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We compute and explore numerically the finite system size correction to next-to-leading-order 2 → 2

scattering in massive scalar ϕ4 theory. The derivation uses “denominator regularization” (instead of the
usual dimensional regularization) on a spacetime with spatial directions compactified to a torus, with
characteristic lengths not necessarily of equal size. We determine a useful analytic continuation of the
generalized Epstein zeta function to isolate the usual UV divergence. Self-consistently, the renormalized
finite system size correction reduces to zero as the system size goes to infinity and, further, satisfies the
optical theorem. One of our checks of unitarity leads to a generalization of a number-theoretic result from
Hardy and Ramanujan. Precise numerical exploration of the finite system size correction to the amplitude
and coupling when two spatial dimensions are finite requires the exploitation of the analytic structure of the
finite system size result via a dispersion relation. We find that the finite system size scattering amplitude
exhibits “geometric” bound states. Even away from these bound states, the finite system size correction to
the effective coupling can be large.

DOI: 10.1103/PhysRevD.109.036013

I. INTRODUCTION

Observations from the Large Hadron Collider reveal that
the indications of quark-gluon plasma (QGP) formation,
observed in large nucleus-nucleus collisions, are also
present in high-multiplicity proton-proton (pþ p) and
proton-nucleus (pþ A) collisions [1–4]. Remarkably, the
distribution and correlations of low-momentum particles in
these smaller collision systems can be effectively described
using relativistic, nearly inviscid hydrodynamics [5,6]. This
hydrodynamic framework employs an equation of state
computed through lattice quantum chromodynamics
(QCD) and extrapolated to infinite spatial volume [7].
The inference drawn from the comparison between these
hydrodynamics predictions and the measured data is that
the medium generated in these high-multiplicity small
systems is a nearly inviscid QGP, similar to that formed
in large nucleus-nucleus collisions.

A recent study investigating finite system size effects in a
massless free scalar thermal field theory with Dirichlet
boundary conditions showed that the finite system size
corrections to thermodynamic properties can effectively
mimic the temperature dependence of the energy density
and pressure of full QCD [8]. The findings revealed
substantial finite system size corrections of ∼40% to the
usual thermodynamic quantities such as pressure and
entropy for systems of the size of pþ p collisions. Even
for systems the size of mid-central nucleus-nucleus colli-
sions, the corrections were on the order of 10%. Quenched
lattice QCD calculations using periodic boundary condi-
tions confirmed the qualitative impact of these finite system
size effects, especially in systems with asymmetric finite
lengths [9].
The equation of state, which encompasses the speed of

sound and the trace anomaly, plays a crucial role in
hydrodynamic simulations of relativistic hadronic colli-
sions. Surprisingly, despite the breaking of conformal
symmetry due to Dirichlet boundary conditions, it was
observed that the free massless scalar field theory yields an
identically traceless energy-momentum tensor [10]. In
general, for any infinite-volume system, a trace anomaly
can only come from the quantum scale-breaking anomaly
in the coupling. To estimate the effect of finite system size
corrections on the trace anomaly in QCD, the finite system
size correction to the coupling in a massive scalar theory on
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the lattice [11] was inserted [10] into the QCD coupling
in the hard thermal loop pressure and energy density
computed to Oðg5Þ in QCD [12]. The analysis showed a
significant reduction in the size of the trace anomaly due to
finite system size effects [10]. Such a substantial reduction
in the trace anomaly would have a considerable impact on
the extraction of shear and bulk viscosities when comparing
hydrodynamics simulations to experimental data, presum-
ably imperiling the interpretation of the medium created
in high-multiplicity pþ p collisions as a nearly inviscid
perfect fluid.
We are therefore interested in computing analytically the

finite system size corrections to the trace anomaly of QCD
induced through the finite system size corrections to the
QCD running coupling. This program presents significant
challenges that will require understanding several impor-
tant techniques. The two most important conceptual diffi-
culties to overcome are to determine how to regularize and
renormalize the thermal field theory in a finite-size system
and to include the effect of torons, nontrivial vacuum gauge
configurations on a torus [13,14].
The work presented here provides a step in the direction

of the first challenge by computing the finite system size
correction to the running coupling in massive ϕ4 theory for
2 → 2 scattering at next-to-leading order (NLO). In order to
perform this computation, we use the technique of “denom-
inator regularization,” which is more appropriate for
regularizing field theories in a finite system than dimen-
sional regularization [15]. Following [16] we derive an
analytic continuation of the generalized Epstein zeta
function that is needed to extract the UV divergence in
the denominator-regularized finite system, and may be
readily applied in future thermal field theory derivations.
We perform a nontrivial self-consistency check of our result
by confirming that our NLO contribution satisfies unitarity.
One of our methods of checking unitarity leads us to
generalize a number-theoretic result from Hardy and
Ramanujan [17]. We then provide some sample plots of
the real and imaginary parts of the finite system size NLO
correction to the amplitude for 2 → 2 scattering. The
numerics for the s-channel contribution in a system with
two finite-length sides is highly nontrivial and requires us
to utilize dispersion relation techniques. We further confirm
our numerical results by an asymptotic analysis on the t-
channel contribution in a system fully confined in three
spatial dimensions. We then show the impact of the finite
system size corrections on the effective coupling in our
theory. For moderate and larger momenta and lengths, and
except for “geometric bound states” in which the final state
of the system is confined to the finite direction, the finite
system size corrections are modest for the coupling for
systems with only one finite spatial direction. Corrections
to the coupling for systems with two compact spatial
directions can be large. Avoiding questions about the
physical setup and necessary corrections to the usual
scattering program in quantum field theories, we see that

corrections to scattering in systems with three finite spatial
directions are maximal: the total cross section is either zero
for unphysical modes or infinite for physical modes.

II. REVIEW OF THE USUAL INFINITE-VOLUME
NLO 2 → 2 SCATTERING

In order to warm up to the finite system size calculation,
to fix some notation, and to provide a valuable reference
to compare to, we compute 2 → 2 scattering at NLO in
massive ϕ4 theory using dimensional regularization and the
MS renormalization scheme.
We begin with the bare Lagrangian for ϕ4 theory:

L ¼ 1

2
∂μϕ0∂

μϕ0 −
1

2
m2

0ϕ
2
0 −

λ0
4!
ϕ4
0: ð1Þ

We choose as usual to multiplicatively renormalize. We
work in d ¼ 4 − ϵ spacetime dimensions. In order to fix
our coupling constant to be dimensionless in any number
of spacetime dimensions, we introduce a scale μ, with
dimensions of energy,

ϕr ≡ Z−1=2
ϕ ϕ0;

m2
r ≡ Z−1

m Zϕm2
0;

λr ≡ Z−1
λ Z2

ϕμ
ϵλ0: ð2Þ

Further defining

Zϕ ≡ 1þ δϕ;

Zm ≡ 1þ 1

m2
δ2m;

Zλ ≡ 1þ 1

λr
δλ ð3Þ

we arrive at the renormalized Lagrangian

L ¼ 1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 −

λ

4!
μϵϕ4

þ δϕ
1

2
∂μϕ∂

μϕ − δ2m
1

2
ϕ2 − δλμ

ϵ 1

4!
ϕ4; ð4Þ

where we have dropped all r subscripts on renormalized
quantities for notational convenience.
When we perform Lehmann-Symanzik-Zimmermann

(LSZ) reduction, we must take care with Rϕ, the residue
of the propagator at the physical mass. However, for ϕ4

theory in 4 − ϵ spacetime dimensions, one has that the first-
order correction to the scalar self-energy is

ð5Þ
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Since the divergence is momentum independent, we may
take δϕ ¼ 0, and we have that Rϕ ¼ 1þOðλ2Þ.
Thus when we compute the leading-order amplitude for

2 → 2 scattering, we find

ð6Þ

i.e. there is no symmetry factor in this particular case.
The diagrams associated with the NLO correction to

2 → 2 scattering are shown in Fig. 1. Let us focus on the
s-channel diagram. A detailed examination of the con-
tracted fields shows that the symmetry factor is S ¼ 1=2.
Then defining p≡ pA þ pB and Vðp2; μ; ϵÞ by

we have that

ð−iλÞ2μϵiVðp2; μ; ϵÞ ¼ ð−iλμϵÞ2
2

Z
ddk
ð2πÞd

i
k2 −m2 þ iε

×
i

ðpþ kÞ2 −m2 þ iε
: ð7Þ

Note the ϵ > 0 that guarantees convergence of the integral
on the rhs of the expression, which is different from the
ε > 0 that enforces the Feynman propagator pole prescrip-
tion. Following the usual procedure to combine denomi-
nators using a Feynman x parameter, Wick rotating, and
evaluating the resulting Euclidean integral, and expanding
to OðϵÞ yields

Vðp2; μ; ϵÞ ¼ −
1

2

1

ð4πÞ2
�Z

1

0

dx

�
2

ϵ
− γE þ ln 4π

þ ln
μ2

−xð1 − xÞp2 þm2 − iε
þOðϵÞ

��
: ð8Þ

Note that close examination of the location of the poles of
the denominator (combined in the usual way using the
Feynman x parameter) shows that the poles are restricted to
the second and fourth quadrants in the complex plane for
both p2 > 0 and for p2 < 0; hence the Wick rotation, and
thus Eq. (8), are valid for p2 ∈R.
Applying the MS renormalization scheme fixes the

coupling counterterm to

δλ ¼ 3λ2
1

2

1

ð4πÞ2
�
2

ϵ
− γE þ ln 4π

�
ð9Þ

and the renormalized NLO contribution to

V̄ðp2; μÞ ¼ −
1

2

1

ð4πÞ2
Z

1

0

dx ln
μ2

−xð1 − xÞp2 þm2 − iε
:

ð10Þ
Thus up to NLO the 2 → 2 amplitude is

iM ¼ −iλμϵ
�
1þ λðVðs; μÞ þ Vðt; μÞ þ Vðu; μÞÞ þ 1

λ
δλ

�
⟶
ϵ→0

− iλ½1þ λðV̄ðs; μÞ þ V̄ðt; μÞ þ V̄ðu; μÞÞ�: ð11Þ

One may perform a nontrivial cross-check of Eq. (10)
by confirming that the optical theorem is satisfied. For
p2 > 4m2 and x− < x < xþ, where

−x�ð1 − x�Þp2 þm2 ¼ 0 ð12Þ

⇒ x� ¼ 1

2

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

p2

s #
; ð13Þ

we have that

Im ln
μ2

−xð1 − xÞp2 þm2 − iε
¼ π: ð14Þ

Thus to order Oðλ2Þ

ImM ¼ −λ2π
�
−
1

2

1

ð4πÞ2
� Z

xþ

x−

dx: ð15Þ

Therefore

2ImM ¼ λ2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
θðs − 4m2Þ þOðλ3Þ: ð16Þ

One may straightforwardly show that one arrives at the
exact same result from evaluating

σtot ¼
1

2

Z
d3p2

ð2πÞ32Ep2

Z
d3p1

ð2πÞ32Ep1

jMj2

× ð2πÞ4δð4ÞðpA þ pB − p1 − p2Þ; ð17Þ

FIG. 1. The four diagrams contributing to the NLO correction
to 2 → 2 scattering in our renormalized ϕ4 theory. Momenta are
labeled on the s-channel diagram but are suppressed for sim-
plicity on the t- and u-channel diagrams.
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where M ¼ λþOðλ2Þ is the leading-order cross section,
and one must be careful of the overall factor of 1=2 due to
the presence of two identical particles in the final state.
The four-point Green function is given by iM. Since to

Oðλ2Þ there is no contribution from an anomalous dimen-
sion γ, we have the Callan-Symanzik equation

ðμ∂μ þ β∂λÞM ¼ 0;

ðμ∂μ þ β∂λÞ½−λ − λ2ðV̄ðs; μÞ þ V̄ðt; μÞ þ V̄ðu; μÞÞ� ¼ 0:

ð18Þ

Since μ∂μV̄ðp2; μÞ ¼ −ð4πÞ−2, we find the standard result
[18] that

β ¼ 3λ2

ð4πÞ2 : ð19Þ

And since β≡ ∂λ=∂ ln μ, we must have that

Z
λðμÞ

λðμ0Þ

dλ
λ2

¼
Z

ln μ

ln μ0

d ln μ0
3

4π2
ð20Þ

⇒ λðμÞ ¼ λðμ0Þ
1þ λðμ0Þ 3

ð4πÞ2 ln μ0=μ
: ð21Þ

We refer to Eq. (21) as the running coupling.
In, e.g., eþ þ e− → μþ þ μ− scattering in QED, one

may exactly resum the geometric series of one-particle
irreducible (1PI) fermion loops to generate an effective
coupling. For p2 ≫ m2

e the leading-logarithmic behavior of
the effective coupling is identical to the running coupling
from the Callan-Symanzik equation evaluated at the center-
of-mass energy s, αEMðsÞ. This resummation procedure can
be more difficult for different processes and different
theories. Nonetheless, the idea of an effective coupling
is a valuable one. For example, in QCD one has the
Brodsky-Lepage-Mackenzie scale-setting procedure, in
which one resums the fermion bubbles and then completes
the beta function [19].
For our ϕ4 theory, the correct geometric resummation

that captures the leading-logarithmic physics of the Callan-
Symanzik equation for the 2 → 2 process involves the s, t,
and u channels. Recall that one may write uðs; tÞ,

−iλeffðs; tÞ≡−iλðμÞ½1þ λðμÞðV̄ðs;μÞþ V̄ðt;μÞþ V̄ðu;μÞÞ
þ λ2ðμÞðV̄ðs;μÞþ V̄ðt;μÞþ V̄ðu;μÞÞ2þ…�

¼ −iλðμÞ
1− λðμÞðV̄ðs;μÞþ V̄ðt;μÞþ V̄ðu;μÞÞ ; ð22Þ

where λðμÞ is the running coupling given by Eq. (21). At
NLO, all μ dependence in Eq. (22) exactly cancels between
the running coupling and in the V̄’s, leaving λeff with no μ

dependence at all. For Q2 ≡ −p2 > 0, one may easily
evaluate the x integral in Eq. (10) to find

V̄ðQ2; μÞ ¼ −
1

2

1

ð4πÞ2
"
2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2

s
þ ln

μ2

m2

#
ð23Þ

¼ −
1

2

1

ð4πÞ2 ln
μ2

Q2
þOððm2=Q2ÞÞ: ð24Þ

For s ∼ −t ∼ −u ∼ E2 ≫ m2 and if we take μ2 ¼ E2 in the
running coupling Eq. (21), then we once again have to
leading-log accuracy that λeffðE2Þ ¼ λðE2Þ.

