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Starting with on-shell amplitudes compatible with the scattering of Kerr black holes up to Compton-
amplitude contact terms, we produce the gravitational waveform and memory effect including spin at their
leading post-Minkowskian orders to all orders in the spins of both scattering objects. For the memory
effect, we present results at next-to-leading order as well, finding a closed form for all spin orders when the
spins are anti-aligned and equal in magnitude. Considering instead generically oriented spins, we produce
the next-to-leading-order memory to sixth order in spin. Compton-amplitude contact terms up to sixth order
in spin are included throughout our analysis.
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I. INTRODUCTION

The need for precision gravitational waveforms, which
are crucial for detection and data analysis at LIGO, Virgo,
Kagra, and associated experiments, has recently stimulated
renewed effort in developing novel analytic techniques for
calculating gravitational-wave observables relevant for
binary encounters of compact objects. In particular, scatter-
ing amplitudes provide compact, on-shell, and gauge
invariant expressions that encode the dynamics of binary
scatterings and their gravitational-wave emissions [1–8];
see Refs. [9,10] for recent reviews. Organized in an
expansion in the gravitational coupling, i.e., Newton’s
constant G, amplitudes are naturally suited for calculations
in the weak-field, or post-Minkowskian (PM), regime.
Progress on the PM expansion has also come from

worldline methods [11–16] and their close cousin the
worldline quantum field theory (WQFT) [17–22].
An important point concerns the inclusion of physical

effects that go beyond the point-particle description of the
scattering objects, notably those due to their tidal defor-
mations [23–30] and to their spins [22,31–59], which can
be introduced in the amplitude context by means of an
effective-field-theory approach. A crucial conceptual issue
consists in uniquely fixing the Wilson coefficients that
are appropriate for describing a spinning black hole
[48,51,57,58,60–64], and recent progress in this direction
has been achieved by comparing amplitude calculations to
fixed-background scattering described by the Teukolsky
equation [61,63].
Several works have already endeavored to produce

state-of-the-art gravitational waveforms using scattering-
amplitude or scattering-amplitude-inspired techniques. In
the former category, the Kosower-Maybee-O’Connell
(KMOC) formalism [2,65] was recently employed in
Refs. [66–70] to connect the one-loop five-point ampli-
tude with one graviton emission to the subleading PM
waveform (see Ref. [71] for a comparison with post-
Newtonian results). Also making use of the KMOC
formalism, Ref. [72] produced the leading-order wave-
form for Kerr scattering up to fourth order in the spins of
each black hole.
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An alternative approach to the generation of waveforms
is WQFT [17–19], which was shown in Ref. [8] to be
equivalent to the extraction of observables through the
KMOC formalism. The applicability of this method to the
generation of waveforms was demonstrated in Ref. [18]
through the derivation of the waveform without spin.
Reference [19] was then the first to include spin in the
leading-order waveform, considering effects up to quad-
ratic order in the spins of both black holes.
Yet another equivalent setup for extracting the leading

order waveform employs the eikonal operator [73,74], in
which graviton exchanges combine with coherent graviton
emissions that build up gravitational waves (see Ref. [75]
for a review).
In this paper, we incorporate state-of-the-art knowledge

about the amplitudes’ description of Kerr black holes into
the leading-PM gravitational waveform produced during a
two-body encounter. This observable is related by Fourier
transform [19,65,76] to (the factorizable portion of) the
tree-level five-point amplitude describing the emission of a
graviton from the scattering of two massive, spinning
particles [65,72,77,78]. We construct this amplitude recur-
sively from the all-spin Kerr three-point amplitude
[32–34,79] and all-spin Kerr-compatible Compton ampli-
tudes [51,80] (see also Ref. [64]). Our Compton amplitude
includes the contact terms up to sixth order in spin which
are needed to match the black-hole-perturbation-theory
(BHPT) description of (superextremal) Kerr [63]. Above
sixth order in spin, the spinning objects described here
deviate from Kerr only by contact terms in the Compton
amplitude. To accommodate for this discrepancy, we write
the five-point amplitude and the waveform in a manner
that automatically allows for the inclusion of higher-spin
contact terms.
The waveform descending from the amplitude is pre-

sented to all spin orders in terms of two classes of arbitrary-
tensor-rank integrals into impact-parameter space. We
explain the systematic evaluation of these integrals, and
generate explicit results completing the waveform up to
fifth order in spin in the Supplemental Material [81].
Describing the emitted graviton through spinor-helicity
variables, we observe remarkable compactifications of the
waveform stemming from the amplitude. Illustrating this is
a novel form of the leading-order waveform without spin;
see also Refs. [18,72,82].
The low-frequency behavior of the spectral waveform,

which translates to the one at early/late times via Fourier
transform, is governed by soft theorems [83–86], which
provide crucial nonperturbative cross-checks for PM calcu-
lations. Here, we leverage the universality of the leading soft
theorem [87,88]—or memory effect in the time domain
[89,90]—which entirely fixes the leading soft behavior of the
waveform sourced by the scattering objects in terms of their
initial and finalmomenta, to calculate thememory to leading-
and next-to-leading-PM orders. At leading order we evaluate

the memory to all spin orders and for generic orientations.
Making use of the all-spin 2PM amplitude derived in
Ref. [58], we produce the next-to-leading-PM memory for
all spins when the spins are anti-aligned and equal in
magnitude, and to sixth order for general configurations.
The paper is organized as follows. In Sec. II, we

construct the part of the all-spin five-point amplitude
relevant to the waveform computation in Sec. III. The
gravitational soft-theorem is applied to the extraction of the
memory effect up to next-to-leading-PM order in Sec. IV.
We conclude in Sec. V.

II. CONSTRUCTING THE GRAVITON-EMISSION
AMPLITUDE

Classical radiative observables at leading order are related
to the tree-level five-point amplitude with a graviton emitted
from the scattering of twomassive (spinning) particles.More
specifically, the relevant portion of the amplitude has non-
vanishing residues when an internal graviton is taken on
shell; see Fig. 1. Physically, the fact that only this portion of
the amplitude is needed reflects the assumption that through-
out the classical scattering the massive bodies are well
separated. As is evident from that figure, extracting the
observables of interest thus requires the three-point and
Compton amplitudes consistent with Kerr black holes.
The identification of classical spin effects in scat-

tering amplitudes has been treated in numerous works
[33–36,40,42,44,47,55,80,91–93]. We will not review this
material here, and will simply write spinning amplitudes
directly in terms of the classical spin vector Sμ of an object
of mass m through the ring radius, aμ ¼ Sμ=m. This
satisfies the covariant spin-supplementary condition
p · a ¼ 0, where pμ is the classical momentum of the
spinning object.
The three-point amplitude describing a Kerr black hole

of momentum pμ, mass m, and ring radius aμ emitting a
helicity-h graviton with momentum qμ is [32–34,79]

M3ð−p; qhÞ ¼ −κ½p · εhðqÞ�2 exp ðhq · aÞ; ð1Þ

where κ is related to Newton’s constant G through κ ¼ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
. The graviton polarization is εμνh ðqÞ ¼ εμhðqÞενhðqÞ.1

Negative momentum arguments indicate incoming
momenta.
A convenient writing of the Compton amplitude for the

absorption of a graviton of momentum q and emission of a
(negative-helicity) graviton of momentum k is

M4ð−p;k−;−qhÞ¼
κ2

4

X4
n¼0

y4−nh ðwh ·aÞnMðnÞ
4 ð−p;k−;−qhÞ;

