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Refined analysis of Q~Q* polarization in electron-positron
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We investigate the production of spin-3/2 hyperon pairs, Q~Q™, in electron-positron annihilation within
the helicity formalism. A refined selection of helicity basis matrices is proposed to relate polarization
expansion coefficients and spin density matrix elements and to illuminate their inherent physical
interpretations and symmetrical properties. With a novel parametrization scheme of helicity amplitudes,
we perform an analysis of polarization correlation coefficients for double-tag Q~Q* pairs. We present three
sets of expressions to describe the decay of Q™ hyperons, and further address the existing tension in the
measurements of its decay parameters, particularly ¢q. The method and the framework developed in this
paper can also be applied to studies of the production and decay mechanisms of other spin-3/2 particles.
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I. INTRODUCTION

The quantum chromodynamics (QCD) is the underlying
theory of strong interactions with quarks and gluons as the
fundamental degrees of freedom. Although QCD has been
established for 50 years and precisely tested at high energy
scales, its nonperturbative properties at low energy scales
are still not well understood. The emergence of hadrons
from colored quarks and gluons, or more generally the
mechanism of color confinement, has become an active and
challenging frontier in modern particle physics.

The Q~ hyperon, as a member of the SU(3) flavor
decuplet [1,2], plays a unique role in advancing our
knowledge of the strong interaction. Its discovery [3]
significantly contributed to the development of the quark
model [4-6] and the formulation of the color charge
hypothesis [7]. Characterized by three valence strange
quarks with aligned spins and the absence of valence up
or down quarks, the Q™ is expected to show fewer
relativistic effects in comparison with other octet and
decuplet baryons. Yet, even after more than five decades
of research, many aspects of its physical properties, apart
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from its charge and magnetic moment, remain largely
uncharted [8-24]. While the decuplet baryon model
predicts a spin-3/2 for the Q~, direct measurements of
its spin have been ongoing [25-28]. This prediction was
recently confirmed by the BESIII Collaboration [23]. With
the growing interest in spin-3/2 particles in recent years,
the 7, characterized by a long lifetime and weak decay
analogous to A baryons, become a key focus in the study of
decuplet baryons.

High-spin particles offer extensive physical insights for
understanding the structure of particles and the properties
of QCD at low energies. Compared to spin-1/2 particles,
which possess the spin vector and two form factors,
spin-3/2 particles present a broader range of information.
They include the spin vector, the rank-2 (quadrupole) spin
tensor, and the rank-3 (octupole) spin tensor, totaling 15
polarization components [29-31], along with four form
factors [9]. There have been some measurements on the
form factors [21,22,24] and polarization of the Omega
particle [23,32]. However, research in these areas, espe-
cially regarding the decay parameters of €, is not as
advanced as for spin-1/2 particles, and some challenges
remain.

In studies of weakly decaying particles, decay para-
meters such as ap, fip, and yp are crucial. Specifically, the
decay parameter a, is vital for understanding the spin
properties of the A particle. Recent updates in a, mea-
surements [33-38] have led to significant revisions in A
particle research. Understanding the polarization of the Q~
particle requires accurate measurements of aq, fio, and yq.
However, these measurements are currently less precise.
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The most precise measurements of aq are reported by the
HyperCP Collaboration [39,40]. Prior to 2021, there were
no direct measurements of o and yqo. It was commonly
assumed that yo would be either +1 or —1 [41,42].
However, recent measurements have presented conflicting
results. The STAR Collaboration identified yq as 1 [32],
while the BESIII Collaboration reported it to be approx-
imately —0.5 [23], challenging previous assumptions and
findings. It is important to acknowledge the significant
measurement uncertainties in previous experiments. There
is a need for more precise measurements to determine the
decay parameters of the Q particle.

Furthermore, the differences in decay parameters between
particles and antiparticles are directly linked to the asym-
metry between matter and antimatter in the universe.
Extensive research on CP violation in the decays of spin-
1/2 particles, including A [33-36], 2[34,36,43], and X [44],
has been conducted by the BESIII Collaboration. However,
no evidence of CP violation beyond the Standard Model has
been found. Investigating CP violation in the decays of
higher spin and strangeness particles, such as Q~, is an
essential and ongoing area of research.

The ete™ — Q~QF process is a key to investigating the
form factors and decay parameters of the Q™ particle. Using
the w(3686) dataset of (448.1 £ 2.9) x 10° events [45,46],
along with theoretical helicity formulations about this
process [47], the BESIII Collaboration successfully
achieved the first measurement of the three decay param-
eters of the Q™ particle [23]. However, these measurements
faced considerable uncertainties, largely attributed to the
limited size of the dataset and significant background noise
in single-tag measurements. The recent accumulation of
a larger y(3686) dataset by the BESIII Collaboration,
estimated about (27.08 4 0.14) x 10® events [48], opens
up opportunities for more precise measurements of the Q~
decay parameters. The adoption of double-tag Q~Q* decay
chains in the measurement is expected to reduce back-
ground noise, representing a methodological advancement.

In this paper, we begin with an analysis of the Q~
particles within the helicity formalism, building on pre-
vious studies [9,47,49,50]. Within this framework, we
expand the complete information of polarization properties
and form factors for the Q™ particles into four complex
amplitudes: H,, H,, H3, and H,. We review methods for
decomposing polarization components in the helicity for-
malism and the general spin density matrix formalism. To
bridge the spin components in helicity formalism with
those in the spin density matrix, we introduce a new set of
basis matrices in the helicity framework. This approach
enables a clear understanding of the physical interpretation
of the polarization components of the Q™ particle.

We propose a parametrization scheme for the helicity
amplitudes of spin-3/2 particles, drawing an analogy with
the helicity amplitude parametrization of spin-1/2 par-
ticles. This scheme includes six parameters: a,,, @, @2, ¢y,

¢, and 4. This parametrization simplifies the relation-
ships between these parameters and various polarization
coefficients. For instance, the angular dependence of cross-
section terms is solely related to a,,. We also identify the
ranges for these parameters. Then, we present the complete
set of polarization coefficients for Q particles: 7 nonzero
coefficients for single-tag ™ and 116 nonzero coefficients
for double-tag Q~Q*. Using the physical interpretation of
polarization components, we investigate the survival of
these coefficients and analyze their behavior under parity
and CP transformations. Notably, we identify specific
parameter solution sets that have zero polarization in the
single-tag 2~ case and minimize polarization correlations
in the double-tag Q~Q* system. Furthermore, through an
analysis of the parameter value ranges and their corre-
sponding expressions for polarization correlation coeffi-
cients, we establish the boundaries of these coefficients.
These analyses provide fresh insights into the polarization
dynamics involved in the production of Q~Q* in positron-
electron annihilation processes.

We introduce three formalisms to describe the decay of
the Q™ particle, characterized by three decay parameters:
aq, Pa, and yo. While these formalisms are equivalent,
they offer unique insights on the decay of spin-3/2
particles. We address the challenges associated with
measurements of the decay parameter ¢ for the Q~
particle. Using the maximum likelihood method, we
assess the sensitivity of ¢q to the number of observed
events, N, in both single-tag and double-tag cases. Our
findings reveal that double-tag measurements provide
statistical advantages and effectively reduce background
noise. With the accumulated data from the BESIII
Collaboration on y(3686) events, the statistical sensitivity
for ¢ in double-tag measurements is expected to reach
approximately 2%. This level of precision has the poten-
tial to resolve the current discrepancies in the measure-
ments of decay parameters for the Q particle.

Our analysis focuses on the ete™ — Q~Q* process,
while the framework we developed could extend to other
spin-3/2 particle production processes such as eTe™ —
E7(1530)=7(1530) and ete™ — Z7(1385)Z+(1385).

The organization of this paper is as follows. In Sec. II, we
present the production density matrix for Q"QF in ete”
annihilation within the helicity formalism. In Sec. III, we
introduce a novel set of helicity basis matrices and establish
the relationships between various conventions of spin
components decomposition. In Sec. IV, we propose a
parametrization scheme for helicity amplitudes, and further
present detailed analyses of single-tag Q~ polarization
expansion coefficients and double-tag Q~Q* polarization
correlation coefficients. In Sec. V, we present three equiv-
alent formulations for Q™ decay. In Sec VI, we forecast the
statistical sensitivity for the decay parameter ¢ at BESIII
via the maximum likelihood approach. Finally, in Sec. VII,
we provide a brief summary.
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IL. Q- Q* PRODUCTION IN e*e~ ANNIHILATION

The ete™ — Q~QF process serves as a crucial avenue
for probing Q~ particle characteristics, with experiments
conducted at multiple facilities such as BABAR [51],
BESIII [52,53], Belle II [54], and the proposed STCF
[55]. In this section, we present the production density
matrix for Q"Q7 in the e*e™ annihilation process within
the helicity formalism. We detail the coordinate system and
define the angles relevant to the Q Q" production, as
illustrated in Fig. 1. Given that particle polarization is
typically examined via decay processes, we establish the
coordinate systems and angles necessary to analyze the
cascade decay of the Q~ particle, adhering to the same
formalism.

