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Positron creation probabilities as well as energy and angular distributions of outgoing positrons in slow
collisions of two identical heavy nuclei are obtained within the two-center approach beyond the monopole
approximation. The time-dependent Dirac equation for positron wave functions is solved with the help of
the generalized pseudospectral method in modified prolate spheroidal coordinates adapted for variable
internuclear separation. Depending on the nuclear charge, the results are obtained for both subcritical and
supercritical regimes of the positron creation. The signatures of transition to the supercritical regime in the
total positron creation probabilities and energy spectra are discussed. The angular distributions of emitted
positrons demonstrate a high degree of isotropy.
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I. INTRODUCTION

The electron-positron pair creation in the nonperturba-
tive regime of quantum electrodynamics (QED) in the
presence of strong electromagnetic fields is a subject of
intense theoretical studies (see, e.g., reviews [1–4]). The
experimental verification of the existence of such processes
is of great difficulty since the required critical field strength
is extremely high—at the level of 1016 V=cm. Although the
peak field strength achieved with laser technologies has
ever increased over the past decades, it is still impossible to
obtain supercritical values. Another possibility to achieve
supercritical fields arises in the physics of heavy nuclei and
heavy-ion collisions.
In a pioneering paper [5], it was shown that the 1s level

of a hydrogenlike ion with an extended nucleus gradually
decreases with increasing Z and at a certain critical Z,
Z ¼ Zcr, reaches the negative-energy continuum. In papers
of Soviet and German physicists [6–17], it was shown that
the diving of an initially empty 1s state into the negative-
energy electron continuum can result in spontaneous

emission of positrons. In this process, the originally neutral
vacuum decays into the charged vacuum and two positrons.
For the 1s state, Zcr ≈ 173, and since there is no exper-
imental means to produce such a heavy nucleus in the near
future, low-energy heavy-ion collisions got major attention.
If during the collision process two heavy nuclei with the
charge numbers Z1 þ Z2 > Zcr get sufficiently close to each
other, for a short period of time the quasimolecular 1sσg state
dives into the negative-energy continuum as a resonance,
resulting in the creation of electron-positron pairs, and the
positrons can escape the nuclei as free particles.
The first calculations of spontaneous vacuum decay were

carried out in the static approximation [18–20], which does
not take into account the dynamical pair-production
mechanism, arising from the variation of the potential
due to the nuclei motion. The spontaneous and dynamical
pair-creation channels were examined in papers by the
Frankfurt group (see, e.g., [16,17,21–27]). However, the
experiments performed many years ago at GSI (Darmstadt)
did not show any signature of the spontaneous pair
production (see, e.g., Refs. [17,25–27] and references
therein). This was mainly due to a strong masking of
the spontaneous pair-creation channel by the dynamical
one. As a result, the Frankfurt group concluded that
experimental verification of the spontaneous positron
creation is only possible if the nuclei “stick” to each other
during the collision process due to nuclear forces, enhanc-
ing the spontaneous channel [26]. However, since there is
no experimental evidence of the nuclear “sticking” to date,
other approaches need to be considered.
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In the last two decades, theoretical interest in the
spontaneous pair creation has risen again. The supercritical
resonance was studied in Refs. [28–32]. In Refs. [33,34],
the effects of the QED-vacuum polarization in the super-
critical Coulomb field have been evaluated. Pair creation in
heavy-ion collisions in a dynamic framework was targeted
in the monopole [35–37] and beyond the monopole
approximation [38–40]. In Ref. [41], the instability of
electron-positron vacuum in the relativistic semiclassical
approach was examined.
In Refs. [42,43], a new method to study supercritical

regime signatures was proposed. The approach is to
examine collisions with nuclei moving along trajectories
with a fixed minimal internuclear distance Rmin and differ-
ent energy parameter ε ¼ E=E0, ε ≥ 1, where E is the
collision energy and E0 is the head-on collision energy.
Moving along these trajectories, the nuclei with charges
Z1 þ Z2 > Zcr produce the same field strength but spend
different time in the supercritical regime depending on ε.
With increasing ε, the time of the supercritical regime and
the contribution of the spontaneous pair-creation channel
decrease. On the contrary, the dynamical channel contri-
bution increases for greater collision energies E. Thus, the
increase in the pair-creation probability with decreasing ε
should be considered as a signature of the spontaneous
pair-creation contribution. In Refs. [42,43], the signatures
of the transition to the supercritical regime were found in
the monopole approximation, and in Ref. [44] the analo-
gous results were obtained in the calculations beyond the
monopole-approximation framework.
With the new possibilities, which are anticipated at the

upcoming experimental facilities in Germany (GSI/FAIR)
[45,46], China (HIAF) [47], and Russia [48], further
theoretical investigations of the pair creation in low-energy
heavy nuclei collisions are needed. Among other character-
istics, the energy spectra of outgoing positrons with angular
resolution are of great interest. The pair-production
differential probability with respect to the energy and
angles would provide valuable information for possible
experimental setup construction. If the positron angular
distributions have a high degree of isotropy, fewer detec-
tors would be needed to conduct the experiment.
Previously, the problem of the angular distributions was
targeted in Refs. [18,20] in the framework of static
approximation.
The present work aims to study the angular-energy

spectra of positrons in low-energy heavy-ion collisions.
The generalized pseudospectral method is used to solve
the time-dependent Dirac equation in modified prolate
spheroidal coordinates. The rotational term in the time-
dependent Dirac equation appearing in the rotating molecu-
lar reference frame (see, e.g., Ref. [49]) as well as the
magnetic field of the nuclei are omitted. In Refs. [50–53], it
was argued that the contribution of these effects to the total

pair-creation probability and the energy distributions is
negligible. The plane-wave decomposition approach is
applied to obtain the energy spectra of positrons with
angular resolution. The supercritical signatures in the
angle-integrated as well as angle-resolved energy distribu-
tions are studied. The angular anisotropy of the positron
distributions is examined.
The paper is organized as follows. In Sec. II, the

theoretical methods applied to solve the time-dependent
Dirac equation and calculate the positron spectra are
described. In Sec. III, the results for the angle-integrated
and angle-resolved energy spectra of outgoing positrons are
presented and discussed.
Atomic units (ℏ ¼ jej ¼ me ¼ 1) are used throughout

the paper unless specified otherwise.