ð2Þ

1We expect our results to be larger than those of Refs. [18,19]
by a factor of 2, due to differing conventions for graviton
polarization tensors.
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where yh ≡ 2p · wh and

wμ
þ ≔

1

2
hkjσμjq�; wμ

− ≔
1

2m
hkjpσ̄μjqi: ð3Þ

The form factors accompanying different powers of
wh · a are

MðnÞ
4 ð−p; k−;−qhÞ ¼ eð−hq−kÞ·aFðnÞ

4 ð−p; k−;−qhÞ
þ CðnÞ

4 ð−p; k−;−qhÞ: ð4Þ

The FðnÞ
4 carry all the physical residues of the Compton

amplitudes and the CðnÞ
4 contain all information about

contact deformations. Our interest in leading-PM radiative

observables for Kerr black holes requires that the FðnÞ
4

are such that Eq. (2) factorizes to Eq. (1) on physical

residues [51], and that the CðnÞ
4 contain contact terms whose

coefficients depend only on the mass (and not on G) [80].
We have left the dependence of the form factors on the ring
radius implicit and relegate their explicit expressions to the
appendixes; see Eqs. (A2)–(A5) and (A12)–(A17).
The five-point amplitude is constructed from these

lower-point amplitudes by demanding that it factorizes
correctly on the physical graviton poles; see Fig. 1. The
momenta obey the momentum-conservation constraints

pi − p0
i ¼ qi; q1 þ q2 ¼ k: ð5Þ

We abbreviate the cut part of the five-point amplitude as
Mcut

5 ðk−Þ≡Mcut
5 ð−p1;−p2; p0

1; p
0
2; k

−Þ. Putting every-
thing together, the cut part of the five-point amplitude
relevant to Kerr observables at leading PM order is

Mcut
5 ðk−Þ ¼ −

κ3

8q22
q2μq2ν

X
h¼�

X4
n¼0

rh;μνð1Þ;n
2n

e−hq2·a2

×MðnÞ
4 ð−p1; k−;−qh2Þ þ ð1 ↔ 2Þ; ð6Þ

valid to all spin orders. The helicity weight of the emitted
graviton is carried by the rh;μνðiÞ;n (recall that h here is the

helicity of the cut graviton, not the emitted one), which are
defined in Eq. (A1). This abbreviation of the amplitude is

useful for making explicit the powers of qμ2 while hiding
what is not needed to perform the waveform integration.
However, we highlight that the rh;μνðiÞ;n are Oðjkμj2Þ and

Oðani Þ. The former of these will affect the integration to the
time domain from frequency space.
At this point, let us make a remark on notation.

Throughout the remainder of the paper, we will use the
subscripts in parentheses (1) or (2) to denote quantities
relevant to the amplitude on the q22 or q

2
1 pole, respectively.

An object indexed in this way has only the labels in
parentheses swapped under the relabelling ð1 ↔ 2Þ, so
that, for example, rh;μνð1Þ;1 → rh;μνð2Þ;1, while p

μ
1 → pμ

2. Generally,

X1 ↔
ð1↔2Þ

X2;

Yð1Þ;L ↔
ð1↔2Þ

Yð2Þ;L ¼ Yð1Þ;LjZð1Þ;J↔Zð2Þ;J ;X1↔X2
; ð7Þ

where L and J are arbitrary (multi-)indices which remain
unchanged under the relabelling. The second relabelling is
applied recursively at every level of an expression.
The five-point amplitude for the other graviton helicity is

related to Eq. (6) through

Mcut
5 ðkþÞ ¼ ½Mcut

5 ð−k−Þ��qi→−qi ; ð8Þ

where the asterisk represents complex conjugation.
The effect of conjugation is simply swapping the angle
and square massless spinors.
By construction, the cut part of the five-point amplitude in

Eq. (6) gives the correct factorization when an exchanged
graviton goes on shell. This is achieved by writing the
amplitude in a form with spurious poles using the identity
1

q2
1
q2
2

¼ − 1
2ðk·q1Þq21

− 1
2ðk·q2Þq22

[77], which ensures that the

physical graviton poles are not overlapping and the cut part
of the amplitude can be constructed by gluing the lower-point
amplitudes. However, it does not guarantee that the spurious
poles cancel after the gluing. In fact, the freedom of rewriting
the lower-point amplitudes using on-shell conditions and
momentum conservation allows for various representations
of the cut part of the amplitude which differ by terms that
vanish when internal gravitons are cut. In particular, the
difference between Eq. (6) and the complete five-point
amplitudewith nounphysical poles has nopolewhen internal
gravitons go on shell. Luckily, these complications are
irrelevant for extracting the waveform from the amplitude
because terms with a spurious pole and no physical graviton
pole do not contribute. This is a consequence of the classical
limit, andmanifests as the tracelessness of the integrals in the
next section; see Appendix B.

III. ALL-SPIN WAVEFORM
AT LEADING-PM ORDER

With the cut part of the five-point amplitude in hand, we
move now to the extraction of observables. The waveform

FIG. 1. Cuts of the five-point amplitude relevant for the
extraction of leading-order radiative observables. All shown
momenta are taken on shell.
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in the time domain is given by the expectation value of the
metric perturbation [10,65–69]:

gμνðxÞ − ημν ¼ κhhμνðxÞi ¼
Z

∞

−∞
d̂ωe−iωu

fμνðω; x̂Þ
jxj : ð9Þ

Here, ω is the frequency of the emitted gravitational wave,
xμ ¼ ðx0; xÞ is the position of the observer located a large
distance from the scattering event, and u ¼ x0 − jxj is the
retarded time. The spatial unit vector in the direction of the
observer is x̂ ¼ x=jxj. The spectral waveform fμνðω; x̂Þ is
written at leading order in terms of the tree-level five-point
amplitude as

fμνðω; x̂Þ¼
κ

4π

X
h

εðhÞ�μ εðhÞ�ν

Z
q1;q2

μðkÞMcut
5 ðkhÞ

���
k¼ωρ

; ð10Þ

where ρμ ¼ ð1; x̂Þ, Rq1;q2 ¼ R
d̂Dq1d̂

Dq2, and

μðkÞ ¼ 1

4
δ̂ðp1 · q1Þδ̂ðp2 · q2Þeiðq1·b1þq2·b2Þδ̂Dðq1 þ q2 − kÞ:

Factors of 2π have been absorbed into the notation as
δ̂ðxÞ≡ 2πδðxÞ and d̂x≡ dx=ð2πÞ [2], and we work in four
dimensions, D ¼ 4.
The sum over helicities in Eq. (10) can be dropped by

projecting onto a graviton of a fixed helicity. We can do so
without losing any information about thewaveform since the
projection onto a graviton of the opposite helicity will be
given by complex conjugation of our result. In the following,
we write ε−μ ε

−
ν hhμνðxÞi ¼ hðxÞ ¼ hþðxÞ þ ih×ðxÞ, where

the subscripts refer to the “plus” and “cross” polarizations
of the gravitational wave.
Inserting Eq. (6) into Eq. (9), we proceed to integrate

following Ref. [19]. Specifically, on the part of the cut
amplitude capturing the q22 residue, it is advantageous to
use the delta functions to integrate over d̂4q1 and d̂ω first;
on the other part of the amplitude, one instead integrates
over d̂4q2 before performing the d̂ω integral. Indeed, this
procedure remains simple for the infinite-spin amplitude in
Eq. (6). Splitting the waveform into a part without and with
Compton-amplitude contact terms,

κhðxÞ ¼ −
πG2

jxjm1m2

½hfðxÞ þ hcðxÞ�; ð11Þ

and writing pμ
i ¼ miv

μ
i and γ ¼ v1 · v2,

2 the former is

hfðxÞ¼
1

ðp1 ·ρÞ2

×
Z
q2

δ̂ðv2 ·q2Þ
q2μ1q2μ2

q22ðq2 ·ρÞðv1 ·q2Þ
�
eiq2·bð1Þ;− r̃−;μ1μ2ð1Þ;0

þeiq2·bð1Þ;þ
X∞
s¼0

q2μ3…q2μsþ2

1

s!
Lμ1…μsþ2

ð1Þ;s

�
þð1↔ 2Þ:

ð12Þ

In a similar vein to Ref. [19], we have defined

u�ð1Þ;1 ¼
ρ · ½ðx − ia1Þ − b1�

v1 · ρ
; ð13Þ

u�ð1Þ;2 ¼
ρ · ½ðx − ia1Þ − b2 ∓ iða1 þ a2Þ�

v2 · ρ
; ð14Þ

bμð1Þ;� ¼ bμ2 − bμ1 þ u�ð1Þ;2v
μ
2 − u�ð1Þ;1v

μ
1 � iðaμ1 þ aμ2Þ: ð15Þ

These variables expose a Newman-Janis-like shift of the
position coordinates by the spin vector [99]. Unlike the
Newman-Janis shift, however, the amplitude contains spin
dependence which does not readily admit this interpreta-
tion, such as in the r̃h;μνðiÞ;n and Lμ1…μsþ2