III. DENOMINATOR REGULARIZATION

When we move to the setup in which the spacetime is
R × Tn, the integrals over spatial momenta will become
sums. The potential asymmetry of the various spatial
directions and the discrete sums mean that the usual
techniques of dimensional regularization are no longer
applicable. Instead of making the calculation a function of
the number of spacetime dimensions and analytically con-
tinuing to d ¼ 4, we rather make the power of the denom-
inator in the loop integral for V a function and analytically
continue to the log divergent value of 2. In particular,
in denominator regularization the number of spacetime
dimensions is fixed to 4. As a result, one does not need to
introduce μ to keep the coupling dimensionless as a function
of ϵ (a μ will still be introduced to keep the dimensions of V
independent of the power of the denominator); the denom-
inator regularization renormalized Lagrangian is

L ¼ 1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 −

λ

4!
ϕ4

þ δϕ
1

2
∂μϕ∂

μϕ − δ2m
1

2
ϕ2 − δλ

1

4!
ϕ4: ð25Þ

One must of course still have that Rϕ ¼ 1þOðλ2Þ in
denominator regularization since the regularization pro-
cedure cannot introduce any new divergences. Neverthe-
less, one may easily check explicitly that in denominator
regularization the one-loop self-energy is still momentum
independent, and thus one has in denominator regulariza-
tion that Rϕ ¼ 1þOðλ2Þ. One trivially, then, has that
iM ¼ −iλþOðλ2Þ. At NLO, one has after combining
denominators with a Feynman parameter and Wick rotating

ð−iλÞ2iVðp2Þ ¼ i
λ2

2

Z
1

0

dx
Z

d4lE

ð2πÞ4
1

ðl2
E þ Δ2Þ2 ; ð26Þ

Δ2 ≡ −xð1 − xÞp2 þm2 − iε: ð27Þ

The integral in Eq. (26) diverges logarithmically in the
UV as the numerator scales like l3

E and the denominator
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like l4
E. We now perform denominator regularization by

allowing V to depend on the power of the denominator. We
introduce the denominator regulator ϵ (again distinct from
ε) such that the integral converges for all ϵ > 0. In order to
maintain the dimensionlessness of V we introduce a scale μ
with dimensions of energy. We then have

Vðp2; μ; ϵÞ ¼ −
1

2

Z
1

0

dx
Z

d4lE

ð2πÞ4
μ2ϵ

ðl2
E þ Δ2Þ2þϵ : ð28Þ

Similar to the dimensional regularization procedure, one
may perform the spherical integration over the full four-
dimensional spacetime. In order to better make contact with
our future finite-sized spatial spacetime calculation, we
rather perform the “temporal” integration first (temporal is
in quotes as in this case no direction is different from
another). Then one has that

Vðp2; μ; ϵÞ ¼ −
1

2

1

ð2πÞ4
Z

1

0

dx

ffiffiffi
π

p
Γð3

2
þ ϵÞ

Γð2þ ϵÞ

×
Z

d3lE
μ2ϵ

ðl2
E þ Δ2Þ32þϵ

: ð29Þ

The remaining momentum integrals evaluate to

4π

Z
∞

0

l2
EdlE

μ2ϵ

ðl2
E þ Δ2Þ32þϵ

¼
ffiffiffi
π

p
ΓðϵÞ

4Γð3
2
þ ϵÞ

�
μ2

Δ2

�
ϵ

: ð30Þ

Thus

Vðp2; μ; ϵÞ ¼ −
1

2

1

ð4πÞ2
Z

1

0

dx
ΓðϵÞ

Γð2þ ϵÞ
�
μ2

Δ2

�
ϵ

¼ −
1

2

1

ð4πÞ2
Z

1

0

dx

�
1

ϵ
− 1þ ln

�
μ2

Δ2

��
þOðϵÞ:

ð31Þ

It’s interesting that the −1 of the finite part from denom-
inator regularization is identical to the −1 that one finds
when regularizing through an explicit UV cutoff, cf.
the −γE þ ln 4π one finds from dimensional regulariza-
tion. A similar calculation in which one performs the
usual spherical integration over the full 4D space yields an
identical result.
One can see that the denominator regularization

procedure reproduces the same 1=ϵ divergence and
ln μ2=Δ2 dependence (with the same overall coefficient)
for Vðp2; μ; ϵÞ as in dimensional regularization (as it must);
the only difference comes in the coefficient of the diver-
gence (which is halved, but can simply be absorbed by a
rescaling of ϵ) and the finite correction of −1 compared to
−γE þ ln 4π. If we modify our MS prescription for denom-
inator regularization to absorb the 1=ϵ divergence and the
−1 instead of the 2=ϵ divergence and the −γE þ ln 4π, then

the renormalized NLO 2 → 2 cross section from denom-
inator regularization agrees exactly with that from the usual
dimensional regularization procedure. In particular, for our
denominator regularization procedure we take

δλ ¼ 3λ2
1

2

1

ð4πÞ2
�
1

ϵ
− 1

�
: ð32Þ

IV. FINITE-SIZE CORRECTIONS

A. Field theory defined

It is just as easy to consider a real scalar field theory in
only four spacetime dimensions with all three spatial
dimensions periodic as to consider a very general scalar
field theory with n directions periodically identified and m
directions of infinite extent. Let the ith compact spatial
dimension have size ½−πLi; πLi� and take

ϕðxÞ ¼
X
k⃗∈Zn

1

ð2πÞnL1 � � �Ln

Z
dmp
ð2πÞm

1

2Ep⃗

× ½e−ip·xaðp⃗Þ þ eip·xa†ðp⃗Þ�;

pi ¼ ki

Li
; i ¼ 1;…; n;

pj ¼ pj; j ¼ 1;…; m;

p0 ¼ Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

q
: ð33Þ

Then

½aðp⃗Þ; a†ðq⃗Þ� ¼ ð2πÞnþm2Ep⃗L1 � � �Lnδk⃗p⃗;k⃗q⃗δ
ðmÞðp⃗ − q⃗Þ

ð34Þ
gives a field that obeys the usual canonical commutation
relation

½ϕðxÞ;ΠðyÞ�x0¼y0 ¼ iδðnþmÞðx⃗ − y⃗Þ: ð35Þ
Further, the total momentum in the field is

Pμ ¼
X
k⃗∈Zn

1

ð2πÞnL1 � � �Ln

Z
dmp
ð2πÞm

1

2Ep⃗
pμa†ðp⃗Þaðp⃗Þ;

ð36Þ

and hence we have the usual interpretation of an excita-
tion of a mode of the field as a particle of mass m and
momentum p⃗.
Of crucial importance, one may compute the contraction

ϕðxÞϕðyÞ ¼
X
k⃗∈Zn

1

ð2πÞnL1 � � �Ln

Z
dmp
ð2πÞm

Z
dp0

2π

× e−ip·ðx−yÞ
i

p2 −m2 þ iε
. ð37Þ
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B. LO scattering

We may straightforwardly compute the LO scattering
amplitude in the usual way. Since we are working at leading
order, we do not need to consider any subtleties due to finite
system size corrections to LSZ reduction; the asymptotic
states are trivially the single-particle states of the free
theory. Thus the T matrix can be readily found to be

hp1p2jTjpApBi

¼ −iλ
Z

dmþnþ1zeiz·ðpAþpB−p1−p2Þ þOðλ2Þ

¼ −iλ2πδðp0
A þ p0

B − p1 − p2Þ
× ð2πÞmδðmÞðp⃗A þ p⃗B − p⃗1 − p⃗2Þ
× ð2πÞnL1 � � �Lnδl⃗pAþl⃗pB ;l⃗p1þl⃗p2

þOðλ2Þ; ð38Þ

where the m Dirac deltas provide the spatial momentum
conservation in the directions of infinite extent of the
momenta to be the same and the nKronecker deltas provide
the spatial momentum conservation in the directions of
finite extent. There is also an overall Dirac delta providing
energy conservation. Note that even if we work in a
spacetime that is fully compact in the spatial directions,
energy conservation is given by a Dirac delta function
as we have assumed that the extent of the time direction
is infinite. Note further that we will at times consider
(unphysical) momenta in the finite spatial directions that
are not integer modes but that the Kronecker deltas
associated with momentum conservation in those directions
are only nonzero when the modes are properly integer.
The choice of allowing time to flow from −∞ to þ∞ is

perhaps somewhat inconsistent with the spirit of a scatter-
ing experiment one might imagine in a finite space. In
infinite space, a scattering experiment consists of wave
packets that start off infinitely separated in the infinite past
that are allowed to propagate to definite momentum states
in the infinite future [18]. Implicitly, in this infinite-volume
picture, the particles interact at a time ∼t ¼ 0 only. There
are two pathologies in the finite-volume case when all
spatial dimensions are finite: first, the wave packets can
never be infinitely separated; second, the particles interact
an infinite number of times. The issue of initial separation is
not an issue at leading order because there is no renorm-
alization; beyond leading order, so long as the space is large
compared to the interaction length, the wave packets can be
considered well separated. Further, the NLO contribution
to the 1PI self-energy diagram will remain independent of
the particle’s momentum; hence at NLO, wave function
renormalization is still trivial. That the particles interact an
infinite number of times over an infinite time interval will
be reflected in an infinite total cross section.
One could alternatively consider a finite time for

propagation, for example of the order of the size of the
system. However, the integral over z0 in Eq. (38) then

yields a complicated expression that only converges to a
Dirac delta function in the limit of the time for propagation
going to infinity. Then the subsequent calculation of the
NLO contribution is sufficiently far away from usual
scattering problems or a thermal field-theoretic calculation
that its utility appears limited.

C. NLO scattering

If we now restrict ourselves to three periodic spatial
directions and no spatial directions of infinite extent, n ¼ 3
and m ¼ 0, one may immediately write down the quantity
we need to evaluate for the NLO correction to 2 → 2
scattering:

Vðp2; fLig; μ; ϵÞ ¼ −
1

2

Z
1

0

dx
Z

dl0
E

2π

×
X
k⃗∈Z3

1

ð2πÞ3L1L2L3

μ2ϵ

½l2
E þ Δ2�2þϵ ;

ð39Þ
whereΔ2≡−xð1−xÞp2þm2− iε and lμ

E¼ðl0
E;

ki
Li
þxpiÞμ.

Notice that in contrast to the infinite-volume case we
cannot simply shift the spatial integration to remove the
þxpi shift in lμ

E. As in Sec. III we may evaluate the l0
E

integral to find

Vðp2;fLig;μ;ϵÞ¼−
1

2

1

2π

1

ð2πÞ3L1L2L3

Z
1

0

dx

ffiffiffi
π

p
Γð3

2
þϵÞ

Γð2þϵÞ

×
X
k⃗∈Z3

μ2ϵ

ðP3
i¼1ðk

i

Li
þxpiÞ2þΔ2Þ32þϵ

: ð40Þ

Our result includes a generalized Epstein zeta function [20],

ζðfaig; fbig; c; sÞ≡
X
n⃗∈Zp

½a2i n2i þ bini þ c�−s; ð41Þ

where repeated indices are implicitly summed over. The
generalized Epstein zeta function converges for s > d. As
per usual we wish to isolate the pole occurring at s ¼ d and
determine the finite remainder. To do so,we utilize the Poisson
summation formula to provide an analytic continuation of the
generalized Epstein zeta function; we detail the derivation in
Appendix A. We may immediately apply Eq. (A10) with s ¼
3
2
þ ϵ to find

Vðp2; fLig; μ; ϵÞ ¼ −
1

2

1

ð4πÞ2
Z

1

0

dx

�
1

ϵ
− 1þ ln

μ2

Δ2

þ 2
X 0

m⃗∈Z3

e−2πix
P

mipiLiK0

×

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
X

m2
i L

2
i

q ��
þOðϵÞ;

ð42Þ
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where the suppressed limits of the sums run from i ¼ 1…3.
One may find similar expressions using Eq. (A10) for dif-
ferent numbers of spatial dimensions; for n < 3 there is no
divergence.
Using our modified MS convention, the renormalized

NLO contribution to 2 → 2 scattering in three periodic
spatial dimensions is

V̄ðp2; fLig; μÞ ¼ −
1

2

1

ð4πÞ2
Z

1

0

dx

�
ln

μ2

Δ2

þ 2
X 0

m⃗∈Z3

e−2πix
P

mipiLiK0

×

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
X

m2
i L

2
i

q ��
; ð43Þ

and the counterterm is unchanged from the infinite-vol-
ume case.
Since asymptotically K0ðzÞ ∼ expð−zÞ=pz we see that

the finite system size corrections naturally go to zero as
the system size grows. Notice further that the UV
divergence is unaffected by the finite system size cor-
rections. We should have expected this lack of sensitivity
of the UV divergence to the finite system size, since a
finite system size acts as an IR cutoff; the infinitely small
distances probed at the infinite UV are insensitive to the
global existence of any boundary conditions for the
manifold (effectively) infinitely far away. As a result, a
leading-logarithmic analysis such as from an application
of the Callan-Symanzik equation will not be able to
capture the finite system size effects on the running
coupling; rather, we must explicitly perform the resum-
mation of the 1PI diagrams to see the subleading 1=L
corrections to the running coupling. Even though this
analysis is subleading log in the limit of large p, we are
interested in the momentum region in which the finite
system size effects are not vanishingly small; i.e., we are
interested in the case of p≲ 1=L.

V. UNITARITY CHECK

We should check the consistency of our finite system
size corrections against the optical theorem: one should
find self-consistently that the time evolution captured up
to NLO is unitary. For self-consistency, then, we should
find that

2ImM ¼ σtot: ð44Þ

We have already shown that unitarity holds in the
infinite-volume limit with m ¼ 3 spatial dimensions of
infinite extent and n ¼ 0 spatial dimensions of finite extent
in Sec. II. Wewill show that unitarity holds as we increase n
incrementally to 3. However, instead of rederiving V̄ for
each case, we may simply take the appropriate number of
Li → ∞. Since the modified Bessel function of the second

kind decreases exponentially with argument, for each i for
which Li → ∞ we may take the iterator ki ≡ 0.1

In general, the left-hand side of Eq. (44) yields

2ImM ¼ −2λ2ImðV̄ðs; fLig; μÞ
þ V̄ðt; fLig; μÞ þ V̄ðu; fLig; μÞÞ; ð45Þ

where V̄ðp2; fLig; μÞ is given by Eq. (43). As noted in
Appendix A, one may organize the sum for the finite
system size correction such that the phases are only cosines.
Therefore the only contribution to the imaginary part of the
amplitude may come from values of x such that Δ2 < 0, in
which case there are contributions from evaluating the
logarithm of negative numbers and from evaluating the
modified Bessel function for arguments with an imaginary
part. Since t and u are nonpositive, we therefore have that
ImM only comes from V̄ðs; fLig; μÞ. We will in general
work in the center-of-mass frame, in which case pi ¼ 0 for
the s channel V̄ðs; fLig; μÞ. Recall from the infinite-volume
case reviewed in Sec. II that ReΔ2 < 0 for s > 4m2 and
x− < x < xþ, where 0 < x� < 1 are given by Eq. (13). As
was done in the infinite-volume review, we self-consis-
tently align the branch cuts of arg, log, K0, and the square
root along the negative real axis. Then the small imaginary
part from the propagators in the loop means that for
s > 4m2 and x− < x < xþ we have that Δ2 is in the third
quadrant of the complex plane; thus

ffiffiffiffiffiffi
Δ2

p
is in the fourth

quadrant of the complex plane. Therefore for x− < x < xþ
we have, for Δ2 ≡ −xð1 − xÞsþm2 − iε

ImK0

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
X

m2
i L

2
i

q �

¼ ImK0

�
ε − 2πijΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m2

i L
2
i

q �

¼ π

2
J0

�
2πjΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m2

i L
2
i

q �
; ð46Þ

where J0 is the usual Bessel function of the first kind,
and we have dropped the irrelevant terms linear and
higher order in ε on the right-hand side (and can take
jΔj ¼ xð1 − xÞs −m2).

