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We examine a variety of renormalization schemes in QCD based on its 3-point vertices where the
β-functions, gluon, ghost, quark and quark mass anomalous dimensions in each scheme do not depend on
ζ4 or ζ6 in an arbitrary linear covariant gauge at five loops. We comment on the C-scheme.
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I. INTRODUCTION

Over the last decade or so remarkable advances have
been made in computing the renormalization group
functions of four dimensional quantum field theories
to very high orders. Perhaps the most significant of
these is the advancement of quantum chromodynamics
(QCD) to five loops [1–22]. This has been made
possible, for instance, due to the development of the
FORCER package [23,24] written in the symbolic
manipulation language FORM [25,26]. The package
evaluates four loop massless Feynman integrals con-
tributing to 2-point functions in d-dimensions as well as
carrying out the expansion in ϵ where d ¼ 4 − 2ϵ. Its
application to five loop computations has been possible
through the use of the R⋆ operation [27–36] and the
four loop FORCER package itself. While gauge theories
are central to the Standard Model, progress in renorm-
alizing scalar theories has advanced to an even higher
loop order [37,38]. Such results are important too as
they give insight into the number basis structure of the
renormalization group functions that ought to have
parallels in gauge theories when they are advanced
to the next level. For instance, it is widely known that
in the modified minimal subtraction (MS) scheme
[39,40] the renormalization group functions involve
the Riemann ζ-function up to ζ11 at seven loops in
the ϕ4 β-function [38]. In addition the multiple zetas
ζ5;3 and ζ5;3;3 first appear at six and seven loops
respectively [37,38]. On top of this a new period,
denoted by P7;11 in [38], occurs which is believed to
be inexpressible in terms of multiple zetas although it

can be written in terms of multiple polylogarithms of
the sixth roots of unity [38]. Beyond seven loops it is
conjectured that other new periods will arise [38].
Knowledge of such potential structures is important

in devising efficient computational tools to carry out
future higher order renormalization. From the high loop
order data that has been accumulated over many years
several features have become apparent. For instance, at
L loops no ζn can be present where n > (2L − 3)
beginning at L ¼ 3. Earlier numbers in the ζn sequence,
the Euler-Mascheroni constant γ and ζ2, are absent. The
former due to the choice of the MS scheme [39,40]
over its predecessor the minimal subtraction scheme,
and the latter as it actually cancels when the renorm-
alization group functions are compiled from the
renormalization constants. However we qualify this
ζn structure by noting that it is primarily based on
what occurs in a scalar theory. When symmetries are
present the structure may be simpler. This is the case in
the QCD β-function as ζ3 first appears at four loops and
ζ5 at five loops in the MS scheme [11,16,18,19,21,22].
This is not the situation for the remaining core
renormalization group functions which follow the
ζ2L−3 pattern for their first occurrence. By core we
will mean throughout the gluon, Faddeev-Popov ghost,
quark and quark mass anomalous dimensions. The
absence of ζ3 at three loops in the β-function is due
to gauge symmetry and the Slavnov-Taylor identity
[41,42]. In schemes other than MS, such as the minimal
momentum (mMOM) scheme of [43], the ζ2L−3 pattern
appears for the first time at L loops in the β-function
for L ≥ 3.
Another property of the number structure of the QCD

β-function that is not unrelated to that for the odd zetas
concerns the location of the even ones. Ordinarily ζ2L−4
would be expected to first appear at L loops for L ≥ 4 but in
the MS scheme this happens at (Lþ 1) loops. We recall
that ζ2n is proportional to π2n for n ≥ 1. As before this even
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zeta structure is not mirrored in the other core renormal-
ization group functions. Over the years the location or
otherwise of the sequence of even zetas in renormalization
group functions in various theories has been the subject of
more than passing interest. Indeed a debate has ensued as to
whether or not there is a natural way that ζ4 ¼ π4

90
and

ζ6 ¼ π6

945
can be excluded and in what circumstances. One

aspect of what is meant by this is whether there is an
appropriate renormalization prescription that produces this
scenario at a fundamental level. Another line of study is to
examine whether there are so-called redefinitions of the odd
zeta sequences that are universal across theories and
schemes. Perhaps the pivotal instance where this was
illuminated was provided in [44]. The focus there was
on the perturbative structure of the Adler D-function in the
MS scheme and the absence of ζ4 was noted in the Oða4Þ
term corresponding to the evaluation of five loop graphs, a
property which is also shared with the R ratio at the same
order. Prior to [44] it had been shown that ζ4 appeared in
the five loop quark mass anomalous dimension [20] as well
as at four loops [12,13]. A detailed analysis of these
observations in [44] suggested that for the renormalization
group functions there was a systematic way of removing
the even zetas by using an ϵ dependent transformation
based on a connection with their odd partners. This was
robustly examined for other QCD quantities as well as in
other theories [44]. Moreover the observation was
grounded from a renormalization group perspective. The
idea was to concentrate on the location of the ζn sequence
within the ϵ expansion of contributions to Feynman
integrals that will affect the higher loop order counterterms.
Aspects of this perspective were verified at very high orders
in ϵ at several orders in the large Nf expansion [44,45]
where Nf is the number of quarks. More recent develop-
ments have followed in the multicoupling context and for
theories with supersymmetry for instance [46].
In field theory language the ideas of [44–46] should

translate to changing to a different renormalization scheme.
This is borne out by a second line of investigation which is
to find a renormalization scheme that automatically pro-
duces a ζ2n free set of renormalization group functions.
There are already several pointers to such a scheme but in
each case it appears that the picture is not complete. For
instance, in [47] three schemes were introduced in QCD,
and allocated the scheme label gMOM, with the low orders
of the β-function determined in a specific gauge. The three
schemes were based on each of the three 3-point vertices.
The perturbative structure of these β-functions was
extended to four loops in the Landau gauge in [48,49]
as well as an additional scheme based on a different
renormalization condition. That extra scheme had been
introduced in [50] and the β-function constructed to three
loops before being extended to four loops in [49]. ThegMOM scheme setup of [47,49] is a variant of the symmetric

point momentum subtraction (MOM) ones of [51,52].
There each 3-point vertex was evaluated to the finite part
and the finite part absorbed into the coupling renormaliza-
tion constant with the same subtraction prescription used
for the 2-point functions. In the gMOM schemes of [47,49]
the same subtraction is carried out but the 3-point vertices
are first evaluated where one of the external momenta is set
to zero. In other words in a situation where there is only one
external momentum rather than two independent momenta
as in the case of the MOM schemes of [51,52]. Throughout
we will use the notation that gMOM is the umbrella term for
the momentum configuration used in [47,49] for 3-point
vertices and use that term when referring to articles where
the prescription was in fact employed but a different label,
such as MOM, was given. This is to avoid confusion since
MOM is more commonly used for the schemes of [51,52].
While [49] provided a four loop analysis the absence of ζ4
was obvious though not surprising given it does not occur
in the MS scheme at that order. Where the absence of ζ4
became more significant was in the construction of the five
loop β-function in the gMOM scheme in quantum electro-
dynamics (QED) [53]. There the Ward-Takahashi identity
was exploited to deduce the β-function from the photon
renormalization constant with the finite part of the 2-point
function removed at the subtraction point. The resulting
β-function was devoid of ζ4 and ζ6. This example has since
been classified as occurring in an anomalous dimension
(AD) theory [46]. Such a theory is one where the β-function
is deduced via a symmetry, which could be gauge sym-
metry for example, as it is directly related to the anomalous
dimension of one or a combination of fields.
Another similar AD example is the Wess-Zumino theory

[54] which is a four dimensional supersymmetric model.
Its coupling constant renormalization is not independent
since it is related to the field anomalous dimension via a
supersymmetry Ward identity. In [55] the three loop gMOM
β-function was determined and subsequently extended to
five loops in [56]. The four loop MS β-function was
provided in [57] which corrected errors in earlier lower
loop calculations. What was observed in the five loopgMOM β-function [56] was the absence of ζ4 and ζ6 similar
to [53]. Moreover the sector of the gMOM β-function that
corresponded to the iteration of the one loop bubble agreed
precisely with the Hopf algebra gMOM construction of that
set of graphs presented in [58]. In fact iterating the Hopf
algebra result well beyond the five loop order of [56]
showed that there were no ζ2n contributions to the very high
order that was recorded in [58]. While such one loop bubble
contributions are not the complete set of graphs it does
provide strong evidence in a concrete example that the
absence of even zetas may be a more fundamental property
of the gMOM scheme at least in the case of AD theories.
One reason why the gMOM scheme would offer a more
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satisfactory way to proceed, aside from being based on a
Lagrangian and systematically implemented by a renorm-
alization prescription, is that it is not clear what effect the
detailed examination of the even zeta cancellation of
[44,45] has on the remaining noneven zeta part of renorm-
alization group functions. Ultimately it is the full renorm-
alization group functions that are necessary for any
application involving observables. Some progress in that
direction has been provided in the C-scheme of [59,60].
This is a scheme that depends on a parameter C which is
used as a measure of the scheme dependence of the
coupling constant. One aspect of it is the claim that ζ4
terms are not present in the C-scheme versions of the Adler
D-function and several operator correlation functions
including that of the field strength [60]. Moreover the
mapping of the MS coupling constant to its C-scheme
counterpart was discussed in depth in an analysis of the ζ4
and ζ6 dependence of the four loop anomalous dimensions
of flavor nonsinglet and singlet twist-2 operators central to
deep inelastic scattering for several low moments [61]. A
variation of the C-scheme theme was explored in the
Ĝ-scheme provided in [44]. Another approach to the
absence of π2 contributions in correlation functions was
examined in [62] through the application of the Landau-
Khalatnikov-Fradkin transformation.
In other words based on the evidence discussed so far the

finite subtraction approach is the most promising to pursue.
However in compiling this overview for the gMOM scheme
and the zeta mapping analyses of [44–46] what appears to
be absent for the former is a full renormalization of each
Lagrangian and in particular that of QCD for a general
color group and arbitrary linear covariant gauge. The main
focus generally has been on the β-function compared with
occasional interest in the core anomalous dimensions for
non-AD theories or additionally in the case of a gauge
theory only one specific gauge, the Landau one, has been
considered [49]. The most recent gMOM schemes recorded
for QCD were at four loops [49], although the five loop MS
renormalization group functions are all now available for an
arbitrary linear covariant gauge [1–22]. More recently the
determination of the five loop mMOM scheme core
renormalization group functions has been completed
[63,64] for an arbitrary linear gauge. From the currently
available gMOM expressions it has been indicated either
explicitly or implicitly that there are no π2 terms in
the recorded β-functions. It is worth noting one case where
the π2 absence was indeed highlighted which was in the
determination of the five loop QED gMOM β-function
[53]. Another reason to consider the core anomalous
dimensions in a non-Abelian gauge theory is the fact that
the first location of ζ2n is different from the β-function.
Therefore to be credible any gMOM style prescription has to
produce a universal π2 absence across all renormalization
group functions as well as all gauges and color groups for

QCD. It is not clear how that would be effected at the level
of the ϵ expansion of the ζn sequence within a suite of
Feynman graphs. Having reviewed the background it is
therefore the purpose of this article to balance both points
of attack to understand the absence of π2 in certain
scenarios in non-Abelian gauge theories. To achieve this
we will provide various renormalization schemes in QCD
based on the three 3-point vertices of the linear covariant
gauge fixed Lagrangian which extends previous work. This
will be several more than those discussed in [47,49]. In
each of these schemes we will demonstrate that none of the
renormalization group functions depend on ζ4 or ζ6 to five
loops. One aim is to present as full and complete an
analysis as possible using all available data and techniques
especially properties of the renormalization group equation.
This has the added benefit that the results we present can be
used in future to examine the effects using such explicit no-
π2 schemes1 have on phenomenological predictions along
similar lines to those of [59,60].
The article is organized as follows. We review the basic

methods and techniques used for the analysis in Sec. II and
en route define our notation, conventions and the schemes
we will focus on. The way we constructed the relevant
renormalization constants is touched upon too. Our results
are summarized and presented in Sec. III as well as several
checks. Having established our main goal we devote
Sec. IV to a comparison of the QCD gMOM schemes with
the C-scheme. Subsequently in Sec. V we examine
renormalization schemes in a larger context where other
more general schemes are proposed and discussed. While
the practical calculational study of such schemes is not as
well advanced in terms of loop order, partly due to the
absence of master integrals for n-point functions higher
than three and general kinematics in analytic form, it is
worth lighting the path ahead for future studies. Moreover
once a deeper knowledge of the mathematical properties of
such master integrals is known more insight would be
available to understand the ζ2n absence in the set of gMOM
schemes at the level considered here and beyond. We
summarize our findings in Sec. VI. Finally two appendices
follow with the first giving the Landau gauge SUð3Þ five
loop β-functions for the QCD gMOM schemes. The second
appendix gives the SUð3Þ Landau gauge anomalous
dimensions for the scheme that closely connects with the
mMOM scheme.