ðiÞ;s . Nevertheless, the

presence of this shift is computationally convenient, as it
implies that the highest tensor rank needed to obtain the
Oðan11 an22 Þ part of the waveform is maxðn1; n2Þ þ 2 instead

of n1 þ n2 þ 2. The tensors r̃h;μνðiÞ;n are functions only of ρμ

defined through rh;μνðiÞ;n ¼ ω2r̃h;μνðiÞ;n. Finally, L
μ1…μsþ2

ðiÞ;s is given

in Eq. (A11). This tensor is a complicated polynomial of
degree s in the spin of particle i, which, importantly,
contains no dependence on the final variable of integration,
and can therefore be removed from the integral. Then,
defining

Iμ1…μn
ð1Þ ðbÞ≡

Z
q2

δ̂ðv2 · q2Þ
qμ12 …qμn2 eiq2·b

q22ðq2 · ρÞðv1 · q2Þ
; ð16Þ

the part of the waveform free from Compton-amplitude
contact terms is

hfðxÞ ¼
1

ðp1 · ρÞ2
�
r̃−;μ1μ2ð1Þ;0 I ð1Þ;μ1μ2ðbð1Þ;−Þ

þ
X∞
s¼0

1

s!
Lμ1…μsþ2

ð1Þ;s I ð1Þ;μ1…μsþ2
ðbð1Þ;þÞ

#
þ ð1 ↔ 2Þ:

ð17Þ

We are left now with the evaluation of the arbitrary-rank
integral in Eq. (16). The variables defined in Eqs. (13)–(15)
produce ρ · bðiÞ;� ¼ 0, which means that the integrals
appearing in Eq. (17) are identical in structure to the ones

2In previous works using heavy particle effective theory
(HPET) [24,27,40,42,49,51,58,60,80,94], the symbol ω ¼ v1 ·
v2 was used as an homage to the literature on heavy quark
effective theory [95–98]. In this paper, ω is reserved for
the frequency of the gravitational wave, so we revert to the
notation here.
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in Ref. [19], justifying the use of the rank-2 integral
evaluated there. Higher-rank integrals can be generated
by differentiation, keeping in mind that the result must
remain orthogonal to vμ2:

Iμνσ1…σn
ð1Þ ðbð1Þ;�Þ ¼

�Yn
i¼1

−i∂
∂bð1Þ;�;σi

�
Iμν
ð1Þðbð1Þ;�Þ; ð18Þ

for bσð1Þ;� ≡ ðδστ − vσ2v2τÞbτð1Þ;�. More details can be found

in Appendix B.
As an illustration of Eq. (17), consider the spinless part

of the waveform. When setting the spin to 0, bμðiÞ;þjai¼0 ¼
bμðiÞ;−jai¼0 and bμð1Þ;�jai¼0 ¼ −bμð2Þ;�jai¼0 ≡ bμ0. Then,

since the rank-2 integral is even [see Eq. (B4)], the
waveform is

hfðxÞjai¼0 ¼
X2
i¼1

r̃−;μνðiÞ;0 þ r̃þ;μν
ðiÞ;0

ðpi · ρÞ2
I ðiÞ;μνðb0Þ; ð19Þ

in agreement with Refs. [18,19,72,82]. Much like for
scattering amplitudes, the incorporation of spinor-helicity
variables greatly compactifies the form of the waveform,
eliminating gauge redundancies associated with the polari-
zation of the emitted graviton; cf. the compact Eq. (32) of
Ref. [72], which expresses this same result using polari-
zation tensors.
The extraction of the contributions to the waveform

originating from the Compton-amplitude contact terms is
slightly different from above because of the simpler pole
structure which enters the Fourier transforms. Explicitly,
the contact-term contribution to the waveform is

hcðxÞ ¼
32m1v

μ1
1 v

μ2
1 v

μ3
1

ðv1 · ρÞ3
�
Cð5;1Þ;μ4μ5
4 ða1ÞJ ð1Þ;μ1…μ5ðbð1ÞÞ

þ J ð1Þ;μ1…μ6ðbð1ÞÞ
X3
i¼1

Cð6;iÞ;μ4μ5μ6
4 ða1Þ

#
þ ð1 ↔ 2Þ;

ð20Þ

where we have used CðnÞ
4 ð−p1; k−;−q−2 Þ ¼ 0 and repack-

aged the remaining contact terms in the Cði;jÞ
4 . The explicit

forms for these can be found in Eqs. (A20)–(A23).
Organized like this, the Cði;jÞ

4 ða1Þ are all free of the
variable of integration, so we have removed them from
the integrals

J μ1…μn
ð1Þ ðbð1ÞÞ ¼

Z
q2

δ̂ðv2 · q2Þ
eiq2·bð1Þ

q22
qμ12 …qμn2 : ð21Þ

The impact parameter in this context is bμð1Þ ¼ bμð1Þ;þja1→0.

This integral for n ¼ 1 has also been evaluated in
Ref. [19], with higher-rank integrals being generated
by differentiating with respect to bμð1Þ. See Appendix B

for more details.
Two final remarks about hcðxÞ are in order. First,

note that all dependence on aμ2 in Eq. (20) (aμ1 in the
relabelled part) is encapsulated in the impact parameter.
Consequently, Eq. (20) encodes the contributions from the
Oða5;6Þ coefficients to all spin orders. Second, the inclu-
sion of higher-spin contact terms is nearly automatic:
contact terms at OðasÞ enter the square brackets of
Eq. (20) through

v1μ1J ð1Þ;μ2…μsþ1
ðbð1ÞÞCðsÞ;μ4…μsþ1

4 ða1Þ: ð22Þ

All that must be specified are the contact terms one wishes

to include in the CðsÞ
4 .

With that, we have produced the leading-order Kerr-
compatible waveform to all spin orders, including
BHPT-matching contact terms up to sixth order in spin.
The waveform expanded up to fifth order in spin is
provided in the Supplemental Material [81]. Our results
agree with Ref. [19] up to second order in the spin, and with
Ref. [72] up to fourth order in the spin.
Further checks of our results come from the expansion of

the waveform in large juj (frequency space, small ω). In the
next section we will consider the memory effect and its
connection to the leading classical soft theorem. The
subleading classical soft theorem predicts instead the
1=juj (frequency space, logω) tail term [85], which is
spin independent to this order in G; we have verified its
agreement with the spinless part of the waveform given in
Eq. (19). To this order in G, the next order in the soft
expansion features a 1=u2 (frequency space, ω logω) term
whose expression was predicted in Ref. [100] and contains
both spin-independent and linear-in-spin contributions.3

We have verified that our waveform agrees with that
prediction—the spinless and linear-in-spin contributions
to the waveform exactly match the 1=u2 soft term given in
Ref. [100], while higher-spin contributions decay faster
than 1=u2 for large juj.

IV. GRAVITATIONAL MEMORY EFFECT

Rather than requiring the full five-point amplitude,
or even its cut part used above, the gravitational memory
effect is related to the limit of the five-point amplitude as
the emitted graviton is soft [90]. Combining this with
existing high-spin, two-to-two amplitudes compatible with

3We thank Biswajit Sahoo for bringing this to our attention.
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Kerr scattering up to 2PM order puts the next-to-leading-
order (NLO) memory effect including high-spin orders
within reach [36,58] (see also Refs. [50,52,57] for high-but-
finite-spin scattering amplitudes at 2PM order). In this
section we present the gravitational memory effect at
leading order to all spin orders and for generic spin
orientations, before computing the next-to-leading-order
memory effect to all spin orders for anti-aligned spins and
to sixth order for generic orientations.