1There is a slight subtlety here. We will see that for configu-
rations such that all outgoing momenta are in the finite spatial
directions the amplitude diverges (since the particles interact an
infinite number of times). These “geometric bound states” only
occur for a countably discrete number of momentum configu-
rations, so the limit of the finite system size correction going to
the infinite-volume result will hold everywhere but on a set of
measure zero.
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Defining Q̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2=sÞ

p
we have

2ImM¼ λ2

16π
Q̃θðQ̃2Þ

�
1

þ 1

Q̃

X0

m⃗∈Zn

Z
xþ

x−

dxJ0

�
2πjΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m2

i L
2
i

q ��

¼ λ2

16π
Q̃θðQ̃2Þ

�
1

þ
X0

m⃗∈Zn

Z
1

0

dvJ0

�
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
X

m2
i L

2
i

q
Q̃

ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p ��

¼ λ2

16π
Q̃θðQ̃2Þ

X
m⃗∈Zn

sinc

�
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
X

m2
i L

2
i

q
Q̃

�

¼ λ2

16π
Q̃θðQ̃2Þ

X
⃗̃m∈Λn

sincðπ ffiffiffi
s

p
Q̃j ⃗̃mjÞ: ð47Þ

In the first line, the 1 in the square brackets is the
contribution from

R
dxIm ln μ2=Δ2; we have also already

taken the imaginary part of the K0 Bessel function. In the
second line we defined the new variable v≡ ð2x − 1Þ=Q̃
and exploited the symmetry of the integrand about v ¼ 0.
In the third line we evaluated

R
1
0 dvJ0ða

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Þ ¼

sincðaÞ [21]. In the fourth line, sinc is the usual un-
normalized sinc function,

sincðxÞ≡ sinðxÞ
x

: ð48Þ
In the last line, we exchanged the sum over integers m⃗
(which are weighted by L2

i in the summand) with a sum
over the lattice Λn defined by the n lengths Li. We make
this last change to a sum over a lattice in anticipation of
exploiting the Poisson summation formula over lattices
[22]. The Poisson summation over lattices is given byX

⃗m̃∈Λn

fð ⃗m̃Þ ¼ 1

detΛ

X
⃗k̃∈Λ�n

F̃ð ⃗k̃Þ; ð49Þ

where Λ� is the lattice dual to Λ and F̃ is the usual Fourier
transform of f,

F̃ð ⃗k̃Þ≡
Z

dnme2πik⃗·m⃗fð ⃗m̃Þ: ð50Þ

Following exactly the method of performing the n-dimen-
sional Fourier transform as shown in Appendix Awith now
fð ⃗m̃Þ ¼ sincðπ ffiffiffi

s
p

Q̃j ⃗m̃jÞ, we have that

F̃ð ⃗k̃Þ ¼ Ωn−2
ffiffiffi
π

p Γðn−1
2
Þ

Γðn
2
Þ
Z

∞

0

m̃n−1dm̃

× sincðπ ffiffiffi
s

p
Q̃ m̃Þ0F1

�
;
n
2
;−ðπk̃ m̃Þ2

�

¼ Ω2−n

�
s
4
Q̃2 − k̃2

�1−n
2

θ

�
s
4
Q̃2 − k̃2

�
: ð51Þ

Thus

2ImM¼ λ2

2ð4πÞ2 ffiffiffi
s

p θðQ̃2ÞΩ2−n

×
1Q
Li

X
⃗̃k∈Λ�n

�
s
4
Q̃2− k̃2

�1−n
2

θ

�
s
4
Q̃2− k̃2

�
: ð52Þ

Consider now the total cross section,

σtot ¼
1

2

X
k⃗1 ∈Zn

1

ð2πÞnQLi

Z
dmp1

ð2πÞm2E1

×
X

k⃗2 ∈Zn

1

ð2πÞnQLi

Z
dmp2

ð2πÞm2E2

× λ2ð2πÞ4
Y

Liδðp0
A þ p0

B − p0
1 − p0

2Þ
× δðmÞðp⃗A þ p⃗B − p⃗1 − p⃗2ÞδðnÞk⃗Aþk⃗B;k⃗1þk⃗2

: ð53Þ

We may immediately collapse the p2 integrals with the
Dirac delta functions and the k2 sums with the Kronecker
deltas. Then

σtot ¼
λ2

2ð2πÞ2
X

k⃗1 ∈Zn

1Q
Li

Z
dmp1

ð2E1Þ2

× δ

 ffiffiffi
s

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

X k2i
L2
i
þm2

s !

¼ λ2

2ð4πÞ2 ffiffiffi
s

p θðQ̃2ÞΩm−1

×
1Q
Li

X
k⃗∈Zn

�
s
4
Q̃2 −

X
k2i L

2
i

�m−2
2

× θ

�
s
4
−m2 −

X
k2i L

2
i

�

¼ λ2

2ð4πÞ2 ffiffiffi
s

p θðQ̃2ÞΩ2−n

×
1Q
Li

X
⃗k̃∈Λ�n

�
s
4
Q̃2 − ⃗k̃

2
�1−n

2

θ

�
s
4
Q̃2 − ⃗k̃

2
�
: ð54Þ

In the second line we integrate out the Dirac delta function.
In the third line, we use nþm ¼ 3 to set m ¼ 3 − n and
also change the sum over the integers to a sum over the
lattice dual to the lattice from Eq. (47).
One can readily see that Eqs. (52) and (54) are equal, and

therefore the optical theorem (i.e. unitarity) is satisfied for
our newly derived result for n ¼ 0; 1; 2; or 3 compact
spatial dimensions of lengths fLig.
We provide an alternative check on unitarity for Eq. (43)

forn ¼ 2 or 3 compact spatial dimensions that utilizes a novel
generalization of a conjectured identity from Ramanujan
and Hardy involving the square counting function [17]
in Appendix B.
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VI. SAMPLE PLOTS OF V̄

We would like to have some sense of the scale and
type of correction due to the presence of the finite size of
the system; in particular, we would like to compare the
magnitude and sign of the contribution that remains
when all lengths are taken to infinity to the magnitude
and the sign of the contribution that goes to zero smoothly
as all lengths are taken to infinity.
Since the full result we derived earlier for 2 → 2

scattering, Eq. (43), captures both the infinite-volume
and finite-volume contributions, and we may take one or
more finite lengths to infinity, we will do so now. In
particular, since the modified Bessel function of the second
kind decays exponentially for large argument, for any
length Li taken to infinity, we may simply take only the
mi ¼ 0 contribution associated with that length to find the
result for only n ¼ 1 or 2 compact directions.
If we restrict ourselves to considering only n ¼ 1 or 2,

then we may avoid any questions about the applicability of
or corrections to the usual LSZ and Gell-Mann–Low
formalisms associated with scattering in quantum field
theories so long as we have our incoming (outgoing)
particles come from one of the directions of infinite length.
It is important to consider that in compactified directions
the physical momentum modes are discretized, so instead
of considering scattering angles in the finite directions, we
consider the mode number instead.
In general, one may straightforwardly evaluate Eq. (43)

by brute force for p2 < 0, i.e. for the t-channel or,
equivalently, the u-channel contribution to the amplitude.
In addition to the obvious numerical check of doubling the
number of terms included in the sum and verifying that the
results are unchanged, we further confirm that the brute
force method is accurate by comparing to an asymptotic
analytic analysis in Sec. VII.
The numerics are significantly more difficult in the s

channel, since the integral over x yields both positive and
negative values of the argument of the modified Bessel
function. As a result, the s channel has both real and
imaginary parts. One may show that the imaginary part is
straightforward and involves only a sum of a finite number
of terms. The real part involves an infinite sum over
oscillating (not modified) Bessel functions. For one com-
pact dimension, one may make significant analytic progress
on the s channel. We use

ReK0ð−x − iεÞ ¼ −
π

2
Y0ðxÞ; x > 0; ð55Þ

and

Z
z

0

Y0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − x2

p
Þdx ¼ 2

π
½CiðzÞ sinðzÞ − SiðzÞ cosðzÞ�;

ð56Þ

where Y0 is the usual Bessel function of the second kind,
CiðxÞ is the usual cosine integral, and SiðxÞ is the usual sine
integral,2 and noting that pi ≡ 0 in the s channel. We then
have that the real part of the finite-volume contribution is

ReV̄finðs; L; μÞ

¼ 4
X∞
l¼1

�
2

Z
x−

0

K0

	
2πlL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4xð1 − xÞE2 þm2

q 

dx

þ 1

2πLEl
ðCið2πlLqÞ sinð2πlLqÞ

− Sið2πlLqÞ cosð2πlLqÞÞ
�
; ð57Þ

where s ¼ 4E2 and q≡pðs − 4m2Þ. The integral over the
modified Bessel function is numerically safe as the argu-
ment is pure real over x∈ ð0; x−Þ. Then, from Eq. (47) and
Eq. (B7), we have that

ImV̄finðs; L; μÞ ¼ π
q
E

�
1

2Lq
þ bLqc

Lq
− 1

�
: ð58Þ

Although the cosine and sine integral special functions
oscillate in Eq. (57), the overall 1=l factor leads to a
numerically stable solution. In two (or more) compact
dimensions, a similar analysis as done to arrive at Eq. (57)
yields a sum that does not behave well numerically for
small q or L. A direct evaluation of Eq. (43) similarly does
not yield a numerically convergent result.
In order to obtain plots of the real part of the s-channel

contribution in two compact dimensions, we tried to
analytically perform the complete infinite sum first, then
numerically evaluate the integral over x. In one compact
dimension, one can factor out the iterator in the sum from
the square root in the argument of the modified Bessel
function. One may then perform the complete infinite sum
by using a common integral representation of the modified
Bessel function,

X∞
l¼1

K0ðlxÞ ¼
X∞
l¼1

Z
∞

0

e−lx cosh tdt

¼
Z

∞

0

dt
ex cosh t − 1

: ð59Þ

However, in two compact dimensions, in order to perform
the infinite sum one needs an integral representation of
the modified Bessel function that, e.g., looks like the
exponential of the square of the argument of the modified
Bessel function. We were unable to find any such useful
representations in the literature.

2The integral over the Y0 modified Bessel function may be
derived by integrating its Frobenius expansion term by term and
then performing the infinite sum.
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Rather, the method we found that could provide numeri-
cally stable results relied on a Kramers-Kronig type disper-
sion relation we derived relating the (derivative of the) real
part of V̄ðsÞ to the imaginary part of V̄ðsÞ. The detailed
derivation and consistency checks of this result are outside the
main scope of this work; we leave the details to Appendix C.
We provide several sample plots for the cases of one and two
compact dimensions in the following subsections.

A. One compact dimension

We consider scattering in the center-of-mass frame,
where

pi
in ¼

�
ni
L
; 0; pinf

�
i
;

pi
out ¼

�
nf
L
; sinðθÞpinf;f; cosðθÞpinf;f

�
i
;

pinf;f ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
inf þ

n2i − n2f
L

s
; ð60Þ

where ni; nf ∈Z are the number of modes in the compact
dimension such that the Mandelstam variables are given by

s ¼ 4ðm2 þ p⃗2
inÞ;

t ¼ −ðp⃗in − p⃗outÞ2;
u ¼ −ðp⃗in þ p⃗outÞ2: ð61Þ

1. s-channel

We use Eqs. (C5) and (C30) to obtain

V̄1ðs; L; μÞ

¼ −
1

32π2

2
64ln�μ2

m2

�
þ a1ðLmÞ

þ
X∞
l¼−∞

0
B@2

L

arctanh
	
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþiε

ðLmÞ2þl2

q 

ffiffiffiffiffiffiffiffiffiffiffiffi
sþ iε

p −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ðLmÞ2
p

1
CA
3
75;
ð62Þ

where a1 is given by Eq. (C29).
We show a comparison between the infinite-volume

contribution to V̄1ðs; L; μÞ and the finite-volume contribu-
tion when one of the three directions is finite as a function
of pinf in Fig. 2 and as a function of L in Fig. 3 for the s
channel. Note that the center-of-mass energy depends only
on the magnitude of the incoming (equivalently outgoing)
momentum, and not the scattering angle; thus we only
plot against the value of the incoming finite system size
momentum mode ni. We take μ¼ 1 GeV andm¼0.5GeV.
For the scan in pinf we take L ¼ 1=

p
3 GeV−1 and for the

scan in L we take pinf ¼ 1 GeV. For the scan in pinf , the
length L ∼ 0.1 fm is rather small phenomenologically;
however, the value is useful for illustrative purposes. For
s > 4m2 ⇔ jp⃗j > 0, both the infinite-volume and finite-
volume corrections have nonvanishing imaginary parts.
One can see that the finite system size correction does

indeed converge to zero as either jp⃗j → ∞ or L → ∞.
However, the convergence is nontrivial. For jp⃗j × L integer,
the finite system size correction to the real part of
V̄1ðs; L; μÞ receives a contribution from a term proportional
to −arctanhð1Þ ¼ −∞, while one can show that the finite
system size correction to the imaginary part is identically

FIG. 2. A plot of the infinite-volume (gray) and finite-length
(black) real part (top) and imaginary part (bottom) of
V̄1ðs; pinf ; μÞ as a function of pinf for one compact dimension;
the left plots have no initial momentum in the compact direction,
and the right plots have one mode in the compact direction.
μ ¼ 1 GeV, m ¼ 0.5 GeV, and L ¼ 1=

p
3 GeV−1.

FIG. 3. A plot of the infinite-volume (gray) and finite-length
(black) real part (top) and imaginary part (bottom) of V̄1ðs; L; μÞ
as a function of L for one compact dimension; the left plots
have no initial momentum in the compact direction, and the right
plots have one mode in the compact direction. μ ¼ 1 GeV,
m ¼ 0.5 GeV, and pinf ¼ 1 GeV.
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zero at these integer values of jp⃗j × L. Further, the
imaginary part is discontinuous across integer values of
jp⃗j × L due to the floor function in Eq. (B7). Thus for large
values of jp⃗j × L the convergence of the correction to zero
is only almost everywhere in the measure theoretic sense.
We can interpret the divergences in the real part of

V̄1ðs; L; μÞ in the s-channel as due to “geometric bound
states,” in which all the momentum of each of the outgoing
particles is in the finite direction. Since all the momentum is
in the finite direction, the particles propagate back and forth
a divergent number of times in the finite direction, with a
divergent number of interactions over an arbitrarily long
time. With such an out state, the particles take an arbitrarily
long time to infinitely separate. Therefore the amplitude
picks up a resonance associated with the particles being in a
“geometric bound state,” with a corresponding pole in the S
matrix as one is used to for bound states in infinite volume,
which are bound due to an attractive interaction.
It is important to note that as either pinf → 0 or L → 0 the

divergences in the amplitude are not due to a geometric bound
state: in neither case is there enough momentum to fill even
one mode in the finite direction. Rather, these IR-like
divergences are precisely the effect of the small size of the
system compared to the momentum (pinf × L ≪ 1) we
sought to capture in this work. We see, in fact, that the effect
of placing the theory in a finite-sized system diverges as the
effective size of the system (asmeasured in the length units set
by the momentum in the system) goes to zero, pinf × L ≪ 1.
In particular, by noting that sL2=4 → ðLmÞ2 þ n2i as

pinf → 0, and that arctanh(1) diverges, one can easily show
that the real part of Eq. (62) diverges (to negative infinity)
for all ni ∈Z. This behavior can be seen in Fig. 2.
In order to fully understand the L → 0 limit, we need a

good handle on the asymptotics of a1, which is nontrivial.
We can however gain intuition from the observation that
sL2=4 → n2i . If ni ¼ 0 then one finds a ðLmÞ−1 divergence
from the l ¼ 0 term in Eq. (62). For ni > 0, the only
divergence may come from a01ðLmÞ, where a01 is given by
Eq. (C29) excluding the l ¼ 0 term. One can see in Fig. 5 the
divergences in the real and imaginary parts of V̄1 as L → 0
for ni ¼ 0.