In the helicity formalism, the production of Q~QF in
et e annihilation is analyzed in the center-of-mass (c.m.)
frame of eTe™. The polar angle 0, is defined by the angle
between the Q7 particle and the positron. In the Q-
coordinate system, where we decompose the polarization
components of Q7, the Z, axis aligns with the momentum
of the Q™ particle. The 4 axis, orthogonal to the momenta
of e™ and Q~, is defined by the cross product $¢ =
Do+ X Po. The X axis is determined using the right-hand
rule. The coordinate system for Q7 mirrors this, but uses
the momentum of Q* instead. The back-to-back production
of Q™ and QF, where pg = —Pq, implies the following
relations:

0 = 2o Yo = —Ja. X = Xq. (1)

We describe the decay of the Q~ particle in its rest frame,
where the xg — yq — zo coordinate system remains. In this
frame, the decay angles of the A particle are described by
its polar and azimuthal angles. The coordinate system for
the A particle is then established as follows: the Z, aligns
with the momentum of the A particle; the y,, perpendicular

2 rest frame

FIG. 1. Definition of helicity formalism coordinate systems
and angles. The angles 0, ¢4, 0,,, and ¢, represent the polar and
azimuthal angles of the A and the proton, in the Q~ rest frame and
the A rest frame, respectively.

to the direction of zo and the momentum of the A, is
defined as $, = Zg X pa; the £, is determined using the
right-hand rule. The coordinate system of the proton, set in
the A rest frame, adheres to similar principles. Likewise,
the decay coordinate systems for the Q* side mirrors those
of the Q side. In these mirrored systems, the momenta of
the Q~, A, and proton are replaced by the corresponding
momenta of the Q*, A, and antiproton, respectively.

With the defined coordinate systems and angles, the
production density matrix for the eTe™ — Q~Q" process is
presented as [47]

oAy 2 B Ry T
Ppp, X AuLAY 1P ; (2)

where A, ; and A 2 4, are the transition amplitudes with the

helicities 1,, 4, for Q™ and 4,, A for Q*. The matrix p, is
defined as

pi(6a) = Y DLi(0.00,0)D},(0.00,0),  (3)

k==%1

where D/ (0,0, 0) represents the Wigner D-matrix, g is
the helicity angle of the Q~ particle, and x denotes the
helicity difference between the initial e and e~ states,
constrained to =1 when the electron mass is negligible. For
unpolarized lepton beams, a straightforward summation
over k is suitable.

Considering the principles of parity conservation and
charge conjugation invariance, only four independent
transition amplitudes remain relevant [47],

Hy = A1 =A12-1)
Hy = A1 =A 12172
H; = A3/2,1/2 = A-3/2.-1/2
=Aip320 = A12-3/25
Hy=A3030 =A_3/03)2- (4)

The transition amplitudes matrix is given by

H, H, 0 0

Hy H, H 0
Aij - ’ : g . (5)
' 0 H, H, H,

0 0 Hy; H,

This matrix encompasses information of the form
factors and polarization characteristics of the ™ baryon.
Detailed connections between helicity amplitudes and
form factors are presented in Appendix A, guiding in both
lattice QCD and quark models research on its structural
properties.

In our analysis of the e*e™ — Q~Q* process, we focus
on the electromagnetic and strong interactions where parity
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conservation applies. Even though parity and CP violation
effects are theoretically predicted to be detectable in the
ete™ — AA process [56], we do not include these aspects
in our analysis due to the markedly lower production rates
of Q™ compared to A.

III. SPIN DENSITY MATRIX

In this paper, we analyze the polarization states of
particles using spin density matrices in their rest frames,
focusing on particles with spins of 1/2 and 3/2. Various
methods are available for decomposing polarization
components, including the helicity formalism [47] and
the general spin density matrix formalism [17,29,31].
Although these methods are fundamentally similar, their
varying conventions often cause confusion. To address
the confusion, we bridge the spin components in
helicity formalism with those in the general spin density
matrix.

We now review the polarization components decom-
position in various formalisms, starting with the general
spin density matrix formalism due to its clear physical
interpretations of spin components. For a spin-1/2 particle,

|

0 vV3 0 0 0

| .
se_ 1 V3 0 2 0 R, V3
210 2 0 V3 21 0
0 0 V3 0 0

The rest of the basis matrices can be formulated using the
¥ matrices,

2 =2 (2% + 2¥) - 2671, (10)

N =

N 41 . T
Tik = gz{lzmk} - (SUZK + §kzl 4 M%), (11)

The polarization characteristics of particles are described
by the components S, 7%, and R/, representing the spin
vector, the rank-2 spin tensor, and the rank-3 spin tensor,
respectively, which include

St S, S5 S, (12)
T: Sy, Sir. 817 S¥e. STrs (13)
R Spirs Siprs Siors Strr Scrrs St8rs Sprr- - (14)

These 15 independent polarization components reveal

specific eigenstate probabilities in the spin density matrix
p3/2- Detailed probabilistic  interpretations of these

the polarization states are represented by a 2 x 2 Hermitian
matrix in a Cartesian coordinate system, formulated as

1+ S'c"), (6)

N[ =

P12 =

where ¢/ denotes the Pauli matrices and S°, the rank-1 spin
vector, comprises
St =(S,.5,,S.). (7)
This spin density matrix formulation adheres to the
normalization condition Tr[p] = 1.
For spin-3/2 particles, the spin density matrix is repre-
sented as [17,31]

1 4 02 8 .
= (14 =8+ ZTUx 4 = RUkyIk | 8
p 4< + ST+ 3 +3 ) (8)
where X, XY, and X% are independent, orthonormal,
and Hermitian basis matrices. The matrices ¥/, in the S,
representation, are defined as

-3 0 0 30 0 0
0 -2 0 1o 1 0 o
. =g 9)
2 0 -3 210 0 -1 0
0 V3 0 00 0 -3

I

components can be found in Appendix B. While our
definitions generally align with those in Refs. [17,31],
we introduce a notable variation in the definition of S}’
for a refined analysis of polarization symmetries. The
domains of these components are not normalized to 1,
as outlined in Appendix B.

In the helicity formalism, spin density matrices are
concise yet may lack clear probabilistic interpretations.
To address this, linking these polarization coefficients with
the corresponding elements in the general spin density
matrix representation offers a direct understanding.

The spin density matrix for spin-1/2 particles in the
helicity formalism is typically represented as [47]

1
B _
Pij2 = B E :Iﬂ"w
u

where y runs through 0, x, y, and z. The term ¢, represents
the 2 x 2 identity matrix, and o, 6,, and o, are the Pauli
matrices. The trace Tr[p| equals I, representing the total
cross section, which typically is not normalized to 1.

Consequently, the spin vector of the particle is defined
as § = 7/ 1.

(15)
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TABLE L. The correspondence between the expansion coefficients Sy, S, ..., S;5 and the spin components in Egs. (12)—(14). Dividing
the first-row coefficients by S, provides the second-row spin components, exemplified by S,/Sy, = S;.

So S Ss S3 Sy Ss Se S7 Ss So S1o St Si2 S13 Sia Sis

1 St St Sy SiL Sir Sir STr Srr Seer Siir Siir Strr Serr Strr Srrr

The spin density matrix for spin-3/2 particles is typically
represented as [17,47]

15
/’g/z = Z SuZus (16)
n=0

where Xy, %, ..., 25 form a complete set of orthogonal
basis matrices. The coefficients S, Sy, ..., S5 correspond
to the polarization components of the particle. We adopt the
basis matrices framework in Ref. [17], as explained in
Appendix C. In this framework, we establish a direct
correlation between S, Sy, ..., S15 and the spin components
defined in Eqgs. (12)-(14). This relationship is detailed in
Table I.

IV. SPIN ANALYSIS OF Q BARYONS

In this section, we propose a new parametrization
scheme for helicity amplitudes to enhance our understand-
ing of Q7 polarization. Then we analyze the polarization
of single-tag Q~ and provide comprehensive expressions
for the polarization correlation coefficients of double-tag
Q-Q*. By analyzing the polarization correlation coeffi-
cients constrained by the ranges of the helicity parameters,
we obtain the boundaries for these coefficients. We identify
specific parameter solution sets that result in zero polari-
zation in the single-tag Q™ case and minimize polarization
correlations in the double-tag Q~Q7 system. We also delve
into the inherent symmetries of these coefficients by
examining their physical interpretations.

A. Parametrization scheme

The polarization of the Q™ particle is characterized
by four helicity amplitudes, detailed in Eq. (4). In
Ref. [23] a simple parametrization is used to relate these
amplitudes with helicity parameters s; and ¢} by defining
HI/H2 = hleid/l, H3/H2 = h3€i¢/3, H4/H2 = h4€i¢2, and
obtaining two sets of fit values of the helicity parameters,
called Solution I and Solution II. This parametrization is
straightforward, but the polarization information is mixed
in these parameters. We aim to introduce a new para-
metrization scheme to clear the polarization interpretation
of helicity parameters. To align with the parametrization for
spin-1/2 particles as in Refs. [47,50,57], we start with the
introduction of a parameter a,, and represent the production
cross section of Q Q% as do 1+ a, cos?fg. Our
approach also simplifies the connections between different

polarization components and parameters. By examining the
expressions for single-tag Q~ polarization in Appendix D,
we establish our parametrization scheme as follows:

H, :2—\1/2\/1 — o, — Q1 eXp [i(¢l +¢3)]7

1
H2:7§\/a_2’
1

H; =3V + a, — oy exp [igh3].

1
H=——=.\/1—a, +aexpli + , 17
4 2\/5\/ y +aiexp [i(¢y + h3)] (17)
where the domains of these helicity parameters are
1<, <1, (18)
—1—|—a,/,§611§1—(11,/’ (19)
0<a<1+a,. (20)

These domains simplify the experimental constraints on the
parameters and facilitate the analysis of 2~ spin properties.

We provide detailed relations between these helicity
parameters and those in Ref. [23]:

1 = 2h} + 2h% = 2h}
o, = s
V' 14 2hi +2h3 + 203

4(hi — h3)
ay = — ,
Y2 20k 28
2
a

T 142K 42K + 2k
¢1 = ¢) — ¢ + 22N,
¢3 = ¢ + 2zN,

$s = ¢y — s + 22N, (21)

where N is an arbitrary integer. Using these relations we
obtain the helicity parameters in our scheme corresponding
to the two sets of fit values in Ref. [23] and list them in
Table II for later use.