A. Leading order

At leading order in Newton’s constant, the memory
effect is expressed simply in terms of the soft limit of the
tree-level two-to-two amplitude as [67,90]

Δðh∞þ þ ih∞× ÞjLO ¼ −
iκ

32πjxj
Z

d̂4qδ̂ðp1 · qÞδ̂ðp2 · qÞ

× eiq·bεμ−εν−Sðρ; qÞμνMtðqÞ: ð23Þ

Here, Sμνðρ; qÞ ¼ ωSμνðk; qÞ is the soft factor multiplied
by the frequency of the soft graviton, and MtðqÞ is the
t-channel graviton-exchange amplitude. Orienting the
transfer momentum such that q ¼ p1 − p0

1 ¼ p0
2 − p2,

these take the forms [36,88]

Sμνðk; qÞ ¼
X2
i¼1

pμ
i p

ν
i

pi · k
−
X2
i¼1

p0μ
i p

0ν
i

p0
i · k

; ð24Þ

MtðqÞ ¼ −
κ2m2

1m
2
2

4q2
X
�

�
γ �

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	2

× exp

�
� iϵμναβv

μ
1v

ν
2q

αffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ðaβ1 þ aβ2Þ
�
: ð25Þ

The soft factor admits an ℏ expansion when scaling
k; q ∼ ℏ, which we can write as

Sμνðk; qÞ ¼ Sð0Þ
μν;ρðkÞqρ þ Sð1Þ

μν;ρτðkÞqρqτ þOðℏ2Þ; ð26Þ

with SðiÞ
μν;ρ1…ρiþ1

ðkÞ ∼ ℏ−1. The classically relevant portion
of Eq. (23) only needs the leading term in Eq. (26).
The fact that the spin dependence of the amplitude in

Eq. (25) is contained entirely in an exponential means that
the evaluation of the gravitational memory effect for all
spins at leading order is nearly identical to the scalar case
[53]. Defining

bμ� ≡ bμ �
ϵμναβvν1v

α
2

�
aβ1 þ aβ2

	
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ; ð27Þ

the memory effect is

Δðh∞þ þ ih∞× ÞjLO ¼ iκ3m2
1m

2
2

128πjxj
X
�

�
γ �

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	2

× εμ−ε
ν
−S

ð0Þ
μν;τðρÞ

Z
d̂4qδ̂ðp1 · qÞ

× δ̂ðp2 · qÞ
eiq·b�

q2
qτ: ð28Þ

From this expression, it is immediate to explain an
observation made in Ref. [19] up to quadratic order in
spin and to see that it extends to all spin orders: for the anti-
aligned spin setup, aμ1 ¼ −aμ2, the leading-order memory
effect for two scattering Kerr black holes is equivalent to
that for Schwarzschild black holes. This is because the
shifted impact parameters are identical to the unshifted
impact parameter in this configuration.
We recognize in Eq. (28) the expression for the leading-

order classical impulse,Qμ
1;1PM ¼ p0μ

1 − pμ
1, experienced by

particle 1 in the scattering [2]:

Qτ
1;1PM ¼ −

i
4

Z
d̂4qδ̂ðp1 · qÞδ̂ðp2 · qÞqτeib·qMtðqÞ

¼ κ2m1m2

32π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p X
�

�
γ �

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q 	2 bτ�
b2�

: ð29Þ

In terms of the impulse, the leading-order, all-spin memory
effect is

Δðh∞þ þ ih∞× ÞjLO ¼ κεμ−ε
ν
−

8πjxj S
ð0Þ
μν;τðρÞQτ

1;1PM; ð30Þ

with generic spin orientations. Equation (30) thus agrees
with the leading-PM expansion of the leading classical soft
theorem [85,86,101,102], which fixes the memory effect
in the time domain, equivalently the 1=ω terms in the
frequency domain, in terms of the initial and final momenta
of the scattering. We have also checked that the spinless
contribution is in agreement with Ref. [67]. Specializing to
the aligned spin case and expanding to quadratic order in
spin, we find agreement with the result in Ref. [19], taking
into account the factor of 2 mentioned in footnote 1.

B. Next-to-leading order

To subleading PM order, following Ref. [70], we modify
the integrand of Eq. (23) to contain the classical part of
the 2PM instead of the tree-level amplitude and include a
two-massive-particle cut contribution that arises from the
KMOC formalism.4 Additional classical cuts involving
intermediate on-shell massless and massive particle lines
are subleading in the soft limit [66–69]. The next-to-
leading-order memory effect is thus given by

4We thank Zvi Bern for discussions on this point.
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Δðh∞þ þ ih∞× ÞjNLO ¼ −
iκ

32πjxj
Z

d̂4qδ̂

�
p1 · q−

q2

2

�
δ̂

�
p2 · qþ

q2

2

�
eiq·bεμ−εν−



Sðρ; qÞμνM2PM þ i

8

Z
d̂4lδ̂

�
p1 · l−

l2

2

�

× δ̂

�
p2 · lþ

l2

2

�
½Sðρ; q− lÞμν − Sðρ;lÞμν

�
M†

t ðq− lÞMtðlÞ
�
: ð31Þ

The first term in curly brackets is the 2PM analog of
Eq. (23), and will be related to the portion of 2PM impulse
transverse to the incoming momenta, Qμ

1;2PM, while the
second term is the cut contribution. One must account for
the full delta functions [2,70,75], and not only their
linearized versions, because the cut contribution is super-
ficially superclassical, so it must be expanded to subleading
order in ℏ to extract classical information.
Scrutinizing the cut contribution in more detail, we must

be careful to correctly interpret M†
t ðqÞ when spin is

involved. Importantly, in contrast to the spinless case,
M†

t ðqÞ ≠ ½MtðqÞ��. Rather, for the S-matrix defined by
S ¼ 1þ iT,5

δ̂DðpÞM†ðqÞ ¼ hp0
1; p

0
2jT†jp1; p2i ¼ ðhp1; p2jTjp0

1; p
0
2iÞ�

¼ δ̂DðpÞ½Mð−qÞ��; ð32Þ
where we can safely make the final identification in the
classical limit, in which OðℏÞ modifications of the massive
momenta do not affect the scattering amplitude [49,51].
Specializing to tree-level two-to-two scattering, Eq. (25),
we find

M†
t ðqÞ ¼ MtðqÞ: ð33Þ

This conclusion is consistent with unitarity of the S-matrix,
a consequence of which is that the T-matrix is Hermitian
for the leading-order two-to-two scattering process.
Now, as the first quantum corrections to Mt are sup-

pressed by two powers of ℏ, the expansion of the cut
contribution to next-to-leading order in ℏ is controlled by
the expansion of the product of the delta functions and
soft factors. A consequence of Eq. (33) is that the super-
classical part of this expansion vanishes at the level of the
integrand, meaning Eq. (31) is classical at leading order in
ℏ. Evaluating the remaining classical part of the cut
contribution, the NLO memory effect expressed in terms
of the 1PM and 2PM (transverse) impulses on particle 1 is

Δðh∞þ þ ih∞× ÞjNLO

¼ κεμ−ε
ν
−

8πjxj


Sð0Þ
μν;τðρÞQτ

1;2PM −Qα
1;1PMQ

β
1;1PM

×

�
Sð0Þ
μν;τðρÞ

�
v̌τ1
2m1

−
v̌τ2
2m2

�
ηαβþSð1Þ

−μν;αβðρÞ
��

; ð34Þ

where

v̌μ1 ¼
γvμ2 − vμ1
γ2 − 1

; v̌μ2 ¼
γvμ1 − vμ2
γ2 − 1

: ð35Þ

This is in precise agreement with the gravitational memory
(see, e.g., Refs. [86,101,102]) expanded to next-to-leading
PM order, when the initial and final momenta are related by
the classical impulse

Qμ ¼ p0μ
1 − pμ

1 ¼ −ðp0μ
2 − pμ

2Þ

¼ Qμ
1;1PM þQμ

1;2PM −
�

v̌μ1
2m1

−
v̌μ2
2m2

�
Q2

1;1PM: ð36Þ

Without the cut contribution in Eq. (31), Eq. (34) would be
missing the contributions quadratic inQμ

1;1PM. Note that, up
the PM order considered here, we were able to focus on the
so-called linear memory, whose expression is captured by
the soft factor (24) and in which only the massive-particle
momenta p1;2 and p0

1;2 appear. Nonlinear memory, which
is produced by radiation itself, will only appear in the
subsubleading waveform [101,103].
As we have evaluated the 1PM impulse above, the last

ingredient for writing the NLO memory effect explicitly is
the evaluation of the 2PM transverse impulse. Wewill do so
for generic and anti-aligned spin orientations, beginning
with the latter.
In the anti-aligned spin setup, where aaa ≡ a1 ¼ −a2, the

complexity of the all-spin amplitude is dramatically
reduced, granting it a remarkably compact form to all spin
orders. The amplitude in this configuration is6

M2PM;aa ¼
κ4m2

1m
2
2

512
ffiffiffiffiffiffiffiffi
−q2

p ðMeven
2PM;aa þModd

2PM;aaÞ; ð37Þ

where the even- and odd-in-spin parts are

Meven
2PM;aa ¼ ðm1 þm2Þ

�
Ceven;ð5Þ2PM;aa þ Ceven;ð6Þ2PM;aa

þ 15ðγ2 − 1Þ2F3

�
−
1

4
;
1

4
;
1

2
;
3

2
; 2;Qaa

�

−
1

2
Qaa þ 12

�
; ð38Þ

5The overall momentum-conserving delta function has the
abbreviated argument p ¼ p1 þ p2 − p0

1 − p0
2.