2. t-channel

We show in Figs. 4 and 5 a similar comparison as in
Figs. 2 and 3 but for the t-channel contribution for three
values of the scattering angle among the infinite directions
θ ¼ π=6; π=3, and π=2. In this case, the convergence to
zero of the finite system size correction is smooth as a
function of either momentum or length going to infinity. If
one, instead of fixing the modes in the finite direction, fix
the scattering angle into the finite direction, and consider
the discrete set of incoming momenta for which such a
scattering angle is physical, one more clearly sees the slight
oscillations from the phases in Eq. (43). The finite system
size correction is finite for fixed L as jp⃗j → 0 for m > 0;

the nonzero mass sets an IR cutoff that limits the influence
of the finite system size correction. Not surprisingly, the
finite system size correction becomes larger and larger, and
subsequently more and more important, as L decreases; the

FIG. 4. A plot of the infinite-volume (gray) and finite-length
(black) V̄1ðt; pinf ; μÞ as a function of pinf for n ¼ 1 compact
dimension for three values of the scattering angle θ among the
two remaining infinite directions, θ ¼ π=6; π=3, and π=2, for
solid, dotted, and dashed curves, respectively. The initial mo-
mentum has zero (one) modes in the finite direction in the
left (right) column; the final momentum has zero (one) modes
in the finite direction in the top (bottom) row. μ ¼ 1 GeV,
m ¼ 0.5 GeV, and L ¼ 1=

p
3 GeV−1.

FIG. 5. A plot of the infinite-volume (gray) and finite-length
(black) V̄1ðt; L; μÞ as a function of pinf for n ¼ 1 compact
dimension for three values of the scattering angle θ among the
two remaining infinite directions, θ ¼ π=6; π=3, and π=2, for
solid, dotted, and dashed curves, respectively. The initial mo-
mentum has zero (one) modes in the finite direction in the
left (right) column; the final momentum has zero (one) modes
in the finite direction in the top (bottom) row. μ ¼ 1 GeV,
m ¼ 0.5 GeV, and pinf ¼ 1 GeV.
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finite system size correction diverges for fixed jp⃗j as
L → 0. The nontrivial dependence of V̄ on the scattering
angle θ implies that the effective coupling will also in
general depend on the scattering angle θ.
In Figs. 4 and 5 for ni < nf V̄1 ceases to exist below a

certain pinf or L since there is no way to maintain
conservation of energy in these regions.
Figure 5 shows a divergence to negative infinity for the

finite-volume correction as L → 0 for the ni ¼ 0 ¼ nf and
ni ¼ 1 ¼ nf cases and a divergence to positive infinity for
both the infinite-volume and the finite system size V̄1 in the
ni ¼ 1, nf ¼ 0 case. We may understand these divergences
as follows. For L → 0, −tL=2 → niðni − nfÞ. If ni ≠ 0 and
ni ≠ nf, thenwemust have that t → −∞ asL → 0. Thenone
sees that the − ln μ2=Δ2 term of Eq. (43) will diverge to
positive infinity. Further the finite system size correction
goes to zero as K0ðzÞ ∼ expð−zÞ=pz for z ≫ 1, leading to
the behavior seen for the ni ¼ 1 and nf ¼ 0 case in Fig. 5.
Forni ¼ 0 ¼ nf andni ¼ 1 ¼ nf, whenL → 0wehave that
−t < ∞. In this case the log remains finite, but the argument
of the K0 modified Bessel function in Eq. (43) goes to 0,
which leads to the divergence as K0ðzÞ ∼ ln z for z ≪ 1.

B. Two compact dimensions

We consider scattering in the center-of-mass frame, where

pi
in ¼

�
n1i
L

;
n2i
L

; pinf

�
i

pi
out ¼

 
n1f
L

;
n1f
L

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
inf þ

n21i − n21f
L

þ n22i − n22f
L

s !i

ð63Þ

such that the Mandelstam variables are again given by

s ¼ 4ðm2 þ p⃗2
inÞ;

t ¼ −ðp⃗in − p⃗outÞ2;
u ¼ −ðp⃗in þ p⃗outÞ2: ð64Þ

1. s-channel

We use Eqs. (C5) and (C36) to obtain

V̄2ðs; L; μÞ

¼ −
1

32π2

"
ln

�
μ2

m2

�
þ a2ðLmÞ þ 1

π

X∞
l¼0

r2ðlÞ

×

 4
L arcsin

	
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþiε

ðLmÞ2þl

q 

ffiffiffiffiffiffiffiffiffiffiffiffi
sþ iε

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l − L2ðs − 4m2 þ iεÞ

p −
1

lþ ðLmÞ2
!#

;

ð65Þ

where r2ðkÞ is the square counting function, which counts
the number of 2D vectors r⃗ of integer components whose
length is jr⃗j ¼ k3 and a2 is given by Eq. (C35).
We show a comparison between the infinite-volume

contribution to V̄2ðs; L; μÞ and the finite-volume contri-
bution when two of the three directions are finite as a
function of pinf in Fig. 6 and as a function of L in Fig. 7
for the s channel. Note again that the center-of-mass
energy depends only on the magnitude of the incoming
(equivalently outgoing) momentum, and not the scattering

FIG. 6. A plot of the infinite-volume (gray) and finite-length (black) real part (top) and imaginary part (bottom) of V̄2ðs; pinf ; μÞ as a
function of pinf for two compact dimensions. The left panels have no initial momentum in either of the compact directions, the middle
panels have one mode in one finite direction, and the right panels have one mode in both compact directions. μ ¼ 1 GeV,m ¼ 0.5 GeV,
and L ¼ 1=

p
3 GeV−1 for both compact directions.

3E.g. r2ð0Þ ¼ 1, r2ð1Þ ¼ 4 ¼ r2ð2Þ.
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angle. We take μ ¼ 1 GeV and m ¼ 0.5 GeV. For the scan
in pinf we take L ¼ 1=

p
3 GeV−1 and for the scan in L we

take pinf ¼ 1 GeV.
One sees that—like the one-compact-dimension case—

the real part of V̄ diverges at particular values of jp⃗j × L.
For the two-dimensional case, the imaginary part also
diverges at these special values; also, the divergences are
one-sided in the two-dimensional case. Although difficult
to see in Figs. 6 and 7, one may show that as either jp⃗j or L
goes to infinity, the finite system size correction converges
almost everywhere to the infinite-volume result. It is easiest
to see the special values of jp⃗j and L at which both the
imaginary and real parts diverge from Eq. (65). When
r2ð14L2ðs − 4m2ÞÞ ¼ r2ð14L2jp⃗j2Þ ≠ 0 the sum picks up a
term that is divided by 0, giving a divergence; i.e. when
1
4
L2p⃗2 is an integer that can be written as the sum of two

squares (or equivalently is the length of a 2D integer
vector), V̄ will diverge. When r2ð14L2jp⃗j2Þ ¼ 0, the term
falls outside of the sum over the lattice in the original
expression, and the contribution is identically 0.
We can also see in the figures that the divergences are

one-sided for the real and imaginary parts, and that the
divergences are from the opposite directions in the real
and imaginary parts. We may understand this one-sided
divergence behavior by considering the square root in
the denominator of Eq. (65). Suppose a particular L�; s�,
and l� exist such that 4l� − L2�ðs� − 4m2 þ iεÞ ¼ 0. Now if
L≲ L� (or, equivalently, s≲ s�), then at l� the argument of
the square root is nearly zero and positive. Thus V̄2 will
pick up a large real part. But if we rather have that L≳ L�
(or, equivalently, s≳ s�), then at l� the argument of
the square root is nearly zero and negative. Thus V̄2

will pick up a large imaginary part. We may use this

reasoning further to understand the pinf → 0 behavior seen
in Fig. 6. As pinf → 0, s → 4m2. As s → 4m2, theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l − L2ðs − 4m2 þ iεÞ

p
denominator in Eq. (65) becomes

very small and imaginary for l ¼ 0 (and only l ¼ 0), which
leads to the real (imaginary) part of V̄2 going to a constant
(diverging) as pinf → 0.
The divergences away from pinf → 0 and L → 0 shown

in the figures can again be interpreted as “geometric”
bound states, where there is now the possibility for an out
state with all momentum distributed between the two finite
dimensions. Unlike in the case of only one finite dimen-
sion, one may see from the imaginary part of V̄2 that the
measure of the divergence is large enough that the total
cross section is infinite at NLO.
Again the divergences at pinf → 0 and L → 0 are not due

to geometric bound states but to the maximal influence of
the small system size. From Eq. (C36), g2 ∼ jΛ�j and thus
decays like 1=L2 for L → 0. It is thus unsurprising that
Fig. 7 shows divergences in the real and imaginary parts of
V̄2 as L → 0.

2. t-channel

We compare the infinite-volume and finite-volume
results for the t channel V̄2ðt; L; μÞ as a function of pinf
in Fig. 8 and L in Fig. 9 for a variety of modes in the initial
and final momenta. We do not display plots for configu-
rations for which no scattering occurs, i.e. for when the
initial momenta are equal to the final momenta pi ¼ pf.
For a fixed momentum transfer in the finite directions, t
approaches a finite, nonzero value as pinf → ∞. We are
thus unsurprised to see in Fig. 8 that the finite system size
correction remains nonzero even in the limit of pinf → ∞.
However the real parts of V̄2ðs; L; μÞ and V̄2ðu; L; μÞ

FIG. 7. A plot of the infinite-volume (gray) and finite-length (black) real part (top) and imaginary part (bottom) of V̄2ðs; L; μÞ as a
function of the length L for two compact dimensions. The left panels have no initial momentum in either of the compact directions, the
middle panels have one mode in one finite direction, and the right panels have one mode in both compact directions. μ ¼ 1 GeV,
m ¼ 0.5 GeV, and pinf ¼ 1 GeV.
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FIG. 8. A plot of the infinite-volume (gray) and finite-length (black) V̄2ðt; pinf ; μÞ as a function of pinf for two compact dimensions.
The plots are shown for various numbers of modes in the initial and final finite directions. Plots are not shown for when the particles do
not scatter, i.e. for pi ¼ pf. μ ¼ 1 GeV, m ¼ 0.5 GeV, and L ¼ 1=

p
3 GeV−1.

FIG. 9. A plot of the infinite-volume (gray) and finite-length (red) V̄2ðt; L; μÞ as a function of L for two compact dimensions. The plots
are shown for various numbers of modes in the initial and final finite directions. Plots are not shown for when the particles do not scatter,
i.e. for pi ¼ pf. μ ¼ 1 GeV, m ¼ 0.5 GeV, and pinf ¼ 1 GeV.
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diverge in this limit, meaning the relative influence of the
finite system size correction to the amplitude still vanishes
as pinf → ∞. Similar to the 1D case, for n21i þ n22i < n2f1 þ
n2f2 we have that the plots of V̄2 are cut off for small pinf or
L where an imaginary outgoing momentum in the infinite
direction would be necessary to maintain conservation
of energy.
We see that in contrast to the scan in momentum,

we have convergence of the finite system size result
in the L → ∞ limit, as we would expect. As in 1D,
when n1iðn1i − n1fÞ þ n2iðn2i − n2fÞ > 0, the L → 0 limit
implies t → −∞. Exactly as in the 1D case, t → −∞ will
lead to a divergence from the infinite-volume contribution
and a finite system size correction that goes to 0.

C. Three compact dimensions

The case of three compact dimensions presents a number
of conceptual and numerical challenges. Conceptually,
unless the finite lengths are very large, the incoming
and outgoing wave packets are never widely separated.
Since the incoming and outgoing states can no longer be
asymptotically separated, presumably one would have to
modify the usual LSZ treatment in order to connect to a
physically realizable setup. Even though the connection
to a real physical setup is unclear, one may still—in
principle—formally evaluate Eq. (43).
However, as is shown in detail in Eq. (B13), the

s-channel contribution to V̄ is actually trivial. For momen-
tum configurations that are physical, i.e. the momenta have
an integer number of modes along any finite direction, one
has that V̄ðsphysicalÞ ¼ ∞, since the particles are “geomet-
rically bound”; the particles interact an infinite number of
times inside the fully compact space. Otherwise, for
unphysical momenta, V̄ðsunphysicalÞ ¼ 0.
We would like to perform another nontrivial check

of our analytics and numerics through a comparison with
an analytic expression for an asymptotic expansion of
Eq. (43).Weperform this check on the t-channel contribution
to V̄ in three compact dimensions in the next section.

VII. ASYMPTOTIC ANALYSIS

We show plots comparing the infinite-volume contribu-
tion to the finite system size correction to V̄ðt; fLig; μ; ϵÞ
for p⃗2 > 0 and p0 ¼ 0 in Fig. 10 as a function of the
momentum jp⃗j and as a function of the finite system size L
for m ¼ 0.5 GeV and μ ¼ 1 GeV. We note that computing
V̄ðtÞ is something of a hypothetical exercise as the three-
compact-dimension case is pathological. Nevertheless, it is
interesting to consider the t-channel contribution in three
compact dimensions as a smooth function of jp⃗j or L
because the phases in Eq. (43) cause nontrivial oscillations
as a function of these parameters and because the finite
system size corrections are maximal in a fully compactified
space. One can see that for p ∼ 1=L the finite system size

corrections are on the same order as the infinite-volume
contribution. Note that the oscillations seen in the finite
system size corrections as a function of both jp⃗j and L are
real and due to the oscillating phases multiplying the
modified Bessel function, as we shall show.

A. Large argument analysis

We seek an asymptotic expansion for terms that look like
products of cosines and a modified Bessel function of the
second kind. Taking for simplicity only one cosine for
the moment, generically we seek an expansion in inverse
powers of λ2 ∼

ffiffiffiffiffiffiffiffiffiffi
p⃗2L2

p
of

Iðλ1; λ2;αÞ≡
Z

1

0

dx cosð2πxλ1Þ

× K0

	
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ þ α2

q
λ2


; ð66Þ

where α2 ≡m2=p⃗2 and λ1 ∼ piLi.