B. Single-tag Q-
To analyze the polarization of the single-tag Q~, we sum
over the spin states of its counterpart, Q*. Using Eq. (2),
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TABLE II. The new parametrization scheme calculated using
Eq. (21). The datasets are from the measurements of the ete™ —
r* = w(3686) = Q- Q* process by the BESIII Collaboration [23].

Parameter Solution 1 Solution II
a, 0.237 £0.109 0.233 £ 0.095
a —0.371 £0.202 —-0.353 £0.175
a 1.090 + 0.128 1.076 £ 0.116
by 437 +£0.44 6.09 £0.44
b3 2.60 £0.18 2.57 £0.17
o 4.02 £0.89 5.08 £0.70

the production density matrix for a single-tag Q7 is
described as [17]

R T A
Po & ZA,ll,,le,y] ,,12P11 T 0g) (22)
A

Inserting the transition amplitude A, i which is expressed

in terms of the helicity parameters defined in the previous
subsection, results in

myy C12 13 0
* . *
. C12 m22 lm23 C13 2
Pa = y . « | (23)
C13 —lm23 m22 _CIZ
0 13 —Cip My

So =1+ a, cos? b,

where m;;, my,, my; are real and ¢y, ¢z are complex
functions, given by

my == [2+a —a)+ (2a, —a; —ay)cos’dg],  (24)

0| —

My, = [(2 - + &)+ 2a, +a; + az)coszeg], (25)

0| =

2
— % Vol =, — ) sin20g sin (4 +¢3), (26)

1

Cip = —E\/ 1 +al// —azsin299

X [w/l —a, —a;(cos ¢y —ising)
—/1—a, +aj(cos g, + isingy)]. (27)

2 . ..
c13 = %, [ay(1 + a, — ay) sin® Og(cos g3 + i sin¢h3).
(28)

By comparing Egs. (23) and (16) we can express the
polarization components S; in terms of the helicity para-
meters and list the nonzero terms as follows:

(29)

1. . . .
S3:—§sm2€g {\/g\/l +aw—a2(\/1—aw—a1 sing —|—\/1—av,+alsm¢4) +2V2 o (1 —a, —ay)sin (¢, +¢3)],

1

S, =~
D)

(a1 — @) = (@) + ay)cos?g ],

(30)

(31)

V3
SS = _TSIH299\/1 —|—ay,—a2(\/1 —av,—al COS¢1 - \/1—al,,+alcos¢4), (32)

6
S, = %sin@m [y (1 + &, — ay) cos ¢bs,

(33)

1, . . .
S :_Z_OSIHZQQ [\@\/l—i—au,—az(\/l—aw—al sing; +/T—a, +a;singy) —3v2,/ay (1 —a, —a; ) sin (¢, +¢3)},

6
S5 = _gsin2 Oar/ar(1 + o, — ay) sin 5.

(34)

(35)

We also give the expressions for S; in terms of the helicity amplitudes H,, H,, H;, and H, in Appendix D, so that one can

easily get the result for any parametrization scheme.
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1.5 —r—r—+ 11— S ]
r Yy 1 o - 1.5 sx —
-4 1 S ] EOLT hn

1 i _ ‘/?cosag = 1 N m 1.E _ ‘/?cosﬂg ,,//_'
r 2(1+cos? o) =77 - § o Y 1+cos? 87" ]
0.5 s 4 05 4 osF -
of 2 . of ] of s 1

-0.5F g 3 -osf 3 -o0s5fF 3

S £ YT/ ] C ] c . AFcosty ]
1B 2 (1+cos” 6n) 3 ] = -1 V 1+cos? 6y =
g 1 1 1 . g 1 1 1 ] -15g 1 1 1 E
-153 -0.5 0 0.5 1 1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

cosfq cosfq cosfq

15_....,....,....,...._ L e e o e o R R N e 15_....,....,....,...._
~E XX = r \ B S y -
o s'I'I' ] - sLLT - o StTT ]
1.E 3 0.5 _ 3V 4410 costy = 1.F 3
C ] [ 546 (1+cosdg) -7 ] C eod? 3
05F V3 (1-cos? = ( /), 05k Y3 (1-cos ) =
o — E F L - ~E 2 E

£ VZ (1+cos? 6g) ] L - £ V2 (L+eos? 6g) ]
S = 0 > 0K -
S V3 (1-cos? 6, - r . b > V3 (1-cos? 6, -

-05F N _‘/7 1+cos? 6 S i e 1 -05F N _‘/7 1+cos? 6 S
o AN ( ,)/ ] [ . 3¥V4+V10 cosh, ] o AN ( ,)/ ]

-1 . o 4 -osF 546 (1+cos? 6o) 3 -1 e o =

-15F - 3 {1 -15F -
I S T U TR T T [N T M T Y B M PR T T T T S T A T T T T N N N I S T N U T T [T T O T Y T M
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

cosfq cosfq cosfq

FIG. 2. Boundaries of the spin components in the single-tag Q™ process.

Except for the S, term that corresponds to the cross
section, the six nonzero polarization components listed
above survive from the total 15 terms due to parity conserva-
tion. We will analyze this through the physical inter-
pretation of these components as detailed in Appendix B.
In the parity-conserving ete™ — Q™ QT process, a parity
transformation leads to

Xq = —Xo, Yo = Yo, Zo = —Za. (36)

This transformation keeps the components S7(S3/S),
Sii(Sa/S0)s  Sir(Ss/So)s S¥r(S7/So0),  Sirr(Su/So)s
SPrr(S13/80), and 8777 (S15/S0) unchanged, demonstrating
their compliance with parity conservation. Additionally, the
limitation of helicity transitions to £-1 leads to the absence of
certain off-diagonal elements in the spin density matrix,
as shown in Eq. (23). The component Sy;;(S;s/So) is
forbidden because it relates to the basis matrix 2,5 as shown
in Eq. (C2), which only have nonzero elements correspond-
ing to helicity transitions beyond +1. Consequently, only
the above six polarization components survive in this
process.

While the spin components have natural boundaries
according to their physical interpretations, as listed in
Eq. (B25), the production mechanism of the single-tag
Q" in the efe™ = Q QF process will also implement

constraints on these polarization components. This effect
can be analyzed through applying the ranges for a,,, a;, @,
as shown in Egs. (18)—(20) to the six nonzero spin
components in this process. We illustrate the results in
Fig. 2, with the red and blue curves denoting the boundary
lines calculated from Egs. (29)—(35). One can easily see
that these boundaries for spin components are narrower
than those determined by their physical interpretations and
are influenced by the production angle 6, except for S; ;.
This finding offers new insights into the polarization
dynamics of this process and deserves further research.

We also observe from the figure that the domains for
all Q™ polarization components include zero, which cor-
respond to unpolarized states. Two sets of parameter
values will lead to this specific situation, which are a; =
oy = O,QW = +1 and A = 0y = O, ¢4 = —¢]. The com-
parison between these values and experimental results can
reveal the polarization degree of the Q™ particle, offering an
intuitive understanding of the parameters.

C. Double-tag Q- Q*

In this subsection we analyze the spin states of the
double-tag Q~QF. Similar to the single-tag case, we
expand the production density matrix in a complete set
of orthogonal basis matrices, and the expanding coeffi-
cients correspond to the polarization correlation. In the
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double-tag case there are 256 polarization correlation
coefficients, out of which 116 are nonzero. These nonzero
terms are linearly dependent, so we only list the terms
necessary and the rest can be expressed by the linear
combination of these terms. For reference, the original
versions of these coefficients, expressed with variables H,
H,, H;, and H,, are available in Appendix D.

For a spin-3/2 particle pair system, the general spin
correlation is formulated as

15 15

=> 3 5.5 ® (37)

#=0 v=0

PB,B,

where S, , denotes the spin correlation coefficients. By
comparing the above equation with the production
density matrix for Q~Q* pairs as shown in Eq. (2), we
can obtain the correlation coefficients. Charge conjugation
invariance in the production process informs the following
relationship:

S,M,D(HQ) = Sb,ll(ﬂ —0gq). (38)
Given this, we only need to provide specific expressions
for terms where u > v. For convenience, we introduce these
D-type functions,

D} = /(1 -a, —a)(1 +a, —a)sing, (39)
D§ = /(1 -, —@)(1 +a, —a) cos b, (40)
Dy = \Jar(1 -, —a))sin (g +bs). (41)
D5 = /(1 —a, —ay)cos (¢ + ¢s3). (42)

Dj = /(1 +a, — ay) sin¢p3, (43)
D:C)): \/a2(1+av,—02)cos¢3, (44)

) sin ¢y, (45)

D;‘i:\/(l—aw+a1)(1+aw—a2

DS = \/(1—al,,+a1)(1+al,,—az)005¢4’ (46)

Dy = \/(1-a, —a)(1 = +a)sin (¢ = gs).  (47)

D5 = /(1 -a, = ay)(1 - a, +a)cos (= ). (48)

Dy = /(1 —a, + a;) sin (¢3 + ¢s), (49)

D{ = y/ar(1 - @, + ay) cos (s + ¢y). (50)

We now outline the explicit expressions for the diagonal
coefficients. We identify the 13 independent terms among
the total 16 diagonal coefficients,

Soo =1+ a,, cos? b, (51)
1
Si1= 1(4 —ay, + 20 = 2m,)
1
1 (1 —4ay, +20; + 2a,)c0s*0g, (52)
1 c\ain2
Sr0 = 3 (5 + ay, = 2a; + &, + 3D5)sin"0g
6
+%D§(3 + cos26q), (53)