6The results in this section are based on the 2PM amplitude of
Ref. [58] with dðnÞj ¼ ð−1Þj2n−2jðn−4−jj Þ − 16δn4. This maps the
Compton amplitude used there to construct the 2PM amplitude to
the one incorporated in the waveform computation above, up to
the contact terms in Appendix A. We add the latter separately.
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Modd
2PM;aa ¼ iðm1 −m2Þγ

�
Codd;ð5Þ2PM;aa þ Codd;ð6Þ2PM;aa

þ 5Eaa2F3

�
1

4
;
3

4
;
3

2
; 2;

5

2
;Qaa

�
þ 2

γ2 − 1
Eaa

�
:

ð39Þ

Wehave abbreviated contributions fromCompton-amplitude

contact terms as Ceven=odd;ð5;6Þ2PM;aa for readability; see the
Supplemental Material [81] Mathematica package
NLOMemory.m for their explicit expressions. When
vi · aj ¼ 0, which is the case for aligned and anti-aligned
spins, all contributions to the 2PM amplitude from nonana-
lytic-in-spin contact terms—that is, those proportional to jaj
in the Compton amplitude—vanish, as previously observed
in Refs. [57,63].

The spin dependence in Eq. (37) is encoded in the
variables Qaa ¼ðq ·aaaÞ2−q2a2aa and Eaa ¼ ϵμνρσqμvν1v

ρ
2a

σ
aa.

The amplitude thus does not reduce to the Schwarzschild-
scattering amplitude in this configuration, unlike the 1PM
amplitude. The NLO memory effect will therefore distin-
guish the scattering of two Schwarzschild black holes from
two Kerr black holes with anti-aligned spins. This state-
ment is true independently of contact-term contributions,
as contact terms enter from the hexadecapole while the
memory effect is sensitive to lower spin multipoles.
Notably, however, the dependence on odd spin orders
vanishes if we additionally take the twomasses to be equal.
In this configuration the anti-aligned spins are collinear

with the orbital angular momentum, which implies b · aaa ¼
0 and consequently allows us to find a compact closed form
for the anti-aligned spin transverse impulse at 2PM to all spin
orders. Defining Eμ

aa ≡ ϵμναβv1νv2αaaa;β, we find

Qτ
1;2PM;aa ¼ −

κ4m1m2

4096πjbj3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
×



3bτðm1 þm2Þ

�
4 − z2 −

5ðγ2 − 1Þ
2

ffiffiffi
π

p
X∞
n¼0

Γð2n − 1=2Þ
ðnþ 1Þ

ð2zÞ2n
ð2nÞ! þ C̃even;ð5ÞNLO;aa þ C̃even;ð6ÞNLO;aa

�

þ 2ðm1 −m2ÞγEaa;σ

�
1

γ2 − 1

�
3
bσbτ

jbj2 þ ηστ
�
þ 15ffiffiffi

π
p

X∞
n¼0

Γð2nþ 1=2Þ
ð2nþ 3Þ!

�
ð2nþ 3Þ b

σbτ

jbj2 þ ηστ
�
ð2zÞ2n

þ ðC̃odd;ð5ÞNLO;aaÞστ þ ðC̃odd;ð6ÞNLO;aaÞστ
��

; ð40Þ

where z≡ jaaaj=jbj, jxj≡
ffiffiffiffiffiffiffiffi
−x2

p
. The infinite sums can be

performed to give radicals and hypergeometric functions,
but we find this expression to be more compact. The
portions involving Compton-amplitude contact coefficients
can be found in the Supplemental Material [81] file
NLOMemory.m.
The anti-aligned spin configuration is an interesting

one as the simplifications it brings with it render the
infinite-spin 2PM amplitude much more manageable.
Phenomenologically, however, it is a rather restrictive
setup. For this reason, we additionally consider the
NLO memory effect for generically oriented spins. We
restrict our attention up to sixth order in spin in this
most general configuration. Analogously to Eq. (37),
we write the amplitude up to sixth order in spin as

M2PMjan≤6 ¼
κ4m2

1m
2
2

512
ffiffiffiffiffiffiffiffi
−q2

p ðMeven
2PM þModd

2PMÞjan≤6 ; ð41Þ

while the 2PM transverse impulse on particle 1
becomes

Qτ
1;2PMjan≤6 ¼ −

κ4m1m2

�
qeven;τ1;2PM þ qodd;τ1;2PM

	���
an≤6

4096πjbj3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð42Þ

In this configuration we relegate all further analytical
details of the amplitude and the impulse to the
Supplemental Material [81] NLOMemory.m. The
amplitude in Eq. (41) and transverse 2PM impulse
in Eq. (42) are in agreement with Ref. [57] for the
BHPT coefficient values in Appendix A.

V. CONCLUSION

In this paper, we have employed on-shell amplitudes and
spinor-helicity variables to access all-spin-order contribu-
tions to the leading-order waveform and the gravitational
memory effect up to next-to-leading order. In particular,
gluing the Kerr-compatible, all-spin gravitational Compton
amplitude derived in Ref. [51] (but in the form written in
Ref. [60]) with the all-spin Kerr three-point amplitude
[31–34,79] gives the portion of the single-graviton-
emission, five-point amplitude containing long-distance
information to all spin orders.
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The KMOC formalism [2,65] provides a means for
relating this portion of the five-point amplitude to the
leading-order gravitational waveform, producing an
expression for the waveform, which is valid to all spin
orders. As written, Eq. (17) describes the interaction of Kerr
black holes up to fourth order in the spins of either black
hole. Above fourth order in spin, contributions from
Compton-amplitude contact terms are needed to properly
describe Kerr scattering dynamics. Indeed, our analysis
included these corrections up to sixth order in spin in
Eq. (20), where information from BHPT exists to fix the
coefficient values pertinent to (superextremal) Kerr [63].
Together, Eqs. (17) and (20) sum as in Eq. (11) to describe
the leading-order Kerr waveform—at least in the super-
extremal limit—up to sixth order in the spins of the black
holes. We have written the cut portion of the five-point
amplitude in Eq. (6) in a way that immediately accom-
modates higher-spin contact terms, and Eq. (20) is not
difficult to extend to include such contributions.
The gravitational memory effect can be extracted from

the limit of the five-point amplitude needed for the wave-
form as the emitted graviton goes soft. Then, through soft
theorems [88], including also the cut contribution to the
waveform kernel of Ref. [70], it becomes easily related to
the impulse derived from the amplitude through the KMOC
formalism [2]. Using the all-spin 1PM Kerr [36] and 2PM
Kerr-compatible [58] amplitudes, we thus derived the
leading-order memory effect to all spin orders at leading
order and to sixth order in spin at next-to-leading order for
generic spin orientations. Specializing to anti-aligned spins
yielded dramatic simplifications of the 2PM amplitude,
enabling us to extract the next-to-leading-order memory
effect to all spin orders in this configuration.
On the note of contact terms, those needed in

