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We propose a relativistic theory for spin density matrices of vector mesons based on Kadanoff-Baym
equations in the closed-time-path formalism. The theory puts the calculation of spin observables such as the
spin density matrix element p, for vector mesons on a solid ground. Within the theory we formulate p, for
¢ mesons into a factorization form in separation of momentum and spacetime variables. We argue that the
main contribution to py, at lower energies should be from the ¢ fields that can polarize the strange quark
and antiquark in the same way as electromagnetic fields. The key observation is that there is correlation
inside the ¢ meson wave function between the ¢ field that polarizes the strange quark and that polarizes the
strange antiquark. This is reflected by the fact that the contributions to py are all in squares of fields that are
nonvanishing even if the fields may strongly fluctuate in spacetime. The fluctuation of strong force fields
can be extracted from pg of unflavored vector mesons as links to fundamental properties of quantum

chromodynamics.
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I. INTRODUCTION

There is an intrinsic connection between rotation and
spin polarization since they are related to the conservation
of total angular momentum and can be converted from one
to another, as demonstrated in the Barnett effect [1] and the
Einstein—de Haas effect [2] in materials. A recent example
is the observation of a spin current from the vortical motion
in a liquid metal [3]. The same effects also exist in high
energy heavy-ion collisions in which the huge orbital
angular momentum along the direction normal to the
reaction plane can be partially converted to the global spin
polarization of hadrons [4-9] (see, e.g., [10-14] for recent
reviews). The global spin polarization of A (including A
hereafter) has been measured through their weak decays in
Au + Au collisions at /syy = 7.7-200 GeV [15,16].
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As spin-one particles, vector mesons can also be polarized
in heavy-ion collisions in the same way as hyperons.
Normally the spin states of vector mesons are described by
the spin density matrix element p; ; with 4;,4, =0, +1
labeling three spin states along the spin quantization direction.
The vector mesons mainly decay through strong interaction
that respects parity symmetry. So their spin polarization
proportional to p;; —p_; _; cannot be measured through
their decays. Instead, pg can be measured through the angular
distribution of its decay daughters [5,17-20]. If pgo = 1/3,
the spin states are equally populated in three spin states which
may imply that the vector meson is not polarized. If
poo 7 1/3, three spin states are not equally populated, so
the polarization vector (not the spin) of the vector meson is
aligned in either the spin quantization direction or the trans-
verse direction perpendicular to it. In 2008, the STAR
Collaboration measured py, for the vector meson ¢(1020)
in Au + Au collisions at 200 GeV, but the result is consistent
with 1/3 within errors due to statistics [21]. Recently
STAR has measured the ¢ meson’s p, at lower energies,
which shows a significant deviation from 1/3 [22]. It can
hardly be explained by conventional mechanism [17,23-25].
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In Ref. [26], some of us proposed that a large deviation of p
from 1/3 for the ¢» meson may possibly arise from the ¢
vector field, a strong force field in connection with the current
of pseudo-Goldstone bosons [27] and vacuum properties of
quantum chromodynamics [28-31]. Such a proposal is based
on a nonrelativistic quark coalescence model for the spin
density matrix of vector mesons [17,32].

In this paper we will present a relativistic theory for the
spin density matrix of vector mesons from the Kadanoff-
Baym (KB) equation [33] in the closed-time-path (CTP)
formalism [34,35] (for reviews of the KB equation and the
CTP formalism, we refer the readers to Refs. [36-39]).
Then we can derive the spin Boltzmann equation for vector
mesons with their spin density matrices being expressed in
terms of the matrix valued spin dependent distributions
(MVSD) of the quarks and antiquarks [40]. This puts the
calculation of spin observables such as py, for vector
mesons on a solid ground [41].

The paper is organized as follows. In Sec. II we will give
an introduction to Green’s functions on the CTP for vector
mesons that can be expressed in MVSD. In Sec. III the KB
equations for vector mesons are derived. In Sec. IV the spin
density matrices for vector mesons will be formulated from
the spin Boltzmann equations. In Sec. V the spin density
matrices for ¢» mesons will be evaluated. Discussions on the
main results and conclusions are given in the final sec-
tion, Sec. VI.

We adopt the sign convention for the metric tensor
G =G = diag(1,—1,—-1,—1) where p, v =0, 1, 2, 3.
The sign convention for the Levi-Civita symbol is
€"123 = —¢y1,3 = 1. We can write the spacetime coordinate
as x=x'=(x%x)=(1,x) and x,=(xp,—x) with
xo = x* = t. The four-momentum for a particle is denoted
as p = p* = (p°, p) or p, = (po. —p). and if it is on-shell
we have py = p® = \/p> + m* = E, = E,. Normally we
use Greek letters to denote four-dimensional indices of

four-vectors and four-tensors and Latin letters to denote
their spatial components.