1 .
S33 = 3 (14 5a, + 2a; + ay — 3D5) sin” 6,

6
- \/T—Dg(?) + cos 26g), (54)
Spa = —(a, —ay) = (1 = ay) cos® g, (55)
3 ¢\ ain2
SS,S :5(1 +(Xy/—a2+D5) S1n GQ, (56)
3 ) ain
S6,6 = E (1 + a,,, —Qy — DS) S HQ, (57)
3,03
S74 =5Ds <sin® fg + — (1 +a, —a,)(34cos26q), (58)
9
Sg’g = m (1 - 4(1,,, — 2a1 - 3(12)
9
- m (4 - a,,, - 2(11 + 3(12) COS2 HQ, (59)

3
S]O,IO 100 (5 a —Sal —|—4a2 +2DC) Sln eg

3
——\/_D‘ 5$(3 4+ cos26g), (60)
St = 100(1 - Sa, — 3a; — 4y + 2D5) sin” 6
3
+iDc(3 + cos 20g), (61)

3 .. 3
Slz’uziDgsmzHQ—Z(l+a,,,—a2)(3+cos299), (62)

9 .
814’14 :Z(l —a,,,—i—al)smzﬁg. (63)
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The remaining 3 dependent diagonal coefficients are

{S8,87513,l3a515,15} = {_57,7, —512.12» —514,14}’ (64)

where each coefficient on the left side corresponds
directly to its counterpart on the right side, exemplified
by Sgg = =577

For the off-diagonal coefficients, we present a subset of
S, with u > v, totaling 50 nonzero coefficients. These
coefficients are classified according to the number of
D-type functions contained in their expressions. There
are 6 coefficients without D-type functions, with the
following three selected as the independent ones:

1 1
Sa0 = B (a —a) - 2 (@1 + @) cos? Og, (65)
3
Soq = -0 4+ da,, — 3o — Tay)
3
- (4 +4a, + 3a; — Tay) cos® O, (66)
3 -
Siaz 21(1 +a, — ay) sin” fg, (67)

and the remaining three are represented as

3

3
{S14.10: S153-Si501} = {—5514,2,—514,2»3514.2}- (68)

For a case where the D-type functions appear once, there
are a total of 18 coefficients. The following 7 are chosen as
independent ones:

6
S7’0 = %Dg Sil’l2 99, (69)
6
Sl3,0 = —gl)% Sinz 99, (70)
3 S i
Sz = 505 sin” b, (71)
S7’5 = Dg sin 299, (72)
32
Si3s = {Dg sin 20, (73)
33
Sisy = —Tng sin 20, (74)
3/3
Siats = T‘[Dg sin 20, (75)

and the remaining 11 coefficients can be expressed as

1 9

{SIZA,I ’ S7,47 S12,9} - {557,0’ _S7$0’ - ESTO}’ (76)
1 9

{S8.1’S13.4’S9,8} - 5S13.01_513$07_ES13,0 ’ (77)

{S8.61 512,6, 512,87 514,87 515,13}
= {—57.51513.51513.71515,71—514,12}- (78)

When the D-type functions appear twice, there are 18
coefficients, with these 12 listed here as independent ones:

3
S5 = _4 (D$ — D§) sin 20, (79)
3
Se1 = _% (D$ + 3Dj) sin 26, (80)
3 6
Se.2 :ZDg sin” O —§D§(3 +cos 26q), (81)
1
Ss2 = =5 (23D} + 3V2D}) sin 20, (82)
3 c 202
Si02 = 2—0(2% +ay = 3a, + D) sin” 6o
_Z_§D§(3 + c0s20g), (83)
1
Si22 = =5 (2V3D§ ~ 3V2D§) sin 20, (34)
3 c fa2
511_3 = 2_0(2 —a; —3a, — DS) sin” g
6
+;f/_0_D§(3 + c0s20g), (85)
3 .
Ss4 = \/T_ (D§ + Dj) sin20q, (86)
3 . 3v6
Siis = ED; sin? 0, + %Dg@ +cos20q), (87)
33
S9,6 - - %— (3Di - Di) Sin 299a (88)
3 .
Sig = =55 (V3D} = V2D;) sin 26, (39)
3 .
Si210 = 20 (V3DS + V2D§) sin 26, (90)

and the other 6 are written as

{853 S10.6: 873} = {S62-S11.5. S0} (o1)
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{513,37510,87513.11} = {_512,27511,7» —512,10}- (92)

Finally, when the D-type functions appear 3 times, there
are 8 coefficients, all of which are independent:

Sy0 = —% [2V2D3 + V3(Dj + D})] sin20g,  (93)
Siio= % [3V2D3 — V3(D§ + D5)] sin20g,  (94)
Sy, = %6 [2V2D5 — V3(D§ - 3D5)] sin26g,  (95)
Sio1 = —% [3V2D5 + V3(D§ - 3D5)] sin 26,  (96)

3
So2 =15 [6V2Ds — V3(3D§ + D5)| sin260q,  (97)

S0,4’ SO,7’ S0.13’ S1.87 Sl,97 Sl,12
S2.6’ SZ,IO’ 52,14’ S3,5’ S3.11’ S3.15
S4.7’ S4,13’ SS,II? S6,109 S7,13

889, 58.12: 89,125 S10,14» S11.15

and the coefficients that exhibit antisymmetry are

SO,3’ SO,Sv SO,llv Sl,27 Sl,6’ Sl.lO
52,87 S2,9v S2,12v 83,4’ S3,7v S3,13
S4,57 S4,11S5,7v SS.ISv 56.87 S6,9
S6,12’ S7,117 S7,157 S8,107 S8,14

89,10 510,12> S11,13> S12,145 13,15

To explore the reasons behind the symmetry and antisym-
metry in these coefficients, we consider CP conservation in
the ete™ — Q~Q7 process. Because of Eq. (1) and Fig. 1,
a CP transformation leads to modifications in the coor-
dinate systems of Q™ and Q,

20 — 20, (103)

Xo = —Xq, Yo = —Va

A A N ~ S A

26 = 25, (104)
where the transverse coordinates (x and y) of both Q™ and
Q7 invert, and the longitudinal coordinates (z) remain
unchanged. Consequently, polarization coefficients involv-
ing an even number of transverse indices remain the same.
For example, the coefficient S, g (corresponding to Sy, 77w ),
containing two transverse indices, remains unchanged. In
contrast, coefficients with an odd number of transverse

1 ,
Sss = =5 [2V2D} + V3(D} - D3] sin 26, (98)
1 ,
Sina = =55 [3v2D5 — V3(Dj — D3)] sin 26, (99)
3 \ eVl o
$109 = 555 [9V2D$ + V3(3D§ + D§)] sin20,.  (100)

We have detailed the 66 polarization correlation coef-
ficients where u > v. The correlation coefficients with y < v
can be derived using the relation S, ,(0g) = S, ,(7 — 6g).
Among these 50 coefficients, 22 show symmetry in the
exchange of i and v, and the remaining 28 coefficients are
antisymmetric. The symmetric ones are

S4,0, S7,0v S13,0v SS,I ’ 59,1’ SlZ,l

S6,2’ 510,2’ Sl4,2’ SS,37 S11,37 515,3

. (101)
§74,8134,S115: S10,60 S137
So.8:S12.8:$12,0: S14,10- 15,1
83,0550 5110 82,1, 56,15 S10.1
882,892, 8122, 843,573, S133
—q S5.4:5114575. S135. S86. S0 6 (102)

S12,6:511.7:8157- 8108, S14.8

S10,9’ S12,10’ Sl3,11814,127 SlS,l3

I
indices, such as S;, (corresponding to S; 7+), undergo a
sign change.

In our analysis of single-tag Q™ polarization, we identify
two solution sets indicating an unpolarized state of Q™. For
the double-tag Q~Q system, there is no specific solution
that completely zeros all polarization correlation coeffi-
cients, which corresponds to the unpolarized state of the
system. However, we find a special solution set that zeros
out all off-diagonal polarization correlation coefficients,
significantly reducing polarization correlation in the Q~Q*
system. This particular solution is

a1:0,

02:0, al,,:—l, ¢4:—¢1. (105)

A possible discrepancy between these theoretical ideal
values and experimental measurements would offer insight
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0.1

0.2

S10,9/So

I S11,1/S0 T L Sy,2/So ] I T
i Solution | - - - - Solution Il | r Solution | - --- Solution Il i Solution | - --- Solution Il |
0.2 | | | -  -0.5- | | | -  -0.2 | | | -
1 11 1 1 11 1 11 1 1 11 11 1 11 1 1 11 1 11 11 11 11 1 11 1 11 1 1 11 11 11 11
-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5
cosfq cosfq cosfq

FIG. 3.
single-tag Q™ process as inputs.

into the extent of polarization correlation between €~
and QF.

In single-tag Q~ polarization measurements, there exist
two sets of solutions corresponding to the same polariza-
tion state, reported by BESIII [23]. While in a double-tag
Q~QF measurement we claim that this uncertainty can be
removed. To show this we insert the two solutions listed in
Table II into the polarization correlation coefficients we
obtained in this subsection, and the results demonstrate that
these two solutions can be separated clearly. We take Sy,
Sg,, and Sy 9 as examples in Fig. 3. The conclusion is that
it would be much easier to eliminate nonphysical solutions
in the double-tag Q- Q" measurement.

V. DECAY CHAINS

Particles polarization states are typically inferred from
decay processes, which manifest the polarization of parent
particles in the angular distribution of their decay products.
There are several approaches to describe particle decay. For
instance, the polarization transfer matrix a,, [47] and the
Lee-Yang formula [58] are two common approaches for
spin-1/2 particles. In this section, we present three methods
to describe the decay expressions of spin-1/2 and spin-3/2
particles. The first method employs polarization transfer
matrices, represented as a,, for spin-1/2 and b, for spin-
3/2 particles, within the helicity formalism. The second
approach applies the Lee-Yang formula for spin-1/2
particles and its adapted version for spin-3/2 particles.
The third method is a new formulation we have developed.
While these approaches are equivalent, each provides
distinct insights into the decay processes. Additionally,
we discuss the discrepancies in understanding the decay
parameters of the Q particle among existing experiments.