Eqs. (A13)–(A17) to match the BHPT solution in
Ref. [63] all break the spin-shift symmetry highlighted
in Refs. [51,52,60]. This observation is suggestive of a
relation between the Compton amplitude in the form of
Ref. [60] with all contact coefficients set to zero and the
superextremal-Kerr Compton amplitude which maps
onto the BHPT description. Let us denote the former by
MHPET

4 and decompose the latter as

MBHPT
4 ¼ Mfact

4 þ Csym4 þ Casym4 : ð43Þ

Here, Mfact
4 contains all physical residues of the Compton

amplitude, Csym4 represents contact terms preserving the
spin-shift symmetry, and Casym4 contains contact terms
breaking this symmetry.7 We reiterate that the latter two

are not generic functions of contact terms, but rather the
specific contact terms arising from the BHPT computation.
The separation between Mfact

4 and Csym4 is not unique, but
their sum is fixed. What we have observed up toOða7Þ8 and
might conjecture to hold to all spin orders is that

Mfact
4 þ Csym4 ¼ MHPET

4 ; ð44Þ

thus yielding predictions for the values of an infinite family
of the contact terms needed to match the BHPT description
of superextremal Kerr. Whether this regrouping of contact
terms results in a discernible structure in Casym4 . which can
be extended to higher spins is left to future investigation.
Along similar lines, the extremely compact form of

Eq. (37) suggests that the anti-aligned spin configuration
may be a useful departure point in the search for contact-
term-dependent structure of the amplitude proposed in
Ref. [58]. In fact, we have observed that choosing the
shift-symmetric contact terms conjectured by Eq. (44) to
describe Kerr black holes—that is, the contact terms
specified in footnote 6—compactifies Eq. (38) relative to
the choice dðnÞj ¼ 0; in the latter case, the spin dependence
is described by two hypergeometric functions as opposed
to one.

Note added. Recently, Ref. [104] appeared, which com-
bines the integration method of Ref. [72] with the Compton
amplitude of Ref. [64] to incorporate spin in the leading-
order waveform. The Compton amplitude employed in
Ref. [104] exhibits spin-shift symmetry at fifth order in
spin, which is in tension with the available BHPT data for
superextremal Kerr; see Refs. [51,52,63] and Appendix A.

ACKNOWLEDGMENTS

This project was inspired by Donal O’Connell’s talk at
the Nordita workshop “Amplifying Gravity at All Scales.”
We thank Fabian Bautista, Zvi Bern, Stefano De Angelis,
Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka,
Rodolfo Russo, and Biswajit Sahoo for helpful discussions.
We are grateful to Stefano De Angelis, Riccardo Gonzo,
and Pavel Novichkov for their open communication during
their work on Ref. [72] and for sharing a draft before its
release. R. A. is supported by the FSR Program of
UCLouvain. K. H. is supported by the Knut and Alice
Wallenberg Foundation under Grants No. KAW 2018.0116
(From Scattering Amplitudes to Gravitational Waves) and
No. KAW 2018.0162. K. H. is grateful to Nordita for their
ongoing hospitality. C. H. is supported by UK Research
and Innovation (UKRI) under theUK government’s Horizon
Europe funding guarantee (Grant No. EP/X037312/17In principle, the spin-shift-symmetric and asymmetric contact

terms can be mixed by Gram determinant relations as in Ref. [51].
However, we observe that this separation is well defined for the
contact terms appearing in the BHPT solution if one writes the
amplitude manifestly locally.

8The comparison between MBHPT
4 and MHPET

4 at Oða7Þ was
done using unpublished data generously shared by Fabian
Bautista.

LEADING-ORDER GRAVITATIONAL RADIATION TO ALL SPIN … PHYS. REV. D 109, 036007 (2024)

036007-9



“EikoGrav: Eikonal Exponentiation and Gravitational
Waves”). A. H. is supported by the DOE under Award
No. DE-SC0011632 and by the Walter Burke Institute
for Theoretical Physics.

APPENDIX A: FORM FACTORS AND
HELICITY VECTORS

The tensors rh;μνðiÞ;n which carry the helicity weights of the
five-point amplitude in Eq. (6) are

rþ;μν
ð1Þ;0 ¼ hkjp1p2γ

μp1jkihkjp1p2γ
νp1jki; ðA1aÞ

rþ;μν
ð1Þ;1 ¼ hkjp1p2γ

μp1jkihkjp1p2γ
νa1jki; ðA1bÞ

rþ;μν
ð1Þ;2 ¼ hkjp1p2γ

μa1jkihkjp1p2γ
νa1jki; ðA1cÞ

rþ;μν
ð1Þ;3 ¼ hkjp1p2γ

μa1jkihkja1p2γ
νa1jki; ðA1dÞ

rþ;μν
ð1Þ;4 ¼ hkja1p2γ

μa1jkihkja1p2γ
νa1jki; ðA1eÞ

and

r−;μνð1Þ;0 ¼ m4
1hkjp2γ

μjkihkjp2γ
νjki; ðA1fÞ

r−;μνð1Þ;1 ¼ m2
1hkjp2γ

μjkihkja1p1p2γ
νjki; ðA1gÞ

r−;μνð1Þ;2 ¼ hkja1p1p2γ
μjkihkja1p1p2γ

νjki; ðA1hÞ

r−;μνð1Þ;3 ¼
1

m2
1

hkja1p1p2γ
μjkihkja1p1p2γ

νp1a1jki; ðA1iÞ

r−;μνð1Þ;4¼
1

m4
1

hkja1p1p2γ
μp1a1jkihkja1p1p2γ

νp1a1jki: ðA1jÞ

The rh;μνð2Þ;n are obtained from these using Eq. (7). When a

positive-helicity graviton is emitted from the binary scat-
tering, the amplitude will depend on r̄−h;μνðiÞ;n in place of rh;μνðiÞ;n,
which have square spinors rather than the angle spinors
above. These tensors are already inert under the waveform
integration over the qi; we can render them inert under the
integration over ω as well by noting that rh;μνðiÞ;n ¼ ω2r̃h;μνðiÞ;n,
where the tensors on the right-hand side are written with
spinors for ρ instead of k. The same holds for the tensors
with square instead of angle brackets.
The FðnÞ

4 form factors are

Fð0Þ
4 ð−p; kh;−qhÞ ¼ 1

8ðq · kÞðp · kÞðp · qÞ ; ðA2Þ

Fðn≥1Þ
4 ð−p; kh;−qhÞ ¼ 0; ðA3Þ

and, fixing the helicity of the graviton with momentum q,

Fðn≤2Þ
4 ð−p; k−;−qþÞ ¼ ½2p · ðqþ kÞ�n

8n!ðq · kÞðp · kÞðp · qÞ ; ðA4Þ

Fðn≥3Þ
4 ð−p; k−;−qþÞ

¼ ½2p · ðqþ kÞ�n
8ðq · kÞðp · kÞðp · qÞ

�
1

n!
þ ð−s2Þ4−n

X∞
s¼5

1

s!
Ls−8þn

�
;

ðA5Þ

where

Lm ¼
Xbm=2c

j¼0

�
mþ 1

2jþ 1

�
sm−2j
1 ðs21 − s2Þj; ðA6Þ

and

s1 ¼ ðkþ qÞ · a; ðA7Þ

s2 ¼ 4ðk · aÞðq · aÞ − ð2q · kÞa2: ðA8Þ

The form factors for FðnÞ
4 ð−p; kþ;−q−Þ are obtained from

Eqs. (A4) and (A5) by replacing fkμ; qμg → f−kμ;−qμg.
As the extraction of the waveform involves integrals over

momenta represented here by qμ, it is useful to rewrite

Fðn≥3Þ
4 ð−p; k−;−qþÞ as an expansion in qμ, which entails

expanding Lm as such. This actually becomes easier after
integrating over one of the d̂4qi and d̂ω using a delta
function as described in Sec. III. For example, let us
consider the Lm contributing to the q22 pole, which we
write as Lð1Þ;m. After integrating over d̂4q1 and d̂ω, this
becomes