II. FORMALISM

We devote this section to recalling the relevant formalism
of the renormalization group that we exploit to determine
the five loop renormalization group functions as well as the

1We will refer to schemes that have no ζ2n dependence as no-
π2 ones in order to avoid confusion with what is termed the no-π
theorem of [44].
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method of computation to extract the four loop renormal-
ization constants. First as a reference point for our con-
ventions we recall the bare QCD Lagrangian is

L ¼ −
1

4
Ga

o μνG
a μν
o −

1

2αo
ð∂μAa

o μÞ2 − c̄aoð∂μDμ
ocoÞa

þ iψ̄ iI
o ðDoψoÞiI ð2:1Þ

with o denoting a bare object where the respective gluon,
ghost and quark fields are Aa

μ, ca and ψ iI. We assume the
fields lie in a general Lie group and the indices take the
ranges 1 ≤ a ≤ NA, 1 ≤ i ≤ Nf and 1 ≤ I ≤ Nc where NA

is the adjoint representation dimension and Nc is the
fundamental representation dimension. As in [63] we use
the canonical linear covariant gauge fixing term with
parameter α where α ¼ 0 is the Landau gauge. The
mapping of bare variables to their renormalized counter-
parts is defined by

Aa μ
o ¼

ffiffiffiffiffiffi
ZA

p
Aa μ; cao ¼

ffiffiffiffiffi
Zc

p
ca; ψo ¼

ffiffiffiffiffiffi
Zψ

p
ψ ;

go ¼ μϵZg g; αo ¼ Z−1
α ZA α ð2:2Þ

and we have introduced the mass scale μ that arises when
the Lagrangian is dimensionally regularized in d ¼ 4 − 2ϵ
dimensions, which we have used throughout, to ensure the
coupling constant g remains dimensionless. Once the
renormalization constants are determined to a particular
loop order they are encoded in the renormalization func-
tions given by

γϕða; αÞ ¼ μ
∂

∂μ
ln Zϕ; βða; αÞ ¼ μ

∂a
∂μ

;

γαða; αÞ ¼
μ

α

∂α

∂μ
ð2:3Þ

where ϕ is an element in the labelling set fA; c;ψ ; mg
denoting the gluon, ghost, quark and quark mass renorm-
alization respectively and

μ
∂

∂μ
¼ βða; αÞ ∂

∂a
þ αγαða; αÞ

∂

∂α
ð2:4Þ

with α dependence included in the β-function. While the
MS scheme β-function and quark mass anomalous dimen-
sions are α independent [39], this is not the case in general
in schemes where a finite part is absorbed into the
renormalization constant of the coupling. For completeness
we note that (2.2) and (2.3) lead to

γAða;αÞ ¼ βða;αÞ ∂

∂a
ln ZAþαγαða;αÞ

∂

∂α
ln ZA

γαða;αÞ ¼
�
βða;αÞ ∂

∂a
ln Zα− γAða;αÞ

��
1−α

∂

∂α
ln Zα

�
−1

γcða;αÞ ¼ βða;αÞ ∂

∂a
ln Zcþαγαða;αÞ

∂

∂α
ln Zc

γψða;αÞ ¼ βða;αÞ ∂

∂a
ln Zψ þαγαða;αÞ

∂

∂α
ln Zψ ð2:5Þ

where a ¼ g2=ð16π2Þ. The relation between Zα and
γαða; αÞ is more general than one would expect in the
canonical linear covariant gauge fixing. It is only when
calculations in this gauge determine Zα to be unity that the
more widely known relation

γαða; αÞ ¼ −γAða; αÞ ð2:6Þ

results which will be the case for each of the new schemes
introduced here.
As the renormalization of the parameters a and α will be

carried out in several schemes one has to be able to map
their running with μ from one scheme to another. This is
achieved by realizing the bare coupling parameter can be
expressed in terms of g in two different schemes producing

gSðμÞ ¼
ZMS
g

ZS
g
gMSðμÞ; αSðμÞ ¼

ZMS
A ZS

α

ZS
AZ

MS
α

αMSðμÞ ð2:7Þ

where the relation for α follows from similar reasoning for
αo. Throughout we will use S to indicate a scheme in
general. For convenience it is simpler to use the MS scheme
as the base or reference scheme for the discussion on the
mapping of variables between schemes. For the fields and
quark mass we can construct similar conversion functions
which are given by

CS
ϕða; αÞ ¼

ZS
ϕ

ZMS
ϕ

; CS
α ða; αÞ ¼

ZS
αZMS

A

ZMS
α ZS

A

ð2:8Þ

where the latter is included for completeness. In each of
these definitions one has also to map the S scheme
parameters to the MS ones by using, in this instance,

ZS
ϕ ¼ ZS

ϕðaSða; αÞ; αSða; αÞÞ;
ZS
α ¼ ZS

α ðaSða; αÞ; αSða; αÞÞ ð2:9Þ

as otherwise expressions with poles in ϵ will be present.
Once the parameter mappings and conversion functions
have been explicitly established the renormalization group
equations can be deduced via
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βSðaS; αSÞ ¼
�
βMSðaMSÞ

∂aS
∂aMS

þ αMSγ
MS
α ðaMS; αMSÞ

∂aS
∂αMS

�
MS→S

γSϕðaS; αSÞ ¼
�
γMS
ϕ ðaMSÞ þ βMSðaMSÞ

∂

∂aMS

lnCS
ϕðaMS; αMSÞþαMSγ

MS
α ðaMS; αMSÞ

∂

∂αMS

lnCS
ϕðaMS; αMSÞ

�
MS→S

: ð2:10Þ

As the expressions on the left-hand side are dependent
on the scheme S variables the final stage in their
construction is to use the inverse relations to map aMS
and αMS to aS and αS which is indicated by the
restriction on each of the final brackets. One useful
aspect of this formalism is that if the renormalization
group functions are available in one scheme at (Lþ 1)
loops then those of the other scheme need only to be
explicitly evaluated at L loops in order to use the
conversion functions to find the parallel (Lþ 1) loop
expressions. This situation arises here since we will
renormalize QCD in the set of gMOM� schemes at four
loops from which the Oða4Þ conversion functions can
be deduced. We use gMOM� to denote the QCD gMOM
schemes to be introduced shortly. Given that the five
loop MS renormalization group functions are known
[15–22] then (2.10) can be applied to determine the five
loop gMOM� renormalization group functions. This

follows simply from (2.10) given that βMSðaMSÞ and

γMS
α ðaMS; αMSÞ are Oða2Þ and OðaÞ respectively. In this
context it is worth remarking that the renormalization
group functions are an encoding or representation of the
renormalization constants computed explicitly from the
field theory.
This process can of course be reversed to a certain

extent. For instance it is well known that in the MS
scheme given the renormalization group functions at L
loops one can deduce the L loop renormalization
constants correctly by integrating (2.5). However this
needs to be qualified for schemes where the renorm-
alization prescription involves the subtraction of a finite
part of a Green’s function such as the gMOM� schemes
considered here. This is because the final stage of
extracting renormalization group functions from the
renormalization constants is to lift the regularization.
In dimensional regularization this would correspond to
the limit ϵ → 0. For the MS scheme the only ϵ
dependence is in the OðaÞ term of the β-function; there
is no ϵ dependence in any other core MS renormaliza-
tion group functions. By contrast for schemes where
there is a finite part in the subtraction to determine the
renormalization constants, such as gMOM�, the coeffi-
cient of a in each term of the core renormalization

group functions is linear in ϵ prior to removing the
regularization. This ϵ-dependent coefficient corresponds
directly to the finite part of the renormalization constant
and the dependence is rarely recorded in articles.
Therefore in integrating (2.5) to find the gMOM�
renormalization constants, for example, one would have
to initiate the process using the ϵ-dependent renormal-
ization group functions.
Having outlined the relevant formalism to construct

the renormalization group functions of our gMOM�
schemes we now focus on details. First there are three
3-point vertices which in [51,52] led to three distinct
symmetric point schemes denoted by MOMg, MOMc
and MOMq based respectively on the triple gluon,
ghost-gluon and quark-gluon vertices. In these sym-
metric point schemes the renormalization prescription is
to remove the poles as well as the finite parts at the
momentum configuration where the squared momenta
of the three external legs of the 3-point vertices are
equal. None of the underlying external momenta are
nullified. Equally the 2-point functions are rendered
finite by removing the finite part in addition to the
poles. By contrast the gMOM� schemes are defined from
the 3-point vertices but where the momentum configu-
ration has one external momentum nullified at the
outset. Similar to the schemes of [51,52] the finite
parts of both the 3-point vertices for this configuration
and the 2-point functions are absorbed into the respec-
tive renormalization constants. One difference is that
there are more gMOM� schemes [49] than the three
MOM schemes of [51,52]. In the first instance this is
because for each of the ghost-gluon and quark-gluon
vertices there are two possible external leg nullifica-
tions. These are either the gluon leg or one of the
respective ghost or quark legs. One might suspect there
is a third ghost-gluon vertex scheme given the asym-
metric nature of the ghost-gluon interaction in (2.1).
However it is trivial to see that the nullification of the
c̄a leg produces zero for each graph of the 3-point
vertex in the linear covariant gauge. This is not the case
for nonlinear covariant gauges for instance. For clarity
it is worth recalling the tensor structure of the vertex
functions for reference and to assist with the scheme
definitions. Based on [18,47] we have
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D
Aa
μðpÞAb

νð−pÞAc
σð0Þ

E
¼ −igfabc

�
ð2ημνpσ − 2ημσpν − 2ηνσpμÞT1ðp2Þ−

�
ημν −

pμpν

p2

�
pσT2ðp2Þ

�
D
caðpÞc̄bð−pÞAc

μð0Þ
E
¼ −igfabcpμΓ̃gðp2ÞD

cað0Þc̄bðpÞAc
μð−pÞ

E
¼ −igfabcpμΓ̃cðp2Þ

hψ iIðpÞψ̄ jJð0ÞAc
μð−pÞi ¼ −gTc

�
γμΛqðp2Þ þ

�
ημν −

pμpν

p2

�
γνΛT

qðp2

��

hψ iIðpÞψ̄ jJð−pÞAc
μð0Þi ¼ −gTc

�
γμΛgðp2Þ þ

�
ημν −

pμpν

p2

�
γνΛT

g ðp2

��
ð2:11Þ

where the various form factors are used for the different
renormalization prescriptions and Ta and fabc are the color
group generators and structure constants respectively. We
note that the external momentum configuration that defines
Γ̃cðp2Þ is the one that is the foundation for the mMOM
scheme of [43].
To define the set of gMOM� schemes that we will

determine to five loops we first recall those of [47] and
introduce our syntax. In [47] the three gMOM schemes were
defined with respect to one nullification of each of the
3-point vertices. For each case we record the condition on
the respective form factors and the gMOM� scheme label we
will use as its notation. We have

T1ðμ2Þ ¼ 1 ↔ gMOMggg0g

Γ̃cðμ2Þ ¼ 1 ↔ gMOMccg0c

Λqðμ2Þ ¼ 1 ↔ gMOMqqg0q ð2:12Þ

where g, c and q denote the gluon, ghost and quark
respectively with the letter after 0 in the subscript indicating
which leg is nullified. In [49] the additional scheme
introduced in [50] was also examined. In the syntax of
(2.12) its defining condition and label is

T1ðμ2Þ −
1

2
T2ðμ2Þ ¼ 1 ↔ gMOMggg0gg: ð2:13Þ

Given that combinations of form factors can be used to
form renormalization prescriptions we introduce the
remaining schemes considered here. These are

Γ̃gðμ2Þ ¼ 1 ↔ gMOMccg0g

Λgðμ2Þ ¼ 1 ↔ gMOMqqg0g

Λqðμ2Þ þ ΛT
qðμ2Þ ¼ 1 ↔ gMOMqqg0qT

Λgðμ2Þ þ ΛT
g ðμ2Þ ¼ 1 ↔ gMOMqqg0gT ð2:14Þ

where the equality is the value of the form factors after
renormalization. In essence these schemes differ from those
of [51,52] in that there is only one independent momentum

flowing through the Green’s function instead of two. So in
effect the computation of the vertex functions reduces to
that of evaluating 2-point functions. With regard to the
prescription for the field renormalization we first note that
the propagators will have the form

D
Aa
μðpÞAb

νð−pÞ
E
¼ −

δab

p2

��
ημν −

pμpν

p2

�

×
1

½1þ Πgðp2Þ� − α
pμpν

p2

�
D
caðpÞc̄bð−pÞ

E
¼ δab

p2

1

½1þ Πcðp2Þ�

hψ iIðpÞψ̄ jJð−pÞi ¼ δijδIJ

p2

p=
½1þ Σqðp2Þ� ð2:15Þ

which defines the various 2-point form factors. The gMOM�
prescription is that the propagator denominators are unity at
the subtraction point of p2 ¼ μ2. As we will also renorm-
alize the quark mass operator, that immediately determines
the quark mass renormalization constant, from the Green’s
functionD

ψ iIðpÞψ̄ jJð−pÞ½ψ̄kKψkK�ð0Þ
E
¼ δijδIJΓmðp2Þ ð2:16Þ

which defines Γmðp2Þwith the prescription that this has to be
unity at p2 ¼ μ2. The quark mass renormalization can be
treated this way using (2.16) as in effect this equates to the
way the mass term of the quark 2-point function in the
massive version of (2.1) is renormalized. For the massive
Lagrangian the quark 2-point function can be expanded in
powers of the quark mass m to OðmÞ thence producing the
sameFeynmangraphs that constitute (2.16). This is the reason
why we will only consider the momentum routing in (2.16)
rather than the one where a momentum passes through the
operator itself. The key advantage of considering (2.16) is that
FORCER can be exploited to evaluate the constituent Feynman
integrals since the setup will then be a massless one.
One observation needs to be made concerning each

scheme. If for instance hAa
μðpÞAb

νð−pÞAc
σð0Þi is selected

to construct the gMOMggg0g scheme renormalization group
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functions this means that T1ðμ2Þ is unity as noted in (2.12).
One question then concerns what form do the remaining
vertex functions of (2.11) take at their indicated momentum
configuration in the gMOMggg0g scheme. By the Slavnov-
Taylor identities eachof the other form factorswill be finite in
the same way that using one vertex to find the MS coupling
renormalization constant means the other vertices are
immediately finite. However what is generally the case is
that each of the other vertex functions in the gMOMggg0g

schemewill not be solely the renormalized coupling constant
atp2 ¼ μ2, unless theSlavnov-Taylor identities produce this.
Instead the form factors of each of the other vertex functions
will be a perturbative series in the renormalized coupling
constant of that gMOMggg0g scheme. The same observation
applies when each of the other schemes is considered in turn
and this summarizes the comments made in [51,52] for the
symmetric point MOM schemes.
Having defined the suite of gMOM� schemes in relation to

the respective Green’s functions we need to record the
particular algorithm to deduce the renormalization constants.
Assuming the renormalizationhasbeen carriedout toL loops
in one of the gMOM� schemes then the 2-point functions are
renormalized at (Lþ 1) loops by removing the poles in ϵ and
the finite part. Once the 2-point functions are rendered finite
to (Lþ 1) loops then only the form factor of the vertex
function of (2.11) relevant to defining that specific gMOM�
scheme has its poles and finite part absorbed into the
coupling constant renormalization constant. After this has
been achieved the process is repeated up to and including
four loops using the automatic process introduced in [10].
Then this procedure is repeated for the subsequent gMOM�
scheme until all of the schemes have been constructed at four
loops. The final step is to determine the conversion functions
and parametermaps before applying (2.10) to deduce the five
loop renormalization group functions in each of the gMOM�
schemes. Comment needs to bemade on the definition of thegMOMccg0c scheme in relation to themMOMscheme of [43].
That scheme is also based on thevertexwith an external ghost
leg nullification [43] and leads to the natural question are
both schemes equivalent. The brief answer is that they are
different except in one special instance which is the Landau
gauge. The general difference is because the coupling
constant renormalization in the mMOM scheme is con-
structed from the renormalization of 2-point functions and
the MS coupling renormalization constant alone, where the
finite parts of the 2-point functions in mMOM are absorbed
into the ghost and gluon renormalization constants. Then the
mMOM coupling constant renormalization constant is
deduced from the relation [43]