II. METHODS

A. Time-dependent Dirac equation for a one-positron
diatomic quasimolecular system

We study a collision of two identical bare nuclei and
use Dirac’s hole picture based on the Dirac equation for
positrons [17,29]. In this approach, the lower Dirac
continuum states as well as discrete states, detached from
the lower continuum to the gap between the lower and
upper continua, are considered occupied by positrons and
form the Dirac vacuum. It should be emphasized that the
discrete states in the gap between the lower and upper
continua are not the states of a real positron, which cannot
be bound in a repulsive nuclear potential. A positron
becomes observable if a transition is made from such
states to the upper continuum. At the same time, a hole in
the lower continuum or in the discrete state is created,
which is described as an electron in a continuum or bound
state, respectively. The electron-positron pair creation can
be caused by absorption of the energy from external time-
dependent fields or may occur spontaneously if the
parameters of the nuclear system, such as internuclear
separation, make it possible that the energy of some
positron vacuum state get in the upper continuum.
In the center-of-mass frame of reference, the time-

dependent Dirac equation (TDDE) for a positron subject
to the static electric field of the nuclei reads as

i
∂

∂t
Ψðr; tÞ ¼ HΨðr; tÞ; ð1Þ

where Ψðr; tÞ is a four-component wave function of the
positron, and the Hamiltonian H takes the form

H ¼ cðα · pÞ þ c2βþUnðjr− aðtÞjÞ þUnðjrþ aðtÞjÞ: ð2Þ

Here, c is the speed of light, p is the momentum operator, α
and β are the Dirac matrices, and the vector aðtÞ is directed
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along the instantaneous internuclear axis with its length
equal to one half of the internuclear distance RðtÞ:

a ¼ aðtÞAðtÞez; aðtÞ ¼ 1

2
RðtÞ: ð3Þ

Here, ez is the unit vector along the z axis, and AðtÞ is an
orthogonal 3 × 3 matrix describing the rotation of the
internuclear axis during the collision. Assuming the rota-
tion of the internuclear axis in the z-x plane (the collision
process scheme is depicted in Fig. 1), one can write the
matrix AðtÞ as

AðtÞ ¼

0
B@

cos χ 0 sin χ

0 1 0

− sin χ 0 cos χ

1
CA: ð4Þ

The rotation angle χ depends on time, with the original
direction of the internuclear axis along the z axis (χ → 0
as t → −∞).
The potential UnðrÞ in Eq. (2) is spherically symmetric

and represents the static electric potential of the nucleus
within the extended nucleus model:

UnðrÞ ¼
Z

d3r0
ρnðr0Þ
jr − r0j ; ð5Þ

where ρnðrÞ is the nuclear charge distribution function.
With the help of the following unitary transformation,

Ψðr; tÞ ¼ exp ½−iχJy�ΨðrÞðr; tÞ; ð6Þ

wemake a transition to the rotated frame of reference. Here,
Jy is the operator representing the total angular momentum
projection onto the y axis:

Jy ¼ Ly þ Sy; ð7Þ

where Ly is the orbital angular momentum projection
operator, and Sy is the spin angular momentum projection
operator. Upon substitution of the wave function (6) in
Eq. (1), one obtains

i
∂ΨðrÞðr; tÞ

∂t
¼ �cðα · pÞ þ c2β − χ̇Jy þ Unðjr − aðtÞezjÞ
þ Unðjrþ aðtÞezjÞ

�
ΨðrÞðr; tÞ: ð8Þ

We note that ΨðrÞðr; tÞ is just an auxiliary wave function
defined by Eq. (6), and Eq. (8) differs from the equation for
the true wave function in the relativistic rotating frame of
reference; for the details, see Ref. [49].
In Eq. (8), the nuclei are always on the Cartesian z axis,

but the rotational coupling operator −χ̇Jy appears as an
additional term in the Hamiltonian. The next unitary
transformation,

ΨðrÞ ¼

0
BBB@

1 0 0 0

0 expðiφÞ 0 0

0 0 i 0

0 0 0 i expðiφÞ

1
CCCAψ ; ð9Þ

where the angle φ describes the rotation about the inter-
nuclear axis, results in a time-dependent equation for the
wave function ψðtÞ,

i
∂

∂t
ψðtÞ ¼ ½H − χ̇Jy�ψðtÞ; ð10Þ

where the new Hamiltonian H reads as

H ¼ c2
���� 12 02

02 −12

����þ c

���� 02 B

B† 02

����þ c

���� 02 D

D† 02

����
þ �Unðjr − aðtÞezjÞ þUnðjrþ aðtÞezjÞ

����� 12 02

02 12

����;
ð11Þ

and notations 02 and 12 stand for the zero and unit 2 × 2
matrices, respectively. Using the cylindrical coordinates ρ,
z, and φ as generic coordinates to represent the differential
operators, the 2 × 2 matrices B and D in Eq. (11) can be
written as follows:

B ¼
 

∂

∂z
∂

∂ρ þ 1
ρ

∂

∂ρ − ∂

∂z

!
; D ¼

 
0 − i

ρ
∂

∂φ

i
ρ

∂

∂φ 0

!
: ð12Þ

These matrices are anti-Hermitian:

B† ¼ −B; D† ¼ −D: ð13Þ

FIG. 1. The principal scheme of the nuclei collision. Here, z-x
axes correspond to the fixed initial large internuclear separation
frame of reference, z0-x0 axes correspond to the rotating molecular
frame of reference, filled black circles and dotted lines depict the
nuclei and their trajectories, respectively, and χ is the internuclear
axis rotation angle. The blue circle is the closest nuclei approach
distance.
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The Hamiltonian H in Eq. (11) is real-valued except for the
term with the matrix D. The transformed angular momen-
tum operator Jy is defined as

Jy ¼ Ly þ Sy; ð14Þ

Ly ¼ Ly −
z
ρ
sinφ

0
BBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

1
CCCA; ð15Þ

Sy ¼
i
2
expð−iφÞ

0
BBB@

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

1
CCCA

−
i
2
expðiφÞ

0
BBB@

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1
CCCA: ð16Þ

B. Modified prolate spheroidal coordinates
and time propagation

Prolate spheroidal coordinates are a natural choice for
description of two-center quantum systems. Conventional
prolate spheroidal coordinates ξ and η [54] are related to
cylindrical coordinates as follows:

ρ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 1Þð1 − η2Þ

q
; z ¼ aξη

ð1 ≤ ξ < ∞;−1 ≤ η ≤ 1Þ: ð17Þ
The angle φ has the same definition in both coordinate
systems. However, conventional prolate spheroidal coor-
dinates are not well suited for numerical calculations of
close collisions, when the parameter aðtÞmay become very
small, because the physical volume is determined by the
product aξ, and not by ξ alone. That is why we use
modified prolate spheroidal coordinates for solving the
time-dependent equation (10). Instead of the coordinate ξ,
we introduce a new coordinate λ according to the following
definition:

λ ¼ aðξ − 1Þ; ð18Þ

so the relations between the cylindrical coordinates and
modified prolate spheroidal coordinates read as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðλþ aÞ2 − a2�½1 − η2�

q
;

z ¼ ðλþ aÞη
ð0 ≤ λ < ∞;−1 ≤ η ≤ 1Þ: ð19Þ

In the limit a → 0, the modified prolate spheroidal coor-
dinates are smoothly transformed into the spherical coor-
dinates r and ϑ: λ → r, η → cos ϑ.
The operators H in Eq. (11) and Jy in Eq. (14) must be

expressed in the modified prolate spheroidal coordinates
before solving Eq. (10). Besides that, an additional scaling
term is introduced in the equation since the transformation
to the modified prolate spheroidal coordinates (19) is time
dependent through the parameter aðtÞ:

i
∂ψðλ; η;φ; tÞ

∂t
¼
�
H − χ̇Jy −

ȧ
a
Sa

�
ψðλ; η;φ; tÞ: ð20Þ

Expressions of the operators H, Jy, and Sa in the modified
prolate spheroidal coordinates are rather cumbersome; they
are not reproduced here and will be published elsewhere.
As was argued in Refs. [50–53], the influence of the

rotational coupling term −χ̇Jy in TDDE (20) on the total
production of positrons in slow collisions of heavy nuclei
is negligible. A question if the rotational coupling and
magnetic field of the nuclei have a noticeable effect on the
energy and angular distributions of the positrons needs
further investigation involving large-scale computations. It
may be a subject of future research. In the present work, we
adopt an approximation that neglects the rotational cou-
pling term −χ̇Jy in TDDE (20), so the positron angular
momentum projection on the internuclear axis is conserved.
To solve the TDDE (20), we employ the general-

ized pseudospectral method in prolate spheroidal co-
ordinates, which was extensively used and discussed
previously [55–57]. Here, we adapt the method for usage
with the modified prolate spheroidal coordinates. To
perform time propagation in Eq. (20), we apply a scheme
based on the Crank-Nicolson algorithm [58],�

1þ iΔt
2

H̃
�
tþ 1

2
Δt
	�

ψðtþ ΔtÞ

¼
�
1 −

iΔt
2

H̃
�
tþ 1

2
Δt
	�

ψðtÞ; ð21Þ

where H̃ðtÞ ¼ HðtÞ − ðȧ=aÞSa − c2. With the energy shift
of −c2, the onset of the upper positron continuum is placed
at zero energy, thus improving the accuracy of the Crank-
Nicolson scheme for propagation of the free-positron wave
packet. At the end of the propagation process, the positron
wave function ΨðrÞ is projected onto the upper positron
continuum, so the resulting wave packet ΨðcÞ represents
only free positrons. This wave packet is then used to extract
the energy and angular distribution of outgoing positrons.

C. Calculation of positron spectra

To obtain angular-energy distributions of outgoing
positrons after the collision process, we project the free-
positron wave packet ΨðcÞ onto the plane waves with the
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momentum k. Two such wave functions can be constructed,
which differ by the spin state of the positron. We make use
of the functions with the fixed spin projection on the z axis
when the positron is at rest [59]:

Ψð1Þ ¼

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekþ2c2

p
0ffiffiffiffiffiffi

Ek
p

cosϑkffiffiffiffiffiffi
Ek

p
sinϑkexpðiφkÞ

1
CCCA exp½iðk ·rÞ− iEkt�
ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ekþ2c2

p ; ð22Þ

Ψð2Þ ¼

0
BBB@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek þ 2c2

p
expðiφkÞffiffiffiffiffiffi

Ek
p

sin ϑk
−
ffiffiffiffiffiffi
Ek

p
cosϑk expðiφkÞ

1
CCCA exp ½iðk · rÞ − iEkt�

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek þ 2c2

p :

ð23Þ

Here, ϑk, φk are the polar and azimuthal angles of the
momentum k, respectively, and Ek is the kinetic energy
related to the absolute value of the momentum k as

k ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkðEk þ 2c2Þ

q
: ð24Þ

The plane waves Ψð1Þ and Ψð2Þ are normalized to the delta
function in the momentum space; therefore, the differential
pair-production probabilities can be written as

dPð1Þ

dEkdΩ
¼ 1

c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkðEkþ 2c2Þ

q
ðEkþ c2ÞjhΨð1ÞjΨðcÞij2; ð25Þ

dPð2Þ

dEkdΩ
¼ 1

c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkðEkþ 2c2Þ

q
ðEkþ c2ÞjhΨð2ÞjΨðcÞij2: ð26Þ

The positron spin projection on the z axis is conserved in
the rest frame of reference but does not have much sense
in the laboratory frame where the positron moves. Thus,
only the sum of the differential probabilities (25) and (26) is
meaningful:

dP
dEkdΩ

¼ dPð1Þ

dEkdΩ
þ dPð2Þ

dEkdΩ
: ð27Þ

It provides a distribution of outgoing positrons over
energies and angles.
The distribution given by Eq. (27) is approximate.

Strictly speaking, not plane waves but continuum states
of the positron in the Coulomb field of the two nuclei
should be used to calculate the energy and angular
distributions. Construction of such functions with correct
asymptotic behavior at large distances is a tough problem.
On the other hand, the distribution is calculated after the
collision when the outgoing wave packet ΨðcÞ is already far
away from the nuclei. In this situation, the differential

probability (27) is expected to be a good approximation.
We estimate an inaccuracy in the energy distributions at the
level of 10 keV. This is well acceptable since the scale of
the energy spectrum is about 500 keV.

III. RESULTS

The calculations have been performed for slow collisions
of two identical bare nuclei with the charge numbers
Z ¼ 83, Z ¼ 87, Z ¼ 92, and Z ¼ 96 (Z ¼ Z1 ¼ Z2).
The motion of the nuclei is described within the classical
mechanics; the law of motion and trajectories are given by
the well-known solutions of the Rutherford scattering
problem. The positron wave functions are obtained by
solving TDDE as described in Sec. II. For the nuclear
charge distribution, we employ the Fermi model [60],
which is widely used and considered reliable [61–63];
the root-mean-square radii of the nuclei are taken from the
tables [64].
The main contribution to the positron production is

expected from those discrete vacuum positron states, whose
energy levels are shifted close to the onset of the upper
positron continuum as the nuclei approach each other
(or even enter this continuum, thus becoming supercritical
resonances). Therefore, we propagate the discrete quasi-
molecular states, which can be labeled 1s1=2, 2p1=2, 2s1=2,
3p1=2, 3s1=2 in the united atom limit, when the internuclear
separation vanishes. In Fig. 2, we show the energies of
these states vs the internuclear distance for Z ¼ 92; for the
other nuclear charge numbers used in the calculations,
the pattern of the energy levels is similar. As one can see,
transitions to the upper positron continuum must be
dominated by the 1s1=2, 2p1=2, and 2s1=2 states, which

