%\ 2 2 2 2 2 20 4 )
dy% — y% 3_))124_&_’_%4_%_’_%_5_9%_9_9%_892
ding? 1622\ 2 2 2 2 2 12 4 )
dyy Vit 2 2 2 15y} 4lgi 995
—% = =M _ a2 _84%). A30
ding 1672 WX T YT m T 00 (A30)
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The Higgs sector RGEs, describing the interactions between the two bosons, are

din2 167 [411 (6y23 + 637 — =) 1240 + 45 4 4l + 203 + 23
39t 943
+ S+ + 30t — 24vh — 24y - 24v5i, — 24910 |
iy 1 39t _ 99
T2 162 [4/12 (3y? + 63k + 697 =51 =T ) + 1245 + 48 + ddady + 275 + 243

391, 99
+ 52 30105 — 12yF = 24y% = 24y% — 24y7yF — 24y3viy — 24930 |

da 1
dlnjﬂ =162 [2/13(3y? +6Y7 + 6y% + 635 + 6y = 397 — 993) + 443 + 245 + 245 + (41 + 4) (643 + 24)
341 , 995
+ 52— 3013 — 24y505 — 24Eyh — 24Y5i |
diy 1 L
2 = T2 2443y + 60k 657 + 6y + 6y = 397 = 993) + Ogig5 + 443 + 8% + 8hady + 244(4s + 4y)
+ 24y3v3 + 24v7yiy + 2495y,
di 1
dlnjﬂ = T2 (P30T + 67 + 63% + 6v5 + 6y = 391 = 993) + 225 (1 + o + 445 + 644)].

g. Triplet 7y (T.B,Y), Y=-1/3
The relevant RGEs for the Yukawa couplings are
dy; vt (9, 97 v
et At (2t Ay 7B Y 32 I ZI2
dng 162\ 2 T2 T Tt Ty

9y7 9)’% 9)’123 Y%/
32
MR R T

dvi _ i
diny?> 167°

dvg _ vp
diny?> 167°

dy% = y% +9y%+3_ylz+ﬁ+3y2 __]79%_9_9%_
diny®>  167° 2 2 2 M—20 4
dyy ﬁ 2 432 42 15)’%4_179%_9_9%_8 2
ding2 1622 T T E T T T T g Ty T

The Higgs sector RGEs, describing the interactions between the two bosons, are

di 1 37 9
T = 167 {4,11 (6y§ +6y2 — =)+ 122 + 422 + 4dyy + 203 + 222
391 945
+ 57 3010 — 24y — 24y) = 24vRvy, — 24y |
di, 1 39 993

391, 995

+ 50+ + 39105 — 12yF — 24y} — 24y} — 24y7yy — 24y3y, — 24y%y%4] ,

2 2
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dA 1
dln; =17 |24 (357 + 6% + 6yh + 635 + 63y — 301 — 993) + 445 + 24 + 25 + (A + 22) (64 + 244)
391 , 993
+ 57— 30105 — 24y — 24vRyh — 249y |
diy 1 2 2.2 2 2
in 2 T 224(3y7 + 67 + 6y% + 6y3 + 6y3, — 397 — 993) + 69795 + 425 + 812 + 84344 + 244(A; + 4»)
+ 24y7yiy + 24ypyiy + 24y7Vi)s
dA 1
dln; = 15 (225357 + 67 + 635 + 633 + 633 = 307 = 963) + 2A5(41 + Ao + 445 + 644)]. (A33)
The coupling constants gain additional terms due to the new fermions in both triplet models as follows:
dgt _ 4 4 d3 _ 9 dgz 43
= 7+- = -344), -7+2 A34
dlny?> 167° +5 ’ dlnp? 16712( +4) dlIn p? T 167 7 (=7+2). (A34)

3. Approximate contributions of VLQs to the S and T parameters in VLQ models

We give the leading order terms for right-handed and left-handed contributions to the VLQ oblique parameters in singlet,
doublet and triplet representations.

a. Singlet U (T), Y=2/3

2 t\2 2
m,NC(SL) 2 my
AT~ 2 L7 t\2 _ (A2 _ 1 4(ct 2 In ’
16ﬂc%4,s%[,M% (x7(s2) (1) +4(c) m%—m,z_ (x7)