ZmMOM
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZmMOM
A

q
ZmMOM
c ¼ ZMS

g

ffiffiffiffiffiffiffiffiffi
ZMS
A

q
ZMS
c ð2:17Þ

which is motivated from Taylor’s observation that the
ghost-gluon vertex is finite in the Landau gauge [41].
For a linear covariant gauge this is straightforward to
see. Irrespective of the renormalization scheme that is
used, for the case where the external ghost nullification
is nontrivial the vertex containing that ghost has the loop
momentum flowing through the other ghost and gluon.
From (2.1) the Feynman rule for the vertex involves the
loop momentum alone with an index contracted with the
gluon propagator. This immediately reduces the combi-
nation to a term proportional to α which clearly vanishes
in the Landau gauge. The condition (2.17), which
equates the overall ghost-gluon vertex renormalization
constants of the two schemes, seeks to preserve that
equivalence property within the renormalization for
arbitrary α. One interesting feature of the four and five
loop mMOM β-function and other renormalization group
functions is that they have neither ζ4 nor ζ6 dependence
in the Landau gauge2 which is the special instance noted
earlier. There is ζ4 and ζ6 dependence for nonzero α in
the mMOM scheme. Indeed this was a clue to the fact
that if the constraint for this external momentum con-
figuration was ignored and an independent coupling
renormalization constant was introduced then it should
be the case that the ζ4 and ζ6 dependence is absent in thegMOMccg0c scheme for all α. In other words the residual
ζ4 and ζ6 dependence in terms involving α, that the
condition (2.17) omits through its aim of preserving the
no-renormalization property of the vertex for nonzero α,

is accommodated within the gMOMccg0c scheme for all α.
This turned out to be indeed the case as will be evident
in our results. In one sense the Landau gauge mMOM
β-function could be regarded as another example of an
AD theory in the classification of [46].
With the formalism and gMOM� scheme definitions

established the task of determining the renormalization
group functions explicitly remains. To do so at five loops
will therefore require a full four loop renormalization of the
2-point functions and the respective Green’s functions with
the momenta configurations of (2.11). Helpfully useable
data is already available [63] which is readily extracted
using FORCER [23,24]. In [63] the ϵ expansion of the three
2-point functions and the form factors of the three 3-point
functions in (2.11) have been provided as a function of the
bare coupling constant and gauge parameter. For the
determination of the quark mass renormalization constant
we use the analogous four loop Green’s function that was
computed in [65]. We note that those four loop expres-
sions had all been established with the Feynman graph
integration package FORCER. To extract the respective

2We are indebted to I. Jack for drawing our attention to this
implicit feature.
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renormalization constants from each bare Green’s func-
tion we follow the process outlined in [10] where the
counterterms are introduced automatically using the
relations given in (2.2). Invaluable in carrying out
the renormalization was the symbolic manipulation lan-
guage FORM [25,26] which meant the extraction of the
renormalization constants progressed efficiently and these
were straightforwardly converted to the five loop gMOM�
renormalization group functions.

III. RESULTS

One of the main tasks was to demonstrate that in the
suite of gMOM� schemes no ζ4 or ζ6 appears in the
renormalization group functions. In order to present that
observation we have to record the full five loop expressions

that allows one to verify that no such numbers are present.
As the full expressions for nonzero α and arbitrary color
group are rather lengthy we will record the renormalization
group functions for one scheme as an example and focus on
the case of SUð3Þ and the Landau gauge. Except that to
illustrate the absence of ζ4 and ζ6 for all α we will record
one representative β-function. Electronic versions of the
results for all α and a general color group are provided in
the data file [66] available via the arXiv version of this
paper. It is then a simple matter to check that there are
neither ζ4 nor ζ6 terms in any of the renormalization group
functions for all the schemes in that file by employing a
search tool for instance. The particular scheme we present
the results for is the gMOMggg0g scheme. First the β-function
for nonzero α is

βSUð3ÞgMOMggg0g

ða; αÞ ¼
�
2

3
Nf − 11

�
a2 þ

�
−
9

4
α3 þ 38

3
Nf þ

117

4
α − 102 − 3Nfα − Nfα

2 þ 3α2
�
a3

þ
�
−
58491

16
−
1575

32
α3 −

729

8
ζ3α −

481

27
N2

f −
429

4
Nfα −

243

8
ζ3α

2

−
165

8
Nfα

2 −
119

6
ζ3Nf −

63

32
α4 −

8

9
ζ3N2

f þ
3

8
Nfα

4 þ 15

4
Nfα

3 þ 1053

16
α2

þ 2277

4
ζ3 þ

5643

8
αþ 15283

24
Nf

�
a4

þ
�
−
10982273

64
−
2677587

128
ζ3α −

1075423

144
ζ3Nf −

724445

324
N2

f −
506541

64
Nfα

−
465651

256
α3 −

266373

128
ζ3α

2 −
77441

64
Nfα

2 −
60895

9
ζ5Nf −

50481

256
α4

−
8935

32
ζ5Nfα −

5445

128
ζ5α

4 −
1053

128
α5 −

945

32
ζ5α

5 −
605

4
ζ3N2

fα

−
295

32
ζ5Nfα

3 −
105

16
ζ5Nfα

4 −
16

3
ζ3N2

fα
2 −

16

9
ζ3N3

f −
9

8
Nfα

5 −
8

9
N3

fα

þ 32

9
ζ3N3

fαþ 39

8
ζ3Nfα

4 þ 75

8
Nfα

4 þ 351

16
ζ3α

5 þ 445

9
N2

fα
2

þ 529

32
ζ3Nfα

3 þ 788

27
N3

f þ
3709

16
ζ3Nfα

2 þ 9280

27
ζ5N2

f þ
11903

48
N2

fα

þ 12237

64
Nfα

3 þ 12959

54
ζ3N2

f þ
17271

128
ζ3α

4 þ 20505

128
ζ5α

3 þ 36135

2
ζ5

þ 53097

128
ζ3α

3 þ 82249

32
ζ3Nfαþ 155205

128
ζ5α

2 þ 251793

64
α2 þ 830955

128
ζ5α

þ 1425171

32
ζ3 þ

2540673

64
αþ 3830167

96
Nf

�
a5

þ
�
−
65313445615

27648
ζ5Nf −

25790811345

2048
−
18051846813

4096
ζ7
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−
6588808297

10368
ζ3Nf −

3473740893

8192
ζ7α −

3264898519

10368
N2

f þ
5165077893

2048
α

þ 15665964165

2048
ζ5 þ

22912517957

18432
ζ7Nf þ

910029320399

248832
Nf

−
1356316467

1024
ζ3α −

650074537

1024
Nfα −

303580683

8192
ζ7α

2

−
242578035

4096
ζ5α

2 −
224554437

2048
α3 −

128139255

4096
ζ5α

3 −
51105929

864
ζ7N2

f

−
31554195

4096
ζ5α

4 −
29533401

1024
ζ23α −

19040275

256
Nfα

2 −
17251731

4096
ζ7α

3

−
8416485

8192
ζ7α

5 −
3996279

2048
ζ7α

4 −
3120849

512
α4 −

2401857

256
ζ23Nf

−
1232293

128
ζ3Nfα

3 −
1096745

384
ζ3Nfα

2 −
721445

576
ζ5N2

fα
2 −

586025

108
ζ5N3

f

−
436751

24
ζ3N2

fα −
314631

1024
α5 −

279765

1024
ζ5α

5 −
234087

2048
ζ7Nfα

4

−
137619

1024
ζ3α

6 −
120423

256
ζ3Nfα

4 −
103743

1024
ζ3α

5 −
80865

1024
ζ5α

6

−
53411

36
ζ23N

2
f −

18823

36
N3

fα −
16627

24
N2

fα
3 −

13455

8
ζ5N2

fα

−
7653

128
ζ3Nfα

5 −
7065

64
Nfα

5 −
4263

4
ζ7N2

fα −
2565

128
α6 −

2482

27
N4

f

−
806

9
N3

fα
2 −

710

9
ζ5N3

fα −
409

8
N2

fα
4 −

304

27
ζ3N4

f −
245

4
ζ23N

2
fα

−
143

3
ζ3N3

fα
2 −

117

32
ζ3Nfα

6 −
32

3
ζ3N3

fα
3 −

15

2
ζ5N2

fα
3 −

9

16
Nfα

6

þ 5

3
ζ5N3

fα
2 þ 8

3
N3

fα
3 þ 315

64
ζ5Nfα

6 þ 423

8
ζ23Nfα

3 þ 621

64
ζ23Nfα

5

þ 1141

2
ζ3N2

fα
3 þ 1225

3
ζ3N3

fαþ 1760

27
ζ5N4

f þ
2240

27
ζ23N

3
f þ

3549

1024
ζ7Nfα

5

þ 3615

128
ζ5Nfα

5 þ 6027

128
ζ23Nfα

4 þ 27945

512
ζ23α

6 þ 28805

256
ζ5Nfα

4

þ 46845

256
ζ23Nfα

2 þ 61715

64
ζ5Nfα

3 þ 90297

128
Nfα

4 þ 159705

8192
ζ7α

6

þ 172179

512
ζ23α

5 þ 351521

288
ζ3N2

fα
2 þ 410595

128
ζ23Nfαþ 441851

648
ζ3N3

f

þ 470223

1024
ζ23α

4 þ 605583

1024
ζ23α

3 þ 1673385

1024
ζ7Nfα

2 þ 2574009

1024
ζ23α

2

þ 5911227

1024
ζ3α

4 þ 10147923

512
Nfα

3 þ 16512415

512
ζ5Nfαþ 25235989

2592
N3

f

þ 30395757

1024
ζ3α

2 þ 36466719

128
ζ3Nfαþ 39704059

6912
N2

fα
2 þ 42976673

1152
N2

fα

þ 43537571

1024
ζ7Nfαþ 73833111

1024
ζ3α

3 þ 74629145

3072
ζ5Nfα

2

þ 87682327

5184
ζ3N2

f þ
95256513

512
ζ23 þ

384102657

128
ζ3 þ

399957783

2048
α2

þ 985401955

5184
ζ5N2

f þ
1171309995

4096
ζ5α − 5ζ23N

2
fα

2 þ 15ζ3N2
fα

4

�
a6 þOða7Þ: ð3:1Þ
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Our convention throughout will be that the variables a and α are in the scheme attached to the renormalization
group function itself. The Landau gauge anomalous dimensions of the gluon, ghost, quark and quark mass in the same
scheme are

γSUð3Þ
A;gMOMggg0g

ða; 0Þ ¼
�
−
13

2
þ 2

3
Nf

�
aþ

�
−
255

4
þ 67

6
Nf

�
a2

þ
�
−
68433

32
−
373

27
N2

f −
83

6
ζ3Nf −

8

9
ζ3N2

f þ
4365

16
ζ3 þ

11293

24
Nf

�
a3

þ
�
−
6789623

64
−
1895585

288
ζ5Nf −

1683719

288
ζ3Nf −

1140955

648
N2

f −
16

9
ζ3N3

f

þ 671

27
N3

f þ
9280

27
ζ5N2

f þ
20707

108
ζ3N2

f þ
1090305

64
ζ5 þ

2793877

96
Nfþ

7071297

256
ζ3

�
a4

þ
�
−
74174308299

16384
ζ7 −

67523852455

27648
ζ5Nf −

33044274229

4096

−
7482447221

20736
ζ3Nf þ

2602029675

2048
ζ3 þ

7832693295

1024
ζ5

þ 24152007425

18432
ζ7Nf þ

658685409635

248832
Nf −

311150303

1296
N2

f

−
51407573

864
ζ7N2

f −
3552969

256
ζ23Nf −

590285

108
ζ5N3

f −
54527

36
ζ23N

2
f

−
1906

27
N4

f −
304

27
ζ3N4

f þ
1760

27
ζ5N4

f þ
2240

27
ζ23N

3
f þ

545495

648
ζ3N3

f

þ 14365339

5184
ζ3N2

f þ
19696993

2592
N3

f þ
660827493

2048
ζ23

þ 1002897415

5184
ζ5N2

f

�
a5 þOða6Þ ð3:2Þ

γSUð3Þ
c;gMOMggg0g

ða; 0Þ ¼ −
9

4
aþ

�
−
153

8
þ 3

4
Nf

�
a2

þ
�
−
46305

64
−
5

2
N2

f þ
9

4
ζ3Nf þ

357

4
Nf þ

1971

32
ζ3

�
a3

þ
�
−
8486505

256
−
13205

48
N2

f −
5895

16
ζ5Nf −

1977

4
ζ3Nf þ

5

2
N3

f þ
162405

32
ζ5

þ 748593

128
Nf þ

1824363

512
ζ3 þ 26ζ3N2

f

�
a4

þ
�
−
18930657429

8192
−
17060330889

32768
ζ7 þ

5463760635

4096
ζ5 −

435383505

4096
ζ23

−
98927995

2304
N2

f −
74407755

512
ζ5Nf −

18046313

512
ζ3Nf −

3969

2
ζ7N2

f

−
219

2
ζ23N

2
f þ

7747

6
N3

f þ
109901

48
ζ3N2

f þ
282185

48
ζ5N2

f

þ 846441

128
ζ23Nf þ

38085719

1024
ζ7Nf þ

421898185

768
Nf

þ 735148629

4096
ζ3 − 65ζ5N3

f − 14N4
f þ ζ3N3

f

�
a5 þOða6Þ ð3:3Þ
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γSUð3Þ
ψ ;gMOMggg0g