FIG. 2. Energies of positron quasimolecular discrete vacuum
states for Z ¼ 92 lying most closely to the upper positron
continuum vs internuclear distance. Zero energy is at the onset
of the upper positron continuum. The states are labeled by
quantum numbers in the united atom limit.
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come most closely to the onset of the upper continuum at
small internuclear separations (the 1s1=2 energy level even-
tually crosses into the upper continuum at R ≈ 35 fm).
However, there is an avoided crossing between the 2s1=2
and 3s1=2 adiabatic curves at R ¼ 3.2=Z a.u., and the
adiabatic quasimolecular state labeled as 3s1=2 may have a
significant contribution to the positron production as well.
Therefore, all five discrete positron quasimolecular states
mentioned above are included in the time propagation.
The initial and finial internuclear separations in the time

propagation are taken at Rmax ¼ 5.5=Z a:u. At such large
internuclear distances, the quasimolecular states under
consideration are already close to the separate atoms limit.
Avoided crossings between the corresponding adiabatic
curves are located at smaller internuclear separations, so
possible nonadiabatic transitions, which may affect the
positron creation process, are taken into account during the
time propagation. Following Refs. [43,44], we consider
nuclear trajectories corresponding to the same smallest
internuclear separation Rmin, which is set to 17.5 fm in all
cases. At this Rmin, the 1s1=2 positron energy level is deeply
in the supercritical regime for Z ¼ 96 and Z ¼ 92, while it
remains in the subcritical regime for Z ¼ 87 and Z ¼ 83.
The 2p1=2 level briefly enters the upper positron continuum
in the vicinity of Rmin for Z ¼ 96. The other energy levels
do not reach the onset of the upper positron continuum for
all Z’s used in the calculations. The numerical parameters
of the calculations are as follows. The number of time-
propagation steps is 4096; the spatial grid has 384 points
for the pseudoradial coordinate λ and 16 points for the
pseudoangular coordinate η. The radial box size is equal to
60=Z a.u.

A. Total positron creation probabilities

The nuclear trajectories corresponding to different
impact parameters differ by the scaled collision energy ε.
The latter is defined as a ratio of the projectile energy E
in the frame where the target is initially at rest, for the
trajectory under consideration, and the energy E0 corre-
sponding to the head-on collision with the same Rmin:

ε ¼ E
E0

: ð28Þ

Since the projectile energies E for collisions with fixedRmin
and nonzero impact parameters are greater than E0, the
scaled collision energy ε satisfies the inequality

ε ≥ 1: ð29Þ

In Table I, we list the total positron creation probabilities in
collisions with various nuclear charges and scaled collision
energies. The total probabilities are calculated as a sum of
contributions from the discrete quasimolecular states 1s1=2,
2p1=2, 2s1=2, 3p1=2, and 3s1=2. As one can see, our results

are in good agreement with those of Popov et al. [44] for
Z ¼ 92 and Z ¼ 96, where the data for comparison are
available. The data of Ref. [44] were obtained beyond the
monopole approximation using a one-center expansion of
the nuclear potential over spherical harmonics. Generally,
the positron creation probabilities in Ref. [44] are slightly
larger than the present results, because they include
transitions to the upper positron continuum from a larger
number of positron vacuum discrete states as well as from
the lower continuum. As one can see in Table I, for
subcritical systems with Z ¼ 83 and Z ¼ 87, the total
positron creation probabilities increase with increasing the
scaled collision energy ε. This is well understood since
the mechanism of positron creation in these systems is
dynamical. A higher collision energy, hence a higher
projectile velocity, favors transitions when an energy gap
exists between the initial and final states. For the super-
critical system with Z ¼ 96, the picture is totally different.
In the supercritical regime, there is no energy gap between
the initial and final positron states; transitions may occur
with nonzero rate even at zero projectile velocity, and
actually a lower collision energy favors positron creation,
since the smaller the projectile velocity, the larger the time
spent by the system in the supercritical regime, which
results in a larger positron creation probability. The system
with Z ¼ 92 thus represents an intermediate case: the total
positron creation probabilities change only slightly with
increasing the scaled collision energy ε. Our data indicate a
weak increase of the total positron-creation probability at
ε → 1, while in Ref. [44] it is close to a constant. The
explanation can be as follows. For the collisions under
consideration in the system with Z ¼ 92, the positron
creation from the 1s1=2 state definitely has a large con-
tribution from the spontaneous mechanism, since this
quasimolecular state enters the upper positron continuum
at R ≈ 35 fm. Positron creation from the other vacuum
positron states, however, is due to the dynamical mecha-
nism. We retain only five positron vacuum states in the
calculations, and the total probability is still dominated by
the spontaneous contribution from the 1s1=2 state. Adding
more vacuum states with the dynamical positron creation

TABLE I. Total positron creation probabilities in collisions of
two identical nuclei with Rmin ¼ 17.5 fm.

Nucleus
charge

Scaled collision energy

ε ¼ 1.0 ε ¼ 1.1 ε ¼ 1.2 ε ¼ 1.3

Z ¼ 83a 3.88 × 10−4 4.39 × 10−4 4.83 × 10−4 5.24 × 10−4

Z ¼ 87a 1.88 × 10−3 1.99 × 10−3 2.08 × 10−3 2.16 × 10−3

Z ¼ 92a 1.13 × 10−2 1.12 × 10−2 1.11 × 10−2 1.10 × 10−2

Z ¼ 92b 1.20 × 10−2 1.20 × 10−2 1.20 × 10−2 1.20 × 10−2

Z ¼ 96a 4.12 × 10−2 3.90 × 10−2 3.73 × 10−2 3.59 × 10−2

Z ¼ 96b 4.26 × 10−2 4.07 × 10−2 3.93 × 10−2 3.81 × 10−2

a, present results; b, Ref. [44].
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mechanism may slightly change the situation, as can be
seen in the data of Ref. [44].

B. Angle-integrated energy distributions
of outgoing positrons

The energy spectra of outgoing positrons are obtained by
integration of Eq. (27) over the emission angles. The energy
spectra can be a more sensitive tool in detecting the
spontaneous mechanism of the positron creation, compared
with the total positron creation probabilities. A signature
of the transition to the supercritical regime revealed in
Refs. [43,44] concerns the maximum in the energy dis-
tribution of emitted positrons. It was shown within the
monopole approximation [43] and beyond [44] that in the
subcritical regime (2Z < Zcr) the maximum in the energy
distribution increases with increasing ε, whereas in the
supercritical regime (2Z > Zcr) the tendency is reversed,
and the maximum in the energy distribution decreases with
increasing ε. Both the methods [43] and [44] are based on a
one-center representation of the positron wave functions,
however. In the present work, we examine the positron
energy spectra obtained within a more realistic two-center
description of the systems under consideration.
In Fig. 3, the positron energy spectra are presented for

collisions of two identical nuclei with the charge numbers
Z ¼ 83, 87, 92, 96 and scaled energies ε ¼ 1.0, 1.1, 1.2,
1.3. In the subcritical system Z ¼ 83, the largest differential
probability at the maximum of the distribution corresponds
to ε ¼ 1.3; it gradually decreases as the scaled collision