II. GREEN’S FUNCTIONS ON CTP
FOR VECTOR MESONS

The massive spin-one particle, such as the vector meson
with the mass my, can be described by the vector field
Al (x) with the classical Lagrangian density

1 m?
£=— LR TN ALA AL, ()

where j# is the source current, F}/ = d*A%, — “AY, is the
field strength tensor, and A’(/ is assumed to be the real
classical field for the charge (including flavor) neutral
particle. From £ one can obtain the Proca equation [42,43]

L (x)A) (x) = j*(x), (2)

where the differential operator is defined as
L (x) = (65 + miy) g™ — kot (3)

A constraint equation can be derived by contracting the
above equation with d, as

0,A(x) = mi 4 (x) =0, (4)

if the source current is conserved d,j* = 0. The above
equation means that the longitudinal component of A}, (x) is
vanishing for the conserved current.

The free vector field can be quantized as

Pk 1
A (x) = et
V() ey / (2nh)? 2EY

x [e” (A, K)ay (A, K)e~kx/h
+ e (4, K)al (4, k)eim/ﬁ} : (5)

where E] = \/k? + mj, and 4 denote the energy and the
spin state in the spin quantization direction, respectively,
the creation and annihilation operators ay(4,k) and

al, (A, k) satisfy the commutator
[y (4.K). al (1. K)] = 6,,2E] (25 (k= K'). (6)

and the polarization vector €(4, k) obeys
ke (2, k) =0,
e(A.k) - e (X, k) = =0,

;e“(l, K)e (1K) = — <g"” - k”’j”) 0

In the above relations, the first one follows the constraint
(4), and k* = (E}, k) denotes the on-shell four-momentum
for the vector meson. By the field quantization in (5), one
can check that A% (x) is Hermitian, i.e., A% (x) = A% (x).

One can define two-point Green’s function for the vector
meson on the CTP

Gemlxr ) = (TeAy (@AY (1)), (8)

where x; and x, are two spacetime points whose time
components are defined on the CTP contour and T,
represents the time ordering on the CTP contour. We
can write G3F(xy, x,) in a matrix form:

G/j_u_(xl7x2)>

G (x1.x2)
Gp(tjvTP(xl»xz) = ( g

G;Lj_<x17x2) G;l/_(xl’xZ)
B (Ggu(xleZ) G;u(x17x2)> ()
G;u(xl’x2) Gﬁu(-xhx2) .
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The “++" component of G/* with both 7, and 1, (time
components of x; and x,) on the positive time branch is just
the Feynman propagator GJ, (x,x,) as shown in Fig. 1(a).
The “4+—" component with #; on the positive time branch
while £, is on the negative time branch is denoted as
G, (x1,x,) meaning that #, is always later than ; on the
CTP contour as shown in Fig. I1(b). Analogously,
G, (x1,x,) denotes the “~+” component with 7, on the
negative time branch and f, on the positive time branch as
shown in Fig. 1(c), while Gfp(xl,xz) denotes the “—="
component with both #; and 7, on the negative time branch
as shown in Fig. 1(d).

The Wigner function can be defined from G, (x;,x,) by
taking a Fourier transform with respect to the relative

position y = x; — x, at the center point x = (x| + x,)/2,
Gilx.p) = [ dyer Gy (x1.x)
= [ dvermaliaye). (10

Inserting the quantized field (5) into the definition of the
Wigner function (10), we obtain

Gyi(x, p) = 2Ry _8(p* — m})
o
X {9(170)6;4(/117P)@(ﬂz,P)lezz(x’P)
+ 9(_170)5; (ll’ _p)el/(AZv _p)
X [512/11 + fon, (%, —P)} } (11)

where the gradient expansion has been taken with spatial
gradients of the MVSD (defined below) being dropped, and
the MVSD for the vector meson is defined as

Funem) = [ e o uyeit
R = oy O

x <aTV<A2,p —g>av</11,p +g>> (12)

The derivation of the two-point function in (11) for
spin-one particles is similar to that for spin-1/2 particles
which is given in Egs. (115) and (116) of Ref. [40]. One

|

to 9_‘1 sz t to X1 t
— —
X2
©) (b)
to X2 t to t
; = i > A_J S —
X1 X1 X2
(© (d)
FIG. 1. The closed-time path and four components of two-point

Green’s function on CTP. The positive and negative time branches
are denoted as C, and C_, respectively. (a) x] =t €C,,
xg =1n€eC,; (b) x? =neC,, xg =1eC_;(c) x(l) =hHelC_,
xX=H€eC and (@ x)=1€C_,x)=neC..

can check that f;, (x,p) is a Hermitian matrix, i.e.,
fi1, (6, p) = fi,,(x,p). Similarly we can define another
Wigner function from G, (x;,x,),

Gio(x.p) = / dhyem I (AY () AV (x)).