ða; 0Þ ¼
�
−
4

3
Nf þ

67

3

�
a2 þ

�
−
706

9
Nf −

607

2
ζ3 þ

8

9
N2

f þ
29675

36
þ 16ζ3Nf

�
a3

þ
�
−
21455183

648
ζ3 −

2401655

324
Nf −

272

9
ζ3N2

f −
40

9
N3

f þ
2879

9
N2

f

þ 73873

27
ζ3Nf þ

7727771

162
þ 15846715

1296
ζ5 − 830ζ5Nf

�
a4

þ
�
−
93917679073

31104
ζ3 −

26588447977

27648
ζ7 þ

2239174289

10368
ζ23 þ

9255603625

3888
ζ5

þ 14692571119

5184
−
333206965

972
ζ5Nf −

252766199

432
Nf −

4731481

243
ζ3N2

f

−
576437

54
ζ23Nf −

80840

81
N3

f −
6811

2
ζ7N2

f −
3520

27
ζ5N3

f −
128

9
ζ23N

2
f

þ 160

27
N4

f þ
24064

81
ζ3N3

f þ
1069795

27
N2

f þ
3085750

243
ζ5N2

f þ
4429579

36
ζ7Nf

þ 1741317151

3888
ζ3Nf

�
a5 þOða6Þ ð3:4Þ

and

γSUð3Þ
m;gMOMggg0g

ða; 0Þ ¼ −4aþ
�
−
209

3
þ 4

3
Nf

�
a2

þ
�
−
23731

9
−
176

9
ζ3Nf −

8

3
N2

f þ
2723

3
ζ3 þ

4823

27
Nf

�
a3

þ
�
−
364717295

2592
−
318905

54
ζ3Nf −

16015

3
ζ5 −

13741

27
N2

f −
3200

9
ζ5Nf

þ 8

3
N3

f þ
1552

9
ζ3N2

f þ
5306821

324
Nf þ

30602221

432
ζ3

�
a4

þ
�
−
1206873493973

124416
−
2433059707

3456
ζ23 þ

22567052305

3888
ζ3

þ 77544762803

46656
Nf þ

105673656865

124416
ζ5 −

2023786561

2592
ζ3Nf

−
870630095

7776
ζ5Nf −

362933429

3888
N2

f −
68062141

1296
ζ7Nf −

60928

81
ζ23N

2
f

−
28096

81
ζ3N3

f −
1600

9
ζ5N3

f −
352

27
N4

f þ
1372

3
ζ7N2

f þ
468142

243
N3

f

þ 3766661

108
ζ3N2

f þ
3825215

486
ζ5N2

f þ
6552685

162
ζ23Nf þ

657118063

27648
ζ7

�
a5 þOða6Þ ð3:5Þ

respectively. As an alternative perspective where the ζn structure is equally evident, it is instructive to view the Landau
gauge pure Yang-Mills theory results for an arbitrary color group. We have
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βgMOMggg0g

ða; 0Þ
����
Nf¼0

¼ −
11

3
CAa2 −

34

3
C2
Aa

3 þ
�
−
6499

48
C3
A þ 253

12
ζ3C3

A

�
a4

þ
�
−
10981313

5184
C4
A −

3707

8
ζ3

dabcdA dabcdA

NA
−
8

9

dabcdA dabcdA

NA

þ 6215

24
ζ5

dabcdA dabcdA

NA
þ 97405

576
ζ5C4

A þ 1116929

1728
ζ3C4

A

�
a5

þ
�
−
8598255605

165888
C5
A −

1161130663

73728
ζ7C5

A −
35208635

3072
ζ7CA

dabcdA dabcdA

NA

−
28905223

2304
ζ3CA

dabcdA dabcdA

NA
−
15922907

9216
ζ23C

5
A

þ 131849

3456
CA

dabcdA dabcdA

NA
þ 4595789

384
ζ23CA

dabcdA dabcdA

NA

þ 7284505

1152
ζ5CA

dabcdA dabcdA

NA
þ 30643529

2048
ζ3C5

A

þ 1667817635

55296
ζ5C5

A

�
a6 þOða7Þ

γ
A;gMOMggg0g

ða; 0Þ
����
Nf¼0

¼ −
13

6
CAa −

85

12
C2
Aa

2 þ
�
−
22811

288
C3
A þ 485

48
ζ3C3

A

�
a3

þ
�
−
13595371

10368
C4
A −

45245

192
ζ5

dabcdA dabcdA

NA
−
475

32
ζ3

dabcdA dabcdA

NA

þ 1075

144

dabcdA dabcdA

NA
þ 1189237

3456
ζ3C4

A þ 1195385

4608
ζ5C4

A

�
a4

þ
�
−
33074782019

995328
C5
A −

15073026227

884736
ζ7C5

A þ 2673449615

82944
ζ5C5

A

−
282030679

36864
ζ7CA

dabcdA dabcdA

NA
−
129543941

110592
ζ23C

5
A

−
6255185

1728
ζ5CA

dabcdA dabcdA

NA
−
4876861

768
ζ3CA

dabcdA dabcdA

NA

þ 3050779

20736
CA

dabcdA dabcdA

NA
þ 55278899

4608
ζ23CA

dabcdA dabcdA

NA

þ 543400985

82944
ζ3C5

A

�
a5 þOða6Þ

γ
c;gMOMggg0g

ða; 0Þ
����
Nf¼0

¼ −
3

4
CAa −

17

8
C2
Aa

2 þ
�
−
1715

64
C3
A þ 73

32
ζ3C3

A

�
a3

þ
�
−
26235

64
C4
A −

3375

64
ζ3

dabcdA dabcdA

NA
þ 101

32

dabcdA dabcdA

NA

þ 6795

128
ζ5

dabcdA dabcdA

NA
þ 7037

128
ζ3C4

A þ 52835

1024
ζ5C4

A

�
a4

þ
�
−
2110649851

221184
C5
A −

161581091

65536
ζ7C5

A −
4327735

24576
ζ23C

5
A
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−
1979089

384
ζ3CA

dabcdA dabcdA

NA
−
1284495

1024
ζ23CA

dabcdA dabcdA

NA

þ 80483

512
CA

dabcdA dabcdA

NA
þ 4450325

768
ζ5CA

dabcdA dabcdA

NA

þ 12700107

8192
ζ7CA

dabcdA dabcdA

NA
þ 66809507

36864
ζ3C5

A

þ 157858255

36864
ζ5C5

A

�
a5 þOða6Þ ð3:6Þ

where higher order color Casimirs arise with the fully
symmetric rank 4 tensor defined by [67]

dabcdR ¼ 1

6
Tr
�
TaTðbTcTdÞ

	
ð3:7Þ

in representation R. In expressions with these Casimirs
either here or in the associated data file [66] we have
implemented the identity NcCF ¼ TFNA. We note that the
pure Yang-Mills expressions for the other schemes have a
similar structure.
There are several checks on the results. The main one

is that we have verified that the Landau gauge four loop
β-functions of the gMOMccg0c, gMOMqqg0q, gMOMggg0g

and gMOMggg0gg schemes agree with the SUð3Þ expres-
sions given in [49]. In addition we have reproduced the
α dependent Oða4Þ coupling constant mappings for the

same schemes as those recorded in [49] for the same
color group at four loops. There is another check on our
computations which is the five loop QED β-function
provided in [53] for the gMOM scheme although it was
termed the MOM scheme there. In [53] QED was
renormalized at five loops in the MS scheme. ThegMOM β-function was produced as a corollary via the
Ward-Takahashi identity. This implies that the coupling
constant and photon renormalization constants are not
independent placing the theory in the AD class of [46].
So the gMOM scheme β-function of [53] follows
immediately by ensuring the photon 2-point function
has its finite part absorbed into its renormalization
constant. Taking the QED limit of the gMOMqqg0gT

scheme renormalization group functions reproduces
the β-function of [53]. We note this gives

βQEDgMOMeep0pT

ða; αÞ ¼ 4Nf

3
a2 þ 4Nfa3 þ ½96ζ3Nf − 92Nf − 9� 2Nfa4

9

þ ½−128ζ3N2
f þ 192N2

f þ 256ζ3Nf − 640ζ5Nf þ 156Nf − 69� 2Nfa5

3

þ ½21504ζ3N3
f þ 30720ζ5N3

f − 51456N3
f þ 55296ζ23N

2
f − 157440ζ3N2

f

þ 138240ζ5N2
f − 54128N2

f − 52992ζ3Nf − 311040ζ5Nf þ 483840ζ7Nf

− 54216Nf þ 6912ζ3 þ 37413�Nfa6

54
þOða7Þ

γQED
A;gMOMeep0pT

ða; αÞ ¼ 4Nf

3
aþ 4Nfa2 þ ½96ζ3Nf − 92Nf − 9� 2Nfa3

9

þ ½−128ζ3N2
f þ 192N2

f þ 256ζ3Nf − 640ζ5Nf þ 156Nf − 69� 2Nfa4

3

þ ½21504ζ3N3
f þ 30720ζ5N3

f − 51456N3
f þ 55296ζ23N

2
f − 157440ζ3N2

f

þ 138240ζ5N2
f − 54128N2

f − 52992ζ3Nf − 311040ζ5Nf þ 483840ζ7Nf

− 54216Nf þ 6912ζ3 þ 37413�Nfa5

54
þOða6Þ
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γQED
ψ ;gMOMeep0pT

ða; αÞ ¼ αa − ½4Nf þ 3� a
2

2
þ ½16N2

f − 12Nf þ 9� a
3

6

þ ½−128αN2
f − 96αNf − 640N3

f − 768ζ3N2
f þ 1200N2

f − 384ζ3Nf

þ 3304Nf − 9600ζ3 þ 15360ζ5 − 3081� a
4

24

þ ½−768ζ3α2N2
f þ 384α2N2

f − 576ζ3α
2Nf þ 288α2Nf − 3072ζ3αN3

f

þ 2304αN3
f − 2304ζ3αN2

f − 576αN2
f − 432αNf þ 5120N4

f

þ 28672ζ3N3
f − 55424N3

f þ 147456ζ23N
2
f − 398336ζ3N2

f þ 496640ζ5N2
f

− 162576N2
f þ 317952ζ23Nf − 184128ζ3Nf þ 1674240ζ5Nf

− 1979712ζ7Nf − 20568Nf þ 179712ζ23 þ 1152000ζ3 þ 1627200ζ5

− 3429216ζ7 þ 44793� a
5

72
þOða6Þ ð3:8Þ

for an arbitrary gauge parameter where we use e and p in the scheme label to denote the electron and photon respectively in
order to be clear which external leg was nullified. The β-function of (3.8) does indeed agree with the gMOM β-function of
[53] and none of the expressions involve ζ4 or ζ6. Therefore we confirm that the vertex subtraction of [53] corresponds to
nullifying the photon of the QED vertex. We have included the electron anomalous dimension (3.8) as it was not present in
[53]. Unlike the QCD case the QED gMOMeep0pT β-function is α independent. We have also reproduced (3.8) directly in
order to find the parameter mappings which are

aQEDgMOMeep0pT

¼ aMS −
20Nf

9
a2
MS

þ ½400Nf þ 1296ζ3 − 1485�Nf

81
a3
MS

þ 2½−4000N2
f − 50544ζ3Nf þ 63009Nf þ 35964ζ3 − 58320ζ5 þ 11583� Nf

729
a4
MS

þ ½320000N3
f þ 11244096ζ3N2

f þ 1866240ζ5N2
f − 15967908N2

f þ 8957952ζ23Nf

− 33195744ζ3Nf þ 454896ζ4Nf þ 28460160ζ5Nf − 186381Nf − 1364688ζ3

− 25719120ζ5 þ 29393280ζ7 þ 135594� Nf

13122
a5
MS

þOða6
MS

Þ

αQEDgMOMeep0pT

¼ αMS þ
20Nf

9
αMSaMS þ αMS½−48ζ3 þ 55�Nf

3
a2
MS

þ 2αMS½2736ζ3Nf − 3701Nf − 3996ζ3 þ 6480ζ5 − 1287�Nf

81
a3
MS

þ αMS½−465984ζ3N2
f − 207360ζ5N2

f þ 786052N2
f − 622080ζ23Nf

þ 2193696ζ3Nf − 50544ζ4Nf − 2125440ζ5Nf þ 304839Nf þ 151632ζ3

þ 2857680ζ5 − 3265920ζ7 − 15066� Nf

1458
a4
MS

þOða5
MS

Þ: ð3:9Þ

While we have concentrated on the structure of the renormalization group functions of the gMOM� schemes the
conversion functions for the gluon, ghost, quark and quark mass share an interesting property which is

C
gMOMccg0c

ϕ ða; αÞ ¼ C
gMOMccg0g

ϕ ða; αÞ ¼ C
gMOMggg0g

ϕ ða; αÞ

¼ C
gMOMqqg0q

ϕ ða; αÞ ¼ C
gMOMqqg0g

ϕ ða; αÞ ð3:10Þ

for each ϕ in the same labelling set as previously. These are all derived from the renormalization of 2-point functions with
the same subtraction condition. This equivalence property equally occurs in the regularization invariant (RI0) and mMOM
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schemes [64,67] as well as those associated with the
symmetric point MOM schemes of [51,52] that were
provided in [68,69]. The common underlying property

of all the C
gMOM�
ϕ ða; αÞ conversion functions and the

corresponding RI0, mMOM and MOM ones is that the
prescription to define the respective wave function and
quark mass renormalization constants in each of the
schemes is the same. In other words the finite part of each
2-point function is absorbed into the renormalization
constant. Moreover while the expressions for say ZA
constructed with this prescription in two different schemes
will be formally different, in the determination of their
conversion functions with respect to the reference MS
scheme the effect of the different coupling constant and
gauge parameter mappings wash out. What is not the case is
that there is a parallel equivalence for CS

g ða; αÞ as is evident
from the data associated with the arXiv version of this
article [66]. Moreover they ought not to be since the
prescription to define Zg for each gMOM� is different.
While (3.10) provides an interesting property of the
conversion functions it could in principle ease future
compilations of renormalization group functions for the
wave function and quark mass anomalous dimensions. In
other words for schemes where such 2-point subtractions
are to be implemented one in effect only requires the
coupling constant map to be computed explicitly. That for
the gauge parameter is not independent of CS

Aða; αÞ in a
linear covariant gauge. Furthermore one could have

schemes which are hybrid in the sense that some 2-point
functions are renormalized with an MS prescription
whereas the remaining ones are rendered finite with a
finite subtraction too. In this sense the RI0 scheme of
[70,71] could be regarded as a hybrid scheme since the
coupling constant is renormalized with an MS prescription,
meaning CRI0

g ða; αÞ is trivially and obviously unity, but the
2-point functions have their finite parts subtracted
[47,49,65] and satisfy (3.10). Finally as a side comment
the fact that (3.10) was observed at five loops by direct
explicit computation provides in part a reassuring consis-
tency check on our overall approach.