NG [ (eh)? LA S o e sag]
AS ~ 18 G =17 = [2In(x7) (3 = 9xF — 9x7 + 3x§) + 5 — 27x3 — 27x3 — 5x§] — 21n(x7) ). (A35)
7[ —_—

b. Singlet D, (B), Y= -1/3 e. Doublet Dy (B.Y), Y=-5/6
m?N .x
~Tonct 2072 (e ) (D) (= 1) = 2(s2 P InCxp). 2
NASR T fm AT NS 160034 DeothIn(ch))
As==o L {21 ( ”)(3<sg)2—4)—5(cg)2 . (A36) 128mciysyMz
g e +55(=13=20c% +4c¥)],
N, )
~ 18L [—4s§' In (ﬁ) +11s% —2In(x,) —=3[. (A39)
c. Doublet D, (T.B), Y=1/6 g "
2N 1\2
AT ~ ”“27(2592 21n(x;) — 2],
ey syMz

N, : _
AS = 85 Inxr) = 75 —2In(x,) 3] (A37) . Triplet Ty (X.T'B), Y=2/3

d. Doublet Dy (X.T), Y=7/6 AT~M 121n(x )—10+1—9(s’ )2xg—(sh)72
’ XAt 1673 s3,M2 T 3 VBT LS
miN.(sg)* 4 p - as= e 41n(x7) — 161 13
AT = a2 1)+ O3 et sk | i | L [0 e )
m
A§~N?[ 8st In(xy) + 15sh —21n(x,) —3].  (A38) +321n<m—l;>—21n<xb)—3}- (A40)
T
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g. Triplet 7y (T ,B)Y), Y=-1/3

2 t\2
thc(SL) 19 —
A—ﬂ—ﬁm —ln(XT)+6+E(SZ)2x%_(Si) 2 .
N, m 13
AS~—d(s4)2 4| =2 ) —41 -
s {602 [am (2] = 4tnGar) 4 5
—21n(x;) —3}, (A41)

where x; = Z~ for all representations.
t

4. Electroweak couplings of VLQ and the SM quarks

The couplings of the Z and W-boson to VLQ and to the
SM quarks play distinctive role for each representation.

a. Singlet U, (T), Y=2/3

t
ec e , 4
oL, =—*t QL, =——|c —55
Wtb \/ESW’ Ztt 2SWCW L 3 w >
2esy
Qf =0 QR — "%
Wtb ’ Ztt ’
3CW
t
QL = —eSL L = —e St2 - ﬂS2
9 b
WTb \/isw ZTT 2swew L= 3%
2es
R  _ R w
Qyrp =0, Q7rp = — >
3CW

e 2 esy
Oy =5—— <§S%V - 1>, Oy, = 3y’

- 2SWCW
est ¢l
QétT = 25;0; s QIZQzT =0. (A42)
b. Singlet D,(B), Y=-1/3
ect e 4
QL — L , L _ 1—= 2 ,
Wtb \/ESW Ztt ZSWCW ( 3 SW>
2es
QF, =0 QF =-—"",
Wtb Ztt 3CW
esb e 2
QL — L , QL — <_ §2 b >,
WitB \/ESW Zbb 2SWCW 3 w L
eSw
Q€VtB =0, ngb = E
e 2 > esy
QéBB:m<§S%V_SlLJ>’ Q§BB:3CW7
es?c?
QébB = _2s;c;}’ ngB =0. (A43)

c. Doublet D, (T.B), Y=1/6

e e 4
L _ t bt b L _ 2
Qyyp= (sps7+cper)s QZtt_z <1_§5W>v
\/isw SwCw
t b
QR — SRR Q§ - sz—is%v
Web — ’ [T 4
\/ZSW 2SWCW 3
e e 2
L _ t b bt L _ ‘2
Qyrp, = (sper=sier), QZhb_z <3SW 1>,
\/Esw SwCw
bt
QR SRR r __ € %sz _gP
- £ - £
WTh \/Esw Zbb 2swew \3 W TSR
e
L b .t t b L
QWtB—\/zs (spcp—sicr), Qzr=0,
w
t b t At
OR __SRCR R _ _ ©SRCR
WiB = ) ZiT — )
\/zsw 2syew
e
L _ t b t b L _
QWTB_—\/QS (spspteper), Qz,=0,
w
t b b .b
R _C€CRCR R _ ©SRCR
Q S"RER SPRYR
WTB — LY/ )
\/ESW 2SWCVV

e 4 e 2 4
Qérrzm (1 —3S%v> . Q§T72m (Cﬁe —353/> .

e 2 e 2 2
‘QéBB:m<§S%V_1>’ Q§Bgzm(§s%v—cz>-
(A44)
d. Doublet Dy (X.T), Y=7/6
ect e 4 2
Ql‘/i’tb:\/i:w’ Qén:2swcw(l_§s%’V_2stL>7
e 4 2
Qy, =0, Q7, 25wew (gs%v“'s;e)’
QL _ esz L € % 2 1
WTb NG W’ Zbb = D g rew \3°W ,
es
o, =0, OF, ="
WTh Zbb = 3,
es’ esh ¢l
QL — L , QL _ L L7
W \/isW SwCw
OFf esh R €SpCh
WX \/ESW’ ZtT 2SWCW,
ect e 2
Q%Vszz—LW’ %TT 2swew (1 _gs%v CIL>’
ect e 2
of — %R oF 2y
WTX —\/Esw ZTT 2swew <CR Jr35W>
e 10 e 10
XX 5w (1_35%4/) Qfyx 25 CW< _3S%V)
(A45)
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e. Doublet Dy (B.Y), Y=-5/6