FIG. 10. Top: a comparison of the infinite-volume contribution
to V̄ðp2; fLig; μ; ϵÞ to the finite-volume corrections (without the
overall prefactor of −1=32π2) as a function of p≡ jp⃗j for Li ¼
1=

p
3 (GeV−1), m ¼ 0.5 GeV, and μ ¼ 1 GeV for the t-channel

contribution with the assumption of p0 ¼ 0 GeV. Bottom: same
comparison but as a function of Li ¼ L=

p
3 for jp⃗j ¼ 1 GeV,

p0 ¼ 0 GeV, m ¼ 0.5 GeV, and μ ¼ 1 GeV. The y axes of both
plots are dimensionless.
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The approach we take is to employ Laplace’s method
[23]. To get the integral in the correct form, in which
an integrand is multiplied by a decaying exponential,
we change integration variables and use the integral
representation of the Bessel function. First, take y0 ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ þ α2

p
. The inverse of y0 is double valued, so

we must separately consider the original integral from
x ¼ 0 to 1=2 and from x ¼ 1=2 to 1:

I�ðα; λ1; λ2Þ≡
Z

1
2

ffiffiffiffiffiffiffiffiffiffi
1þ4α2

p

α
dy0

2y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2 − 4y02

p
× cos

�
2π

1

2

	
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2 − 4y02

q 

λ1

�
× K0ð2πλ2yÞ; ð67Þ

Iðλ1; λ2;αÞ ¼ I−ðλ1; λ2; αÞ þ Iþðλ1; λ2; αÞ; ð68Þ

note the crucial relative sign difference in the arguments
of the cosines. To make the application of Laplace’s method
easier, we shift the integration variable to y≡ y0 þ α; at the
same time, we introduce one of the standard integral
representations of the Bessel function [24] to yield

I�ðα; λ1; λ2Þ ¼
Z

∞

0

dt e−2παλ2 coshðtÞ
Z 1

2

ffiffiffiffiffiffiffiffiffiffi
1þ4α2

p
−α

0

dy

× f�ðα; λ1; yÞe−2παλ2 coshðtÞy;

f�ðα; λ1; yÞ≡ 2ðyþ αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8αy − 4y2

p
× cos

	
π
	
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8αy − 4y2

q 

λ1


: ð69Þ

Laplace’s method tells us that

I�ðα; λ1; λ2Þ ∼
Z

∞

0

dte−2παλ2 coshðtÞ
Z

∞

0

dy½f�ðα; λ1; 0Þ

þ f0�ðα; λ1; 0Þyþ…�e−2παλ2 coshðtÞy; ð70Þ

where ∼ indicates that exponentially suppressed terms
∼ expð−λ2Þ have been dropped; note especially the change
in the upper bound of the y integration limit. One has in
general that

Z
∞

0

dy yn−1e−2πλ2 coshðtÞy ¼ ΓðnÞ
ð2πλ2Þn

sechnðtÞ: ð71Þ

One may then perform the integral over t, yielding the
Bickley function [24]

KinðxÞ≡
Z

∞

0

dt e−x coshðtÞsechnðtÞ; x > 0: ð72Þ

Clearly Ki0ðxÞ ¼ K0ðxÞ. One may find an explicit expres-
sion for Ki1ðxÞ by integrating under the integral sign to find

Ki1ðxÞ ¼
Z

∞

x
dx0K0ðx0Þ

¼ π

2
−
πx
2
ðK0ðxÞL−1ðxÞ þ K1ðxÞL0ðxÞÞ: ð73Þ

Further explicit representations of the Bickley function in
terms of modified Bessel functions of the second kind and
the modified Struve functions can be found through the
recursion relation [24]

αKiαþ1ðxÞ þ xKiαðxÞ þ ð1 − αÞKiα−1ðxÞ − xKiα−2ðxÞ ¼ 0:

ð74Þ
Like the modified Bessel functions of the second kind,
the Bickley functions decrease monotonically with x, and
further decrease monotonically with order. One finds for
large x that

KiαðxÞ ∼ KαðxÞ ∼
ffiffiffiffiffi
π

2x

r
expð−xÞ: ð75Þ

One readily computes that

f−ðα; λ1; 0Þ ¼ 2α; ð76Þ

fþðα; λ1; 0Þ ¼ 2α cosð2πλ1Þ: ð77Þ

Thus we see how the phase factors in Eq. (43) lead to the
nontrivial oscillations in Fig. 10.
For increased numerical accuracy, we may go to the next

order. One finds that

f0−ðα; λ1; 0Þ ¼ ð1þ 4α2Þ; ð78Þ

f0þðα; λ1; 0Þ ¼ ð1þ 4α2Þ cosð2πλ1Þ þ 4πα2λ1 sinð2πλ1Þ:
ð79Þ

If we drop the higher order in α contributions, which is well
justified in the large-p2 limit, a significant simplification
occurs; we find that

Iðλ1; λ2;αÞ ∼
α

πλ2
ð1þ cosð2πλ1ÞÞK1ð2παλ2Þ: ð80Þ

If we apply Eq. (80) to Eq. (43) [see also Eq. (A11)] we
find after integrating over x that

V̄ðp2; fLig; μÞ ∼ V̄∞ðp2; μÞ − 1

2

1

ð4πÞ2
�X

s∈ 2½3�
2jsjþ1

×
X∞
mi¼1
i∈ s

�
1þ

Y
i∈ s

ðcosð2πmiLipiÞÞ
�

×
m

πp2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðm2

i L
2
i Þ

p K1

�
2πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðm2

i L
2
i Þ

q ��
; ð81Þ

where
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V̄∞ðp2; μÞ≡ −
1

2

1

ð4πÞ2
Z

1

0

dx ln
μ2

Δ2

¼ −
1

2

1

ð4πÞ2
"
2þ ln

μ2

m2

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p2

s
tanh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

p2 þ 4m2

s !#
ð82Þ

is the infinite-volume contribution to NLO 2 → 2 scattering.
We compare the asymptotic expansion of Eq. (81) to the

full result (43) in Fig. 11. The comparison is much better
for the scan in p as α ∝ 1=

p
p2. Including more terms in

the asymptotic expansion improves the convergence.

B. Small argument analysis

We wish to understand the behavior of the finite system
size correction as p⃗ → 0⃗ and/or Li → 0.
For p2 → 0 and m > 0, we may safely ignore the phases

and trivially integrate over x. Then

V̄ðp2;fLig;μÞ ≈ V̄∞ðp2;μÞ

−
1

2

1

ð4πÞ2 2
X

m⃗∈Z3

0K0

�
2πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m2

i L
2
i

q �
: ð83Þ

One can see in Fig. 10 how in the small-p2 limit for m > 0
that the finite system size correction converges to a
finite value.
If m ¼ 0 and we take p2 → 0, or if Li → 0 (and m ≥ 0),

then we may still ignore the phases but must consider the
integration over x in the finite system size correction. For
small argument K0ðzÞ ¼ lnð2=zÞ − γE þOðzÞ [24]. If we
perform our change of variables as in Eq. (67) we may
integrate over x to findZ

1

0

dxK0

	
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ þ α2

q
λ2



¼ 1

2
ð1 − γE − lnðπλ2ÞÞ þ gðαÞ þOðλ2Þ; ð84Þ

where gðαÞ ¼ Oðα2Þ is a complicated expression that
smoothly goes to 0 as m → 0 and may be safely ignored
for the range ofm and p2 we consider here. We thus see that
in the small-L limit or in the small-p2 limit (for m ¼ 0) the
finite system size correction diverges logarithmically. The
divergence is slightly faster than logarithmic in the sense
that as the argument of the Bessel function decreases, more
and more terms from the sum over mi contribute; one must
sum over mi ≲ 1=π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
P

L2
i

p
. One can see in Fig. 10 how

in the small-Li limit the finite system size correction
diverges slightly faster than logarithmically.
We leave a more detailed analytic exploration of the

small argument asymptotics for future work.

VIII. FINITE-SIZE EFFECTIVE COUPLING

Having explored the finite system size correction to
V̄ðp2; fLig; μÞ, we wish to understand quantitatively the
finite system size effects on the effective coupling. The
finite system size effective coupling is the obvious gener-
alization of Eq. (22), replacing the infinite-volume V̄ðp2; μÞ
with the finite-volume V̄ðp2; fLig; μÞ:
− iλeffðs; t; fLigÞ

¼ −iλðμÞ
1 − λðμÞðV̄ðs; fLigÞ þ V̄ðt; fLigÞ þ V̄ðu; fLigÞÞ

: ð85Þ

Since V̄ picks up an imaginary part for the s channel
for jp⃗j > 0, both in the infinite volume and for the
finite-volume correction (as required by unitarity), the

FIG. 11. Top: a comparison of the infinite-volume contribution
to V̄ðp2; fLig; μ; ϵÞ to the finite-volume corrections (without the
overall prefactor of −1=32π2) and its asymptotic approximation
for large argument as a function of p≡ jp⃗j for Li ¼ 1=

p
3

(GeV−1), m ¼ 0.5 GeV, and μ ¼ 1 GeV for the t-channel con-
tribution with the assumption of p0 ¼ 0 GeV. Bottom: same
comparison but as a function of Li ¼ L=

p
3 for jp⃗j ¼ 1 GeV,

p0 ¼ 0 GeV, m ¼ 0.5 GeV, and μ ¼ 1 GeV. The y axes of both
plots are dimensionless.
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effective coupling becomes complex. A complex effective
coupling is a bit unusual but not a fundamental problem
[25]: physical quantities always involve taking the modulus
squared of the (potentially complex) amplitude.
We show in Fig. 12 the absolute value of the running

coupling λðμÞ, the infinite-volume effective coupling λeff ,
and the finite-volume effective coupling λeff minus the
initial value of the coupling λ0 and scaled by a factor of 104

as functions of pinf and of the size of the finite dimension,

L, for n ¼ 1 compact dimensions. We choose to subtract
the initial value and scale the results in order to make
the differences among the results more clearly visible. We
use the same notation as in Sec. VI; in particular, our
momenta are given by Eq. (60). We take the finite system
size direction to have a length 1=

p
3 GeV−1. For the

running coupling, we use μ2 ¼ s and μ0 ¼ 2m, where
m ¼ 0.5 GeV, and the value of the renormalized coupling
at the initial scale is λ0 ¼ 0.1. We consider scattering
at angles θ ¼ π=2; π=6 among the infinite directions.

FIG. 12. Top: a comparison of the running coupling λðμÞ
with μ2 ¼ s and μ0 ¼ 2m (black, dotted) and the absolute value
of the infinite-volume effective coupling λeffðs; tÞ (gray) with
m ¼ 0.5 GeV and scattering angle θ ¼ π=6; π=2 (solid, dashed)
and the absolute value of the finite-volume effective coupling
λeffðs; t; fLigÞ (black) with L ¼ 1=

p
3 GeV−1 for n ¼ 1 compact

dimension as a function of pinf for renormalized coupling with
λ0 ¼ 0.1 at μ ¼ μ0. Bottom: same comparison but as a function of
L (GeV−1) for pinf ¼ 1 GeV. For both plots, the y axes are
dimensionless and the dips actually take the coupling all the way
to 0 (note that the y axis has been shifted and rescaled, to compare
the corrections to the effect of the running of the coupling).

FIG. 13. Top: a comparison of the running coupling αðμÞ with
μ2 ¼ s and μ0 ¼ 2m (black, dotted) and the absolute value of the
infinite-volume effective coupling αeffðs; tÞ (gray) with m ¼
0.5 GeV and scattering angle θ ¼ π=6; π=2 (solid, dashed) and
the absolute value of the finite-volume effective coupling
αeffðs; t; fLigÞ (black) with L ¼ 1=

p
3 GeV−1 for n ¼ 1 com-

pact dimension as a function of pinf for renormalized coupling
with α0 ¼ 0.3 at μ ¼ μ0. Bottom: same comparison but as a
function of L (GeV−1) for pinf ¼ 1 GeV. For both plots, the y
axes are dimensionless and the dips again take the coupling
exactly to 0.
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One sees that the running coupling captures the leading-
logarithmic behavior of the effective coupling. One can
further see that the finite system size effective coupling
converges to the infinite system size effective coupling as
either pinf and/or L become large (compared to the other).
We can see that other than the geometric bound states
(where the effective coupling goes to 0) there are minimal
corrections with one finite dimension. One may consider it
odd that in the case of the geometric bound states the
coupling goes to zero given that the cross section diverges.
We understand this discrepancy as due to the resummation
of the bubble diagrams not capturing the bound state
physics; at the geometric bound states, one should rather
resum a set of ladder diagrams. Note that the existence and
location of these divergences in V̄ðp2; fLig; μÞ, which lead
to the finite system size effective coupling going to 0, are
independent of the strength of the coupling.
Similar to αEM (in QED) or αs (in QCD), we may further

define the relevant expansion parameter for ϕ4 theory, α≡
λ=ð4πÞ2 [26]. We show the comparison between the
running coupling αðμÞ, the infinite-volume effective cou-
pling αeffðs; tÞ, and the finite-volume effective coupling
αeffðs; t; fLigÞ in Fig. 13. The much larger initial α ¼ 0.3
leads to a much larger change in the coupling as a function
of the various scales. In particular, one can see that the
rapid approach of the Landau pole at modest p ∼ 2 GeV

means that the running coupling no longer captures the
leading-logarithmic dependence of the effective coupling.
Interestingly, the effective coupling completely avoids the
Landau pole. One can see that the finite system size
effective coupling still tracks the infinite-volume effective
coupling; for large enough p or L the results converge.
One can see that, e.g. in Fig. 13, the effective coupling

decreases as pinf × L becomes small. The coupling decreas-
ing in this limit is not due to a geometric bound state. Rather,
the coupling going to zero here is a reflection of the
magnitude of theNLO contribution to the amplitude increas-
ing due to the small system size compared to themomentum,
pinf × L ≪ 1. This decrease of the coupling with pinf × L is
consistent with a calculation of the effective coupling in a
lattice discretization ofϕ4 theory in finite volume [11]. Since
1=L → ∞ corresponds to a large momentum scale and the
beta function for ϕ4 theory is positive, it is very interesting
that the coupling decreases as pinf × L decreases.
Recall from Sec. VI A 1 that for pinf × L → 0 the

amplitude V̄1ðs; L; μÞ in fact diverges. Certainly for
λðμÞV̄1ðs; L; μÞ ≲ 1 the geometric sum converges. For
λðμÞV̄1ðs; L; μÞ ≳ 1, one may consider the effective cou-
pling as the analytic continuation of the resummation of
the geometric series, which agrees with, e.g., the Borel sum
of the geometric series. Taking the analytic continuation
seriously, the effective coupling goes to zero in the limit

FIG. 14. A comparison of the running coupling λðμÞ with μ2 ¼ s and μ0 ¼ 2m (black, dotted) and the absolute value of the infinite-
volume effective coupling λeffðs; tÞ (gray) with m ¼ 0.5 GeV and the absolute value of the finite-volume effective coupling
λeffðs; t; fLigÞ (black) with L1 ¼ L2 ¼ L ¼ 1=

p
3 GeV−1 for n ¼ 2 compact dimensions as a function of pinf for renormalized

coupling λ0 ¼ 0.1 at μ ¼ μ0. The y axes are dimensionless and the coupling is exactly 0 at the dips.
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FIG. 15. Same comparison as in Fig. 14 but as a function of L (GeV−1) for pinf ¼ 1 GeV. The y axes are dimensionless and the
coupling is exactly 0 at the dips.