IV. C-SCHEME MAPPING

Having established that the gMOM� scheme renormali-
zation group functions do not have any ζ4 or ζ6 dependence
one question that arises is whether one of these schemes is
in fact equivalent to the C-scheme of [59,60]. One claim of
[59,60] is that ζ4 is absent for certain physical quantities.
One way to test whether there is a connection with the
C-scheme is to compare the gMOM� coupling constant
maps with the map given in Eq. (7) of [59]. While that
depends on the parameter C in the order L polynomial of
the OðaLþ1Þ term of the mapping it might be possible to
find a particular value of C that exactly matches the
mapping of a gMOM� scheme. Therefore in order to
facilitate a comparison with [59,60] we note that for
Nf ¼ 3 the SUð3Þ mappings in the Landau gauge are

agMOMccg0c

����SUð3Þ

α¼0;Nf¼3

¼ aþ 43

4
a2 þ

�
15685

48
−
383

8
ζ3

�
a3

þ
�
20589011

1728
−
408251

144
ζ3 −

62255

192
ζ5

�
a4

þ
�
2446354687

36864
ζ7 −

683706835

4608
ζ3 −

606373645

4608
ζ5 þ

3911

32
ζ23

þ 627809683

1152
þ 1335ζ4

�
a5 þOða6Þ

agMOMccg0g

����SUð3Þ

α¼0;Nf¼3

¼ aþ 61

4
a2 þ

�
22597

48
−
383

8
ζ3

�
a3

þ
�
15762289

864
−
970483

288
ζ3 −

74405

192
ζ5

�
a4

þ
�
15799466317

18432
þ 1876891639

36864
ζ7 −

2039209463

9216
ζ3 −

1934713015

18432
ζ5

þ 766871

512
ζ23 þ 1335ζ4

�
a5 þOða6Þ
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agMOMggg0g

����SUð3Þ

α¼0;Nf¼3

¼ aþ 43

4
a2 þ

�
7973

24
−
223

4
ζ3

�
a3 þ

�
41856073

3456
−
1925333

576
ζ3 −

575

12
ζ5

�
a4

þ
�
10225015489

18432
−
1369710205

18432
ζ5 −

110437973

576
ζ3 −

131329

512
ζ23

þ 1652451493

36864
ζ7 þ 1335ζ4

�
a5 þOða6Þ

agMOMggg0gg

jSUð3Þ
α¼0;Nf¼3

¼ aþ 16a2 þ
�
93427

192
−
169

4
ζ3

�
a3

þ
�
129114635

6912
−
1822913

576
ζ3 −

124835

192
ζ5

�
a4

þ
�
4050665663

4608
−
393488663

2304
ζ3 þ

980775

512
ζ23 þ

1055749471

36864
ζ7

−
1387483355

9216
ζ5 þ 1335ζ4

�
a5 þOða6Þ

agMOMqqg0g

����SUð3Þ

α¼0;Nf¼3

¼ aþ 25

4
a2 þ

�
725

4
− 85ζ3

�
a3 þ

�
127615

64
ζ5 −

542609

144
ζ3 þ

12018703

3456

�
a4

þ
�
5829675395

82944
þ 2035638385

41472
ζ5 −

523779403

18432
ζ7 −

457075871

5184
ζ3

þ 895703

128
ζ23 þ 1335ζ4

�
a5 þOða6Þ

agMOMqqg0gT

����SUð3Þ

α¼0;Nf¼3

¼ aþ 37

4
a2 þ

�
1843

6
− 98ζ3

�
a3 þ

�
36955015

3456
−
705631

144
ζ3 þ

199895

576
ζ5

�
a4

þ
�
13618908001

27648
þ 2145762283

55296
ζ7 −

1176358325

13824
ζ5 −

296853959

1152
ζ3

þ 28000843

1152
ζ23 þ 1335ζ4

�
a5 þOða6Þ

agMOMqqg0q

����SUð3Þ

α¼0;Nf¼3

¼ aþ 43

4
a2 þ

�
16009

48
− 58ζ3

�
a3 þ

�
21116969

1728
−
241291

72
ζ3 −

51815

192
ζ5

�
a4

þ
�
1298610053

2304
−
829799785

4608
ζ3 −

560109325

4608
ζ5 þ

1068169

256
ζ23

þ 1047188135

18432
ζ7 þ 1335ζ4

�
a5 þOða6Þ

agMOMqqg0qT

����SUð3Þ

α¼0;Nf¼3

¼ aþ 227

12
a2 þ

�
42365

72
−
653

8
ζ3

�
a3

þ
�
−
7398635

1296
ζ3 −

3660955

5184
ζ5 þ

62323649

2592

�
a4

þ
�
73210930375

62208
−
51236375219

124416
ζ3 −

28655962325

124416
ζ5 þ

12942575401

110592
ζ7

þ 922617353

20736
ζ23 þ 1335ζ4

�
a5 þOða6Þ ð4:1Þ
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where a on the right-hand side is in the MS scheme. In order to quantify the behavior of the mappings the numerical values
of (4.1) are

agMOMccg0c

����SUð3Þ

α¼0;Nf¼3

¼ aþ 10.7500a2 þ 269.2224a3 þ 8170.7954a4 þ 298706.1459a5 þOða6Þ

agMOMccg0g

����SUð3Þ

α¼0;Nf¼3

¼ aþ 15.2500a2 þ 413.22236a3 þ 13790.9432a4 þ 537305.8623a5 þOða6Þ

agMOMggg0g

����SUð3Þ

α¼0;Nf¼3

¼ aþ 10.7500a2 þ 265.1937a3 þ 8043.4603a4 þ 293487.5638a5 þOða6Þ

agMOMggg0gg

����SUð3Þ

α¼0;Nf¼3

¼ aþ 16.0000a2 þ 435.8121a3 þ 14201.3422a4 þ 550737.2450a5 þOða6Þ

agMOMqqg0g

����SUð3Þ

α¼0;Nf¼3

¼ aþ 6.2500a2 þ 79.0752a3 þ 1015.7594a4 − 1902.2308a5 þOða6Þ

agMOMqqg0gT

����SUð3Þ

α¼0;Nf¼3

¼ aþ 9.2500a2 þ 189.3651a3 þ 5162.5198a4 þ 170286.4367a5 þOða6Þ

agMOMqqg0q

����SUð3Þ

α¼0;Nf¼3

¼ aþ 10.7500a2 þ 263.8015a3 þ 7912.2228a4 þ 285890.5240a5 þOða6Þ

agMOMqqg0qT

����SUð3Þ

α¼0;Nf¼3

¼ aþ 18.9167a2 þ 490.2849a3 þ 16450.0060a4 þ 626761.5038a5 þOða6Þ: ð4:2Þ

All, bar the mapping for gMOMqqg0g, have a similar form in the sense that all the corrections are positive. The four loop

coefficient of the gMOMqqg0g scheme mapping is negative. Although the gauge used in [59,60] is not specified we have
chosen the Landau gauge to also indicate some general properties of the mappings first.
For completeness we provide an example of the gauge parameter mapping. Again choosing Nf ¼ 3 for α ≠ 0 we have

αgMOMggg0g

����SUð3Þ

Nf¼3

¼ αþ
�
−
19

4
α −

3

2
α2 −

3

4
α3
�
a

þ
�
−
11537

96
α −

9

16
α4 þ 9

16
α5 þ 15

16
α3 þ 303

32
α2 − 18ζ3α

2 þ 31ζ3α

�
a2

þ
�
−
12861817

3456
α −

26517

32
ζ3α

2 −
8919

128
α4 −

6011

128
α3 −

1713

32
ζ3α

3

−
1341

32
ζ4α −

315

64
ζ5α

5 −
171

16
α5 −

45

8
ζ5α

4 −
27

64
α7 þ 27

16
α6 þ 81

8
ζ4α

2

þ 81

32
ζ4α

3 þ 117

32
ζ3α

5 þ 1341

32
ζ3α

4 þ 3105

8
ζ5α

2 þ 3465

32
ζ5α

3 þ 16567

128
α2

þ 41195

192
ζ5αþ 82711

72
ζ3α

�
a3

þ
�
−
1163178749

6912
α −

851518199

18432
ζ7α −

87691285

3072
ζ3α

2 −
60649407

4096
ζ7α

2

−
12605197

4608
α3 −

4220519

1536
ζ3α

3 −
2566431

2048
ζ7α

3 −
1210101

512
α4

−
1075923

2048
α5 −

935271

1024
ζ5α

4 −
851175

1024
ζ6α

2 −
808011

2048
ζ4α

−
209169

512
ζ23α

3 −
203949

512
ζ23α

2 −
137781

1024
ζ7α

5 −
103875

32
ζ6α
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−
53865

256
ζ5α

5 −
52569

512
ζ23α

4 −
23247

1024
ζ4α

4 −
19755

512
ζ5α

6 −
17631

512
ζ3α

6

−
13041

2048
ζ4α

5 −
567

256
α8 −

351

64
ζ3α

7 þ 81

256
α9 þ 945

128
ζ5α

7 þ 1863

256
ζ23α

6

þ 2349

128
α7 þ 4725

1024
ζ6α

5 þ 5373

512
α6 þ 10647

4096
ζ7α

6 þ 19737

512
ζ23α

5

þ 22275

1024
ζ6α

3 þ 24975

1024
ζ6α

4 þ 78327

512
ζ4α

3 þ 132615

512
ζ7α

4 þ 205719

32
ζ23α

þ 558927

2048
ζ3α

5 þ 663687

1024
ζ4α

2 þ 1674621

1024
ζ3α

4 þ 5561003

1024
ζ5α

3

þ 8440805

18432
α2 þ 25777469

1024
ζ5α

2 þ 663132857

9216
ζ5αþ 891656237

18432
ζ3α

�
a4 þOða5Þ ð4:3Þ

for the gMOMggg0g scheme. Unlike the coupling constant
map ζ4 first appears at Oða3Þ and ζ6 is present at
Oða4Þ. The gauge parameter maps for the other gMOM�
schemes are formally the same for all color groups
from (3.10).
One main observation from (4.1) is that ζ4 appears in

each of the Oða5Þ terms but ζ6 is absent. The latter does
not arise when α ≠ 0 nor for any color group. In the
Oða3Þ terms in (4.1) ζ3 is present but in the mapping of
[59] there is no ζ3 at the same order. Instead there are
only rationals. While ζ3 could in principle be intro-
duced by a choice of C that would then mean ζ3 is
present in the Oða2Þ term which none of the mappings
in (4.1) have. Equally if C is determined from the
Oða2Þ term to match that of one of the Oða2Þ terms of
the gMOM� mappings, then that choice could not
introduce a ζ3 term at Oða3Þ. At Oða4Þ ζ5 is present
in (4.1) but is absent at the corresponding order in the
map of [59]. By contrast for the Nf ¼ 3 expression
provided in [59] there is a ζ4 term at Oða5Þ. Moreover
its coefficient is precisely the same as that of ζ4 at the
same order in each of the gMOM� schemes when
Nf ¼ 3, after allowing for a factor of 4 for differing
coupling constant conventions as is evident in (4.1). It
transpires that this equality occurs for all Nf and a
general color group. Moreover it suggests that the
coupling constant map of [59,60] does have the same
underlying ζ4 cancellation property whatever the
renormalization prescription that underlies it is. In
some sense the universality of this particular ζ4
term in all the mappings reinforces the observations
of [44–46] that the ζ4 absence could be traced to a
unique ϵ dependent transformation of ζ3. That ϵ
dependence would affect the counterterms in the under-
lying renormalization group functions. The fact that
there is no other universal connection in any of the
mappings for odd zetas merely reflects the different

prescriptions defining those schemes. We have also
examined the situation for α ≠ 0. While the extra
parameter could in principle be exploited to find a
suitable value for C to achieve a match at low order,
this does not persist at higher order. So it would appear
that none of our schemes have an immediate connection
to the C-scheme aside from the ζ4 one at Oða5Þ.
We can examine the situation from another point of view.

It is worth recalling the origin of the coupling constant map
at a more formal level to see if it sheds light on the relation
of the gMOM� schemes to the C-scheme. In general the
coupling renormalization constants for two schemes take
the following forms

Zg ¼ 1þ
X∞
n¼1

Xn
m¼1

zg nm
an

ϵm
; ZS

g ¼ 1þ
X∞
n¼1

Xn
m¼0

zSg nm
anS
ϵm

ð4:4Þ

where zg nm and zSg nm are the residues of the poles in ϵ

in the MS scheme and a general scheme S respectively.
Included in the S scheme definition are the finite parts
with zSg n0 ≠ 0 but there are no corresponding zg n0 terms

in keeping with the definition of the MS scheme. We
will assume there are no other parameters, such as a
gauge parameter, in this formal analysis. So our focus
is on the Landau gauge. If we define the relation
between the two coupling constants in perturbation
theory as

aS ¼
X∞
n¼0

cnanþ1 ð4:5Þ

in the same notation as [59] and recall the definition of
(2.7) which determines the mapping from the coupling
renormalization constant, then it is a straightforward
exercise to deduce
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c0 ¼ 1;

c1 ¼ −2zSg 10;

c2 ¼ 7ðzSg 10Þ2 − 2zSg 20

c3 ¼ −30ðzSg 10Þ3 þ 18zSg 10z
S
g 20 − 2zSg 30

c4 ¼ 143ðzSg 10Þ4 − 132ðzSg 10Þ2zSg 20 þ 22zSg 10z
S
g 30

þ 11ðzSg 20Þ2 − 2zSg 40

c5 ¼ −728ðzSg 10Þ5 þ 910ðzSg 10Þ3zSg 20 − 182ðzSg 10Þ2zSg 30
−182zSg 10ðzSg 20Þ2 þ 26zSg 10z

S
g 40 þ 26zSg 20z

S
g 30 − 2zSg 50:

ð4:6Þ

We note that zg nm and zSg nm are predetermined whenm ≥ 2

from the simple pole residues and finite parts of the lower
loop terms at each order n for each renormalization
constant. Having formally derived (4.6) we have checked
that all the Landau gaugemappings of (4.1) are reproduced
from the finite parts computed to four loops. In examining
the structure of the respective finite parts in each gMOM�
scheme we note that for example zSg 20 involves ζ3 but z

S
g 10

has only rationals for the gMOM� schemes. From (4.6) it is
clear that for each n zSg n0 appears for the first time in cn in
addition to all the lower order finite parts.
If we assume for the moment that the C-scheme satisfies

these S scheme properties we can examine it in more detail.
The C-scheme involves the parameter C which was
motivated by the observation that the ratio of Λ-parameters
between a scheme and the MS scheme is determined
exactly by c1=β1 where c1 is the one loop term of (4.5)

and β1 is the one loop coefficient of theOða2Þ term in (3.1).
Therefore making this connection with the formal origin of
C in [59,60], where β1 ¼ −9 for Nf ¼ Nc ¼ 3, the power
series dependence of zSg 10 in cn in (4.6) parallels that of the
parameter C in the coupling constant mapping of [59,60].
Specifically one can check that C is c1 which is related to
zSg 10. However, the very assumption in [59,60] that c1 is
nonzero in the Λ ratio immediately implies that whatever
the renormalization prescription is that defines the
C-scheme, at the level of subtracting divergences of a vertex
function, it is one where ZS

g has a nonzero finite contribution
at each loop order. Therefore there ought to be the equivalent
of zSg n0 dependence in the coupling constant map of [59,60]

from the C-scheme to the MS scheme for n ≥ 2. Such
dependence appears to be absent as the mapping of [59,60]
depends on only one parameter and therefore only zSg 10.