Lð1Þ;mjω¼v1 ·q2
v1 ·ρ

¼ q2μ1…q2μmL
μ1…μm
ð1Þ;m ; ðA9Þ

where

Lμ1…μm
ð1Þ;m ≡ Xbm=2c

j¼0

�
mþ1

2jþ1

� Ym−2j

i¼1

�
ρ ·a1
v1 ·ρ

vμi1 þaμi1

�

×
Yðm−1Þ=2

k¼m−2jþ1
2

��
ρ ·a1
v1 ·ρ

vμ2k1 −aμ2k1

��
ρ ·a1
v1 ·ρ

vμ2kþ1

1 −aμ2kþ1

1

�

þ2vμ2k1 ρμ2kþ1
a21
v1 ·ρ

�
; ðA10Þ

which subsequently enters the waveform through
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Lμ1…μsþ2

ð1Þ;s ¼

8>><
>>:

ms
1r̃

þ;μ1μ2
ð1Þ;s ð2vμ31 Þ…ð2vμsþ2

1 Þ; s ≤ 4;

ð2vμ31 Þ…ð2vμ61 Þ
�
m4

1r̃
þ;μ1μ2
ð1Þ;4 Lμ7…μsþ2

ð1Þ;s−4 −m3
1r̃

þ;μ1μ2
ð1Þ;3

�
2 ρ·a1
v1·ρ

aμ71 − ρμ7
a2
1

v1·ρ

�
Lμ8…μsþ2

ð1Þ;s−5

�
; s > 4:

ðA11Þ

The tensors Lμ1…μm
ð2Þ;m and Lμ1…μsþ2

ð2Þ;s can be obtained from
these by swapping the labels 1 ↔ 2. Note that LðiÞ;0 ¼ 1.
Instead of computing with the full set of contact terms

compatible with Kerr scattering at the PM order considered,
we will focus only on those entering up to sixth order in
spin. Moreover we will fix to zero all contact term
coefficients that are not needed to match the superextremal
analytic continuation of the BHPT solution in Ref. [63].
This means we consider

CðnÞ
4 ð−p; k−;−q−Þ ¼ 0; ðA12Þ

Cð0Þ
4 ð−p; k−;−qþÞ ¼ ðtpq − tpkÞ

m3
jaja4

×
h
fð5Þ0;0;0 þ fð6Þ0;0;1½ð−q − kÞ · a�

i

þ að6Þ1;0;0

sqk
m2

a6 þ að6Þ1;1;0

ðtpq − tpkÞ2
m4

a6

− 2
�
að6Þ0;0;0 − að6Þ0;0;2

	
ðq · aÞðk · aÞ a

4

m2
;

ðA13Þ

Cð1Þ
4 ð−p;k−;−qþÞ¼ðtpq−tpkÞ

m2
a4
h
bð5Þ0;0;0þbð6Þ0;0;1½ð−q−kÞ ·a�

i

þgð6Þ1;0;0

sqk
m

jaja4þgð6Þ1;1;0

ðtpq−tpkÞ2
m3

jaja4

−2
�
gð6Þ0;0;0−gð6Þ0;0;2

	 1

m
jaja2ðq ·aÞðk ·aÞ;

ðA14Þ

Cð2Þ
4 ð−p; k−;−qþÞ ¼ ðtpq − tpkÞ

m
jaja2

×
h
pð5Þ
0;0 þ pð6Þ

0;1½ð−q − kÞ · a�
i

þ cð6Þ1;0skqa
4 − 2

�
cð6Þ0;0 − cð6Þ0;2

	
× ðq · aÞðk · aÞa2; ðA15Þ

Cð3Þ
4 ð−p;k−;−qþÞ¼ ðtpq− tpkÞa2

h
dð5Þ0;0þdð6Þ0;1½ð−q−kÞ ·a�

i
þqð6Þ1;0msqkjaja2; ðA16Þ

Cð4Þ
4 ð−p;k−;−qþÞ¼mðtpq− tpkÞjaj

h
rð5Þ0;0þrð6Þ0;1½ð−q−kÞ ·a�

i
þeð6Þ1;0m

2skqa2: ðA17Þ

We have defined sqk ≡ ðk − qÞ2, tpq ≡ ðpþ qÞ2 −m2, and
tpk ≡ ðp − kÞ2 −m2. The coefficients used here are those
from Ref. [58], and their values matching the superextremal
solution to the Teukolsky equation at fifth order in spin,
according to Ref. [63], are

bð5Þ0;0;0 ¼ −
1

24
; dð5Þ0;0 ¼

1

3
;

fð5Þ0;0;0 ¼ −
1

240
; pð5Þ

0;0 ¼
1

6
;

rð5Þ0;0 ¼ −
1

3
: ðA18Þ

At sixth order in spin, the coefficient values in Eq. (6)
matching Ref. [63] are

að6Þ1;0;0 ¼ −
1

16
; að6Þ1;1;0 ¼ −

1

576
;

að6Þ0;0;0 − að6Þ0;0;2 ¼
1

8
; bð6Þ0;0;1 ¼ −

11

72
;

cð6Þ0;0 − cð6Þ0;2 ¼ −
1

6
; cð6Þ1;0 ¼ −

1

6
;

dð6Þ0;1 ¼
7

18
; eð6Þ1;0 ¼

1

3
;

fð6Þ0;0;1 ¼ −
1

360
; gð6Þ1;0;0 ¼

1

9
;

gð6Þ0;0;0 − gð6Þ0;0;2 ¼ −
2

9
; gð6Þ1;1;0 ¼

1

60
;

pð6Þ
0;1 ¼

1

3
; qð6Þ1;0 ¼

4

9
; rð6Þ0;1 ¼ −

2

9
: ðA19Þ

It is immediate to augment Eq. (6) with more Compton-

amplitude contact terms since the CðnÞ
4 are inert under the

gluing of the three-point and Compton amplitudes in Fig. 1.
The contact terms repackaged in preparation for the

waveform integration are encoded in the form factors

Cðj;kÞ
4 ðaiÞ introduced in Eq. (20).Written explicitly, these are

Cð5;1Þ;μν
4 ðaiÞ ¼

r̃þ;μν
ðiÞ;0
m3

i
fð5Þ0;0;0jaija4i þ

r̃þ;μν
ðiÞ;1
2m2

i
bð5Þ0;0;0a

4
i

þ
r̃þ;μν
ðiÞ;2
4mi

pð5Þ
0;0jaija2i þ

r̃þ;μν
ðiÞ;3
8

dð5Þ0;0a
2
i

þmi

r̃þ;μν
ðiÞ;4
16

rð5Þ0;0jaij; ðA20Þ
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Cð6;1Þ;μνα
4 ðaiÞ ¼ 4pα

i

�r̃þ;μν
ðiÞ;0
m4

i
að6Þ1;1;0a

6
i þ

r̃þ;μν
ðiÞ;1
2m3

i
gð6Þ1;1;0jaija4i

�
; ðA21Þ

Cð6;2Þ;μνα
4 ðaiÞ ¼ −

�
aαi þ

pα
i ρ · ai
pi · ρ

��r̃þ;μν
ðiÞ;0
m3

i
fð6Þ0;0;1jaija4i þ

r̃þ;μν
ðiÞ;1
2m2

i
bð6Þ0;0;1a

4
i þ

r̃þ;μν
ðiÞ;2
4mi

pð6Þ
0;1jaija2i þ

r̃þ;μν
ðiÞ;3
8

dð6Þ0;1a
2
i þmi

r̃þ;μν
ðiÞ;4
16

rð6Þ0;1jaij
�
;

ðA22Þ

Cð6;3Þ;μνα
4 ðaiÞ ¼

ρβ
4p1 · ρ

�
−2

r̃þ;μν
ðiÞ;0
m2

i
a4i ðað6Þ0;0;0 − að6Þ0;0;2Þaαi aβi − 2

r̃þ;μν
ðiÞ;1
2mi

jaija2i ðgð6Þ0;0;0 − gð6Þ0;0;2Þaαi aβi − 2
r̃þ;μν
ðiÞ;2
4

a2i
h
cð6Þ0;1η

αβa2i

þ ðcð6Þ0;0 − cð6Þ0;2Þaαi aβi
i
− 2mi

r̃þ;μν
ðiÞ;3
8

qð6Þ1;0η
αβjaija2i − 2m2

i

r̃þ;μν
ðiÞ;4
16

eð6Þ1;0η
αβa2i

�
: ðA23Þ

APPENDIX B: INTEGRALS

There are two classes of integrals that we must compute
to convert from momentum to impact-parameter space: one
for the evaluation of the waveform and one for the memory
effect. These are

Iμ1…μn
w ½fx;b1;b2g;fðqÞ�

¼
Z

d̂ωd̂4qd̂4q0δ̂ðv1 ·qÞδ̂ðv2 ·q0Þ

× δ̂ð4Þðk−q−q0Þe−iωρ·xeiðq·b1þq0·b2Þqμ1…qμnfðqÞ; ðB1Þ

Iμ1…μn
m ½b; fðqÞ� ¼

Z
d̂4qδ̂ðv1 · qÞδ̂ðv2 · qÞ

× eiq·bqμ1…qμnfðqÞ; ðB2Þ

respectively. For amplitudes involving arbitrary spin
powers, these integrals generally must be evaluated for
arbitrary rank. Instead of evaluating each rank individually,
higher-rank integrals can be generated from lower ranks by
differentiation.