= ZHhZB(pZ —m})
P

X {9(170)6”(/11 .P)e; (4, p) [5/11/12 + fan (% P)}
+9(—P0)€; (41, =P)e, (A2, =p) 1,1, (x, —P)}-
(13)

Note that G, (x, p) can be obtained by replacing f; ; —
812y T fo, and 6,5 + [ = [y, from G, (x, p).

III. KADANOFF-BAYM EQUATIONS FOR
VECTOR MESONS

The Wigner functions for massless vector particles such
as gluons and photons [25,37,44-47] have been studied for
many years, but to our knowledge there are few works
about Wigner functions for massive vector mesons in the
context of spin polarization (see Ref. [48] for a recent one).
In this section, we will derive the Boltzmann equation for
vector meson’s Wigner functions from two-point Green’s
functions on the CTP. The starting point is the KB
equations

ih
Ly (x))G=™(xy,x,) = —%/d“x’ [g”VZ;I(xl,x’)GN’”(x’,x2) — g”VZ;,(xl,x’)G<”’”(x’,x2)} (14)
and
ih
Li()G(x1.x) = =5 [ 0 [#7G7, (1X) 2 (o) = #Grn T W) (19
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Equations (14) and (15) are the result of the quasiparticle
approximation [40]. Note that the integrations over x in
Egs. (14) and (15) are ordinary ones.

We consider the coupling between the vector meson and
the quark-antiquark in the quark-meson model [27,49-53].
Then at lowest order in the coupling constant, the self-
energies are from quark loops as shown in Fig. 2,

XM X2V XU X2,V

TR (xq, X7) Y (x4, X2)

FIG. 2. The self-energies X=** and Z~** of vector mesons from
. . quark loops in the quark-meson model. Two quark propagators in
I (xy,xp) = =Tr [1F"S< (1, 22) i85 (x3, Xy )] ’ the loop may have different flavors corresponding to the vector

2>”‘”(x], ) - —_Tr [lFﬂS> (xl ,Xz) TvS< (xz’ xl)] . (16) meson that is not flavor neutral.

where S”(x;,x,) and S<(x;,x,) are two-point Green’s

functions of quarks, i[* denotes the vertex of the vector ~ Eq. (14) and taking a Fourier transform with respect to the
meson and quark-antiquark, and the overall minus signs  difference y = x; — x,, we obtain the KB equation for the
arise from quark loops. Inserting the self-energies (16) into ~ Wigner function as

|

7 , 7 iy
{9’4 [— <p2 _mg—zag) —mp-ax] = 050+ P py+5ih(pyo; +P”%)}G<"7”(X’P)

:—% (d ; {Tr[S=(x. p+ p)TuS™ (x. )] G~ (x, p) = Tr [[*S7 (x. p+ p')Te S (x. p') |G=(x. p) }
h2 d4 /
Gyt LTS (o4 POTaS™ (191G (x:P) o,

- {Tr (1457 (x.p+ P)TS™ (x.0)].G=(x.p) b ]. {17

where the Poisson bracket involves spacetime and momentum gradients and is defined as
{A. B}y = (4A)(O]B) - (dA) (9}B). (18)

In the same way, we obtain from Eq. (15) another KB equation for the Wigner function

h? , h? 1
{gZ [— <p2 —my, — 48%> +ihp- ax] ——0%0, + p'p, — 517’1(1%10% + poy) }G<*"”(x, P)

4
ih [ d*p , ,

- _5/ n) {¢7G;o(x, p)Tr[[*S™ (x, p + p')I¥S=(x, p')| — 97 G, (x, p)Tr[T*S=(x, p + p')T¥S> (x. p')] }
h2 d4 /

(2rh) 7 [{97Gra(x. p). Te[TS™ (x. p + p')T*S= (x. p')] Jp .

G S (e £ TS e (19)

Taking the difference between Eqs. (17) and (19), we are able to derive the Boltzmann equation for the Wigner function at
the leading order in 7 (or in the spacetime gradient)

4
—Tr[[S” (x, p + p')TaS=(x, p')] G=(x, p) }

1 d4 !
+5 | G 19" Gl DTS (1. p S (1.