Unless the explicit values of zSg n0 are all zerowhen computed
for all n ≥ 2, which would be peculiar, then it would appear
that it is not possible to connect the C-scheme to any of thegMOM� schemes using the renormalization group based
argument that led to (4.6). Indeed we took the values of
cn given in [59,60] and solved for zSgn0 for each gMOM�
scheme. After matching C to c1 for each scheme the
remaining zSg n0 for n ≥ 2 are not in agreement with the finite

parts determined from each gMOM� renormalization.
Returning to the more general scheme S when there is a

finite part in the coupling renormalization constant of (4.4),
it is instructive to record the form of the β-function for
nonzero ϵ and therefore clarify earlier comments. Using
(2.3) and (4.4) we have the formal ϵ dependent β-function

βSða; ϵÞ ¼ 2zSg 11a
2 þ 4½−3zSg 11zSg 10 þ zSg 21�a3

þ 2½27zSg 11ðzSg 10Þ2 − 11zSg 11z
S
g 20 − 11zSg 10z

S
g 21 þ 3zSg 31�a4

þ 8½−27zSg 11ðzSg 10Þ3 þ 24zSg 11z
S
g 10z

S
g 20 − 4zSg 11z

S
g 30 þ 12ðzSg 10Þ2zSg 21

−4zSg 10zSg 31 − 5zSg 20z
S
g 21 þ zSg 41�a5

þ 2½405zSg 11ðzSg 10Þ4 − 567zSg 11ðzSg 10Þ2zSg 20 þ 138zSg 11z
S
g 10z

S
g 30 þ 85zSg 11ðzSg 20Þ2

−21zSg 11zSg 40 − 189ðzSg 10Þ3zSg 21 þ 69ðzSg 10Þ2zSg 31 þ 170zSg 10z
S
g 20z

S
g21

−21zSg 10zSg 41 − 29zSg 20z
S
g31 − 29zSg 21z

S
g 30 þ 5zSg 51�a6

þ ½−aþ 2zSg 10a
2 þ 2½−3ðzSg 10Þ2 þ 2zSg 20�a3

þ2½9ðzSg 10Þ3 − 11zSg 10z
S
g 20 þ 3zSg 30�a4

þ2½−27ðzSg 10Þ4 þ 48ðzSg 10Þ2zSg 20 − 16zSg 10z
S
g 30 − 10ðzSg 20Þ2 þ 4zSg 40�a5

þ 2½81ðzSg 10Þ5 − 189ðzSg 10Þ3zSg 20 þ 69ðzSg 10Þ2zSg 30 þ 85zSg 10ðzSg 20Þ2
−21zSg 10zSg 40 − 29zSg 20z

S
g 30 þ 5zSg 50�a6�ϵþOða7Þ ð4:7Þ
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where the ϵ dependent contributions follow the part that
survives when the regularization is lifted. A similar expres-
sion can be constructed for the anomalous dimension of the
fields and mass. In each case the coefficients will depend not
only on the residues and finite parts of the respective
renormalization constants but also on ZS

g . We recall that in
a gauge theory the corresponding construction will be more
involved for a nonzero covariant gauge parameter. Like (4.6)
theOðϵÞ term of βSðaÞ depends solely on zSg n0 for n ≥ 1. So
knowledge of the coefficients ofa in either of thesemeans the
coefficients of a in the other can be determined.
The necessity of theOðϵÞ piece is central to another aspect

of the renormalization group properties. This concerns
critical exponents which are renormalization group invari-
ants and given by the evaluation of the anomalous dimen-
sions at zeros of the β-function. In the case of the latter the
relevant exponent is the slope of the β-function at criticality.
Amongst the widely studied suite of exponents are those
derived from the Wilson-Fisher fixed point [72] defined as

the critical point closest to the origin for nonzero ϵ. For the
MS scheme, where there are no ϵ terms in the β-function
aside from theOðaÞ one, which itself reflects the dimension-
lessness of the d-dimensional coupling constant, the expo-
nent ω ¼ β0Sða; ϵÞ where the derivative acts on a, will only

depend on the residues of the simple poles of ϵ in ZMS
g as is

clear from (4.7). Equally (4.7) suggests that evaluating ω for
the generic scheme S would involve zSg n0 as well. This might
seem to imply thatωwould be different in different schemes
and hence contradict the renormalization group invariance of
the exponents at the Wilson-Fisher fixed point. We have
checked this is not the case to Oðϵ5Þ in each of the gMOM�
schemes considered here. This was for the Landau gauge as
that is a fixed point of γαða; αÞ. Moreover, the agreement has
also beenverified in [73] for theMOMschemesof [51,52]. In
other words for a generic scheme the invariance of the
exponents actually provides relations between zg n1 and zSg n1.
In particular we record

zSg 21 ¼ 3zg 11zSg 10 þ zg 21; zSg 31 ¼ 3zg 11ðzSg10Þ2 þ 3zg 11zSg 20 þ 5zg 21zSg 10 þ zg 31

zSg 41 ¼ zg 11ðzSg 10Þ3 þ 6zg 11zSg 10z
S
g 20 þ 3zg 11zSg 30 þ 10zg 21ðzSg 10Þ2 þ 5zg 21zSg 20 þ 7zg 31zSg 10 þ zg 41

zSg 51 ¼ 3zg 11ðzSg 10Þ2zSg 20 þ 6zg 11zSg 10z
S
g 30 þ 3zg 11ðzSg 20Þ2 þ 3zg 11zSg 40 þ 10zg 21ðzSg 10Þ3

þ 20zg 21zSg 10z
S
g 20 þ 5zg 21zSg 30 þ 21zg 31ðzSg 10Þ2 þ 7zg 31zSg 20 þ 9zg 41zSg 10 þ zg 51 ð4:8Þ

where we have assumed zSg 11 ¼ zg 11. While the two loop term of the β-function in a single coupling theory is scheme
independent this does not imply zg 21 and zSg 21 are equal. Although we have checked these relations are satisfied in thegMOM� schemes we cannot do the same for the C-scheme β-function as only the purely four dimensional expression is
available and not the ϵ dependent one. For the wave function renormalization Zϕ similar relations hold between the
terms of the respective renormalization constants. If we define

Zϕ ¼ 1þ
X∞
n¼1

Xn
m¼1

zϕnm
an

ϵm
; ZS

ϕ ¼ 1þ
X∞
n¼1

Xn
m¼0

zSϕ nm

anS
ϵm

ð4:9Þ

it is straightforward to deduce

zSϕ 21 ¼ 2zSg 10zϕ 11 þ zϕ 11zSϕ 10 þ zϕ 21

zSϕ 31 ¼ ðzSg 10Þ2zϕ 11 þ 2zSg 10zϕ 11zSϕ 10 þ 4zSg 10zϕ 21 þ 2zSg 20zϕ 11 þ zϕ11zSϕ 20 þ zϕ 21zSϕ 10 þ zϕ 31

zSϕ 41 ¼ ðzSg 10Þ2zϕ 11zSϕ 10 þ 6ðzSg 10Þ2zϕ 21 þ 2zSg 10z
S
g 20zϕ 11 þ 2zSg 10zϕ 11zSϕ 20 þ 4zSg 10zϕ 21zSϕ 10

þ 6zSg 10zϕ 31 þ 2zSg 20zϕ 11zSϕ 10 þ 4zSg 20zϕ 21 þ 2zSg 30zϕ 11 þ zϕ 11zSϕ 30 þ zϕ 21zSϕ 20

þ zϕ 31zSϕ 10 þ zϕ 41

zSϕ 51 ¼ 4ðzSg 10Þ3zϕ 21 þ ðzSg 10Þ2zϕ 11zSϕ 20 þ 6ðzSg 10Þ2zϕ 21zSϕ 10 þ 15ðzSg 10Þ2zϕ 31

þ 2zSg 10z
S
g 20zϕ 11zSϕ 10 þ 12zSg 10z

S
g 20zϕ 21 þ 2zSg 10z

S
g 30zϕ 11 þ 2zSg 10zϕ 11zSϕ30

þ 4zSg 10zϕ 21zSϕ 20 þ 6zSg 10zϕ 31zSϕ 10 þ 8zSg 10zϕ 41 þ ðzSg 20Þ2zϕ 11 þ 2zSg 20zϕ 11zSϕ 20

þ 4zSg 20zϕ 21zSϕ 10 þ 6zSg 20zϕ 31 þ 2zSg30zϕ 11zSϕ 10 þ 4zSg 30zϕ 21 þ 2zSg 40zϕ 11 þ zϕ 11zSϕ 40

þ zϕ 21zSϕ 30 þ zϕ 31zSϕ 20 þ zϕ 41zSϕ 10 þ zϕ 51 ð4:10Þ
where zSϕ 11 ¼ zϕ 11 has been assumed.
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V. PERSPECTIVE ON SCHEMES

Having completed the explicit construction of thegMOM� schemes at five loops in QCD, it is worth pausing
to consider the position of such schemes in a more general
context. The discussion, however, will be for massless
theories so that particle masses do not feature in the
underlying renormalization. First for the moment we will
focus on a theory with a single field and an n-point
interaction. Although initially we will consider a 3-point
interaction as it will provide a simple introduction to classes
of schemes. For instance, we will suggest that for such an
interaction there are two classes of schemes which will be
termed 1- and 3-variable. By 1-variable we mean those
schemes where there is only one independent invariant or
equivalently variable, which for the gMOM prescription is
the external momentum of the 2- and 3-point functions that
are used to determine the renormalization constants and
recorded as an example in (2.11) for QCD. For the vertex
function the momentum configuration is an exceptional one
in that there are fewer independent momenta than the
maximum permitted for a 3-point function; for an n-point
function this is (n − 1). While the structure of the Feynman
rules for each of the three vertices in QCD ensures that
infrared rearrangement trivially implies there are no infra-
red issues, it also means that the number basis of the
nullified 3-point vertices is ζn or multiple zetas up to at least
six loops aside from rationals. For ϕ3 theory in six
dimensions one can nullify the external momentum of
the cubic vertex since that is automatically infrared safe
unlike four dimensions. By contrast with this 1-variable
notion of scheme the 3-variable scheme for a cubic theory
corresponds to schemes where the vertex momentum
configuration is nonexceptional. In this instance the num-
ber basis is known to be different from that of the 1-variable
case. For such 3-point function configurations there will be
more invariants and hence they will depend on several
variables. The reason for this is that there are now two
independent momenta. For instance, for a 3-point vertex
with nonzero external momenta p1, p2 and p3, one of these
is not independent, say p3, via energy-momentum con-
servation. From the two independent momenta there are
three scalar products p2

1, p2
2 and p1:p2 which can be

regarded as two scales and essentially an angle.
Alternatively one could take p2

i for i ¼ 1, 2 and 3 as the
independent set of variables. For the 3-point function one

can form two dimensionless variables x ¼ p2
1

p2
3

and y ¼ p2
2

p2
3

,

say, leaving one variable p2
3 as the dimensionful one. The

overall scale will be common to all the Feynman graphs
comprising a 3-point vertex meaning that the remaining
vertex function, prior to renormalization, will depend on
x and y which are not renormalized. By contrast, in a
1-variable scheme the variable itself, which is the square of
the external momentum, does not feature in the actual

renormalization constants purely as it is dimensionful but it
will be present in the finite renormalized Green’s function.
So there is no remnant of the kinematics of the subtraction
configuration in the renormalization group functions in a
1-variable scheme unlike the 3-variable one in this cubic
theory example.
An example of such a scenario is the well-established

symmetric point momentum subtraction scheme defined in
QCD in [51,52]. For instance the full renormalization group
functions of QCD in the three MOM schemes are available
at three loops in [51,52,68,69,74] in an arbitrary linear
covariant gauge and at four loops in the Landau gauge
in [69]. In other words these three MOM schemes have
x ¼ y ¼ 1. However there is no a priori reason why x and y
should take these values. In principle they can be left as free
variables although restricted to configurations where there
are no collinear or infrared singularities for example. While
schemes with x and y both free have not been studied as
such at the Lagrangian level, a subset of nonunit x and y
values have been, not only for the Lagrangian but also for
operator renormalization in what is termed the interpolating
MOM scheme [75–77]. This is the case where x and y
are related to one common parameter ω̂.3 Considering a
3-variable scheme which depends on two variables may
seem an irrelevant exercise but it could have the advantage
of tuning the convergence for the perturbative series of an
observable to minimize theory uncertainties or alternatively
provide a more informed method of estimating theory
errors for instance. Equally having schemes depend on
variables may not be aesthetically pleasing. On the other
hand there is no a priori reason why the symmetric point
configuration x ¼ y ¼ 1 should be singled out for special
significance. A related issue to tuning is the situation of
taking mathematical limits. One such limit would be that
which should produce the lower variable scheme or
schemes which for a cubic theory would be the 1-variable
one. Therefore one could regard the development of thegMOM� schemes in QCD as both the starting point as well
as an endpoint check for building such a suite of schemes.
Of course in the QCD example the Lagrangian also

possesses a quartic gluon vertex which in this vision would
lead to another class of schemes. The pattern for this is now
clear and would be a set of 6-variable schemes with five
dimensionless variables. More generally for an n-point
function the nonexceptional scheme would be an
1
2
nðn − 1Þ-variable one. In the case of n ¼ 4 with momenta

p1, p2, p3 and p4 we can take the first three as the
independent ones by energy-momentum conservation
which can be used to construct six invariants. For example,
these could either be the lengths of the six possiblemomenta,
p1, p2, p3, ðp1 þ p2Þ, ðp1 þ p3Þ and ðp2 þ p3Þ, or the