energy changes from 1.3 to 1.0. For Z ¼ 87, the differential
probability at the maximum of the distribution does not
change as the scaled collision energy varies. Finally, in the
supercritical systems with Z ¼ 92 and Z ¼ 96, where the
total charge of the nuclei exceeds the critical value Zcr ≈
175 for Rmin ¼ 17.5 fm, the largest differential probability
at the maximum of the distribution corresponds to ε ¼ 1.0
and gradually decreases as ε varies from 1.0 to 1.3. These
observations agree well with the previous results [43,44]
obtained within the one-center approach. They also follow
the trend seen in Table I for the total positron creation
probabilities. A criterion based on the analysis of the posi-
tron energy spectra in the vicinity of the maximum of the
energy distribution, however, seems to be more obvious.
This can be explained as follows. Positrons created by the
spontaneous mechanism cannot have their energies larger
than the highest position of the supercritical resonance in
the upper positron continuum during the collision. For the
parameters used in the present calculations, this value does
not exceed 550 keV for Z ¼ 96 and 300 keV for Z ¼ 92
but should be increased due to the resonance width.
Therefore, a broad tail of the positron energy spectrum
is almost entirely due to the dynamical mechanism. For
Z ¼ 92, the share of dynamically created positrons is large
and masks the spontaneously created positrons in the total
probabilities. On the other hand, when an analysis is
performed on the differential probabilities in the vicinity
of the maximum only, where the contribution of sponta-
neously created positrons is considerable, it reveals the

FIG. 3. Energy spectra of positrons for symmetric collisions of nuclei with Z ¼ 83, 87, 92, 96 and ε ¼ 1.0, 1.1, 1.2, 1.3 at
Rmin ¼ 17.5 fm.
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supercritical regime of the positron production. For Z ¼ 96,
the spontaneous mechanism dominates both the differential
probability near the maximum and the total probability.

C. Energy and angular distributions
of outgoing positrons

Energy-angle distributions of outgoing positrons are
presented in Figs. 4 and 5 for collisions in the systems
with Z ¼ 83 and Z ¼ 92, respectively, for the scaled colli-
sion energies ε equal to 1.0, 1.1, 1.2, and 1.3. Shown are the
differential probabilities (27) in the collision plane z-x
corresponding to the positron momentum projections kz
and kx, which are related to the positron kinetic energy and
emission angles as follows:

Ek ¼ c2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2z þ k2x
c2

s
− 1

#
;

ϑk ¼ arccos

�
kz

k2z þ k2x

	
;

φk ¼ 0 ðkx > 0Þ or φk ¼ π ðkx < 0Þ: ð30Þ

Two main observations can be drawn from Figs. 4 and 5.
First, clearly the distributions do not exhibit any consid-
erable anisotropy in both subcritical and supercritical
regimes. Actually, they are nearly spherically symmetric
for all the nuclear charges Z and scaled energies ε used in
the calculations. This is understandable since creation of
the electron-positron pairs mainly occurs on very short

internuclear separations where the shape of the quasimo-
lecule is close to the united atom with the spherical
symmetry. Second, the same signature of transition from
the subcritical regime to the supercritical regime as in the
energy spectra can be seen in the energy-angle distribu-
tions. For Z ¼ 83 (Fig. 4), with increasing ε, the bright ring
corresponding to the maximum in the energy spectrum
becomes even brighter; that is, the differential probability at
the maximum increases with increasing ε. On the contrary,
for Z ¼ 92 (Fig. 5), the bright ring corresponding to the
maximum in the energy spectrum becomes dimmer as ε
increases; that is, the differential probability at the maxi-
mum decreases.
An anisotropy in the distributions of outgoing positrons,

although very small, still can be detected in our calcu-
lations. It is better seen in the angle-resolved energy spectra
presented for the positron emission angles θk ¼ 0°,
θk ¼ 45°, and θk ¼ 90° in Figs. 6 and 7 for symmetric
head-on collisions (ε ¼ 1) with Z ¼ 83 and Z ¼ 96,
respectively. It appears that the distributions are more
anisotropic in the subcritical regime. For Z ¼ 83, the maxi-
mum of the distribution in Fig. 6 is highest at θ ¼ 0° and
lowest at θ ¼ 90°. The relative anisotropy parameter can be
defined as a difference of these two values divided by the
value at θ ¼ 0°. For Z ¼ 83, it is equal to 0.02. The aniso-
tropy is much less pronounced for Z ¼ 96 in Fig. 7; the
relative anisotropy parameter in this case is equal to 0.005.
A possible cause for this difference can be as follows.
For collisions with 2Z < Zcr in the subcritical regime, the
spontaneous channel is closed, and all positrons are created
through the dynamic mechanism. Dynamic pair creation

FIG. 4. Pseudocolor plot of differential probabilities (27)
corresponding to the emitted positron momentum projections
kz and kx in the collision plane. Symmetric collision with Z ¼ 83,
Rmin ¼ 17.5 fm, and ε ¼ 1.0, 1.1, 1.2, 1.3. The color scale is
linear.

FIG. 5. Pseudocolor plot of differential probabilities (27)
corresponding to the emitted positron momentum projections
kz and kx in the collision plane. Symmetric collision with Z ¼ 92,
Rmin ¼ 17.5 fm, and ε ¼ 1.0, 1.1, 1.2, 1.3. The color scale is
linear.
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occurs on larger internuclear distances as well, where the
two-center geometry of the quasimolecule is well shaped
and can affect the angular distributions of outgoing
positrons. In contrast, for collisions with 2Z > Zcr, the
spontaneous channel is open if the internuclear distance is
less than the critical value. The larger the nuclear charge Z
in the supercritical regime, the more significant the con-
tribution of the spontaneous mechanism. Since the sponta-
neous vacuum decay occurs when the nuclei are in close
proximity to each other (for Z ¼ 96, the critical inter-
nuclear distance is 52 fm), the quasimolecule is close to the
united atom limit, and angular distributions of outgoing

positrons are almost isotropic. In this respect, we should
note that our calculations do not confirm a prediction of
considerable anisotropy in the angular distributions of
positrons [20], which was based on an analytical semi-
classical approach.