Because of their computational simplicity, we begin with
the use of polarization transfer matrices within the helicity
formalism to describe decay expressions. For the decay of
spin-1/2 particles, e.g., the A — pz~ process, the spin
density matrix of the proton is represented as [47]

Parts of the polarization correlation coefficients in the double-tag Q- Q% process with the two solutions measured in the

Sua,,

3 3
Pl = EZ

u=0 v=0

(106)

oy,

where S, denotes the polarization of the initial A particle
and a,, is the polarization transfer matrix, illustrating the
polarization transition from the parent A to the daughter
proton. The polarization transfer matrix is expressed as

1/2 1/2
Z BABI/(G}‘)K,K’(GU)/VJ
”/1,/1/:—1/2 Kk'=—1/2
1/2x% 1/2
x D/ (Q)DY2 (@),

KA

1

a,, y)

(107)

where D;,(Q) =D/,(0.0,¢) represents the Wigner
D-matrix and B, is the helicity amplitude for the
A — pn~ process with A being the helicity of the proton.
The relation between these helicity amplitudes and the
canonical amplitudes A; is given by

2L +1
B, =
’ ZL:<2J+1

where (L,0;S,1|J,4) denotes the Clebsch-Gordan coef-
ficients, which involve the spin of the parent particle (J),
the spin of the daughter particle (S), and the orbital angular
momentum (L). For the case where J = 1/2 and S = 1/2,
we obtain

1/2
) (L,0;S,A|J,)A;, (108)

V2

B_i) :T(As + Ap), (109)
V2
By ZT(AS_AP)' (110)
These helicity amplitudes encompass both parity-

conserving and parity-violating effects. For parity conser-
vation processes, there is a relationship
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By = mnn(=1)""°B_,, (111)
where 7, 171, and 7, denote the parities of the parent particle
A and its decay products, proton and z~, respectively. By
comparing Eqgs. (109) and (110) with Eq. (111), we identify
that the P-wave term (Ap) aligns with parity conservation,
while the S-wave term (Ag) indicates the parity-violating
transition. Using the Lee-Yang parametrization scheme
with the normalization constraint A% + A% =1, these
amplitudes are parametrized as

ap = —2Re[Ag"Ap| = |By o = |B_i o|%, (112)
Bp = —2Im[Ag*Ap| = 2Im[B;,B_, ], (113)
vp = |Asl* = |Ap|* = 2Re[By 1B_ 5] (114)

where f, = /1 —aksing, and yp = /1 — a3 cos ¢p.
We give the explicit expressions for a,, in Appendix E.
Contrary to common beliefs, @, is not the most precise
indicator of parity violation. Instead, y , offers a more direct
measurement: positive values indicate parity violation
dominance, while negative values suggest dominance of
parity conservation. The key factor is ¢, . The Particle Data
Group (PDG) reports ¢, = —6.5 & 3.5° [59], indicating a
predominance of parity violation in the A decay.

The analysis of the decay for spin-3/2 particles, exem-
plified by the Q™ — AK™ process, parallels that for
spin-1/2 particles. The spin density matrix of the A particle
is expressed as

15 3

Pl = Z Subuoy:
u=0 v=0

(115)

where S, denotes the polarization of the parent particle
and b,,, the polarization transfer matrix, reflects the
transfer of polarization from Q~ to A. The matrix b, is
formulated as

1/2 3/2

Y BiBy(Z) (o)

ﬂl./l’:—l/Q KkK'==3/2

x DY QDY ().

1
bﬂy:z_

(116)

where B, is the helicity amplitude for the Q= — AK~
process with 4 being the helicity of the A. Using Eq. (108),
these helicity amplitudes are described as

B_iy =—-(Ap+Ap), (117)

(Ap —Ap). (118)

SIS

By =

Using Eq. (111) for parity analysis, we find that that the
P-wave term (Ap) corresponds to parity conservation,
while the D-wave term (Ap) indicates parity-violating
effects. With the normalization condition A% + A% =
the amplitudes are parametrized as

ap = —2Re[ApAp] = |Bip|* = [B_ypl’ (119)
pp = —2Im[A}Ap] = 2Im[B, 1B, 5], (120)
vp = |Ap|* = |Ap* = 2Re[B1/2le/2], (121)

where B, = /1 — a3 singy, and yp = /1 — a} cos ¢p.
The complete expressions for b, are detailed in
Appendix E. We use the parameter yq to assess the degree
of parity violation, where a positive yo suggests a pre-
dominance of parity conservation and a negative yq
indicates parity violation dominance. Commonly, decay
parameters for Q are expected to be fo ~ 0 and yo =~ £1
[41,42]. Based on this, the STAR Collaboration reported
7o — 1 [32]. However, the BESIII Collaboration presented
different results with
fo = —0.91°03)

vo = —041+046,  (122)

Bo = —0.851072, 7o = —0.53 + 0.40, (123)
for the two values of ¢ in Solution I and Solution II in
Ref. [23] together with ag = 0.0154 [59] as inputs. These
results significantly differ from traditional beliefs. The
assumption that fig ~ 0, which implies limited time-rever-
sal violation, is inconsistent with the measurement of
BESIII Collaboration. Additionally, the sign of y reported
by BESIII Collaboration directly conflicts with the result
of STAR Collaboration. Given the notable experimental
uncertainties, especially concerning ¢q, more precise
experimental investigations are needed to clarify these
discrepancies.

Using the associated coordinate systems and angular
definitions shown in Fig. 1, we have described decay
processes using polarization transfer matrices a,, and b,,.
While these matrices are computationally convenient, the
lengthy polarization transfer expressions obscure the under-
lying physical mechanisms of decay processes. To provide
a more intuitive understanding of decay processes, Lee and
Yang proposed an alternate approach for spin-1/2 particle
decays in Ref. [58]. In the rest frame of the parent particle
A, the polarization transfer in the A — p + 7z~ decay is
expressed as

- (An+SA-Dp)Dp +PASAX Py +7aPp X (SA X P)p)
1 ‘I‘aASA 'ﬁp

’

p

(124)
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where §A denotes the spin vector of A and p, and S »
represent the momentum and spin vector of the proton,
respectively. The denominator indicates the cross section
for this process

do™="" & (14 apSy - p,)- (125)
This decay expression clearly reveals the mechanisms
involved. The parameter a, reflects the impact of the
parent polarization on both the cross section and the
polarization of decay products along their momentum
direction. 3, details how the parent polarization influences
the polarization of the decay products perpendicular to the
plane formed by the parent spin vector and the momentum
of the decay products. y, signifies the effect of the parent
polarization on the polarization of decay products within
this plane, perpendicular to their momentum.

We extend this methodology to analyze the decay of
spin-3/2 particles, using the Q= — Az~ decay process as
an example. According to the equivalence to Eq. (115), the
polarization of the A particle is described as follows:

- 1 2—’ N A
SA = B{(ag +§SQ * PA —aQTgp _2Rgpp)pA

4. -
+ fo <§SQ —2Rg”> X P

4 o
+YaDPa X [(gsg - 2R5p> X ﬁA] },

where D represents the cross-section term for the decay
process

(126)

_ _ 2 -
dGQ —AK X D = (1 + gaQSQ . IA?A - Tgp - ZGQRgpp) s
(127)

where S, Tg, and ng denote the spin vector, rank-2 spin
tensor, and rank-3 spin tensor of the Q™ particle, detailed in
Appendix B. The following shorthand notations are used
in the expressions:

T8 = TSP ph. (128)
RIP” = R pi ph bk, (129)
(RE")" = RS '\ K. (130)

Similar to the decay of spin-1/2 particles, the decay
parameters aq, fq, and yq for spin-3/2 particles also carry
related physical interpretations. Our approach shows some
differences from the one in Ref. [42], mainly due to a
distinct normalization method for polarization components.
We detail the domains of the polarization components

based on our normalization sch in Eq. (B25). A direct
difference is seen when averaging over the angular
distribution of A, where the polarization transfer is sim-
plified to

o 2> 1 2.
SA:CSZA<§SQ> :§(1+479)<§59>- (131)

Our formula includes a factor of 2/3, which is absent in
Refs. [32,42], which arises from normalizing the spin
vector S’ in the range of [-3/2,3/2].

We have explored two different methods for describing
decay processes. The helicity formalism is particularly
useful for depicting the coordinate system and angular
dependencies of the decay products. On the other hand,
the Lee-Yang method offers more explicit insights into
the fundamental physical principles of these processes.
Combining the advantages of these two approaches, we
develop the third method to describe decay. For the decay
of spin-1/2 particles, such as in the A — p + 7~ process,
we establish the coordinate system of the parent particle as
XA — YA — 2Za, illustrated in Fig. 1. The polarization pro-
jection axes for the proton are represented as

%, ={cos@,cos¢p,,cos,sing,, —sin6,}, (132)
$p ={-sing,.cos¢,,0}, (133)
2, = {sinf, cos¢,,sin6,sin¢,,cosb,}. (134)

By projecting Eq. (124) onto these axes, we determine
the cross-section and polarization components of the proton
for each axis,

do’=P" « D = (1 + apS)2h), (135)
p_ g i s
Py = BSA(ﬂAyp +7aXS,), (136)
p_ i o s
Py = BSA(VAyp _ﬂAxp)v (137)
p_ 1 i i
P! :B(aA—i—SAz,,). (138)

This representation not only includes details about
the coordinate axes and angles but also offers a clearer
understanding of the physical mechanisms involved.
Furthermore, by decomposing polarization into individual
axes, this approach simplifies the study of polarization in
various directions.