3In [75–77] the variable is actually ω but we use ω̂ briefly here
to avoid confusion with the use of ω for a different entity in the
previous section and later in this one.
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squares of the first three and in effect the three so-called
angles derived from p1:p2, p1:p3 and p2:p3 or some other
set. An explicit example of the dependence is provided in
[78,79] where the analytic expression for the one loop box
integral is provided in four dimensions. There, by contrast,
the lengths of the external momenta and two Mandelstam
variables were used as the invariants. It was shown in [78,79]
that the planar box master with an arbitrary number of rungs
is related to the master 3-point planar triangle with the
equivalent number of rungs. In practice that master integral is
actually a function with three arguments where each argu-
ment depends on combinations of the six underlying vari-
ables. Either way five dimensionless ratios plus one overall
scale act as the independent variables for the renormalization
of 4-point functions at a subtraction point. For instance a
specific example of this in QCD was provided in [80] where
the quartic gluon vertex was studied at one loop at the fully
symmetric point and latterly in [81]. For a 4-point function
aside from the 6-variable scheme there are in principle
subvariable schemes such as those where one of the external
momenta is initially nullified corresponding to an excep-
tional configuration to produce a 3-variable scheme. As
noted in [46] provided one can carry out the renormalization
in an infrared safe fashion using infrared rearrangement there
would additionally be a set of 1-variable schemes. The
number basis in that instance should be the same as that of thegMOM schemes and in a similar way the 3-variable schemes
should involve the same suite of polylogarithm functions as
those of an x and y dependent MOM scheme. A hint of the
appearance of more involved mathematical functions in
schemes is already available from [38] with the presence
of an apparent nonmultiple zeta number P7;11 in the seven
loop MS renormalization of ϕ4 theory. In discussing the
potential ordering of schemes in this way we qualify the
situation by mentioning that the actual number of distinct
1
2
nðn − 1Þ-variable schemes for n-point functions is depen-

dent on the field content of the underlyingLagrangian.As the
QCDsituation shows there are several 1-variable schemes for
each 3-point vertex, as constructed earlier, and in a linear
covariant gauge fixing there is only one 6-variable scheme
together with various lower variable schemes derived from it.
This would complete the classification of all possible
massless kinematic based schemes in QCD. By contrast in
ϕ3 theory there is only one 1-variable and one 3-variable
scheme. The discussion of the n-variable scheme classifi-
cation has rested on the vertex function. Within each
particular n-variable scheme there is of course the further
subdivision into the actual prescription to determine the
renormalization constants themselves such as whether to

include finite parts as in the gMOM set or not in the MS case
aside from a hybrid mixture akin to the RI0 scheme.
Returning to the theme of this article, which is the

absence of ζ4 and ζ6 in gMOM� schemes, in light of the

previous remarks it would seem that this property may be
specifically confined to 1-variable schemes. This is because
the treatment of the 3-point renormalization by one external
momentum nullification immediately reduces those verti-
ces to the 1-variable case. From the higher variable scheme
point of view if one has the general 3-variable scheme with
the finite part subtraction then the source of the ζ4
cancellation at four loops in the β-function could in
principle be investigated, say, in the limit to the 1-variable
case. At present the necessary three loop 3-point master
integrals are not known for nonzero x and y; only the
corresponding two loop masters are available [82–86]. If
such a three loop arbitrary x and y renormalization could be
carried out, it should be the case that taking the limit to the
momentum configuration corresponding to one nullified
external momentum produces a gMOM� scheme as the
endpoint. In that case the mathematical relations between
the various types of polylogarithms, that ought to be the
function basis for the three loop masters [87] may prove
important in seeing how the ζ4 cancellation emerges in all
the renormalization group functions. Similar comments
would equally apply to the next loop order to understand
the relations that ensure the absence of ζ6. An additional
observation based on the 1-variable scheme situation is that
there will be parallel gMOM schemes for the 1

2
nðn − 1Þ-

variable schemes for n-point functions. In those cases it
would be interesting to ascertain if there is an analogous set
of functions that arises in the finite part of the Green’s
functions at a particular loop order but does not contribute
to the renormalization group functions at the next loop in
such a gMOM prescription.
Some of the points made in this section can be illustrated

by an example. The possibility that ζ4 was perturbatively
absent in a situation which had physical significance was
illuminated in [44]. It centred on the Adler D-function in
the MS scheme. Subsequently this property was formulated
in a no-π theorem in [44]. Aside from the absence of ζ4 the
theorem specified several conditions that involved what
was termed p-integrals [44]. For the present discussion the
relevant ones are that for a massless correlator evaluated in
a π-safe class [44] using p-integrals then it is π-free in a
renormalization scheme that is free of π [44]. Another way
of expressing this is that the theorem only applied to
massless correlation functions determined in 1-variable
schemes. It is straightforward to see that for 3-variable
schemes a different number basis structure is present. For
instance if we define the perturbative expansion of the
Adler D-function by

DðQ2Þ ¼ dRCAdlða; αÞ ð5:1Þ

in the same notation as [88], where dR ¼ 3 for SUð3Þ, then
in the MOMq scheme of [51,52] for the same group we
have

J. A. GRACEY PHYS. REV. D 109, 036015 (2024)

036015-22



CAdl
MOMqða; 0Þ

����SUð3Þ
¼ 1þ 4aþ

�
−
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81
π2 −

92

9
Nf þ

32

3
ζ3Nf þ

170

27
ψ ð1Þ

�
1

3

�
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3
− 176ζ3

�
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þ
�
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1050461

108
ζ3 −
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�
1
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3

	
2
−
46684

2187
π4ψ ð1Þ

�
1

3

�
Nf −

43130

729
H5

−
40240

243
ζ3π

2ψ ð1Þ
�
1

3

�
Nf −

27520

9
ζ5N2

f −
16928

81
ζ3ψ

ð1Þ
�
1

3

�
N2

f

−
15248

81
π2N2

f −
13246

729
ζ3ψ

ð3Þ
�
1

3

�
Nf −

12473

87480
ψ ð5Þ

�
1

3

�
Nf

−
9376

729
ψ ð1Þ

�
1

3

�
3

Nf −
5555

243
ζ3ψ

ð3Þ
�
1

3

�
−
4736

729
H5Nf −

3313

2187
ψ ð3Þ

�
1

3

�
N2

f

−
1072

9
N3

f −
256

81
ζ3π

4N2
f −

164

229635
H6 −

85

81
π2ψ ð3Þ

�
1

3

�
Nf

−
32

27
π2ψ ð1Þ

�
1

3

�
N2

f þ
8

9
ψ ð1Þ

�
1

3

�
2

N2
f þ

32

27
ζ3ψ

ð3Þ
�
1

3

�
N2

f

þ 85

54
ψ ð1Þ

�
1

3

�
ψ ð3Þ

�
1

3

�
Nf þ

448

9
ζ3N3

f þ
640

9
ζ5N3

f þ
2560

9
ζ23N

2
f

þ 7624

27
ψ ð1Þ

�
1

3

�
N2

f þ
10060

81
ζ3ψ

ð1Þ
�
1

3

�
2

Nf þ
18752

729
π2ψ ð1Þ

�1
3

	
2
Nf

þ 21280

9
ζ7Nf þ

29096

6561
π4N2

f þ
33856

243
ζ3π

2N2
f þ

63707

9
N2

f
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þ 136000

243
ζ5π

2Nf þ
153242

729
π2ψ ð1Þ

�
1

3

�
Nf þ

221320

81
ζ3π

2ψ ð1Þ
�
1

3

�

þ 226688

2187
ζ3π

4Nf þ
374000

27
ζ5ψ

ð1Þ
�
1

3

�
þ 433012

32805
π6Nf

þ 2244703

34992
ψ ð3Þ

�
1

3

�
Nf þ

4491806

27
ζ23 þ

6626701

1889568
ψ ð1Þ

�
1

3

�
ψ ð3Þ

�
1

3

�

þ 15012587

104976
ψ ð1Þ

�
1

3

�
3

þ 15246509

18895680
ψ ð5Þ

�
1

3

�
þ 28165306

3645
ζ3ψ

ð1Þ
�
1

3

�
Nf

þ 64243291

354294
π4ψ ð1Þ

�
1

3

�
þ 86603095

31104
ψ ð1Þ

�
1

3

�
2

þ 141906113

21870
π2Nf

þ 214548299

2430
ζ3Nf þ

257743792

6561
ζ5Nf þ

274741727

432
þ 862335313

419904
π4

þ 1968292019

43740
ζ3π

2 −
1968292019

29160
ζ3ψ

ð1Þ
�
1

3

��
a4 þOða5Þ ð5:2Þ

where H5 and H6 are defined in the Supplemental Material
of [69] and are shorthand for different combinations of
harmonic or generalized polylogarithms. We have derived
(5.2) using the Landau gauge coupling constant mapping
between the MS and MOMq schemes computed in
[51,52,68,69] which was applied to the Oða4Þ MS
D-function of [88]. As indicated earlier the MOMq scheme
is a 3-variable scheme but in this case the two dimension-
less variables x and y are both unity. What is evident in
(5.2) is that ζ2n ∝ π2n appears in the Oðanþ1Þ term for
n ≥ 1. This includes ζ2 which is absent in the MS andgMOM schemes. However (5.2) does not violate the no-π
theorem because the master integrals underlying the MOM
schemes are not p-integrals. In fact in this MOM configu-
ration the ζ2n contributions are each connected to ψ ð2n−1Þð1

3
Þ

in the master integrals. More specifically if one makes the
redefinitions to ψ̂ ðnÞð1

3
Þ via

ψ ð1Þ
�
1

3

�
¼ ψ̂ ð1Þ

�
1

3

�
þ4ζ2; ψ ð3Þ

�
1

3

�
¼ ψ̂ ð3Þ

�
1

3

�
þ240ζ4

ψ ð5Þ
�
1

3

�
¼ ψ̂ ð5Þ

�
1

3

�
þ43680ζ6 ð5:3Þ

then ζ2, ζ4 and ζ6 are effectively hidden but not absent.
By this we mean that (5.3) is a shorthand for combinations
that appear in the MOM external momentum configuration.
It ought not to be interpreted as the same as the ϵ dependent
redefinition of the zeta sequence in the same manner as that

introduced in [44] which is connected to the gMOM scheme
exclusion of even zetas.
There is one aspect worth highlighting in this example.

The Adler D-function is constructed from the derivative of
the 2-point correlation function of the vector current. As
such it is a Green’s function depending on one variable

which is clearly the magnitude of the momentum transfer.
However the coupling constant renormalization can be
carried out in schemes other than those we have designated
as 1-variable ones. For instance, the MOMq scheme is in
the class of 3-variable schemes but it clearly has π2

contributions as well as derivatives of the Euler Γ-function.
As this situation lies outside the conditions of the no-π
theorem there is no contradiction with it. Instead it merely
illustrates how the situation changes with regard to the
appearance of π2 for the same physical quantity but in a
different class of schemes. However what is not immedi-
ately clear concerns the ζ2n dependence of a more general
situation. The no-π theorem makes no mention of whether
the massless correlation function is restricted to that for two
operators. For instance, in the case of a 3-point gauge
invariant operator correlation function the situation is more
involved. This is assuming none of the three operators have
a zero momentum flow which would reduce the correlation
function to an effective 2-point computation. For the
3-point correlator the finite expression after renormaliza-
tion should depend on a similar number basis, or its
generalization for the non-unit values of the x and y
variables, as that given in the β-functions of
[51,52,68,69]. It is therefore not clear if there is a scheme
which would transform the finite part to the ζn and rational
number basis of a 1-variable scheme for a purely 3-point
operator correlation function. This may be the next task to
study to understand the absence of ζ2n in observable
quantities.
One of the main reasons why we reviewed the renorm-

alization group invariance of critical exponents in the
previous section is that it adds to the understanding of
the expression of the no-π theorem. Recalling that the ϵ
expansions of critical exponents at the Wilson-Fisher fixed
point are scheme independent, theOðϵ5Þ expansion ofω for
SUð3Þ in QCD is
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ωjSUð3Þ ¼ ϵþ 6½19Nf − 153� ϵ2

½2Nf − 33�2

þ ½−650N3
f þ 14931N2

f − 233937Nf þ 860139� ϵ3

½2Nf − 33�4
þ ½−8744N5

f − 465984ζ3N4
f þ 264612N4

f þ 16783200ζ3N3
f þ 14077854N3

f

− 194038416ζ3N2
f − 304090713N2

f þ 1068622632ζ3Nf þ 2677244157Nf

− 5658783768ζ3 − 6752933307� ϵ4

6½2Nf − 33�6
þ ½175104ζ3N7

f − 38560N7
f þ 10041600ζ3N6

f − 5591808ζ4N6
f − 4769280ζ5N6

f

þ 13696280N6
f − 1091992320ζ3N5

f þ 385928064ζ4N5
f þ 675866880ζ5N5

f

− 804202392N5
f þ 38019806208ζ3N4

f − 10496977920ζ4N4
f − 30361478400ζ5N4

f

þ 17650466742N4
f − 694400454720ζ3N3

f þ 144493398720ζ4N3
f

þ 639988905600ζ5N3
f − 280199346390N3

f þ 6778342959696ζ3N2
f

− 1125003472560ζ4N2
f − 7142270968800ζ5N2

f þ 2651536463832N2
f

− 33418251568944ζ3Nf þ 5732068510872ζ4Nf þ 43054184851920ζ5Nf

− 13351743621324Nf þ 81853049696616ζ3 − 18487246570056ζ4

− 120758445609120ζ5 þ 24360811371837� ϵ5

12½2Nf − 33�8 þOðϵ6Þ ð5:4Þ

with the exponents for thegluon, ghost, quark andquarkmass
taking a similar form. Clearly (5.4) depends on ζ4 atOðϵ5Þ as
do the other exponents. Endeavoring to remove such a
contribution is not possible as (5.4) is independent of the
scheme. Indeed we computed ω directly for each of thegMOM� schemes and verified that the same expression as (5.4)
resulted. So for example the ϵ dependentmapping of the zetas
of [44] cannot be applied. That in effect is related to a scheme
change and such a change has already been incorporated

within the gMOM� construction. Moreover the presence of ζ4
does not contradict the criteria of the no-π theorem of [44].
While the computation that leads to (5.4) was also carried out
in the MS scheme using p-integrals, it can equally well be
carried out in any of the MOM schemes of [51,52] which do
not use p-integrals. The same result is obtained.
As a final comment on (5.4) one can isolate the ζ4

contribution atOðϵ5Þ for an arbitrary color group. Denoting
this by ωjζ4

ϵ5
we have

ωjζ4
ϵ5
¼ ½11C4

ANA − 102C3
ANANfTF þ 164C2

ACFNANfTF − 56C2
ANAN2

fT
2
F

− 88CAC2
FNANfTF − 112CACFNAN2

fT
2
F þ 176C2

FNAN2
fT

2
F − 528dabcdA dabcdA

þ 1248dabcdA dabcdF Nf − 384dabcdF dabcdF N2
f�

162ζ4
½11CA − 4NfTF�4NA

: ð5:5Þ

We noted that in SUð3Þ the Oða5Þ coefficient of ζ4 in the
coupling constant maps of (4.1) was the same in all thegMOM� schemes when Nf ¼ 3. Aside from ζ4 there was no
commonality for the odd zetas across all the scheme maps.
This allows us to track down some aspects of how the ζ4
contribution in the MS β-function at five loops leads to

(5.5) as well as how the nonappearance of ζ4 in
βgMOM�

ða; αÞ still results in its presence in this scheme

independent exponent. It transpires that the route to (5.5)
for these distinct schemes is different. First we isolated the
ζ4 coefficient at Oða5Þ of (4.1) for a general color group in
the Landau gauge and found that it is precisely proportional
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to the numerator of (5.5) for all Nf and gMOM� schemes.
The constant of proportionality can be accounted for by the
one loop coefficient of the β-function which is scheme
independent. That term in the mappings can be traced back
to the OðϵÞ contribution to the four loop term of
βgMOM�

ða; αÞ. That means it is present in the finite part

of the vertex function for bare variables. This can be
verified by noting that the coefficient of ζ4 at five loops in
the MS β-function is proportional to the numerator of (5.5).
The actual coefficient is the product of the numerator and
the one loop coefficient of the β-function as well as a
rational. In other words within the derivation of (5.5) the ζ4
contribution emerges via two different routes depending on
which scheme is used. In the MS case it appears in ω
directly from the five loop term in the β-function. By
contrast it is absent in the gMOM� β-function in four
dimensions but present for nonzero ϵ at four loops. In
carrying out this analysis what we are basically summa-
rizing is the same process that the ϵ dependent redefinition
of the zeta series of [44,45] is effecting but using the
scheme independentω as the pivot point to trace the details.
We close the section by remarking that with respect to the
classification introduced here one could regard ω and other
such exponents as being determined in a 0-variable scheme.
This is partly because exponents are dimensionless quantities
as there is no scale at a critical point. In turn this means that
there is no underlying single momentum invariant similar to
that which is present in the 1-variable ones.