—¢" Gra(x. P)Tr [[8™ (x, p + p")I¥S=(x, p') ] }. (20)

1 1 d*p'
P 0,G#(x.p) = [P05G " (x. p) + P0G (x. p)] = / Gyt LTS (x.p o POTS™ (5, )] 67 (. p)

where we have neglected terms with Poisson brackets and those proportional to p, in the left-hand side since their

contraction with the leading-order G=""(x, p) and G=*"(x, p) is vanishing. In the next section we will rewrite the above
Boltzmann equation in terms of MVSDs for vector mesons, quarks, and antiquarks.
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IV. SPIN DENSITY MATRIX FOR QUARK COALESCENCE AND DISSOCIATION

Two-point Green’s functions S~ (x, p) and S<(x, p) for quarks are given by [40]

§<(x. p) = —(221)0(po)s(p* — m2)> u(r.p)a(s. p)fs’ (x.p)

— (22h)0(=po)8(p* = m2)>_ v(s,=p)o(r,—p) 8, — f15 (x.—p)],

§(x. p) = 2a0)0(po)5(p> — m3)Y u(r.p)a(s.p)[6,, — /1 (x.p)]

r.s

+ (220)0(=po)d(p* = m2)>_v(s. =p)(r.—p)f1 (x. —p). (21)

where f 5}” and f £§) are MVSD for quarks and antiquarks,
respectively. Here u and & are Dirac spinors for quarks, and
v and » are Dirac spinors for antiquarks. We can para-
metrize them as

1 .
[ () = 5 £ 6.2 [3rs = Pl p)S Y (B)7h]

1

£ (0, =p) = 5 f4(x.—p) [5,,

5 — Pi(x,—p)n} " (p)eh].

(22)

where 7/ with j = 1, 2, 3 are Pauli matrices, fq (x,p) and
fz(x.,—p) are MVSDs for quarks and antiquarks. respec-
tively, and Pf(x,p) and P} (x,—p) are polarization four-
vectors for quarks and antiquarks. respectively. The
spin direction four-vectors for quarks and antiquarks are
given by

() n;-p (n;-p)p

n (p)_n (nvpm):< 7n'+ )

! ! ! my / mq(Eg+mq)

(W — _( m;p (n;-p)p )

n; =n"(N;,—p,mgz)=\ — 7n+ 7 )

R e v
(23)

where n; for j =1, 2, 3 are three basis unit vectors that
form a Cartesian coordinate system in the particle’s rest
|

|
frame with n3 being the spin quantization direction, and
nﬁ-ﬂ” and nﬁ_)” are the Lorentz transformed four-vectors of
n; for quarks and antiquarks, respectively, which obey the

sum rules

v ., P'pY
nCH () (p) ——(gﬂ P )

ny

n\ " (p)n| " (p) = - (g"” P ?) : (24)

mg

where p* = (E%,p) and p* = (E%,—p). We note that

fﬁ) (x,p) and fgg)(x, —p) are actually the transpose
of those MVSDs defined in Eqs. (117) and (118) of
Ref. [40] in spin indices. We can flip the sign of the three-

momentum, p — —p, in f <r;>(x, —p) to obtain

£ (xp) =5 f4(x.p) [%—PZ(x,p>n§_>"(—p)ris], (25)

1
2
5-_)” (—p) has the same form as nﬁ-ﬂ” (p) except the
quark mass. Note that in the self-energy (16) of the vector
meson that is not flavor neutral, S<(x, p) and S~ (x, p) may
involve different flavors of quarks and antiquarks.

Inserting S<(x, p), S (x, p), G=#*(x, p),and G™**(x, p)
in Egs. (11), (13), and (21) into Eq. (20), the Boltzmann
equation can be put into the following form:

where n

1
P .G (x, p) = 4 [PHOG< (x, ) + pOjG=(x. p)]

= g | 40 =m0 l(p + 9 = ] =)
x {0(pt)0(po + Po)0(Po)l4v1 + 0(p()O(po + Po)O(=po)l -
+0(po)0(=po = Po)O(=po)l - + 0(=pp)0(po + Py)O(Po)l -+
+0(=pp)0(=po — Po)0(po)I——1 + O(=p})0(—po — po)O(=po)l_—_}. (26)
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TABLE I. Collision terms in the Boltzmann equation. All terms except /_, , and /,__ are vanishing for on-shell quarks, antiquarks,
and mesons at the one-loop level of the self-energy.