FIG. 16. A comparison of the running coupling αðμÞ with μ2 ¼ s and μ0 ¼ 2m (black, dotted) and the absolute value of the infinite-
volume effective coupling αeffðs; tÞ (gray) with m ¼ 0.5 GeV and the absolute value of the finite-volume effective coupling
λeffðs; t; fLigÞ (black) with L1 ¼ L2 ¼ L ¼ 1=

p
3 GeV−1 for n ¼ 2 compact dimensions as a function of pinf for renormalized

coupling α0 ¼ 0.3 at μ ¼ μ0. The y axes are dimensionless and the coupling is exactly 0 at the dips.
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pinf × L → 0. It is not clear that one may still physically
interpret this effective coupling; it is not immediately
obvious that it is sensible for the effective coupling to
be zero when the cross section is infinite.
For n ¼ 2 compact dimensions, we show in Figs. 14 and

15 the absolute value of the running coupling λðμÞ, the
infinite-volume effective coupling λeffðs; tÞ, and the finite-
volume effective coupling λeffðs; t; fLigÞ minus the initial
value of the coupling λ0 and scaled by a factor of 104 as
functions of pinf and of the size of the finite dimension, L.
We again choose μ2 ¼ s and μ0 ¼ 2m for the running
coupling with λ0 ¼ 0.1. The finite sizes of the system are
both L1 ¼ L2 ¼ 1=

p
3 GeV−1. The running coupling is

given by the black curves, the infinite-volume effective
coupling by the blue curves and the finite-volume effective
coupling by the red curves.
In Figs. 16 and 17we show the running coupling αðμÞ, the

infinite-volume effective coupling αeffðs; tÞ, and the finite-
volume effective couplingαeffðs; t; fLigÞ as functions ofpinf
and of the size of the finite dimensions, L1 ¼ L2 ≡ L,
for n ¼ 2 compact dimensions. We again choose μ2 ¼ s
and μ0 ¼ 2m for the running coupling with α0 ¼ 0.3. The
running coupling is given by the black curves, the infinite-
volume effective coupling by the blue curves and the finite-
volume effective coupling by the red curves.

One can see that the size of the finite system size
corrections increases noticeably compared to the n ¼ 1
case. Nevertheless, the finite system size effective coupling
asymptotically approaches the infinite-volume effective
coupling for large p and/or large L. The dips are again to
zero coupling, where the approach is smooth from both
sides; the coupling is only nondifferentiable at the points of
exactly zero coupling. The drop to zero coupling is again due
to the divergences of the real and imaginary parts of V̄ in the
s channel.

IX. CONCLUSIONS AND OUTLOOK

In this work, we explored the finite system size cor-
rections to NLO scattering in scalar ϕ4 theory. We first
recounted the usual derivation of the NLO 2 → 2 scattering
amplitude in massive ϕ4 theory in infinite volume using
dimensional regularization. We then determined the running
coupling from the Callan-Symanzik equation and the effec-
tive coupling from a resummation of bubble diagrams.
Next, we utilized denominator regularization [15] to

regulate the divergences in the NLO correction to 2 → 2
scattering in a spacetime with spatial dimensions compac-
tified into a torus, i.e., with periodic boundary conditions.
The use of denominator regularization allowed us to work

FIG. 17. Same comparison as in Fig. 16 but as a function of L (GeV−1) for pinf ¼ 1 GeV. The y axes are dimensionless and the
coupling is exactly 0 at the dips.
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on a general, potentially completely asymmetric torus. In
order to capture the NLO UV divergence of the theory, we
derived an analytic continuation of the generalized Epstein
zeta function. Subsequently, we determined the relevant
renormalized quantities, including the renormalized NLO
scattering amplitude, by applying a natural and minimal
modification of the MS renormalization prescription rel-
evant for denominator regularization.
We observed that the amplitude reduced to the infinite-

volume case when all lengths were taken to infinity. To
further validate our derivation, we performed a nontrivial
check by confirming that the NLO scattering amplitude
respects unitarity in the form of the optical theorem for
0 ≤ n ≤ 3 finite spatial dimensions. This check was per-
formed in two ways, one of which involved generalizing a
number-theoretic result from Ramanujan and Hardy [17].
Satisfied by these self-consistency checks, we then

numerically evaluated the NLO s- and t-channel con-
tributions to the scattering amplitude for one and two
finite spatial dimensions. Computing the real part of the
s-channel contribution for two finite spatial dimensions
was nontrivial and required the derivation of a novel
dispersion relation. We found divergences in the s-channel
contribution to the scattering amplitude when the momenta
satisfied certain quantization conditions, corresponding to
resonances associated with “geometric bound states.” The
limits of the finite system size corrections forpinf → 0 and/or
L → 0 such thatpinfL ≪ 1 are complicated, and are channel
and number of compact dimensions specific. With one finite
dimension the effective coupling, outsideof geometric bound
states, receives little correction for moderate to large scales
(pL≳ 1). In two finite dimensions the behavior becomes
even more nontrivial, but—away from the geometric bound
states—we observed corrections up to order 40%.
One can see that the effective coupling defined here is

identically 0 at the geometric bound states. That the
effective coupling is 0 at these bound states is perhaps
nonintuitive since the cross section diverges at these states.
We note, however, that we only include the resummation of
the bubble diagrams in the effective coupling shown here;
our effective coupling does not include the resummation of
ladder diagrams necessary to fully capture the relevant
physics of the geometric bound states. Nevertheless, that
the effective coupling decreases around the geometric
bound states can be trusted in our work as the coupling
times the NLO contribution remains small, λV̄ ≪ 1, until
the momenta are extraordinarily close to the reso-
nance, jp − presonancej=presonance ∼ 10−10.
Ignoring questions about the applicability of LSZ reduc-

tion, for three finite spatial dimensions the s-channel
scattering amplitude is either identically 0 when the incom-
ing and/or outgoing momenta are unphysical (i.e. not an
integer mode dictated by the sizes of the spatial dimensions)
or∞ if the incoming and outgoingmomenta are physical.We
further examined analytically the asymptotically small- and

large-argument limits of the t-channel contribution when all
three spatial directions are finite. We found good agreement
between the numerics and the analytics.
For one and two finite spatial dimensions, we found that

the coupling drops to zero as pL → 0. This asymptotic
behavior is consistent with a calculation of the effective
coupling in a lattice discretization of ϕ4 theory in finite
volume [11]. Since 1=L → ∞ corresponds to a large
momentum scale and the beta function for ϕ4 theory is
positive, it is very interesting that the coupling decreases as
the length of the finite size dimension becomes small
compared to the momenta. It therefore seems that the
system size cannot simply be seen as the introduction of a
dimensionful scale, but rather has a significantly less trivial
effect on the physics. In particular, it is unclear how the
coupling of a gauge theory will behave. Naively, one might
expect that placing QCD in a small enough spatially
confined system would yield a weak coupling; the small
length scale of the confined system translates into a large
momentum scale, and the beta function for QCD is
negative. But our results for ϕ4 theory show the exact
opposite trend. It will therefore be very interesting to
explicitly perform the calculation for QCD in a small
system to see whether the coupling grows or shrinks.
Interesting additional future work includes applying

denominator regularization to additional systems, theories,
and processes. Denominator regularization has already
been applied at one loop to QED [27] and to Higgs
production [28]. It will be especially interesting to compute
the trace anomaly for massive ϕ4 theory in a spatially
confined system. In addition to thermal QCD in a finite
system, the finite system size corrections might have
relevance for energy loss calculations in QCD in small
collision systems [29–31].
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APPENDIX A: ANALYTIC CONTINUATION OF
THE GENERALIZED EPSTEIN ZETA FUNCTION

We would like to analytically continue the generalized
Epstein zeta function. We follow the starting steps of [16].
One begins from the Poisson summation formula (see, e.g.,
[32]). Suppose that for some p∈N

F̃ðk⃗Þ ¼
Z

dpxe2πik⃗·x⃗fðx⃗Þ; ðA1Þ
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fðx⃗Þ ¼
Z

dpke−2πix⃗·k⃗F̃ðk⃗Þ ðA2Þ

with f and F̃ continuous and for some δ > 0

jfðx⃗Þj ≤ Að1þ jx⃗jÞ−p−δ; jF̃ðk⃗Þj ≤ Að1þ jk⃗jÞ−p−δ:
Then X

n⃗∈Zp

fðx⃗þ n⃗Þ ¼
X
m⃗∈Zp

F̃ðm⃗Þe2πim⃗·x⃗: ðA3Þ

In particular, one has the Poisson summation formulaX
n⃗∈Zp

fðn⃗Þ ¼
X
m⃗∈Zp

F̃ðm⃗Þ: ðA4Þ

Note that the four series in Eqs. (A3) and (A4) converge
absolutely.
We now wish to apply the Poisson summation

formula (A4) to the generalized Epstein zeta function

ζðfaig; fbig; c; sÞ≡
X
n⃗∈Zp

½a2i n2i þ bini þ c�−s; ðA5Þ

where repeated indices are summed over, e.g. a2i n
2
i ≡Pp

i¼1 a
2
i n

2
i , and we assume that ai; bi; c∈R. In order to

apply the Poisson summation formula, we need to evaluate
the Fourier transform of the summand of the generalized
Epstein zeta function. In order to make contact with Eq. (40)
consider the case inwhichwe subtract a small imaginary part
from c such that we avoid the possibility of integrating
through any poles. Then we must consider for ε > 0Z

dpxe2πik⃗·x⃗ða2i x2i þ bixi þ c − iεÞ−s

¼ e
−2πi
P

p
i¼1

kibi
2a2

i
1Qp

i¼1 ai

Z
dpx0e2πik⃗·x⃗0 ðx⃗02 þ c0 − iεÞ−s;

where x0i ≡ xi þ bi
2a2i

and c0 ≡ c −
Pp

i¼1

b2i
4a2i

. The remaining

integral may be split into radial and angular parts,Z
dpx0e2πik⃗·x⃗0 ðx⃗02 þ c0 − iεÞ−s

¼
Z

∞

0

ρp−1dρðρ2 þ c0 − iεÞ−s
Z

dΩp−1e2πikρ cos θ; ðA6Þ

where ρ≡ jx⃗0j, k≡ jk⃗j, and Ωp ¼ 2π
pþ1
2 =Γðpþ1

2
Þ is the solid

angle of a p-dimensional sphere; Ω2 ¼ 4π. The angular
integration evaluates for kρ > 0 (which is always satisfied in
our case) and p > 1 toZ

dΩp−2

Z
π

0

sinp−2 θdθe2πikρ cos θ

¼ Ωp−2
ffiffiffi
π

p
Γ
�
p − 1

2

�
0F1ð; p2 ;−ðπkρÞ2Þ

Γðp=2Þ

¼ 2πp=2

Γðp=2Þ 0F1

	
;
p
2
;−ðπkρÞ2



; ðA7Þ

where 0F1ð; a; zÞ is a usual generalized hypergeometric
function. One may check that for p ¼ 2 the above correctly
reproduces 2πJ0ð2πkρÞ, where JνðzÞ is the usual Bessel
function of the first kind. One may then complete the
evaluation through the use ofZ

∞

0

ρp−1dρðρ2 þ c0 − iεÞ−s 2πp=2

Γðp=2Þ 0F1

�
;
p
2
;−ðπkρÞ2

�

¼ 2π2

ΓðsÞ
�
c0 − iε

k⃗2

�p
4
−s
2

Ks−p
2
ð2πjk⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − iε

p
Þ ðA8Þ

for Res > p=2, d > 1, c0 ∈R, ε > 0, and jk⃗j > 0, where
KνðzÞ is the usual modified Bessel function of the sec-
ond kind.
Equation (A8) does not have an obvious k⃗ ¼ 0⃗ limit. We

must therefore separately evaluate the k⃗ ¼ 0⃗ Fourier mode.
One finds that for Res > d=2 > 0, c0 ∈R, and ε > 0Z

dpx0ðx⃗02 þ c0 − iεÞ−s

¼ Ωp−1

Z
∞

0

ρp−1dρðρ2 þ c0 − iεÞ−s

¼ Ωp−1
Γðp

2
ÞΓðs − p

2
Þ

2Γs
ðc0 − iεÞp2−s

¼ πp=2
Γðs − p

2
Þ

Γs
ðc0 − iεÞp2−s: ðA9Þ

Putting the pieces together we arrive at our master
formula for the analytic continuation of the generalized
Epstein zeta function:

X
n⃗∈Zp

ða2i n2i þ bini þ c− iεÞ−s ¼ 1

a1 � � �ap
1

ΓðsÞ

2
64πp=2Γ�s−p

2

��
c−
X b2i

4a2i
− iε

�p
2
−s

þ 2πs
X0

m⃗∈Zp

e
−2πi
P

mibi
2a2

i

0
B@c−

P b2i
4a2i

− iεPm2
i

a2i

1
CA

p
4
−s
2

Ks−p
2

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c−
X b2i

4a2i
− iε

��Xm2
i

a2i

�s !375;
ðA10Þ
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where Σ0
m⃗∈Zp

indicates a sum over integers all m⃗∈Zp except for m⃗ ¼ 0⃗ and where the suppressed limits on

the sums run from i ¼ 1…p. Notice that the contribution from m⃗ ¼ 0⃗ isolates the pole as we analytically continue s → p=2.
One may numerically evaluate the

P 0
m⃗∈Zp in Eq. (A10) more efficiently by combining the phases into cosines. The

speedup comes from evaluating a pure real expression and from drastically reducing the total number of summed terms.
The result is a sum over all the subsets of the set of numbers f1;…; pg, known as the power set, 2½p�:

X 0

m⃗∈Zp

e
−2πi
P

mibi
2a2

i

0
B@c −

P b2i
4a2i

− iεP m2
i

a2i

1
CA

p
4
−s
2

Ks−p
2

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c −

X b2i
4a2i

− iε

��Xm2
i

a2i

�s !

¼
X
s∈ 2½p�

2jsjþ1
X∞
mi¼1
i∈ s

Y
i∈ s

ðcosð2πxmiLipiÞÞ

0
B@c −

P b2i
4a2i

− iεP m2
i

a2i

1
CA

p
4
−s
2

Ks−p
2

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c −

X b2i
4a2i

− iε

��Xm2
i

a2i

�s !
; ðA11Þ

where jsj is the length of the current set of indices being
summed over and the sums with the suppressed limits are
over i∈ s.