We apply this method to express the decay of spin-3/2
particles. Using a similar approach to define the coordinate
system for the parent particle Q as Xq — yo — Zq and the
polarization projection axes for the daughter particle A as
XA — YA — Za, we project Eq. (126) onto these axes and obtain
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de¥ 7AK D

2
:<1+§ozgsgzz7fA T4z 25 —2aqRY, 2;212@) (139)

1 4 . Ad Al Al A Y ke
P2 =5 |:§Slg(ﬁ$2yj\+79xA) —ZRészzj\(ﬁgyf\-i—mxlX)} ’
(140)
A 1 4 i N Al ijkai aj ~k
P =5 gSQ(yQyA — BaR)) = 2RS 2\ 2 (radh — Baih) |
(141)
A 1 2 i ai ijai o) 2 ik i ’\] sk 142
PZ _5 ag+§SQZA_aQTQZAZA RQ IRIXINE ( )

Using these decay expressions, we establish the joint
angular distributions for final-state particles in single-tag
Q" and double-tag Q~Q* decays. Because of the equiv-
alence of the three polarization transfer expressions, we
focus on the first method for computational convenience.

For single-tag Q~ decays, the joint angular distribution is
formulated as

W(@,E) = ZZS,,bQ al,

=0 v=0

(143)

where @ = {a,,. a1, @y, ¢y, 3. P4, aq. pg. ) } denotes the

decay parameters and E= {0q.0n.¢r.0,.¢,} indicates
the angles involved in both the production and multistage
decay processes. Considering the challenges in directly
measuring the polarization of the proton, our analysis
includes a summation over this polarization.

For double-tag Q Q" decays, we express the joint
angular distribution as follows:

15 15 3 3
w, Z;ZZZ: ;4/4 w ﬂ’Oaf/\’O’ (144)

where @ = {al,w ay, oy, ¢17 ¢3’ ¢4’ aq, G, ¢Q’ ¢Q’ A (X]\}
signifies decay parameters and &= {f0q,0,, P, 0%, D5,
Hp,dvp,él—,,qﬁﬁ} reflects the associated angles. Similar to
the single-tag case, we sum over the proton polarization.

VI. FURTHER DISCUSSION: SENSITIVITY
OF ¢q MEASUREMENT

In this section, we compare the sensitivity of the decay
parameter ¢ in single-tag Q~ decays and double-tag
Q~QF decays measurements. Following the methods out-
lined in Refs. [60,61], we use the maximum likelihood
method to examine the sensitivity of ¢ with respect to the
number of observed events, N.

For a specific process, we define the normalized joint
angular distribution as

(145)

For a set of specific data, the likelihood function can be
defined as

N -
L= HVV@@

i=1

(146)

where N is the number of the observed events. In the
maximum likelihood method, the statistical sensitivity of
the measured parameter is determined by the relative
uncertainty,

V(¢a)
ol

where V(¢gq) is the variance of the parameter, given by

=N [ [M’J

To determine how the sensitivity of the parameter ¢q
depends on the number of observed events N in both
single-tag and double-tag processes, we insert Eqs. (143)
and (144) into Eqgs. (145)—(148). We set the polarization-
related parameters as follows [23,59]:

8(¢a) = (147)

(148)

a, = 0.237, a; = —0.371, a, = 1.090,
¢, =4.37, ¢z =2.60, ¢y =4.02,
apx = +0.753, ag o = +0.0154, baq = £4.22.
(149)

For this preliminary assessment, we consider only the
central values.

We present the statistical sensitivity of the parameter ¢q
in Fig. 4. This prediction does not account for parameters
uncertainties, background effects, detection efficiency,
angular acceptance, or various systematic uncertainties.
Consequently, the sensitivity depicted in Fig. 4 is likely to
be an overestimate compared to actual experimental meas-
urement uncertainties. Our focus here is on providing rough
estimates and comparative analyses.

Figure 4 indicates that for a similar level of statistical
sensitivity, double-tag measurements require only about
6%—7% of the number of events needed in single-tag
measurements. This implies that double-tag becomes sta-
tistically more efficient when the detection efficiency for
single-side Q decay exceeds 15%. Current reports suggest
detection efficiencies for single-side  decays are around
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FIG. 4. Statistical sensitivity of ¢ estimated via maximum
likelihood estimation. The sensitivity under single-tag (left) and
double-tag (right) conditions is plotted as a function of the
number of events N. For equivalent statistical sensitivity, double-
tag events require only 6%—7% of the number of single-tag
events.

17%-19% [23]. Moreover, single-tag €~ measurements
typically include a background of approximately 10% [23],
which does not decrease with larger sample sizes. By
contrast, double-tag measurements are likely to have a
much lower background, estimated to be under 0.5%. This
reduced background is mainly due to the proximity of
w(3686) to the Q~QF production threshold.

Overall, double-tag measurement offers superior perfor-
mance in all aspects. Given the current detection efficien-
cies and the recent accumulation of events at y(3686) [48],
we anticipate gathering around 1600-1800 double-tag
events. As shown in Fig. 4, this amount of data could
lead to a sensitivity of approximately 2% for ¢q. Such
improved sensitivity is expected to clarify the current
discrepancies in the measurements of ¢ among different
experiments.

VII. SUMMARY

In this paper, we perform a polarization-related physical
analysis in the eTe™ — Q QF process, covering the
following aspects: the production density matrix for
Q- Q" pairs, single-tag Q- polarization expansion coef-
ficients, double-tag Q~Q7 polarization correlation coeffi-
cients, and the decay chains of Q~ Q.

Using the helicity formalism, we present the production
density matrix for Q- Q™ pairs. This matrix is defined by four
complex amplitudes: H,, H,, H;, and H,. It adheres to the
fundamental principles of parity conservation and charge
conjugation invariance. These amplitudes provide insights
into the polarization properties and form factors of Q~
particles. Investigating the form factors in the timelike region
contributes to the understanding of the internal structure of
Q™ and serves as a vital reference for theoretical approaches
such as lattice QCD and other nucleon structure models.

We review the representation of the polarization states for
particles with spin 1/2 and 3/2 spins, discussing both the
general formalism for spin density matrices and their

representation within the helicity formalism. The general
formalism provides a comprehensive interpretation of spin
components, while the helicity formalism offers a more
concise representation but lacks intuitive physical insights.
To bridge these methodologies, we introduced a new basis
matrix set within the helicity formalism, which correlates
spin components defined in the helicity formalism with
those in the general spin density matrix. This approach
facilitates a deeper understanding of the underlying spin
mechanics in physical processes.

We introduce a novel parametrization for helicity ampli-
tudes to investigate the polarization properties in both
single-tag Q~ and double-tag Q~Q* cases. For the single-
tag Q~, we identify six nonzero polarization components,
discuss their physical interpretations, and explain why only
these components are feasible. By establishing parameters
range values, we give the domains of these polarization
components. Notably, we identify specific sets of solutions
that can render the Q™ particle unpolarized.

In the case of double-tag Q~QF, 116 out of the 256
potential polarization correlation coefficients are nonzero.
We classify these coefficients into exchange symmetric and
exchange antisymmetric terms in the exchange of y and v.
The presence of these symmetric and antisymmetric terms
is a result of CP conservation principles. Furthermore, we
identify a specific set of solutions that minimizes polari-
zation correlation in Q~Q% pairs. Double-tag measure-
ments offer the advantage of eliminating nonphysical
solutions that may exist in single-tag measurements.

Particle polarization analysis often relies on studying
their decay processes. We present three equivalent
approaches to represent the decay of particles with spin-
1/2 and spin-3/2, providing valuable insights into these
decay mechanisms from different perspectives. Notably,
current experimental data reveal inconsistencies in the
decay parameters of the Q particle, which present sub-
stantial challenges in the study of processes involving Q.
This highlights the necessity for more precise experimental
observations to resolve these discrepancies.

The inconsistencies in the understanding of the Q
particle decay parameters center around ¢g. By employing
maximum likelihood estimation, we assess the statistical
sensitivity of ¢ with respect to the number of observed
events (N) in both single-tag and double-tag measurements.
Taking into account the reported €2 particle reconstruction
efficiency by the BESIII Collaboration, our findings
indicate that the double-tag measurement offers statistical
advantages. Additionally, this approach effectively reduces
background noise. Based on the data collected by BESIII at
y(3686), our predictions suggest that double-tag measure-
ments can constrain the statistical uncertainty of ¢q to
approximately 2%, thereby resolving the existing discrep-
ancies related to this decay phase.

In conclusion, our study offers fresh insights into the
polarization phenomena during the production of Q- QF
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pairs in e e~ annihilation processes. The analytical frame-
work we have developed is not limited to Q~Q pairs but is
also applicable to the polarization analysis of other
spin-3/2 particle pairs produced in electron-positron anni-
hilation. The decay formalism established for spin-3/2
particles holds universal applicability in a wide range of
research areas involving such particles, including the
investigation of spin-3/2 fragmentation functions, global
polarization, and related topics.
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APPENDIX A: FORM FACTORS
IN A TIMELIKE REGION

The relationship between the form factors and the
transition amplitudes is given by [9,47]

1

Gg ZEU‘Q + HyJ, (A1)
Gy = Sf\/_meLHQ} (A2)
0= ne g Ha— Hi] (A3)
Go =417ﬁ {Hg —gHz]’ (A4)

where 7 = ¢?/4m?, m is the mass of the Q~, and ¢ is the
momentum of the virtual photon.

Using the datasets in Ref. [23], we present the ratios of
form factors in Table III. Although these measurements

TABLE III.  The ratios of form factors for the Q particle. These
values are derived using Eqgs. (Al)-(A4), based on BESIII
Collaboration measurements [23].