- - [ [ Jf— [—
q—>q+M g+M—gq M-q+q g+g—-M g—g+M Gg+M—g
q+M—q gq-o>qg+M qg+qg->M M- qg+q qg+M— g qg—q+

The terms /,;, with i, j, k = + representing the positive/
negative energy, correspond to all possible processes
at lowest order in the coupling constant, as shown in
Table I. In Eq. (26), /_,_ and [,_, are absent due to
incompatibility of theta functions, and /_,, and I, __
contain the coalescence of quark-antiquark to the
vector meson and vice versa, but /_,, corresponds to
the positive energy sector of the two-point function for
the vector meson while 7, __ corresponds to the negative
energy sector. All terms except /_,, and [, __ are
vanishing for on-shell quarks, antiquarks, and mesons

P axfalzz(x,l’)

1,851,252, /I/ Ay

d'i /
16 / E‘f v

at the one-loop level of the self-energy. We distinguish m,,
from mj in Eq. (26) since the quark and antiquark may
have different flavors for the vector meson that is not
flavor neutral so the meson and its antiparticle are not the
same particle.

In this paper, we focus on the coalescence and disso-
ciation processes corresponding to /_, , . It is equivalent to
consider /, __. The coalescence is regarded as one of the
main processes for particle production in heavy-ion colli-
sions [54-59]. So the spin Boltzmann equation for the
vector meson’s MVSD reads

2ﬂh5(Ey, —El —El_)

X{%l% (A1, p)e*(4 ,p)Tr[F v(sy, ) o(r, P )P u(ry, p —p')i(s2. p — p')]

+ 511/1/1%(/12»1))%( 27P)Tr[FUU(51,P) (ri,p)T*

u(ry,p —p)i(s.p—p')|}

x { i (6, p)fr (x p = D) (64 + fru(x.p)]

_[ T8 f”lfl(x p)][ ryso

where A, 45, 4], and 4, denote the spin states along the spin
quantization direction and I'* is the ggV vertex given by

I~ gyB(p—p.p)r (28)

where gy is the coupling constant of the vector meson and
quark-antiquark and B(p —p’,p’) denotes the Bethe-
Salpeter wave function of the ¢ meson [60,61] in the
following parametrization form:

l—exp{-[(E}_,—E} )~
(B _y—ES)*—(p-

(p—2p')*]/0%}
2p/)2]/0'2

B(p-p'.p')=

(29)
!

— fiep =) fa ()} (27)

[
with 6 = 0.522 GeV being the width parameter of the wave
function. The derivation of Eq. (27) is given in Appendix A.
We see that there is a gain term and a loss term in Eq. (27).
In heavy-ion collisions, the distribution functions are
normally much less than 1, f; ; (x.p) ~f§;r> ~f§;) < 1,
so Eq. (27) can be approximated as

p

E,

<0 f o, (x,p) ~ Rj"ji (p) - Rdiss(P)le/lz (x,p), (30)

where R$%! and R™ denote the coalescence and dissoci-

ation rates for the vector meson, i.e., the rates of g +g — M
and M — g + g, respectively, defined as

R (p) = Sy 3 / e /E‘f E‘f S(Ey — E%, — EL_)ex(A1.p)es(4a. p)
r1:81:72,52 pop-p P
X Te[[Po(sy. p')o(ry. p)Tu(ry. p — (s, p — P)] f1id, (6. p) friss (o p — D), (31)
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diss _ \% q q PaPp
K <p) N 12 Zﬂfl 12(27h)? Z/ Eq E‘/ EV 5(E1’ - Ep’ - E )<gaﬂ 2 )
p'p-p P %
< Te{IP(p" -y = mg)T*[(p = p') -y + m,] }. (32)

Note that RYS(p) does not depend on the MVSDs of the
quark, the antiquark, and the vector meson; therefore, it is
independent of the quark polarization. Schematically the
formal solution to Eq. (30) reads

Rdiss (p>
R (p)At, for At < 1/R%(p)

Rcoal (p) . (33)

R‘d‘,ff(P) , for At > 1/R%Y(p)

Fian(x.p) ~ [1—exp (=R (p)Ar)]

[
if f;,,, (x, p) for the vector meson at the initial time is assumed
to be zero, where At is the formation time of the vector meson.

The spin density matrix element ,0/1 5, 1s assumed to be
proportional to f; ; (x,p), which is Rjoj{' (p)Ar if Ar<
1/R%(p) or Rj"ji (p)/RYss(p) if At > 1/R%(p). In both
cases, /)i 4, 1s proportional to RC"‘J11 (p) times a constant
independent of the spin states of the Vector meson, which is
a good feature for the spin density matrix. For a finite
formation time between these two limits, the result of pj{l P
can be regarded as averaged over the formation time. Here
we assume that the coalescence of the vector meson takes
place in a relatively short time, so we have

,0,1 o x p - EZ/ - Eg_p’)ez(ll’ p)€/,’(/12, p)