% (stc
\/§SW L™L

\/— Sy (SLSL + \/_CLCL)

e (o 3o
2spew U E 37V )

t b
ecpCh Of . _ _2esy

cw ZIT = T 3L

W W

t
ec e 2

L L 2 b?
— Q21919——2 gsW_CL L),
Sw Swlw

t
€Cp OR ¢ %sz _ ook

b b

Sw ZBB 2swew \3 W R

(A47)

g. Triplet 7y (T,BY), Y=-1/3

\/_ o (\/-SLSL + ¢t ch),

< SR
=——|—5s s ,
2SWCW 3 w L

eshsh OF e 0yt 4,
=— (25 — 55
’ Ztt 2SWCW R 3 w |

e
:\/zs <SLCL \/_SLCL)
w

__ ¢ 2, b?
_2SWCW<3SW CL)

b

t
espCh esy

ey
L— \/ESLCL)

b QR -
Sy Zbb

t At
esycy

L
'QZtT - ’
ZSWCW
b

1 ot
espCp espCh

R _ _
) Q7 = )
Sw Swlw

b b b
esy QL _ _ i
’ ZbB —

Sw 2SWCW’

R _
’ QZhB - 0’

\/— S (SLSL \/_CLCL>

e 4 ) 2
— | —= 1
2SWCW< 3SW+CL+ )

b
eCRCR OR  —
) 71T =

L
Qyrp =
QLb_& L —L<1—A—tsﬁ,> L
Wib — ’ i ’ =
V2sw 2syew 3 Qrr =
2es
R _ R _ W
Q. = 0, Q7 = — 3cw QR . =
Cyw WTB =
b
es e 2 2
QL = L N QL = *Sz +2Sb -1/,
L 26h = 3w \3°V L QL. =
e 2 2
QR =0 QF = — (s 4253 ), R
WBt Zbb 25wew R T 3°W Qyrx =
b b
QL o es; QL 7_6SLCL I
Wby = ] ZbB — ’ =
Vs Swew Q7xx
b b
QR — _ %k OF  — _ ©SROR QR
Wby = ’ 7ZbB — ’ =
Vs, 25y ZXX
b
ec € 2 2
L - L L _ 2 b
Qypy = = 7BB = 3Sw 2 = 1),
\/QSW ZSWCW 3
b
ec e 2 2
R - R R _ b 2
QWBY_—’ QZBB_ CR +_SW B
V2sw 2swew 3
e 8
QL . — 1—=53
ZrY 28wew 37w Qlthb
e 8
R 2
Qzyy = 3 (1 - §SW> (Ad0) L
Swew Zit
f. Triplet 7y (X.T.B), Y=2/3 Qf,, =
; L
Qi = \/_ (V2557 + ciep), Qir
Sw
e 2 4
QL =—— |t —=s% ), Q;
Zit 2swlw L 3°W zbb
b
oF eshsh OF _ _2esy OR — _
Wib — s Zt — 3 ’ WTb —
Sw Cw
e
L _
Qyyry = V25w (s.ch —V2shel), Qfyp =
Sw
e 2 2
QL = 7S2 Sb - 1 , R = —
Zbb = g e \3°W 0L Qyp =
b .t
eshc e 2 )
QR _ __"R"R QR = — —SZ - 2Sb L =
WTb sw o 2 2swew \37V k) iy =
t at
e esic
QL sbet — /25t ¢ QL =k R —
WiB = V2s W( LCL rer). 2L T Qupy = —
b
eshe
R _ R™R R _ i
Qg = — > Qzir =0, i =
Sw
¢ b b
of . _ % oL _ &Ser QL. =
Wix — T s ZbB — ’ 2
Sw 2syew
QR __esR QR _eSRCR QR
wix = ) ZbB ’ WIB =
Sw SwCw
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b

Qfypy :%7 755 :ﬁ <§S%V_SIZZ>

Q§/BY = %, Q§BB = ;zzvv’

Q%YY = ZS;CW <Z—§sﬁv>,

Q8 = 2s;cw (2 - gs%,) (A48)

5. Passarino-Veltman integrals

Although a more detailed discussion about Passarino-
Veltman reduction appears elsewhere [134], we give a
generic one-loop tensor integral as the following:

T = (2”5[)24—D / P %1 .. g) ’ (A49)
where the propagators are described by
D, = p? - m1 + i€,
D, = (p +q1)> — m3 + ie,
D3 = (p + g1 + g2)° — m3 + ie. (AS50)

After factoring out the i/ (167:2), scalar, vector, and tensor
functions are defined from the generic one-loop tensor
integral Eq. (A49):

_ d’p
A(ml) :,l/l4 D/(zﬂ')DlDl )

[Bo. B, B*](qi. mi. m3)

,u4—D/ d®p (1, p*, p"p*]
(271')D [DID2 ’

2

[Co. CH, CW](Qp CI2 (g1 + Q2) ml, my, m%)

_,Ll4_D/ dp [1.p".p"p"]
(Zﬂ)D D1D2D3 ’

(AS1)

Scalar and tensor integrals are not independent. In fact,

tensor forms can be decomposed in terms of scalar

functions:
B* =¢/\B,,

C' =q/Ci + ¢,C,

2
B = q{qiB + ¢ B, O = q'qCii+ 4" Coo.
i=1

2
o = Zq,qj Cin+ > _(d/9°+a " +q0¢"™) Co.
i=1

i,j.k=1
(A52)

Scalar integrals or vacuum integrals play a main role for all
intents and purposes throughout this work. Furthermore,
there are only four types of independent scalar (vacuum)
integrals. The rest of the vacuum integrals carried out
throughout this work are combinations of the following
definitions:

2mu)¢ 1
A 2\ ( /dD ,
O(ml) i7Z'2 P pz — m%
(27u)¢ 1 1
Bo(q3,m?,m3) = = d°p
oM T TR in? [p? =mi] [(p + q1)* = m3)’
(27u)* 1 1 1
Co(q1. 3. qiy» mi, m3, m3) = == d”p :
e | (PR i P s
Dol 33 i et ) = O [ o 1 1
’ in’ [p* = mil[(p + 1) = m3] [(p + q12)* = m3]
1
X ; (AS3)
[(p + q123)* = m]]
where € = 4 — D. Explicit analytical expressions of widely used PV functions are defined as
m>
Ao(mz) = m2 <A€ + 1—1In ”—2> 5 (A54)
2 oy Ag(mp) = Ag(m3)
By(0. my, my) = 2 2 ’ (A55)
my —my
2 2 Ag(m7)
(0, my, my) o 1, (A56)
1
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Ao(m%)

By(m3,0,m?) = - +1, (A57)
1
2y’Iny, —4y,Iny, —y3 +4y, -3 1. m? A,
B, (0,m?, m3) = - ~In— -=*° A58
1( mj mZ) 4(y2 _ 1)2 +2 n'uz 2 ( )
Boo(m2, m2, m2) = (my = my = m3)(my + my — m3)(my — my 4 m3)(my + my + m3)Bo(m7, m3, m3)
0T T T 4(1 = Dym?
L Am3) o 3 =) _ Aom) (i ) 5o
4(1 = D)mj 4(1 - D)mj
Ag(m3)  m3By(0,m3,m3) (m3—m3)B,(0,m3, m3)
Boo (0. m2. m2) = — 20\"3) _ My0000, My, ) 1) 3) 510, My, M) A60
Ag(m*)  m?By(0,m?, m?)
Boo(0, m2, m?) = — =2 - i e A A61
2 —4m3)By(m?, m3,m3)  Ag(m3)
B 222:(’”1 2)Do\IMy, iy, mz)  Ao\N; A62
ooy, 3, m3) 4(1-D) 2(1-D)’ (462)
I y1 -yl - 1 |
Colm?, md m2) = _2)’2 Ny, —yzlnys —y,y3Iny; +y,y3 ny3, (A63)
mi (2 =)y = 1) (2 = y3)
Il Iny, =y, +1
Co(m2,m2,md) = — 22" 2 0 A64
(UANSAS | 2 2) m% (yz— 1)2 ( )
2 2 0 1
Co(m*,m*,m*) = ——, (A65)
2m
where the divergent part in the minimal subtraction (MS) scheme is given by
1
A, :E—yE+ln4ﬂ+ln/42 (A66)

and the mass ratio parameter

Vi =

ERES

Finally, the complementary relations to the definitions above can be summarized with the following four scalar functions:

By(p*,mi, m3) = By (p*, mi, m3), (A67)
B3(p*,mi,m3) = =By (p*,mi, m3) — Byy (p*, mi, m3), (A68)
By(p*.mi.m3) = —miBy(p*.m3.m}) — m3B,(p* mi.m3), (A69)
Bs(p*,mi, m3) = Ag(m7) + Ag(m3) — 4By (p*, mi, m3). (A70)
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