Ratio Solution I Solution II

% 0.632 £ 0.151 0.698 £+ 0.201
% 0.386 £+ 0.336 0.737 £0.613
% 0.261 £ 0.082 0.321 £0.159

have limited precision, they continue to be valuable
references for studies in lattice QCD and quark models,
particularly concerning the form factors of the Q~
baryon.

APPENDIX B: SPIN COMPONENTS FOR
SPIN-3/2 AND THEIR PHYSICAL
INTERPRETATION

The polarization of spin-3/2 particles can be described
using 15 independent spin components. These compo-
nents are found in the spin vector ', the rank-2 spin
tensor T, and the rank-3 spin tensor R'*. Together,
they constitute the spin density matrix that represents a
spin-3/2 particle. The physical interpretations of these
components are expressed as combinations of probabil-
ities to find specific polarization states in the system.
We provide the explicit expressions of S/, T%, and Rk
in the particle rest frame and the corresponding physical
interpretations for all 15 polarization components. It is
worth noting that our decomposition of the physical
interpretation for Sy, differs from the one presented in
Refs. [17,31], allowing for a refined analysis of parity or
CP symmetries.

For spin vector S’, which consists of three polarization
components, the expression is given by

St = (8%, 87,SL). (B1)
These polarization components are defined using (Z%) =
Tr[Xp] with £ defined in Egs. (9)—(11). Then, these
polarization components are represented as
S=()., S =), S=(2). (BY)
We will provide the physical interpretations of these
components by exploring this definition.

For the rank-2 spin tensor T/, which consists of five

polarization components, the expression is given by

—=S1L + S7r Str Sir
T = B Str =S —Str Sir (B3)
L7 Sir A
These polarization components are represented as
Spr = (%), Sir =2(Z%), Sir = 2(2%),
Spr=2(Z%),  Sfp=(E¥-27). (B4)

For the rank-3 spin tensor R¥, which consists of 7
polarization components, the expression is given by
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=38iir +Str =S+ St —2Spn + Sty
—Sir+ Strr —Siur — Sy Serr
=281 + Strr Strr 481t
—Spr + Strr —Siir — Sty Serr
RV =~ =Siir = Strr —3Siir = Strr —2S11L — Sty (B5)
Strr —28111 = Strr 48117
=281 + Strr Strr 4Siir
Strr =281 = Sirr 4Siir
4871+ Ry 48111
[
These polarization components are represented as 3 3 3 1 1 1
Sp==|P,|=)—-P,| —= = —| =P —-=]]
=2\ T ) e g T 2
Suip=(Z5),  Spp=(TF). Sy = (D). (B10)
Sprr =4EW%),  Sppp = 2T -2%),
y xx 31 /3 3\ 1] 1 1]
S = (T 33§y = (3T — W), B6 x=_|p(Z)=-pP (=2 Zlpl=)=p (==
Tir = ( ) rrr = ) (B6) St 2_X(2> . 2_+2_x2 . 2]
To analyze the polarization states, we introduce the spin (B11)
projection operators along a specific direction (6, ¢) as
follows: 3[. /3 3\l I, /1 1|
Sy==|P,\=z]|-P,(-% —|\P,{=)—-P,| —=
=20 )]sl ()

i, = T¥sinfcos ¢ + X sin@sing + Zicosh, (B7)

where 6 represents the polar angle of this direction and ¢
represents the azimuthal angle. We define the eigenstates
along this particular direction as |mg 4)), where m denotes

the corresponding eigenvalue. Therefore, the probability of
finding this polarization state in the system is given by

P(m )

= Trlplm.4)) (M4 - (B8)

To facilitate our analysis, we introduce the following
notations:

|m>x+y = |m(§§)>, M) |m(§,0)>,
Im)y.=mgag).  |m)y=Img_z).
Im)_. = |m(—§,0>>a |m>y—z_ |m<—§§>>’
M) iy =Ime,.0)  Im)yi.=Ime,. -5
M) y—e=Muo, 5) M)y =Mz =), (BI)

where 0,,, = arctan(y/2). These notations will be useful in

understanding the symmetry of the reaction process.
According to Eq. (B1) and Eq. (B2), the physical
interpretations of the 3 spin vector components are given by

(B12)

According to Eq. (B3) and Eq. (B4), the physical
interpretations of the 5 rank-2 spin tensor components

o) () )

e
SO I
SLT_Z[y+Z<>+ (m
e () s
) (] ) )
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(B17)

N\

of the 7 rank-3 spin tensor ¢

)=+

tations

]

According to Eq. (B5) and Eq. (B6), the physical interpr
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s {1l () - ()] [ 6) - ()]}
2Ll (2)-n(- 2)}] OS]

V2 3 3 1 1
— 27\ Py | = | = Py | —= P_.l=z)—-Py -2 . B24
5G] ) - ()] 528
The domains for these polarization components are given by
[ 33
S, S5, Sy e __5’5]’
S €l=1.1], Sirs Sirs Str. St € [-V3,V3],
9 9 b 3+V21 3+V21
SLLLE __E’E ) SLLT? SlLTe - 10 ) 10 )
St Strr €[-V3,V3), S¥¢r. Strr €[-3.3]. (B25)
The total degree of polarization is given by
\/_\/ (25 + D)Tr[p?] —
1 (12 , x
=3 { 5 [(S0)? + (S7)? + (7)°] + [3(S20)® + (S0)* + (S1r)* + (S77)° + (7))
1 y Xy XXX il :
+3 [200S220)% +30((Sg.0)* + (Spur)?) + 3((SErr)® + (Sprr)?) + 2((S777)° + (S77r)?)] } - (B206)
Its value ranges between 0 and 1.
APPENDIX C: SPIN-3/2 BASIS MATRICES
To establish a one-to-one correspondence between the spin components Sy, Sy, ..., S5 in the helicity formalism
decomposition and the spin components 1, S;, S, ..., Sy77 in the spin density matrix representation, as shown in Table I,

we follow the spin basis matrix selection method detailed in Ref. [17]. Based on Egs. (9)—(11), we present the matrix

representation of X, as follows:

1 1 1 1

B=gl  Li=g¥ L= =Y
T, = lzzz I lzxz T = lzyz
4= 6" " 67
3, = ! (Z¥ — 59) Tg = Lyo Ty = S yeze
12 ’ 6 9%

5 5
Lo = 62“2, X = EZYZZ, Ly = - (&% =29,

AN =

1 1 1
2 [ nyz’ Z — zxxx _ 32)6}'}’ , Z —— 32xxy _ Zyyy .
13 3 14 18 ( ) 15 18 ( )
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For convenience, we also provide the explicit expressions for the matrices,

1 000 30 0 0
1o 1 0 0 1101 0 0
20:— R 21:—
410 0 1 0 100f0o 0 -1 0
00 0 1 00 0 =3
0 —vV3 0 0 1
3 0 =2 0 1]o0
23_L\/_ ’ 24_7
0o 2 0 -3 410
0 0 V3 0 0
0 -1 0 0 0 0 1
iv3l1 0 0 0 vV3lo oo
Yo = ——0 , Y, =
210 o o 1 1211 0 0
0 0 -1 0 01 0
1 0 0 O 0 1
11lo =3 0 0 Val1l o
Ty =— , T = 22
6lo 0 3 0 6 |o -3
0 0 0 -1 0 0
0 0 1 0 0 0
v3lo o0 0 -1 iv3[0 0
2122— 5 213——
1211 0 0 0 211 o
0 -1 0 0 0 -1
00 0 -1
Z_ioooo
57610 0 0 o
1 00 0

APPENDIX D: Q-Q* POLARIZATION
CORRELATIONS MATRIX

In Sec. IV B and Sec. IV C, we present the polarization
correlation matrix S, using our parametrization scheme.
For the convenience of adopting alternative parametrization
schemes, we provide the expressions of the polarization
correlation matrix in terms of the helicity amplitudes H,
Hz, H3, and H4.

For the single-tag Q~, the polarization coefficients are
given by [17]

So = 2sin® - (|H, > + |Ha|?)

+ (14 cos® 6q-) (|Ha|* + 2|H;5%),  (D1)

0 V3 0 0
11v3 0 2 0
722:_ )
0] o 2 0 V3
0 0 V3 0
0 0 01 0 0
0 0 2\ﬁlooo
-1 0] 1210 0 0 -1}
0 1 00 -1 0
0 00 -1 0
1 iWv3l0o o o -1
7287— ]
0 2110 0 0
0 01 0 0
0 0 0 -1 0 0
-3 0 Zii\/g10\/50
o 1| " o =v3 0 -1 |
1 0 0 0 1 0
-1 0 00 0 1
0 1 00 00
72’14:_ 5
0 0 00 0 0
0 0 1 0 0 0

[

1
Sy = —=sin 20 (2Im[H,H;] + v3Im[H; (H; + H3)]),

V2

(D2)
Sy = 2sin? 0o~ (|Hy* — |H,*) = (1 4 cos? o-) |H, |,

(D3)
S5 = V/65in 20y Re[(H, — H,)Hj], (D4)
S, = 2V/3sin® Oo-Re[H, H3], (D5)

S = gsin 20 (3Im[H, H3] + V3Im[H; (H; + H;)]).
(D6)

036005-20



REFINED ANALYSIS OF Q-QF POLARIZATION ...

PHYS. REV. D 109, 036005 (2024)

S13 = 2V/3sin? O Im[H, Hj]. (D7)
For the double-tag Q~Q*, we only present the indepen-
dent terms, while the dependent terms can be obtained from
Egs. (64), (68), (76)—(78), (91), (92), (101), and (102) as
discussed in Sec. IV C.
For the independent terms in the diagonal elements, as
shown in Egs. (51)-(63), they are given by

Soo = 2sin’0(|H,|* + |Hy|?)