Z / d% / v
2mh(E),

1,811,852 2ﬂh EZ Eg P E’Y
w(ry,p = p)i(s2.p — )] £, (2, p) £, (x.p — P), (34)

where we have changed the notation to f; (/9 from f (,? The spin density matrix element (34) can be put into a compact
form with an explicit dependence on the polarization vector of the quark and antiquark

< Tr[[Pu(s), p)o(r. p/)I

At [ d*p 1 . X
PinP) =35 / Can} BB £ fax.p')fy(x,p —P")27h8(E} — E), — Ey ) )eq (A1, P)es(42. P)
p—p

X Te{T?(p" -y —mg)[1 +ysy - Pi(x,p)[T*[(p = p') -y + m|[L +ysy- P1(x.p—P)]}.  (35)

where p# = (E},p) and p* = (EZ, p’). The derivation of the expression inside the trace is given in Appendix B. The
contraction of €} (4;, p) and e;4(4,, p) with the trace can be worked out, and the result is given by Eq. (B9). The normalized
Py, (x,p) is defined as

/’/‘1/1/12 (x,p)
Tr(py)

where Tr(py ) is the trace of the spin density matrix and is evaluated using Eq. (B10) and p/‘{l W (x, p) is evaluated using Eq. (B9).
For unflavored vector mesons such as ¢ mesons with m, = mg, le 4, (x.p), and Tr(py) can be simplified as

P, (x.p) = (36)

At a*p’ 1 .
P74, (x.p) = —ggzv / (ah) BT EVf (x.p")f4(x.p —p")22hS(Ey — E], —E}_)B*(p—P'.P')ei(41.P)es(42. P)
pTp-p P
< {(p P+ pPPE)(p'- Py) = (p*Py+ pPP2)(p- Py) +2p" pP (1= P4 - P) + g% [p' - p+ (p' - Pp)(p- Py)]
+(p- p')(P2P)+ PiPl — g P, - P,) — im e p,(P{ + P{)}. (37)
Ar 2 d3p/ 1 / / Vv q q 2 /]
Tr(pV) :§gV/<2ﬂh) Eq Eq EVf ( 7p)fq(‘x’p_p)2ﬂh5(EP _EP’ _EP_P’>B (p_pvp)

pp-p P
X [=2m2(P; - P,) + m} + 2m2], (38)

036004-7



SHENG, OLIVA, LIANG, WANG, and WANG

PHYS. REV. D 109, 036004 (2024)

where we have used the shorthand notation P, = P,(x,
p—p’)and P, = P,(x,p’). Equations (37) and (38) will be
used in the next section for evaluating spin density matrix
elements for ¢» mesons.

V. SPIN DENSITY MATRIX ELEMENTS
FOR ¢ MESONS

Now we consider the vector meson made of a quark
and its antiquark, the so-called unflavored meson. For the
unflavored vector meson such as the ¢ meson, the
polarization distributions in phase space in Eq. (35) are
given by [17,62-65]

1 g
Ps(x,p) = i ehpo <60pa + ES—?ffFZi,) py[l —fs(x,p)],
s ple

1 g
Pi(x,p) = ) eHvpo <a)p5 ——¢Ff,;>p,/ [1 —fg(x,p)],

E\T o

s

(39)

where p# = (Ej,.p) and p* = (E}.p) denote the four-
momenta of the strange quark s and antiquark s, respec-
tively, with EY = ES = \/[p|* + m? and m; = m,. We
have assumed that s and 5 are polarized by the thermal
vorticity (tensor) field w,, = (1/2) [0p (Puy) — dg(ﬂup)]
and ¢ field strength tensor F’ f,; = apAf - 0,,A7,§ [26], where
u, is the fluid velocity, f = 1/T. is the inverse effective
temperature, and A? is the vector potential of the ¢ field.
Note that in some literature the definition of ,, may differ
by a sign [14,62,63]. In Eq. (39) f,(x,p) and f5(x,p) are
unpolarized phase-space distributions of s and s, respec-
tively, and given by the Fermi-Dirac distribution

1
L+exp(BE)" F puy)

Fops(xp) = (40)

where 4, is the chemical potential for s (—p, for §). In most
cases f/; are negligible relative to 1 in PI;/E in Eq. (39).
The spin-field coupling in (39) can be derived from the
Wigner functions for massive fermions [65] and has a
clear physical meaning: one contribution is from the
magnetic field through the magnetic moment and the
other contribution from the electric field through the spin-
orbit coupling; the former is always there while the latter
is only present for moving fermions. The mean field
effects of vector mesons have been studied in the context

|

&*p’ 1

Pglo(o) _%955/<

x 2mhs(Ey — B, — E5_){(p' - p) = 2[p' - €(0.p)]?}.