IV. CONCLUSION

In this paper, we have studied electron-positron pair
production in slow collisions of two identical heavy nuclei.
Our theoretical approach is based on the time-dependent
Dirac equation for a positron moving in the field of two
nuclei. This approach is essentially two center and beyond
the monopole approximation. The computations have been
done with the help of the generalized pseudospectral
method in modified prolate spheroidal coordinates, which
provides an accurate and reliable treatment of two-center
quantum systems up to very small distances between the
centers. We have calculated the total positron creation
probabilities as well as distributions of the outgoing
positrons with respect to the energy and emission angles.
The distributions are calculated by projecting the wave
packet of outgoing positrons onto the plane waves in the
spatial region far from the nuclei, so the influence of the
Coulomb field from the nuclei is negligible, and plane-
wave approximation for the final positron states is well
justified. The results have been obtained for both subcritical
and supercritical collisions when a channel of spontaneous
positron creation opens. The signatures of transition to the
supercritical regime, which were previously revealed in the
angle-integrated energy spectra of positrons [43,44], have
been confirmed in the angle-resolved distributions. The
angular distributions of outgoing positrons appear almost
isotropic, and this is not surprising since the positron
creation occurs mostly at very short internuclear distances
where the quasimolecule is close to the united atom limit
with the spherical symmetry. We should note, however, that
when solving the time-dependent Dirac equation in the
rotating frame of reference, we have neglected the rota-
tional coupling term. Previously, it was discussed in the
literature that the influence of this term on the total
probabilities of positron creation in slow collisions is
negligible. A question how the rotational coupling affects
the energy and angular distributions of outgoing positrons
remains open and requires further research.
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FIG. 6. Energy spectra of emitted positrons for head-on
symmetric collisions of nuclei with Z ¼ 83 at Rmin ¼ 17.5 fm
for the angle θ ¼ 0°, 45°, and 90° between the z axis in the initial
reference frame and the observation direction.

FIG. 7. Energy spectra of emitted positrons for head-on
symmetric collisions of nuclei with Z ¼ 96 at Rmin ¼ 17.5 fm
for the angle θ ¼ 0°, 45°, and 90° between the z axis in the initial
reference frame and the observation direction.

ANGULAR AND ENERGY DISTRIBUTIONS OF POSITRONS … PHYS. REV. D 109, 036008 (2024)

036008-9



[1] F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, Fundamen-
tal processes of quantum electrodynamics in laser fields of
relativistic power, Rep. Prog. Phys. 72, 046401 (2009).

[2] R. Ruffini, G. Vereshchagin, and S.-S. Xue, Electron–
positron pairs in physics and astrophysics: From heavy
nuclei to black holes, Phys. Rep. 487, 1 (2010).

[3] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H.
Keitel, Extremely high-intensity laser interactions with
fundamental quantum systems, Rev. Mod. Phys. 84, 1177
(2012).

[4] A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H.
Taya, and G. Torgrimsson, Advances in QED with intense
background fields, Phys. Rep. 1010, 1 (2023).

[5] I. Pomeranchuk and J. Smorodinsky, On the energy levels of
systems with Z > 137, J. Phys. USSR 9, 97 (1945).

[6] S. S. Gershtein and Y. B. Zeldovich, Positron production
during the mutual approach of heavy nuclei and the
polarization of the vacuum, Zh. Eksp. Teor. Fiz. 57, 654
(1969) [Sov. Phys. JETP 30, 358 (1970)].

[7] W. Pieper and W. Greiner, Interior electron shells in
superheavy nuclei, Z. Phys. 218, 327 (1969).

[8] V. S. Popov, Electron energy levels at Z> 137, Pis’ma Zh.
Eksp. Teor. Fiz. 11, 254 (1970) [JETP Lett. 11, 162 (1970)];
Collapse to center at Z greater than 137 and critical nuclear
charge, Yad. Fiz. 12, 429 (1970) [Sov. J. Nucl. Phys. 12, 235
(1971)]; Position production in a coulomb field with
Z> 137, Zh. Eksp. Teor. Fiz. 59, 965 (1970) [Sov. Phys.
JETP 32, 526 (1971)]; On the properties of the discrete
spectrum for Z close to 137, Zh. Eksp. Teor. Fiz. 60, 1228
(1971) [Sov. Phys. JETP 33, 665 (1971)].

[9] Y. B. Zeldovich and V. S. Popov, Electronic structure of
superheavy atoms, Usp. Fiz. Nauk 105, 403 (1971) [Sov.
Phys. Usp. 14, 673 (1972)].

[10] B. Müller, H. Peitz, J. Rafelski, and W. Greiner, Solution of
the Dirac equation for strong external fields, Phys. Rev. Lett.
28, 1235 (1972); B. Müller, J. Rafelski, and W. Greiner,
Electron shells in over-critical external fields, Z. Phys. 257,
62 (1972).

[11] V. D. Mur and V. S. Popov, Bound states near the limit of the
lower continuum, Teor. Mat. Fiz. 27, 429 (1976) [Theor.
Math. Phys. 27, 429 (1976)].

[12] V. S. Popov, V. L. Eletsky, and V. D. Mur, Properties of
deep-lying levels in a strong electrostatic field, Zh. Eksp.
Teor. Fiz. 71, 856 (1976) [Sov. Phys. JETP 44, 451 (1976)].

[13] B. Müller, Positron creation in superheavy quasi-molecules,
Annu. Rev. Nucl. Sci. 26, 351 (1976).

[14] J. Reinhardt and W. Greiner, Quantum electrodynamics of
strong fields, Rep. Prog. Phys. 40, 219 (1977).

[15] G. Soff, J. Reinhardt, B. Müller, andW. Greiner, Shakeoff of
the vacuum polarization in quasimolecular collisions of very
heavy ions, Phys. Rev. Lett. 38, 592 (1977).

[16] J. Rafelski, L. P. Fulcher, and A. Klein, Fermions and
bosons interacting with arbitrarily strong external fields,
Phys. Rep. 38, 227 (1978).

[17] W. Greiner, B. Müller, and J. Rafelski, Quantum Electro-
dynamics of Strong Field (Springer-Verlag, Berlin,
1985).

[18] V. S. Popov, Spontaneous positron production in collisions
between heavy nuclei, Zh. Eksp. Teor. Fiz. 65, 35 (1973)
[Sov. Phys. JETP 38, 18 (1974)].

[19] H. Peitz, B. Müller, J. Rafelski, and W. Greiner, Auto-
ionization spectra of positrons in heavy-ion collisions, Lett.
Nuovo Cimento 8, 37 (1973).

[20] V. S. Popov, D. N. Voskresensky, V. L. Eletskii, and V. D.
Mur, WKB method at Z > 137 and its applications to the
theory of supercritical atoms, Zh. Eksp. Teor. Fiz. 76, 431
(1979) [Sov. Phys. JETP 49, 218 (1979)].

[21] K. Smith, H. Peitz, B. Müller, and W. Greiner, Induced
decay of the neutral vacuum in overcritical fields occurring
in heavy-ion collisions, Phys. Rev. Lett. 32, 554 (1974).

[22] J. Reinhardt, B. Müller, and W. Greiner, Theory of positron
production in heavy-ion collisions, Phys. Rev. A 24, 103
(1981).

[23] U. Müller, T. de Reus, J. Reinhardt, B. Müller, W. Greiner,
and G. Soff, Positron production in crossed beams of bare
uranium nuclei, Phys. Rev. A 37, 1449 (1988).

[24] F. Bosch and B. Müller, Positron creation in heavy-ion
collisions, Prog. Part. Nucl. Phys. 16, 195 (1986).

[25] U. Müller-Nehler and G. Soff, Electron excitations in
superheavy quasimolecules, Phys. Rep. 246, 101 (1994).