1. Waveform integration

Extracting the waveform in an explicit form requires that
we evaluate the integrals in Eq. (16):

Iμ1���μn
ð1Þ ðbð1Þ;�Þ

v1 ·ρ
¼ Iμ1���μnw

�
fx− ia1;b1;b2� iða1þa2Þg;

1

q22ðq2 ·ρÞðv1 ·q2Þ
�
: ðB3Þ

The lowest-rank integral we need is [19]

Iμν
ð1ÞðbÞ¼

Kμν
ð1Þðv1 ·Kð1Þ ·ρÞ−2ðv1 ·Kð1ÞÞðμðρ ·Kð1ÞÞνÞ

4πðγ2−1Þðρ ·v2Þ2jbj2jbjð1Þjbj22d
; ðB4Þ

where

Kμν
ð1Þ ¼ Πμν

3d;ð1Þjbj2ð1Þ þ bμð1Þb
ν
ð1Þ;

Πμν
3d;ð1Þ ¼ ημν − vμ2v

ν
2; Πμν

2d ¼ ημν − vμ1v̌
ν
1 − vμ2v̌

ν
2;

bμð1Þ ¼ Πμν
3d;ð1Þbν; jbj2ð1Þ ¼ −bμbνΠ

μν
3d;ð1Þ;

jbj22d ¼ −bμbνΠ
μν
2d; jbj2 ¼ −bμbμ: ðB5Þ

An important feature of the integral in Eq. (B4) is that it is
traceless, ημνI

μν
ðiÞ ¼ 0. This means that contributions from

parts of the amplitude with spurious poles but no physical
graviton poles do not contribute to the waveform. Said
otherwise, this justifies our use of the cut amplitude in
Sec. II (which has unphysical poles in qi · k) for the
extraction of the waveform rather than the whole amplitude.
All higher-rank integrals can be obtained from Eq. (B4)

by differentiating with respect to b, with the constraint that
the result should remain orthogonal to v2; that is to say that
we differentiate with respect to bμð1Þ. For the most part, this
is straightforward, using

∂bμð1Þ
∂bð1Þ;ρ

¼ Πμρ
3d;ð1Þ;

∂

∂bð1Þ;ρ
ðΠμν

2dbνÞ ¼ Πμρ
2d: ðB6Þ

The derivative of jbj2 is more involved. We must write bμ in
terms of bμð1Þ, considering that ρ · b ¼ v2 · bð1Þ ¼ 0:
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bμ ¼ bμð1Þ −
ρ · bð1Þ
ρ · v2

vμ2: ðB7Þ

Then, the quantity which must be differentiated is

jbj2 ¼ −b2ð1Þ −
ðρ · bð1ÞÞ2
ðv2 · ρÞ2

: ðB8Þ

Its derivative is

∂

∂bð1Þ;μ
jbj2 ¼ −2bμð1Þ − 2

ρ · bð1Þ
ðρ · v2Þ2

Πμν
3d;ð1Þρν: ðB9Þ

This result is orthogonal to both ρμ and vμ2, and holds with
or without spin dependence.
Accounting for the Compton-amplitude contact terms

further requires that we evaluate the integrals in Eq. (21):

J μ1…μn
ð1Þ ðbð1ÞÞ
v1 · ρ

¼ Iμ1…μn
w ½fx; b1; b2 þ ia2g; 1=q22�: ðB10Þ

Computing with the method in Appendix C of Ref. [65],
the rank-0 integral is

J ð1Þðbð1ÞÞ ¼ −
1

4πjbð1Þj
; ðB11Þ

where bμð1Þ ¼ bð1ÞνΠ
μν
3d;ð1Þ. Differentiating,

J μ
ð1Þðbð1ÞÞ ¼

−i∂
∂bð1Þ;μ

J ð1Þðbð1ÞÞ ¼
i
4π

bμð1Þ
jbð1Þj3

: ðB12Þ

We have corroborated this expression through explicit
computation as for the rank-0 case, thus verifying the
validity of this derivative operation even in the presence of
spin. Equation (B12) is in agreement with Ref. [19], only
the result here encodes effects at all spin orders. Generating
higher ranks is straightforward with the integral written in
this form, keeping in mind that

∂bμð1Þ
∂bð1Þ;ν

¼ Πμν
3d;ð1Þ; ðB13Þ

such that the result remains orthogonal to vμ2.

2. Memory-effect integration

For the leading-order memory effect, the only integral
we need is [2]

Iμm½b; 1=q2� ¼ −
i

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p bμ

b2
; ðB14Þ

where jxj≡ ffiffiffiffiffiffiffiffi
−x2

p
. In terms of this, the all-spin leading-

order memory effect is obtained by a redefinition of the
impact parameter.
At next-to-leading order, all integrals we need can be

obtained by differentiating the base integral [27]

Im½b; 1=jqj� ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p 1

jbj : ðB15Þ

In terms of this, the rank-n integral is

Iμ1…μn
m ¼ −i∂μnb Iμ1…μn−1

m : ðB16Þ

When employing this relation, it is crucial to keep in mind
that

∂bμ

∂bν
¼ Πμν

2d; ðB17Þ

such that the result of the differentiation remains in the 2-
plane containing bμ. We needed an arbitrary number of
such derivatives to present all-order-in-spin results for the
anti-aligned configuration. This task was simplified in two
ways. First, the complexity of the derivatives is reduced by
considering instead Im½q2n=jqj�, which enter in the calcu-
lation for 0 ≤ n ≤ 3. Then, taking advantage of the fact that
vi · aaa ¼ b · aaa ¼ 0, wewere able to find a closed form for
the projection of the rank-2k Fourier transform into the
hyperplane orthogonal to aμiaaa

νi
aa for 1 ≤ i ≤ k. Specifically,

Yk
i¼1

ðaaa;μiaaa;νi −ημiνiaaa ·aaaÞIμμ1ν1…μkνk
m ½b;q2n=jqj�

¼−i
4nð1=2Þn
ð1Þn

ð−4Þkð3=2Þkþnð1Þkþn

2π
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p a2kaabμ

jbj2kþ2nþ3
; ðB18Þ

Yk
i¼1

ðaaa;μiaaa;νi − ημiνiaaa · aaaÞIμνμ1ν1…μkνk
m ½b; q2n=jqj�

¼ −
4nð1=2Þn
ð1Þn

ð−4Þkð3=2Þkþnð1Þkþn

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p a2k−2aa

jbj2kþ2nþ3

×

�
a2aaΠμν þ ð2kþ 2nþ 3Þa2aa

bμbν

jbj2 þ k
nþ 1

aμaaaνaa

�
:

ðB19Þ
These integrals are sufficient for completely determining
the next-to-leading-order memory effect in the anti-aligned
configuration to all spin orders, including in the presence of
higher-spin-order Compton-amplitude contact terms than
those considered here.
For the case of more generally oriented spins, we

evaluated the next-to-leading-order memory effect up to
sixth order in spin. This necessitated up to six derivatives of
Eqs. (B18) and (B19) with k ¼ 0.
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