27h)’ B3, ES_ E)

of spin polarization of A hyperons [66] and different
elliptic flows between hadrons of some species and their
antiparticles [67] in heavy-ion collisions.

The polarization four-vector for the ¢ meson is

given by
p), (41)

€ €
e'(d,p) = (p e+ p-e
\/my +p° is the energy of the ¢ meson,

mg my (E% + my)

where E;/; =

A=0,%1 denotes the spin states, and €; denotes the
polarization three-vector of the spin state in the ¢ meson’s
rest frame. To calculate the spin alignment along the
direction of the global orbital angular momentum (the y
direction) in heavy-ion collisions, we choose the y direction
as the spin quantization direction. So the corresponding
polarization three-vectors are

GOZ(O,I,O),
|
€1 = —ﬁ(l’o’ 1),
1
€, =——(—i,0,1). 42
= 5.0 )

The 00-component of the spin density matrix is what can be
measured in experiments that concerns the real vector €,
satisfying €) = €.

Substituting Eq. (39) into Eq. (35), we obtain

ph =0l 0)+p], (@) +pf, (FL)
+pf (@) + 7, (F3).

142

(43)

where @' and F jﬁ with i = 0, 1, 2 denote the zeroth, first,
and second order terms in the vorticity and ¢ field,
respectively. The zeroth order term p:/{] /12(0) represents
the unpolarized contribution. In (43), we neglected mixing
terms of w,, and FZ’D since we assume that there is no
correlation between them in spacetime so these terms are
vanishing after taking a spacetime average of p‘fl 4, For
=2 =0, €(0,p)es(0.p) = €4(0.p)es(0,p) is sym-
metric in @ and f, and then one can verify that the first
order terms pfy (") and pf) (F %) are vanishing. The zeroth

order term pf,(0) is given by

f5(0")fs(p—p)B*(p—p.p')

(44)
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where we have used the second relation of Eq. (7). The second order terms pfl ;, (@?) and pfl 5, (F7) read

Ar 1 a*p’ 1 i,
P % =3 1 O / e 5 g PP PSP 280 - ) - By )
P p-p’

X €3(A1,P)€5(A0, P)@pe(X)@0,, (x) P (p = PV TP (p' - v + m)yy*[(p = P)) -y + mg)r’}  (45)

and
Ar 1 / d3p’ 1 i )
¢ 2 4 2 ’o / / ¢ 3 S
F2)~— - B -p’, 5 (p—p)27ho(E, — E°, — E5__,
PMZ( ¢) 324m%T5ff9(/) (zﬂh)3 (E;,)Z(ES_ ,)zE;z; p-p.0)f:(0)fs(p—P) (Ep » P p)
€5(A1.P)es(ha. P)FL(x) L, (x) p(p = p' Y Te{yP(p' -y + my)y’y*[(p = ') - v + m]y7 }. (46)

In Egs. (45) and (46) we have used @,: = (1/2)€,¢,50™, i’fg = (1/2)€p§aﬂFZ;’j, and neglected f/; relative to 1 in Pf:/i. The

tensor part of pfl i (w?) and pf] W (F 3/5) that is contracted with ee4@,:@,, and eZeﬁF ZEF fy, respectively, can be evaluated as

17005t = p(p — pYTe{y?(p' -y + mg)y’r*[(p = P') - v + my]y°}
= 2p"p! [my(¢ 9" = g7 ¢ + 9/"’ @) +2p° (g7 p" = g* p” — ¢ p")
2P PP + g PP =207 p"pP)] = 2p" p [y (P 7 — 9P + g )
=2p° (g% p" + g p'*) — Agrop"p']. (47)

With the above tensor and the quantity inside the curly brackets in (44), ng(O), pfl i (w?), and pfl /IZ(FZ) involve the
following moments of momenta:

d3 / ~
W UV JUUP  TUUPC ! n\f(n o b _ 5 _ s
{10»10710 Ao Ty } / 27h) 3E;7 E;) N (P p.p)f:(p)fs(p —p')27hd(E), E,,/ Ep_p/)
x {1, p™, p"p", p"p"p”. p¥p"p”Pp}, (48)
{1 1R 1R} = / e B (p - 0P (0, (b — )25 — B~ )
2nh)® (E5,)2(E5 ) ST v e

m

x {p’”,p“‘p’”,p”‘p vp'e, pp"pp'}. (49)

The tensors in (48) with the subscript “0” are those in pg’O(O) and pf (@ %), and the tensors in (49) with the subscript “F” are
those in pj’l (F ) The difference between Eqs. (48) and (49) is in the powers of ES and E, in the denominators. Note

that all of the above tensors with two or more indices are symmetric with respect to the 1nterchange of any two indices.
Using Eqgs. (47)-(49), the zeroth and second order terms of the spin density matrix in (44)—(46) can be expressed in terms
of moments of momenta