[26] J. Reinhardt and W. Greiner, Supercritical fields and the
decay of the vacuum, in Proceeding of the Memorial
Symposium for Gerhard Sof, edited by W. Greiner and J.
Reinhardt (EP Systema, Budapest, 2005), pp. 181–192.

[27] J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, and W.
Greiner, Probing QED vacuum with heavy ions, in New
Horizons in Fundamental Physics, edited by S. Schramm
and M. Schäfer (Springer International Publishing, Cham,
2017), pp. 211–251.

[28] E. Ackad and M. Horbatsch, Numerical calculation of
supercritical Dirac resonance parameters by analytic con-
tinuation methods, Phys. Rev. A 75, 022508 (2007).

[29] S. I. Godunov, B. Machet, and M. I. Vysotsky, Resonances in
positron scattering on a supercritical nucleus and spontaneous
production of eþe− pairs, Eur. Phys. J. C 77, 782 (2017).

[30] E. Ackad and M. Horbatsch, Supercritical Dirac resonance
parameters from extrapolated analytic continuation meth-
ods, Phys. Rev. A 76, 022503 (2007).

[31] A. Marsman and M. Horbatsch, Calculation of supercritical
Dirac resonance parameters for heavy-ion systems from a
coupled-differential-equation approach, Phys. Rev. A 84,
032517 (2011).

[32] I. A. Maltsev, V. M. Shabaev, V. A. Zaytsev, R. V. Popov,
Y. S. Kozhedub, and D. A. Tumakov, Calculation of the
energy and width of supercritical resonance in a uranium
quasimolecule, Opt. Spectrosc. 128, 1100 (2020).

[33] P. Grashin and K. Sveshnikov, Vacuum polarization energy
decline and spontaneous positron emission in QED under
Coulomb supercriticality, Phys. Rev. D 106, 013003 (2022).

[34] A. Krasnov and K. Sveshnikov, Non-perturbative effects in
the QED-vacuum energy exposed to the supercritical
Coulomb field, Mod. Phys. Lett. A 37, 2250136 (2022).

[35] E. Ackad and M. Horbatsch, Calculation of electron-
positron production in supercritical uranium-uranium colli-
sions near the Coulomb barrier, Phys. Rev. A 78, 062711
(2008).

[36] I. A. Maltsev, V. M. Shabaev, I. I. Tupitsyn, A. I. Bondarev,
Y. S. Kozhedub, G. Plunien, and T. Stöhlker, Electron-
positron pair creation in low-energy collisions of heavy bare
nuclei, Phys. Rev. A 91, 032708 (2015).

N. K. DULAEV et al. PHYS. REV. D 109, 036008 (2024)

036008-10

https://doi.org/10.1088/0034-4885/72/4/046401
https://doi.org/10.1016/j.physrep.2009.10.004
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1016/j.physrep.2023.01.003
https://doi.org/10.1007/BF01670014
https://doi.org/10.3367/UFNr.0105.197111b.0403
https://doi.org/10.1070/PU1972v014n06ABEH004735
https://doi.org/10.1070/PU1972v014n06ABEH004735
https://doi.org/10.1103/PhysRevLett.28.1235
https://doi.org/10.1103/PhysRevLett.28.1235
https://doi.org/10.1007/BF01398198
https://doi.org/10.1007/BF01398198
https://doi.org/10.1007/BF01051234
https://doi.org/10.1007/BF01051234
https://doi.org/10.1146/annurev.ns.26.120176.002031
https://doi.org/10.1088/0034-4885/40/3/001
https://doi.org/10.1103/PhysRevLett.38.592
https://doi.org/10.1016/0370-1573(78)90116-3
https://doi.org/10.1007/BF02727627
https://doi.org/10.1007/BF02727627
https://doi.org/10.1103/PhysRevLett.32.554
https://doi.org/10.1103/PhysRevA.24.103
https://doi.org/10.1103/PhysRevA.24.103
https://doi.org/10.1103/PhysRevA.37.1449
https://doi.org/10.1016/0146-6410(86)90005-0
https://doi.org/10.1016/0370-1573(94)90068-X
https://doi.org/10.1103/PhysRevA.75.022508
https://doi.org/10.1140/epjc/s10052-017-5325-4
https://doi.org/10.1103/PhysRevA.76.022503
https://doi.org/10.1103/PhysRevA.84.032517
https://doi.org/10.1103/PhysRevA.84.032517
https://doi.org/10.1134/S0030400X2008024X
https://doi.org/10.1103/PhysRevD.106.013003
https://doi.org/10.1142/S021773232250136X
https://doi.org/10.1103/PhysRevA.78.062711
https://doi.org/10.1103/PhysRevA.78.062711
https://doi.org/10.1103/PhysRevA.91.032708


[37] A. I. Bondarev, I. I. Tupitsyn, I. A. Maltsev, Y. S. Kozhedub,
and G. Plunien, Positron creation probabilities in low-
energy heavy-ion collisions, Eur. Phys. J. D 69, 110 (2015).

[38] I. Maltsev, V. Shabaev, I. Tupitsyn, Y. Kozhedub, G.
Plunien, and T. Stöhlker, Pair production in low-energy
collisions of uranium nuclei beyond the monopole approxi-
mation, Nucl. Instrum. Methods Phys. Res., Sect. B 408, 97
(2017).

[39] I. A. Maltsev, V. M. Shabaev, R. V. Popov, Y. S. Kozhedub,
G. Plunien, X. Ma, and T. Stöhlker, Electron-positron pair
production in slow collisions of heavy nuclei beyond the
monopole approximation, Phys. Rev. A 98, 062709 (2018).

[40] R. V. Popov, A. I. Bondarev, Y. S. Kozhedub, I. A. Maltsev,
V. M. Shabaev, I. I. Tupitsyn, X. Ma, G. Plunien, and T.
Stöhlker, One-center calculations of the electron-positron
pair creation in low-energy collisions of heavy bare nuclei,
Eur. Phys. J. D 72, 115 (2018).

[41] D. N. Voskresensky, Electron-positron vacuum instability in
strong electric fields. relativistic semiclassical approach,
Universe 7, 104 (2021).

[42] I. A. Maltsev, V. M. Shabaev, R. V. Popov, Y. S. Kozhedub,
G. Plunien, X. Ma, T. Stöhlker, and D. A. Tumakov, How to
observe the vacuum decay in low-energy heavy-ion colli-
sions, Phys. Rev. Lett. 123, 113401 (2019).

[43] R. V. Popov, V. M. Shabaev, D. A. Telnov, I. I. Tupitsyn,
I. A. Maltsev, Y. S. Kozhedub, A. I. Bondarev, N. V. Kozin,
X. Ma, G. Plunien, T. Stöhlker, D. A. Tumakov, and V. A.
Zaytsev, How to access QED at a supercritical Coulomb
field, Phys. Rev. D 102, 076005 (2020).