APPENDIX B: ALTERNATIVE CHECK
OF UNITARITY

For this unitarity analysis we need to derive a generali-
zation of the formula

X
0≤n<x

r2ðnÞffiffiffiffiffiffiffiffiffiffiffi
x − n

p ¼ 2π
ffiffiffi
x

p þ
X∞
n¼1

r2ðnÞffiffiffi
n

p sinð2π ffiffiffiffiffi
nx

p Þ;

x > 0; x ∉ Z ðB1Þ

originally proposed by Ramanujan and expanded on by
Hardy in Eq. (2) on page 82 of [17].
We will generalize Eq. (B1) by considering the rectan-

gular lattice sum X
k⃗∈Λ

sincð2πkk⃗kÞ;

where Λ is a lattice of dimension dimðΛÞ ¼ n and
determinant jΛj, the volume obtained as the product of
the lattice spacings.
We employ the Poisson summation formula for rectan-

gular lattice sums [22], given by

X
k⃗∈Λ

fðk⃗Þ ¼ 1

jΛj
X
l⃗∈Λ�

Fðl⃗Þ ðB2Þ

where Λ� is the dual lattice, the lattice with the same
dimension as Λ but with a reciprocal geometry to Λ (so
jΛj ¼ jΛ�j−1), and F is the Fourier transform of f, given by

Fð l!Þ≡
Z

dnke−2πik⃗· l
!

fðk⃗Þ: ðB3Þ

As in [33] we can exploit the radial nature of the function to
use the formula

FðlÞ ¼ 2πl
2−n
2

Z
∞

0

drfðrÞJn−2
2
ð2πlrÞrn2:

We therefore need to evaluate

FðlÞ ¼ 2πl
2−n
2

Z
∞

0

drsincð2πrÞJn−2
2
ð2πlrÞrn2 ðB4Þ

¼ π
1−n
2

2Γð3−n
2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
1−n

θð1 − l2Þ; ðB5Þ

which is valid for 0 < n < 3 and l ≥ 0. Inserting Eq. (B5)
into Eq. (B2) we find the generalization of Eq. (B1),

X
k⃗∈Λ

sincð2πkk⃗kÞ ¼ π
1−n
2 jΛ�j

2Γð3−n
2
Þ
X�
l⃗∈Λ�
l2≤1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
1−n

; ðB6Þ

where
P� denotes that terms with l2 ¼ 1 have a weight of

θð0Þ, whose value depends on convention. If one considers
the n ¼ 1-dimensional lattice with unit spacing case, one
can show that the only self-consistent choice is θð0Þ ¼ 1

2
,

which agrees with the convention used in Eq. (B1) and
is corroborated by explicitly computing Eq. (B4) with
n ¼ 1, l ¼ 1 and equating it with Eq. (B5). Equation (B6)
with θð0Þ ¼ 1

2
is then our generalization of Hardy and

Ramanujan’s Eq. (B1). One can carefully check that
Eq. (B6) is also valid for n ¼ 0 (trivially gives 1 ¼ 1),
but one should be careful with Eq. (B4), since the
dominated convergence theorem fails at n ¼ 0;l ¼ 0, so
we cannot interchange a limit to n ¼ 0;l ¼ 0 with the
integral (indeed, doing this gives an incorrect answer). We
also consider the n ¼ 3 case below. Equation (B6) of
course also holds for more general lattices (than just
the rectangular lattices we are interested in), where the
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determinant is then not, in general, simply given by the
product of lattice spacings.
We can now also consider some special cases on square

lattices with spacings given by some positive R. These
come up in our numerical explorations, which consider the
case where all finite dimensions have equal length scale.
Considering a 1D lattice with spacing R, Eq. (B6) gives

X∞
k¼−∞

sincð2πRkÞ ¼ R−1

2

X �
−R≤l≤R

1

¼
� bRc

R þ 1
2R r1ðR2Þ ¼ 0;

1 R∈Z:
ðB7Þ

Considering a 2D lattice with both spacings R, Eq. (B6)
gives

X
k⃗∈Z2

sinc ð2πRkk⃗kÞ ¼ R−2

2π

X �
l⃗∈Z2

l2≤R2

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

R2

q : ðB8Þ

2D radial sums can be simplified into a 1D sum using the
sum of squares function r2, giving

X∞
k¼0

r2ðkÞsincð2πR
ffiffiffi
k

p
Þ ¼ 1

2πR

X �
0≤l≤R2

r2ðlÞffiffiffiffiffiffiffiffiffiffiffiffi
R2 − l

p : ðB9Þ

In order to connect with Eq. (B1) we consider R2 ∉ Z and
we write out sincðxÞ ¼ sinðxÞ=x

2πRþ
X∞
k¼1

r2ðkÞffiffiffi
k

p sin ð2πR
ffiffiffi
k

p
Þ ¼

X
0≤l<R2

r2ðlÞffiffiffiffiffiffiffiffiffiffiffiffi
R2 − l

p : ðB10Þ

Note that we have dropped the star from the
P�

0≤l<R2 and
dropped the equality in the range of the sum, since we have
R2 ∉ Z. We can then see that we get Eq. (B1) by setting
x ¼ R2 in Eq. (B10). This shows that Eq. (B6) is a direct
generalization to Eq. (B1).
To consider Eq. (B6) with n ¼ 3 (on a potentially

asymmetric lattice), we need to think of Eq. (B6) as an
analytic continuation. The left-hand side of Eq. (B6) evalu-
ated numericallywithCesaro summation seems to yield 0 for
R ∉ Z and diverge to positive infinity forR∈Z. To consider
the right-hand side,we need to return to the Fourier transform
integral in Eq. (B5), which does not converge for n ¼ 3. Let
us then consider, for some small ϵ > 0

FðlÞjn¼3≡2πl−1
2

Z
∞

0

drsincð2πrÞJ1
2
ð2πlrÞr32e−ϵr ðB11Þ

¼ 8πϵ

16π4ð1 − l2Þ2 þ 8π2ð1þ l2Þϵ2 þ ϵ4

¼
(

1
2πϵ þOðϵÞ l2 ¼ 1;

ϵ
2π3ð1−l2Þ2 þOðϵ2Þ l2 ≠ 1:

ðB12Þ

In the ϵ → 0 limit, we see this continuation agrees with
numerics that for a three-dimensional lattice Λ

X
k⃗∈Λ

sincð2πkk⃗kÞ ¼
�
∞ l⃗∈Λ� with l2 ¼ 1;

0 otherwise:
ðB13Þ

One might then wonder if the divergences on the two sides
of Eq. (B6) that happen for an n ¼ 3-dimensional lattice Λ
with some l⃗∈Λ� with l2 ¼ 1 are equal. To think about
two infinities being equal, we need to have some limit
of a ratio of diverging quantities limit to 1. There are two
ways we can consider these infinities to be equal. The first is
to take the expression in Eq. (B11) seriously, by considering

lim
ϵ→0þ

P
k⃗∈Λsincð2πkk⃗kÞe−ϵkk⃗kP

l⃗∈Λ�
8πϵ

16π4ð1−l2Þ2þ8π2ð1þl2Þϵ2þϵ4
¼ 1 ðB14Þ

by thePoisson summation formula. Similarlywe know [ifwe
consider Eq. (B6) to be an analytic continuation for non-
integer 0 < n < 3-dimensional lattice sums, neglecting to
even attempt having a concrete notion of a noninteger-
dimensional lattice] that

lim
n→3−

P
k⃗∈Λsincð2πkk⃗kÞ

π
1−n
2 jΛ�j

2Γð3−n
2
Þ
P�

l⃗∈Λ�
l2≤1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
1−n

¼ 1 ðB15Þ

by Eq. (B6).
We may then push the interpretation of Eq. (B6) as an

analytic continuation in n even further. We note that

lim
ϵ→0þ

X
k⃗∈Λ

sincð2πkk⃗kÞe−ϵkk⃗k

is the Abel summation of the left-hand side of Eq. (B6).
Retracing our previous derivation we then find that in order
to employ the Poisson summation formula (B2) we need to
compute

FðlÞ ¼ 2πl
2−n
2

Z
∞

0

drsincð2πrÞe−ϵrJn−2
2
ð2πlrÞrn2

¼ 2πl
2−n
2

Z
∞

0

drsincð2πrÞe−ϵr ðB16Þ

×

�X∞
m¼0

ð−1Þm
22mþn−2

2 Γðn
2
ÞΓðmþ n

2
Þ ð2πlrÞ

2mþn−2
2

�
r
n
2

¼ 2πl
2−n
2

X∞
m¼0

ð−1Þm
22mþn−2

2 Γðn
2
ÞΓðmþ n

2
Þ

× l2mþn−2
2 ð2πÞ4mþn

2 ð4π2 þ ϵ2Þ1−2m−n
2 Γð2mþ n − 1Þ

× sin

�
ð2mþ n − 1Þ arctan

�
2π

ϵ

��
ðB17Þ
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for 1 > l ≥ 0 and Ren > 0. It seems plausible that another
method, other than employing the power series of the
Bessel function, would extend the range of validity even
further. By taking the ε → 0þ limit and simplifying we then
find

lim
ϵ→0þ

FðlÞ ¼ 1

2π
n−1
2

X∞
m¼0

ð−l2Þm
m!

× Γ
�
mþ n − 1

2

�
sin

�
π

�
mþ n − 1

2

��

¼ π
1−n
2

2Γð3−n
2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
1−n

; ðB18Þ

where we performed the sum by assuming 0 ≤ l < 1. For
l ¼ 1 we have a bit more difficulty, but find that

Fð1Þ ¼
8<
:

0 Re n < 1;
1
4

Re n ¼ 1;

∞ Re n > 1;

ðB19Þ

where the ∞ will, for general n with Ren > 1, have some
prefactor in the sense of characterizing the divergences on
both sides of Eq. (B6) to be equal. For l > 1, the domi-
nated convergence theorem fails to hold at Eq. (B16), so
one cannot simply interchange the integral and sum, and
indeed we find inconsistent results if we do. For 0 < n ≤ 3
we know Eq. (B16) evaluates to 0 for l > 1, and it seems
reasonable that this is generally true for Ren > 0, which
would make Eq. (B6) valid for all Ren > 0 in the Abel
summation sense.
If we consider Eq. (47), and apply a uniform rescaling by

a factor of 1
2

ffiffiffi
s

p
Q̃ of the lattice Λ, Eq. (47) is in a form

where we can then apply Eq. (B6) to find an expression
equivalent to Eq. (54) under its proper rescaling [the dual
lattice Λ� needs to be uniformly rescaled by a factor of
ð1
2

ffiffiffi
s

p
Q̃Þ−1 in order to be the dual lattice of the rescaled Λ].

APPENDIX C: s-CHANNEL DISPERSION
RELATIONS

We are interested in evaluating the s-channel contribu-
tion to the NLO amplitude

V̄nðs; fLig; μÞ

¼ −
1

32π2

Z
1

0

dx

�
ln

μ2

m2 − xð1 − xÞs − iε

þ 2
X 0

k⃗∈Zn

K0

�
2π
X

Liki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − xð1 − xÞs − iε

q ��
;

ðC1Þ

which in its current form is numerically ill behaved. For
simplicity, let us define

fðσ; εÞ ¼
Z

1

0

dx ln

�
1

1 − xð1 − xÞσ − iε

�
ðC2Þ

gnðΛ; σ; εÞ ¼ fðσ; εÞ þ 2
X 0

k⃗∈Λ

Z
1

0

dx

× K0ð2πkk⃗k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞσ − iε

p
Þ ðC3Þ

where Λ is an n-dimensional lattice. We note that using the
dominated convergence theorem [34] one can show that, as
long as there are no l⃗∈Λ� with l2 ¼ σ

4
− 1, one can safely

take both the σ → ∞ or lattice spacings of Λ to ∞ limits
using that K0 ∼ e−x=

ffiffiffi
x

p
to show that gnðΛ; σ; εÞ ∼ fðσ; εÞ

in these limits. Equations (C2) and (C3) then allow us to
write Eq. (C1) as

V̄nðs;fLig;μÞ¼−
1

32π2

�
ln

�
μ2

m2

�
þgn

�
ΛðfLimgÞ; s

m2
;ε

��
;

ðC4Þ
where ΛðfLimgÞ is the n-dimensional rectangular lattice
with lattice spacings given by the Lim. In the special case
of all finite lengths being equal,

V̄nðs; L; μÞ ¼ −
1

32π2

�
ln

�
μ2

m2

�
þ gn

�
ΛðLmÞ; s

m2
; ε

��
;

ðC5Þ
where ΛðLmÞ is then the n-dimensional square lattice with
all lattice spacings equal to Lm.

1. Imaginary part

We will try to exploit the complex structure of these
functions to find a numerically well-behaved equivalent
form for Eq. (C1). We have chosen to self-consistently take
the arg, log, K0, and the square root branch cuts along the
negative real axis. This straightforwardly gives that both f
and g have a branch cut along the positive real axis from
σ ¼ 4 to σ ¼ ∞. The real part of both f and g is continuous
across the branch cut, and the imaginary part changes sign.
We further need to make the assumption that there are no
poles for g in the complex σ plane off of the positive real
axis. This assumption seems reasonable and is supported
by numerics. We do however note that there are physical
situations where the S-matrix has poles violating this
assumption [35]. Something we can easily calculate and
evaluate is the imaginary part of f as follows:

Imfðσ; εÞ ¼
Z

1

0

dxIm ln

�
1

1 − xð1 − xÞσ − iε

�

¼
Z

1

0

dxπθðxð1 − xÞσ − 1Þ þOðεÞ

Imfðσ; 0þÞ ¼ π

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r
; ðC6Þ
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where ε helped us avoid the branch cut and choose the sign
of the imaginary part. We use 0þ to denote that our ε is
some infinitesimal positive real number, but since ε only
selects a branch cut we neglect to write it. This does mean
we need to be continually mindful of branch cuts. We can
then continue onward to calculate

I ≡ Im
Z

1

0

dxK0ð2πkk⃗k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞσ − iε

p
Þ

¼
Z

1

0

dxImK0ð2πkk⃗k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞσ − iε

p
Þ:

We again use the ε to avoid the branch cut and indicate the
sign of the imaginary part, giving us

I ¼ π

2

Z
1

0

dxJ0ð2πkk⃗k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞσ − 1

p
Þ

× θðxð1 − xÞσ − 1Þ þOðεÞ:
We can then discard the OðεÞ terms. We can also use the
symmetry of the integral about x ¼ 1

2
and the step function

to find

I ¼ π

Z
1
2
þ1

2

ffiffiffiffiffiffi
1−4

σ

p
1
2

dxJ0ð2πkk⃗k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞσ − 1

p
Þ: ðC7Þ

We can further simplify Eq. (C7) by using the substitution

y≡ x−1
2

1
2

ffiffiffiffiffiffi
1−4

σ

p to find

I ¼ π

2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r Z
1

0

dyJ0

�
2πkk⃗k

ffiffiffiffiffiffiffiffiffiffiffi
σ

4
− 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q �
:

We then use
R
1
0 dyJ0ða

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
Þ ¼ sincðaÞ to find

I ¼ π

2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r
sinc

�
2πkk⃗k

ffiffiffiffiffiffiffiffiffiffiffi
σ

4
− 1

r �
: ðC8Þ

We can combine Eq. (C6) and (C8) to find

ImgnðΛ; σ; 0þÞ ¼ π

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r X
k⃗∈Λ

sinc

�
2π

ffiffiffiffiffiffiffiffiffiffiffi
σ

4
− 1

r
kk⃗k
�

ðC9Þ
which now allows us to use a uniformly rescaled Eq. (B6)
in order to write Eq. (C9) as