+ (1 4 cos?0) (|Ha|* + 2|H3|?). (D8)
1
S = 55i1129(|Hl|2 +9[Hy[?)
1
_Z(l + cos? 0) (|H,|* — 6|H;]?), (DY)

1.
Sy = 5sm%9(4|H, 2 + 2|H,|* + 3|H;|* + 6Re[H, H}))

+2V3(1 + cos®0)Re[H, H3), (D10)

1
S35 = —Esinz 0(4|H,|* —2|H,|* - 3|H5|* + 6Re[H  H}])
—2v/3(1 + cos? 0)Re[H, Hj), (D11)

S4.4:28in29(|H| |2+ ‘H4‘2) + (1 —|—00529> (|H2|2—2|H3|2),

(D12)

Sss = 6sin® 0(|Hs|> + 2Re[H  H}]), (D13)

S = 6sin® O(|Hs|* — 2Re[H, H})), (D14)

S;7 = 12sin? ORe[H H}] + 6(1 + cos? ) |[H; |, (D15)
S09 = cosin O(91H, P + |HL[?)

-% (1 +cos0) BHL12 + 2|H,12).  (DI6)

3 . .
S10.10 :gsmze(6|Hl ?+3|H,|> 4+ 2|H; > +4Re[H, H))

12v/3
—2;5[ (14 cos20)Re[H, Hj), (D17)
3
Sll.l] = —gsin29(6|H1 |2—3|H2|2 —2|H3|2+4RC[H1HZ])
12V/3
+2—‘5/— (1+cos’0)Re[H,H3), (D18)
S22 = 12sin? ORe[H | H}}] — 6(1 + cos® 0)|H;|>, (D19)

S14‘14 =18 Sil’l2 9|H4|2 (DZO)

For the independent terms shown in Egs. (65)-(67), they
are given by

Sio==2sin*0(|H, > —|H,[*) — (1 +cos?0) |H,|*, (D21)
9 L) 2 2
So1 = TR O(|H, > — [Hyl?)
3
+35 (1 + cos?0) (3|H,|* — 8|H;5 ), (D22)
S]4.2 = 3|H3|2 SiIl2 9. (D23)

For the independent terms shown in Egs. (69)—(75), they
are given by

S70 = 2V/3Re[H,H?] sin? 0, (D24)
Si30 = 2V/3Im[H, H3] sin’ 6, (D25)
S137 = 12Im[H | H}] sin? 0, (D26)
S;5 = 3v/2Re[H, H};] sin 26, (D27)
Si3.5 = 3v2Im[H, H?] sin 20, (D28)
S1s7 = 3V6Im[H; H};] sin 26, (D29)
S14.12 = 3V6Re[H; H?] sin 20. (D30)

For the independent terms shown in Egs. (79)—(90), they
are given by

S50 = —V/6Re[Hs (H} — H})]sin 20 (D31)
Se1 = ?Im[H3 (H} + 3H})] sin 26, (D32)
Ssa = V6Re[H;(H} + H;)] sin 26, (D33)

g = 31\(/)51m[H3 (3H; — H})]sin20, (D34)
Sgr = gsin 20(3Im[H,H}] — 2v/3Im[H,H3]),  (D35)
Sian = ? sin20(3Re[H, H}| — 2v/3Re[H  Hj]),  (D36)
Si7 = —35£sin 20(V3Im[H, H3 + Im[H,H}]), (D37)
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3 =
Sizio =73 2sin20(v/3Re[H H}] + Re[H,H}]), (D38)

Seo = 6Im[H  H;] sin® @ 4 2v/3(1 + cos? 6)Im[H, Hj],
(D39)

12 63
Sis = ?Im[HlHj;] sin? @ — T\/_ (1+ cos? 0)Im[H,H}),

(D40)

3 X
S102 = —5511129(2|Hl|2 + |Hy|* — |H5|* — 2Re[H | H}))

>

— = (1 + cos’0)Re[H,H3),

5 (D41)

3 "
Siiz= gsm29(2|H1 ? = |Hy > + |H5|* — 2Re[H  H}])

V3

+ ?Re[HzHﬁ (1 + cos?), (D42)

For the independent terms shown in Egs. (93)—(100),
they are given by

2
Ss0 = —gsin 20(2Im[H, H3] — V3Im[H; (H} + Hj))).

(D43)

2
S0 = \/?'Sin 20(3Im[H, H3] + V3Im[H; (H} + H})]),
(D44)

Sy = ?sin 20(2Re[H, H3] — V/3Re[H; (H} — 3H})]),

(D45)

2
S101= —%SinZ@(BRe[HIHé] + \/gRe[H3 (H’f _3H2)])a
(D46)

3v2
Sor = 2—\(/)_sin 20(6Re[H,H3] — V3Re[Hs (3H; + H)]).
(D47)

Sus = —gsin29(2lm[HlH§] ~ V3Im[H; (H] ~ H;)]).
(D48)

2
S = —?\[sin 20(3Im[H, H3] + V3Im[H; (H] - H}))).
(D49)

3V2
S](),9 = 5—\(/)’Sln29(9Re[H1H§] + \/gRe[H3 (3HT + HZ)])

(D50)

APPENDIX E: SPIN TRANSFER MATRICES

Based on the parametrization schemes introduced in
Sec. V, we derive the specific expressions for the polari-
zation transfer matrix a,, and b,,. For the coefficients of
a,y, 14 out of 16 are nonzero, and these nonzero coef-
ficients are represented as follows [47]:

app =1, (El)
do3 = @p; (E2)
a o = apsinécos @, (E3)
a;; = ypcos@cos g — fpsing, (E4)
ay, = —pPpcosfcosg —ypsing, (ES)
a3 = sinfcos ¢, (E6)
ayo = apsin@sin g, (E7)
ayy = Ppcos@ +ypcosfsing, (E8)
ayy =ypcos¢ — fipcosPsin g, (E9)
ay3 = sin@sin ¢, (E10)
aso = apcosé, (EIL1)
as, = —ypsiné, (E12)
as, = Ppsind, (E13)
as3 = cos . (E14)

For the coefficients b,w, 52 out of 64 are nonzero. While
partial expressions are provided in Ref. [47], our unique
basis matrix selection requires a different formulation.
We systematically present these expressions, identifying
36 independent coefficients as follows:

boo =1, (E15)
4 .
bl,l = —gyD Sln9, (E16)
4 .
b1’2 = gﬂD S 0, (El7)
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by 3 =—cos0, (E18)
4 .
by = —g(—yD cos@cos¢ + fpsing), (E19)
4 .
byy = ~3 (Ppcos@cos + ypsing), (E20)
2,
by; = 5 sin 6 cos ¢, (E21)
4 .
by, = g(ﬂD cos ¢ + yp cosOsin ), (E22)
4 .
by, = 5 (yp cos ¢ — fpcos@sing), (E23)
2. .
by = gsmﬁ sin @, (E24)
1
b4’0 = - Z (1 + 3 COS 29), (E25)
bso = —sinfcos 6 cos @, (E26)
bgo = —sinfcos @ sin ¢, (E27)
1,
by = —5sin 6 cos2¢, (E28)
bgo = — sin? @ sin ¢ cos ¢, (E29)
1 . .
by, = ZyD(smé’ + 55in 360), (E30)
1 . .
bgy = —ZﬂD(smH—kSSmw), (E31)
1
bys = —1(3 cos @ + 5 cos 30), (E32)
1 .
b1 = 3 [28p(3 + 5cos20) sin ¢
— rp(cos & + 15 cos 36) cos |, (E33)
1 .
bios = g [27p(3 + 5c0s20) sin ¢
+ Bp(cos 0 + 15 cos 30) cos ¢], (E34)
3 . :
bios = -3 (sin @ + 5sin 30) cos ¢, (E35)

1
by = ~3 [28p(3 + 5 c0s 20) cos ¢

+ yp(cos & + 15cos 30) sin ], (E36)
1
biir= -3 [275(3 + 5 cos20) cos
— Bp(cos @ + 15cos 30) sin ], (E37)
3 . . .
by;= —g(sm9—|—551n39) sin ¢, (E38)

1
by = Zsin9[4ﬂD cos@sin2¢ —yp(1 + 3 cos20) cosZ(,b] ,
(E39)

1
bips = Zsin9[4yD cos@sin2¢ + fp (1 + 3 cos26) coqub] ,
(E40)

3
biaz = —Esin2 0 cos 6 cos 2¢, (E41)

1
bi31= —Zsine [4ﬁD cos@cos2¢+yp(1+3cos26) sin2¢] ,
(E42)

1
bi3= —Zsine [470 cosfcos2¢p—pfp(1+3cos26) sin2¢] ,

(E43)
b33 = —3sin O cos Osin ¢ cos ¢, (E44)
L., }
by = 3 sin” O(fp sin3¢p — yp cos @ cos 3¢h), (E45)
1
biyy = 3 sin? @(yp sin 3¢p + B cos O cos 3¢h), (E46)
1.
biys = -5 sin® @ cos 3¢, (E47)
1
bis, = -5 sin? (B, cos 3¢ + yp cos @sin 3¢), (E48)
1., )
bisy, = -5 sin® O(yp cos 3¢p — Bp cos Osin3¢), (E49)
|
biss = —Esm 0 sin 3¢. (E50)

Additionally, we present the 16 derived dependent coef-
ficients as

036005-23



ZHE ZHANG, JIAO JIAO SONG, and YA-JIN ZHOU

PHYS. REV. D 109, 036005 (2024)

{ bo3:b10:b20,b30,b43,b53, b6 3, b7 3

b8,3v b9,0’ blU,O’ bl 1,0» b12.09 b13.01 b14.01 blS.O

} . { bo0.D13:b23. b33, b4, b5 0. b6 . b7
— YD

}. (E51)

b8,0’ b9,3v b10,37 b11,37 b12,3’ b13,39 b14.39 b15.3
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