VI. DISCUSSION

One of the main aims of this study was to ascertain
whether the extension of the so-called gMOM schemes that
were examined in earlier articles at lower loop order
retained the property of having no explicit π2 terms in
the renormalization group functions at five loops in QCD
for all values of α in a linear covariant gauge fixing. By
exploiting the available FORCER data on the bare 2- and
3-point functions [63], we were indeed able to demonstrate
that this is the case for the various single scale 3-point
vertices of (2.11). Moreover this observation in one sense
both confirms and extends the study of [46] which centred
on what was termed there as AD theories. These are ones
which have symmetries, such as gauge symmetry or
supersymmetry, that means the coupling renormalization
constant is determined by a Ward identity that relates it to
the renormalization of the fields. In QCD one such AD
scheme was already known about which was the mMOM
scheme based on Taylor’s theorem that the ghost-gluon
vertex function is finite in the Landau gauge. So the
renormalization of the coupling is constructed purely from
the ghost and gluon renormalization constants. From the
available five loop renormalization group functions
[43,63,64] this is implicitly evident but only in the
Landau gauge as can be verified by examining the

α ¼ 0 gMOMccg0c scheme expressions in Appendix B.
This observation in effect became a focal point for realizing
that if the defining mMOM constraint on the coupling
constant renormalization was removed then the absence of
π2 in the gMOMccg0c scheme and the remaining gMOM�
schemes should follow for all α. In other words it should be
possible to extend the groundwork analysis of [46] to non-
AD theories. In one way supportive of that possibility is the
fact that in QCD the gauge parameter could be regarded as
a second coupling and [46] examined the gMOM construc-
tion in a multicoupling theory indicating that the ζ4
cancellation would persist to six loops in some theories.
Although what we have examined here has to be qualified
by noting that a perturbative expansion is not carried out in
the gauge parameter itself.
To construct an all orders proof of the ζ2n absence may

not be straightforward and the Hopf algebra approach of
[58] in the Wess-Zumino model, motivated by the earlier
work of [89,90] might allow for deeper understanding. For
instance one feature of the gMOM scheme that seems to lie
at its heart is that in the defining prescription the 3-point
functions are quotiented by the 2-point functions of the
relevant fields of that vertex prior to the remainder being
removed from the 3-point vertex. This tallies with the
approach of [44,45]. In graphs that involve a simple pole in
ϵ and a residue that depends on ζ3 the finite part will
contain ζ4 with its predetermined coefficient [44,45]. The
removal of the finite part in a gMOM prescription means that
it will contribute at the next order via the counterterms and
thereby affect the coefficient of ζ4. Indeed we were able
to verify this in dissecting the passage of ζ4 from the
ϵ-dependent β-functions to how it appears in a scheme
independent quantity. We need to qualify the absence of π2

dependence at any higher loop order in a renormalization
group function by noting that one would also have to prove
that there are no single scale master Feynman graphs whose
leading term in its ϵ expansion is proportional to π2. From
the high order four dimensional examples that are already
available in, for instance [38,91,92], no such cases appear
to be known.
Perhaps one place to examine these ideas in further detail

would be in other spacetime dimensions. For instance, ϕ3

theory in six dimensions has already been noted as a
potential laboratory to study n-variable schemes. As
alluded to earlier, examining ϕ3 theory in principle would
first require the construction and analysis of the 3-point
Schwinger-Dyson equation. In the single field case the
coupling constant renormalization is related to the renorm-
alization of the mass of the ϕ field equating it to a 2-point
function renormalization. Such a relationship however does
not extend to the cubic theory with a symmetry. Another
instance of where using a gMOM scheme might produce an
interesting structure for a β-function is the two dimensional
nonlinear σ model with N ¼ 1 supersymmetry. We note
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that the location of ζn in the β-function of these two
dimensional supersymmetric models is that ζL−1
appears for the first time at L loops starting with L ¼ 4.
Such supersymmetric models have been renormalized to
four loops in the MS scheme on a general manifold
[93–95] and revealed that there are no contributions
after the one loop one until four loops. At that order the
coefficient of the β-function involves only ζ3. For
nonlinear σ models with N ¼ 2 supersymmetry the
four loop term has the same property. The situation
beyond four loops has been probed in several ways.
Restricting the geometry to the N dimensional sphere
one can compute the 1=N corrections to the β-function
in the large N expansion [96,97]. Aside from being an
independent confirmation of the β-function of the
general geometry of [93,94], the result indicated that
the five loop term would involve ζ4 in the MS scheme.
In the N ¼ 2 supersymmetric case the β-function was
examined at five loops explicitly for Kähler manifolds
in [98]. Interestingly in that general geometry the five
loop term can be made to vanish by a particular scheme
choice [98]. Whether that scheme has a connection with
the gMOM prescription would be interesting to ascertain.
If so it would tally with the absence of ζ4 terms in that
set of renormalization prescriptions. At six loop order it
was argued in [99] that there would be a nonzero
contribution, solely involving ζ5, which remained even
after any field redefinition. In the case of the N-sphere
the five, six and seven loop coefficients depended only
on zetas [96]. By this we specifically mean that ζ4 and
the pairs fζ3; ζ5g and fζ23; ζ6g appear respectively at
Oð1=N2Þ. Other ζn contributions could of course arise
at higher orders in 1=N. The field anomalous dimension
had a similar structure [97,100].
Given these observations it might be of interest to see

whether the five loop ζ4 and seven loop ζ6 contribu-

tions are absent in a direct gMOM scheme computation.
The work of [98] suggests this might be the case for the
former. Equally it would be interesting to see how a
scheme transformation similar to the one for N ¼ 2

supersymmetry discussed in [98] would affect the zeta
structure of an N ¼ 1 theory. For instance from the
results in the N ¼ 2 σ model it appears that only zetas
appear at L loops whose weight is (L − 1) for L ≥ 4. At
seven loops in the N ¼ 1 case it is known that ζ23 and
ζ6 are present [96]. Therefore for a transformation to agMOM scheme similar to that discussed here, the ζ23
contribution for the N-sphere should remain but ζ6
ought to be absent. In the N ¼ 2 case the latter ought
also be absent but the status of ζ23 in the β-function
after a transformation is not clear. While renormalizing
these two dimensional supersymmetric σ models is

highly nontrivial beyond one loop [93–95,99] and
accessing the various higher large N orders is equally
computationally demanding, the coefficients of the
β-function would appear to be only zetas and multiple
zetas with no rationals [97,98,100]. It would therefore
seem that these supersymmetric models might offer a
future testing ground for analyzing even zeta cancella-
tion in the gMOM prescription at a deeper order beyond
the five loop one considered here. However, the
situation with regard to supersymmetric gauge theories
is more intricate from the point of view of the
C-scheme concept. For instance prior to [59,60] the
exact NSVZ (Novikov-Shifman-Vainshtein-Zakharov)
β-function [101–103] was examined in [104]. That
β-function has similarities with the C-scheme β-function
of [59,60]. Indeed a comparison between theN ¼ 0 and 1
β-functions in gauge theories was carried out in [105].
However as yet a detailed analysis of the ζ2n dependence of
all the renormalization group functions of supersymmetric
gauge theories at high loop order has not been considered to
the same depth as the nonsupersymmetic ones.
Finally, having established the gMOM� schemes have the

property that there are no even zetas to five loops in QCD,
there is scope now to apply these schemes to explore what
effect they have on phenomenological precision and
whether they can be employed for estimating theory errors.
For instance the C-scheme was used [59] to study eþe−
scattering and τ decays into hadrons. It was suggested that
this scheme produces a scheme invariant scale running.
Therefore it would seem appropriate to employ the gMOM�
data now to complement that study to ascertain what effect
the absence of ζ4 and ζ6 has and to see if there is a similar
reduction in scale dependence. Equally the other question
of what structures are absent in the analogous concept ofgMOM scheme renormalization of n-variable schemes
would be an interesting avenue to pursue.

The data representing the main results here are accessible
from [66].

ACKNOWLEDGMENTS

The author gratefully appreciates discussions with
I. Jack and R. H. Mason. This work was carried out
with the support of the STFC Consolidated Grant ST/
T000988/1.

APPENDIX A: SUð3Þ LANDAU GAUGE
β-FUNCTIONS

In this appendix we record each of the gMOM�
β-functions in the SUð3Þ color group for the Landau gauge
in order to clearly show that the only ζn dependence is ζ3,
ζ5 and ζ7 to five loops. First for the two ghost-gluon vertex
schemes we have
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βSUð3ÞgMOMccg0c

ða; 0Þ ¼
�
2

3
Nf − 11

�
a2 þ

�
38

3
Nf − 102

�
a3

þ
�
3861

8
ζ3 −

28965

8
−
989

54
N2

f −
175

12
ζ3Nf −

8

9
ζ3N2

f þ
7715

12
Nf

�
a4

þ
�
−
1380469

8
−
1027375

144
ζ5Nf −

736541

324
N2

f −
516881

72
ζ3Nf −

16

9
ζ3N3

f
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N3

f þ
6547

27
ζ3N2
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9280
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ζ5N2

f þ
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772695

32
ζ5

þ 970819

24
Nf

�
a5 þ

�
−
21619456551

4096
ζ7 −

18219328375

6912
ζ5Nf −

10327103555

20736
ζ3Nf

−
3248220045

256
þ 4922799165

512
ζ5 þ

24870449471

18432
ζ7Nf

þ 115659378547

31104
Nf −

833934985

2592
N2

f −
26952037

432
ζ7N2

f

−
299875

54
ζ5N3

f −
82869

32
ζ23Nf −

59531

36
ζ23N

2
f −

2617

27
N4

f

−
304

27
ζ3N4

f þ
1760

27
ζ5N4

f þ
2240

27
ζ23N

3
f þ

129869

162
ζ3N3

f

þ 3249767

324
N3

f þ
7696161

64
ζ23 þ

13019053

1296
ζ3N2

f þ
65264845

324
ζ5N2

f

þ 1064190195

512
ζ3

�
a6 þOða7Þ ðA1Þ

and

βSUð3ÞgMOMccg0g

ða; 0Þ ¼
�
2

3
Nf − 11

�
a2 þ

�
38

3
Nf − 102

�
a3

þ
�
−
28263

8
−
535

27
N2

f −
175

12
ζ3Nf −

8

9
ζ3N2

f þ
3799

6
Nf þ

3861

8
ζ3

�
a4

þ
�
−
5516125

32
−
1039525

144
ζ5Nf −

198992

81
N2

f −
64411

9
ζ3Nf −

16

9
ζ3N3

f

þ 980

27
N3

f þ
9280

27
ζ5N2

f þ
13445

54
ζ3N2

f þ
295581

8
ζ3 þ

817245

32
ζ5

þ 1953167

48
Nf

�
a5 þ

�
−
67000185565

27648
ζ5Nf −

25922636709

2048
−
22470285835

41472
ζ3Nf

−
18877588191

4096
ζ7 −

3503317141

10368
N2

f þ
2815217703

1024
ζ3

þ 16486752015

2048
ζ5 þ

23141911415

18432
ζ7Nf þ

929972881523

248832
Nf

−
12779459

216
ζ7N2

f −
612845

108
ζ5N3

f −
267689

144
ζ23N

2
f −

3022

27
N4

f

−
304

27
ζ3N4

f þ
1760

27
ζ5N4

f þ
2240

27
ζ23N

3
f þ

491045
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ζ3N3

f þ
1066263
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ζ23Nf

þ 28965085

2592
N3

f þ
33124113

512
ζ23 þ

62058733

5184
ζ3N2

f þ
1017487675

5184
ζ5N2

f

�
a6 þOða7Þ: ðA2Þ

The other scheme based on the triple gluon vertex produces
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Finally the schemes derived from the quark-gluon vertex lead to
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The expressions for an arbitrary color group have the same ζn dependence as is evident in the data file associated with the
article [66].

APPENDIX B: LANDAU GAUGE gMOMccg0c RESULTS

In order to make contact with previous results we provide the Landau gauge SUð3Þ anomalous dimensions for thegMOMccg0c scheme as they can be compared directly with the five loop mMOM results of [43,63,64]. This equivalence
serves in part as a check on our symbolic manipulation code but also emphasizes that the Landau gauge sector of the
mMOM scheme involves neither ζ4 nor ζ6. In addition to the β-function of the previous appendix we have
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The quark mass dimension is

γSUð3Þ
m;gMOMccg0c

ða; 0Þ ¼ −4aþ
�
−
209

3
þ 4

3
Nf

�
a2

þ
�
−
95383

36
−
176

9
ζ3Nf −

8

3
N2

f þ
4742

27
Nf þ

5635

6
ζ3

�
a3

þ
�
−
182707879

1296
−
309295

48
ζ5 −

159817

27
ζ3Nf −

13651

27
N2

f

−
3200

9
ζ5Nf þ

8

3
N3

f þ
1552

9
ζ3N2

f þ
5246557

324
Nf þ

15752321

216
ζ3

�
a4

þ
�
−
75504232175

7776
þ 3576071485

27648
ζ7 þ

9610932889

5832
Nf

þ 17917034005

31104
ζ5 þ

187324052147

31104
ζ3 −

310328447

432
ζ23

−
257106335

324
ζ3Nf −

180251015

1944
ζ5Nf −

22459484

243
N2

f

−
4778536

81
ζ7Nf −

60928

81
ζ23N

2
f −

28096

81
ζ3N3

f −
1600

9
ζ5N3

f

−
352

27
N4

f þ
1372

3
ζ7N2

f þ
464038

243
N3

f þ
948548

27
ζ3N2

f

þ 1850845

243
ζ5N2

f þ
6570181

162
ζ23Nf

�
a5 þOða6Þ: ðB3Þ

It is straightforward to verify that these expressions tally with those in [43,63,64].
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