ImgnðΛ;σ;0þÞ

¼ π

ffiffiffiffiffiffiffiffiffiffi
1−

4

σ

r
π

1−n
2 jΛ�j

2Γð3−n
2
Þ ffiffiffiffiffiffiffiffiffiffi

σ
4
− 1

p
n

X�
l⃗∈Λ�
l2≤σ

4
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

l2

σ
4
− 1

s
1−n

¼ π
3−n
2 jΛ�jffiffiffi
σ

p
Γð3−n

2
Þ
X�
l⃗∈Λ�

�
σ

4
− 1− l2

�1−n
2

θ

�
σ

4
− 1− l2

�
: ðC10Þ

2. Complex analysis

For asymptotically large jσj, we find that j gnðΛ;σ;εÞ
σ2

j falls
off faster than jσj−1 for n < 3-dimensional lattices. We can
use this as follows. Consider the Cauchy integral formula

d
dσ

ðgnðΛ; σ; 0þÞÞ ¼
1

2πi

Z
γ
dz

gnðΛ; z; 0þÞ
ðz − σÞ2 ; ðC11Þ

where γ is some small counterclockwise contour around the
pole at z ¼ σ.
Looking at the complex structure as discussed above

and shown in Fig. 18, we can see that we can deform our
contour around the branch cut just under the real axis
(offset due to ε ¼ 0þ). Then since gnðΛ;σ;0Þ

σ2
falls off faster

than σ−1, the integral along γ1 does not contribute. It is also
possible to show that the integral along γ3 does not
contribute. This leaves us with γ2, γ4.
gnðΛ; σ; 0Þ has a real part that is continuous across its

branch cut, and the imaginary part simply changes sign, so
since γ2, γ4 run in opposite directions along opposite sides
of the branch cut, we find

d
dσ

ðgnðΛ; σ; 0þÞÞ
����
σ¼σ0þiη

¼ 1

π

Z
∞

4

dz
ImgnðΛ; z; 0þÞ
ðz − σ0 − iηÞ2

ðC12Þ

¼ π
1−n
2 jΛ�j

Γð3−n
2
Þ
X
l∈Λ�

Z
∞

4

dz
θðz

4
− 1 − l2Þffiffiffi

z
p ðz

4
− 1 − l2Þn−12

1

ðz − σ0 − iηÞ2 :

ðC13Þ

We have pushed the pole we introduced through the
Cauchy integral formula into the upper-half plane, such
that it is inside the contour we are considering, and not

FIG. 18. The analytic structure of Eq. (C11).
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exactly on the branch cut itself, since our contour needs to
run between the two.
Integrating both sides with respect to σ0 (note that this is a

contour integral, so some care needs to be taken) then gives

gnðΛ; σ þ iη; 0þÞ − gnðΛ; σ0 þ iη; 0þÞ

¼ π
1−n
2 jΛ�j

Γð3−n
2
Þ
X
l∈Λ�

Z
∞

4

dz
θðz

4
− 1 − l2Þffiffiffi

z
p ðz

4
− 1 − l2Þn−12

×

�
1

z − σ − iη
−

1

z − σ0 − iη

�
: ðC14Þ

3. Case: n= 0

In principle, the n ¼ 0 case is trivial as there is no sum to
perform. However, we examine the n ¼ 0 case for three

reasons. First, we would like to confirm that Eq. (C14)
reproduces the original Eq. (C3), which in this case trivially
reduces to Eq. (C2). Second, we find that even in this
simple case we utilize a method that will be extremely
useful in the higher-n cases. Third, we use an asymptotic
form of Eq. (C2), which will prove invaluable for the
higher-n cases.
Simply setting n ¼ 0, there is no sum to be performed in

Eq. (C3), and we obtain

g0ðf0⃗g; σ þ iη; 0þÞ − g0ðf0⃗g; σ0 þ iη; 0þÞ

¼
Z

∞

4

dz

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

z

r �
1

z − σ − iη
−

1

z − σ0 − iη

�
: ðC15Þ

Integrating and then safely taking η → 0

g0ðf0⃗g; σ; 0þÞ − g0ðf0⃗g; σ0; 0þÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

s "
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

s !
þ arctanh

 
2 − σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðσ − 4Þp

!!

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ0

s  
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ0

s !
þ arctanh

 
2 − σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0ðσ0 − 4Þp

!#
: ðC16Þ

We can rearrange Eq. (C16) to obtain

g0ðf0⃗g; σ; 0þÞ ¼
"
g0ðf0⃗g; σ0; 0þÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ0

s  
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ0

s !
þ arctanh

�
2 − σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0ðσ0 − 4Þp �!#

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

s  
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

s !
þ arctanh

 
2 − σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðσ − 4Þp

!!
: ðC17Þ

Since the left-hand side is explicitly independent of σ0, we know the first term on the right-hand side must be σ0
independent and is simply a constant that needs to be determined. (We will exploit this method of isolating the σ0
independent constant in the higher-n cases.) We therefore define

a0 ≡ g0ðf0⃗g; σ0; 0þÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ0

s  
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ0

s !
þ arctanh

�
2 − σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0ðσ0 − 4Þp �!

ðC18Þ

in order to obtain

g0ðf0⃗g; σ; 0þÞ ¼ a0 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r �
arctanh

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r �
þ arctanh

�
2 − σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðσ − 4Þp ��

: ðC19Þ

For the higher-n cases, we need to take σ0 → ∞ and
evaluate an equation similar to Eq. (C18) numerically. For
the n ¼ 0 case we may analytically evaluate a0. We first
note that g0ðf0⃗g; σ; 0þÞ ¼ fðσ; 0þÞ, and thus for σ > 4

g0ðf0⃗g; σ; 0þÞ ¼ 2 − 2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r
arccoth

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r �
ðC20Þ

from an explicit analytic evaluation of Eq. (C2). One may
then evaluate a0 in Eq. (C18) by taking σ → σ0 in
Eq. (C20) and then simplifying to find that

a0 ¼ 2: ðC21Þ

Therefore
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g0ðf0⃗g; σ; 0þÞ ¼ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r "
arctanh

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

σ

r �

þ arctanh

 
2 − σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðσ − 4Þp

!#
; ðC22Þ

and we have successfully found an explicit expression for
g0 using our alternative method of derivation. We note that
for σ > 4 one can show analytically that Eq. (C22) is
equivalent to Eq. (C20), and thus Eq. (C22) is equivalent to
Eq. (C3) for n ¼ 0.
For the higher-n cases we need the following asymptotic

form for Eq. (C2), which readily comes from the large-σ
expansion of Eq. (C20):

fðσ; 0þÞ ¼ 2þ iπ − lnðσÞ þOðσ−1Þ: ðC23Þ

4. Case: n= 1

We may now consider the first nontrivial case, n ¼ 1. In
this case we may compare a brute force evaluation of
Eq. (C3) with a numerical evaluation of an equivalent form
that we now derive with the methods we have developed
so far.
Considering Λ to be a 1D lattice

g1ðΛ; σ þ iη; 0þÞ − g1ðΛ; σ0 þ iη; 0þÞ

¼ jΛ�j
X
l∈Λ�

Z
∞

4

dz
θðz

4
− 1 − l2Þffiffiffi

z
p

×

�
1

z − σ − iη
−

1

z − σ0 − iη

�
ðC24Þ

¼ jΛ�j
X
l∈Λ�

Z
∞

4ð1þl2Þ

dzffiffiffi
z

p
�

1

z − σ − iη
−

1

z − σ0 − iη

�
ðC25Þ

¼ 2jΛ�j
X
l∈Λ�

0
B@arctanh

	
1
2

ffiffiffiffiffiffiffiffi
σþiη
1þl2

q 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ þ iη

p −
arctanh

	
1
2

ffiffiffiffiffiffiffiffiffi
σ0þiη
1þl2

q 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0 þ iη

p

1
CA:

ðC26Þ
We now have to be careful how we split up the sum in

Eq. (C26), to ensure we do not lose convergence. If we look
at the asymptotic behavior of each term, we see that both
asymptotically decay like 1=jlj, so we can add and subtract
any function that has the same asymptotic form in order to
separate the σ- and σ0-dependent parts respectively. A
convenient and natural choice then is simply 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
.

We also note that the η is there to ensure the correct branch
cut choice. Since σ > 4, we may therefore safely take η ¼ 0
in the denominator of Eq. (C26). We can then split our sum
into two convergent sums:

g1ðΛ; σ þ iη; 0þÞ − g1ðΛ; σ0 þ iη; 0þÞ ¼ jΛ�j
X
l∈Λ�

�
2ffiffiffi
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p arctanh
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2

ffiffiffiffiffiffiffiffiffiffiffiffi
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1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
�
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�
2ffiffiffiffiffi
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p arctanh
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2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ0

1þ l2

r
þ iη

�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
�
: ðC27Þ

We can then rearrange Eq. (C27) as

g1ðΛ; σ; 0þÞ ¼
�
g1ðΛ; σ0; 0þÞ − jΛ�j

X
l∈Λ�

�
2ffiffiffiffiffi
σ0

p arctanh
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ0

1þ l2

r
þ iη

�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
��

þ jΛ�j
X
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σ

1þ l2

r
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−
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1þ l2

p
�
: ðC28Þ

Since the left-hand side is again independent of σ0, we know the first term must be a function of only the lattice. Noticing
that for asymptotically large σ0 we have g1ðΛ; σ0; 0þÞ ∼ fðσ0; 0þÞ ∼ 2þ iπ − lnðσÞ, where the first asymptotic can be seen
from Eq. (C3) and the second can be computed easily from Eq. (C2), we can now numerically and asymptotically evaluate

a1ðΛÞ≡ 2þ iπ þ lim
σ0→∞

�
− lnðσ0Þ − jΛ�j

X
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�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
��

ðC29Þ

in order to obtain

g1ðΛ; σ þ iη; 0þÞ ¼ a1ðΛÞ þ jΛ�j
X
l∈Λ�

�
2ffiffiffi
σ

p arctanh
�
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2
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−
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p
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: ðC30Þ
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We plot a1ðΛÞ as a function of the lattice spacing α
of the n ¼ 1-dimensional lattice Λ in Fig. 19. We can then
compare g1 with an n ¼ 1-dimensional lattice at different
lattice spacings calculated with Eq. (C30) versus Eq. (C3)
in Fig. 20. We note that there is a subtlety in the ordering of

the limits in Eq. (C29) that affects numerics. There is no
general way to move the logðσ0Þ inside the sum in
Eq. (C29), and so we must take the limit of the upper
bound of the infinite sum before we take the σ0 → ∞ limit.
For some σ0 we need to sum all vectors l⃗ that do not give
vanishing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0=ð1þ l2Þ

p
, but since we have a logarithmic

divergence in σ0, we need to have σ0 ∼ 105 to get precision
on the order of 10−1 for a1. Since the real part of a1 is
significantly larger than the imaginary part, the real part is
much less sensitive to this limiting issue than the imaginary
part, as can be seen in Fig. 19. This lack of precision in the
imaginary part of a1 ends up not mattering, since the
imaginary part coming from the rest of g1 in Eq. (C30) is
orders of magnitude larger than that coming from a1. We
can confirm that the lack of numerical precision of a1 is
irrelevant by examining the comparison of g1 computed by
brute force evaluation of Eq. (C3) and by evaluating the
newly derived Eq. (C30) in Fig. 20. We can furthermore see
how much faster Eq. (C30) converges when compared to
Eq. (C3) with an n ¼ 1-dimensional lattice in Fig. 21.

FIG. 20. Comparison of real and imaginary parts of g1 calculated with Eq. (C30) (“New”) versus Eq. (C3) with n ¼ 1 (“Brute Force”),
with lattice spacing ¼ 0.1, 1, 10 from top to bottom.

FIG. 19. The real and imaginary parts of a1 as a function of the
lattice spacing α on a log scale. The absolute value of the
imaginary part is taken, since it oscillates around 0.

W. A. HOROWITZ and J. F. DU PLESSIS PHYS. REV. D 109, 036013 (2024)

036013-30



5. Case: n= 2

Considering Λ to be a 2D lattice

g2ðΛ; σ þ iη; 0þÞ − g2ðΛ; σ0 þ iη; 0þÞ ¼ jΛ�j
π

X
l∈Λ�

Z
∞

4

dz
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4
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z
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4
− 1 − l2Þ12 ðC31Þ

×
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CA:

ðC32Þ

We can again carefully split up the terms, where an appropriate and natural term to add and subtract is 1=1þ l2,

g2ðΛ; σ þ iη; 0þÞ − g2ðΛ; σ0 þ iη; 0þÞ ¼ jΛ�j
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We can rearrange Eq. (C33) as

g2ðΛ; σ; 0þÞ ¼

2
64g2ðΛ; σ0; 0þÞ − jΛ�j
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Since the left-hand side is independent of σ0, we know the first term must be a function of only the lattice. With the same
reasoning as for n ¼ 1, we can now introduce

FIG. 21. Convergence of partial sums of the real (left) and imaginary (right) parts of g1 from a “Brute Force” evaluation of Eq. (C3)
(square) compared to the “New” method of Eq. (C30) (circle) on a lattice with lattice spacing unity, and at σ ¼ 5.
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a2ðΛÞ≡ 2þ iπ þ lim
σ0→∞

2
64− lnðσ0Þ −

jΛ�j
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in order to obtain

g2ðΛ; σ þ iη; 0þÞ ¼ a2ðΛÞ þ
jΛ�j
π
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We plot a2ðΛÞ as a function of the lattice spacing α for a
square n ¼ 2-dimensional lattice in Fig. 22. In contrast to
a1, we find that Eq. (C35) is more numerically stable. The
order OðlÞ in the denominator of Eq. (C35), means that
terms vanish for large l no matter the value of σ0.
One can see how much faster Eq. (C36) converges

compared to Eq. (C3) in an n ¼ 2-dimensional lattice
in Fig. 23.

We can now compare the summation of ∼104 terms
of Eq. (C1) directly for the real part of the s channel
at p ¼ 1 GeV and scanning in L (the length of both
finite directions), as well as for constant L1 ¼ L2 ¼
1=
p
3 GeV−1 scanning in p, to the summation of only

103 terms of Eq. (C36). In Fig. 24 we can see this
comparison, making it clear why this detour to derive a
more numerically friendly form was necessary. We under-
stand the apparent disagreement of the two methods at
small L in Fig. 24 as due to the exceptionally slow
numerical convergence of the “Brute Force” method of
evaluation of Eq. (C1), which does not accurately capture
the divergence of V̄2ðs; L; μÞ. Intuitively, as L decreases,
the number of terms required to accurately determine
V̄2ðs; L; μÞ using the “Brute Force” method diverges.
The advantage of the “New” method is that it sums over
the dual lattice, so as L decreases, the method becomes
more and more accurate for any fixed number of terms
included. (In principle, then, the “New” method becomes
inaccurate at large enough L; we however have not yet
encountered a value of L for which the method fails
numerically.)

FIG. 22. The real and (minus the) imaginary parts of a2 for a
square lattice as a function of the lattice spacing α.
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