[44] R. V. Popov, V.M. Shabaev, I. A. Maltsev, D. A. Telnov,
N. K. Dulaev, and D. A. Tumakov, Spontaneous vacuum
decay in low-energy collisions of heavy nuclei beyond the
monopole approximation, Phys. Rev. D 107, 116014 (2023).

[45] A. Gumberidze, T. Stöhlker, H. Beyer, F. Bosch, A.
Bräuning-Demian, S. Hagmann, C. Kozhuharov, T. Kühl,
R. Mann, P. Indelicato, W. Quint, R. Schuch, and A.
Warczak, X-ray spectroscopy of highly-charged heavy ions
at fair, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 248
(2009).

[46] M. Lestinsky et al., Physics book: CRYRING@ESR, Eur.
Phys. J. Spec. Top. 225, 797 (2016).

[47] X. Ma, W. Wen, S. Zhang, D. Yu, R. Cheng, J. Yang, Z.
Huang, H. Wang, X. Zhu, X. Cai, Y. Zhao, L. Mao, J. Yang,
X. Zhou, H. Xu, Y. Yuan, J. Xia, H. Zhao, G. Xiao, and W.
Zhan, Hiaf: New opportunities for atomic physics with
highly charged heavy ions, Nucl. Instrum. Methods Phys.
Res., Sect. B 408, 169 (2017).

[48] G. M. Ter-Akopian, W. Greiner, I. N. Meshkov, Y. T.
Oganessian, J. Reinhardt, and G. V. Trubnikov, Layout
of new experiments on the observation of spontaneous
electron–positron pair creation in supercritical Coulomb
fields, Int. J. Mod. Phys. E 24, 1550016 (2015).

[49] B. Müller and W. Greiner, The two centre Dirac equation,
Z. Naturforsch. 31A, 1 (1976).

[50] W. Betz, G. Soff, B. Müller, and W. Greiner, Direct
formation of quasimolecular 1sσ vacancies in uranium-
uranium collisions, Phys. Rev. Lett. 37, 1046 (1976).

[51] G. Soff, W. Greiner, W. Betz, and B. Müller, Electrons in
superheavy quasimolecules, Phys. Rev. A 20, 169 (1979).

[52] J. Reinhardt, G. Soff, B. Müller, and W. Greiner, Dynamical
aspects: Coherent production of positrons in heavy ion
collisions, Prog. Part. Nucl. Phys. 4, 547 (1980).

[53] G. Soff and J. Reinhardt, Positron creation in heavy ion
collisions the influence of the magnetic field, Phys. Lett. B
211, 179 (1988).

[54] Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 10th ed., edited by
M. Abramowitz and I. A. Stegun (Dover, New York,
1972).

[55] D. A. Telnov and S.-I. Chu, Ab initio study of the orientation
effects in multiphoton ionization and high-order harmonic
generation from the ground and excited electronic states of
Hþ

2 , Phys. Rev. A 76, 043412 (2007).
[56] D. A. Telnov and S.-I. Chu, Effects of multiple electronic

shells on strong-field multiphoton ionization and high-order
harmonic generation of diatomic molecules with arbitrary
orientation: An all-electron time-dependent density-
functional approach, Phys. Rev. A 80, 043412 (2009).

[57] D. A. Telnov, D. A. Krapivin, J. Heslar, and S.-I. Chu,
Multiphoton ionization of one-electron relativistic diatomic
quasimolecules in strong laser fields, J. Phys. Chem. A 122,
8026 (2018).

[58] J. Crank and P. Nicolson, A practical method for numerical
evaluation of solutions of partial differential equations of the
heat-conduction type, Math. Proc. Cambridge Philos. Soc.
43, 50 (1947).

[59] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics, 2nd ed. (Pergamon Press,
Oxford, 1982).

[60] F. A. Parpia and A. K. Mohanty, Relativistic basis-set
calculations for atoms with Fermi nuclei, Phys. Rev. A
46, 3735 (1992).

[61] L. Visscher and K. G. Dyall, Dirac–Fock atomic electronic
structure calculations using different nuclear charge distri-
butions, At. Data Nucl. Data Tables 67, 207 (1997).

[62] V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Model
operator approach to the Lamb shift calculations in rela-
tivistic many-electron atoms, Phys. Rev. A 88, 012513
(2013).

[63] D. V. Mironova, I. I. Tupitsyn, V. M. Shabaev, and G.
Plunien, Relativistic calculations of the ground state ener-
gies and the critical distances for one-electron homonuclear
quasi-molecules, Chem. Phys. 449, 10 (2015).

[64] I. Angeli and K. Marinova, Table of experimental nuclear
ground state charge radii: An update, At. Data Nucl. Data
Tables 99, 69 (2013).

[65] https://rscf.ru/project/22-62-00004/.

ANGULAR AND ENERGY DISTRIBUTIONS OF POSITRONS … PHYS. REV. D 109, 036008 (2024)

036008-11

https://doi.org/10.1140/epjd/e2015-50783-6
https://doi.org/10.1016/j.nimb.2017.05.005
https://doi.org/10.1016/j.nimb.2017.05.005
https://doi.org/10.1103/PhysRevA.98.062709
https://doi.org/10.1140/epjd/e2018-90056-4
https://doi.org/10.3390/universe7040104
https://doi.org/10.1103/PhysRevLett.123.113401
https://doi.org/10.1103/PhysRevD.102.076005
https://doi.org/10.1103/PhysRevD.107.116014
https://doi.org/10.1016/j.nimb.2008.10.079
https://doi.org/10.1016/j.nimb.2008.10.079
https://doi.org/10.1140/epjst/e2016-02643-6
https://doi.org/10.1140/epjst/e2016-02643-6
https://doi.org/10.1016/j.nimb.2017.03.129
https://doi.org/10.1016/j.nimb.2017.03.129
https://doi.org/10.1142/S0218301315500160
https://doi.org/10.1007/978-3-642-88082-7_10
https://doi.org/10.1103/PhysRevLett.37.1046
https://doi.org/10.1103/PhysRevA.20.169
https://doi.org/10.1016/0146-6410(80)90018-6
https://doi.org/10.1016/0370-2693(88)90829-5
https://doi.org/10.1016/0370-2693(88)90829-5
https://doi.org/10.1103/PhysRevA.76.043412
https://doi.org/10.1103/PhysRevA.80.043412
https://doi.org/10.1021/acs.jpca.8b07463
https://doi.org/10.1021/acs.jpca.8b07463
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1103/PhysRevA.46.3735
https://doi.org/10.1103/PhysRevA.46.3735
https://doi.org/10.1006/adnd.1997.0751
https://doi.org/10.1103/PhysRevA.88.012513
https://doi.org/10.1103/PhysRevA.88.012513
https://doi.org/10.1016/j.chemphys.2015.01.003
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/j.adt.2011.12.006
https://rscf.ru/project/22-62-00004/
https://rscf.ru/project/22-62-00004/