At 1 1%
2 0)=—@m2—1 [1—460,0 €5(0 L] 50
P00(0) 1 9 ¢E§0 (0, p)es( p)mélo (50)
4 2 Atgé 1 ~ ~ 2 ( Pp 00 af po Bo ap\ 1
Poo(@”) = _aﬁﬁea(oip)eﬁ(o’p)wpé(x)wny(x) [p7m¢(g/fg - 979 + 97971
N P
2SI = I = T + 20 P P = 2 )
= (PP = PP+ PRGN+ (I + P + Ao, (51)
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At g,
64 m2T2, E‘ﬁ

+2p7 pP (g1 — oI — I 4 2p7 (PP + I g — 2907 157

= (PP = PP+ LN A2p G + PO + AT, (52)

plo(F}) = €(0.p)es 0. D) L) F () [/ (7 = 77 + 7)1

From Eq. (38), the trace of the spin density matrix for the ¢ meson reads

At 1 1 5
Tr(py) = @935(’”35 +2m%)ﬁlo I_Wwﬁf( x)a, Gy(x)g/"’ (“”71g 1)
P s

2
gqﬁ ~¢ ~¢ l 5 57/
F F5 g —(p'l5 =1 . 53
2(m§5 + Zm%)Tgff /)g(x) (%) Iy (p"Ty = I7) (53)

Here we have neglected mixing terms of w,, and FY w since we assume that there is no correlation in spacetime between
them.
From Egs. (50)—(53) we obtain the 00-component of the normalized spin density matrix for the ¢» meson defined in (36)

Pho(x.p) = co(P) + co(x,P) + cr(x,p), (54)
where ¢, ¢, and ¢ are given by
o) = 1~ 46,0, ey 0. )2 (55)
0 2(my +2ms) A\ B mylo)’
1 1
(X, — _ a07 0’ ~ ~6 _[yZ p a0 _ off po aaplf
¢ (x p) 8m§(mé +2m%)€ ( p)eﬂ( p)a)pcf(x)w 7()6)] V4 m(,{;(gﬂ g~ g7 +9ﬂ g ) 0
+ 2pypp(gaﬁlgl’ _gaalfﬁ gﬂalfa _|_ 2p7 gﬂplfl’(l + If"ﬂ ap __ zgoolﬁfaﬂ)
— mé(djl)gaa _ gaﬂg/)a + gﬂagaﬂ)lgy+2pp(gaalgﬂ7 + gﬂalgay) + 49116[(5)0’/37}
CO(p) ~ ~ c 1 ¢ ¢
W“’p:(X)way(X)g" E(P”o - I). (56)
and
1 g‘% i 4 1 2 0 00 aff po o ap\ 7
cr(x,p) = W@%(O’P)€ﬂ(0,P)Fp5(x)Fay(x)T |:pym¢(gﬁ/g{ — g + ¢ g1

+ 2 PGP = gL — I+ 2p (I T — 271
— mé (gﬂpg(m _ gaﬁgpa + g/}‘rrgaﬂ)[i}'+2pp (g(mliﬁ 4 gﬁalifW) + 49/7612‘1/}7]

_ gico(l’)
2(m§) +2m?)T%;

F(x) Y, <x>gﬂ6,1—0<pni ~ 1), (57)

We see in Egs. (55)—(57) that the momentum moments always come with the factor 1/, so they can be understood as
normalized moments by [, a kind of momentum averages.

We see in Egs. (55)—(57) that ¢, c,,, and c are all Lorentz scalars, so it is convenient to evaluate them in the rest frame of
the vector meson. All nonvanishing moments of momenta in c,, and ¢y in Egs. (56) and (57) that are evaluated in the rest
frame of the vector meson are listed in Table II. We can also evaluate ¢ in the rest frame of the vector meson using Eq. (41)

and 190 = (m2 /M1, and 1Y = (1/3)6;(m2 /4 — m2)I,, which gives ¢, = 1/3. Finally, the result for 5, is
0 ¢ 0 0 ij\I"y s)to g 0 Y. Poo
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TABLE II

All nonvanishing moments of momenta normalized by /; in /_’go from contributions of the vorticity and the ¢

field, which are evaluated in the rest frame of the vector meson. Note that / represents either I/, or /r. The definition for some

quantities are [%¢ = ' 4 [?2 + 33,
Jeaaa = UL 4 12222 4 13333 The constant d, is defined as d, =

IOaa — 1011 + 1022 + 1033
l—4m2 /m? e The tensors in Egs. (56) and (57) are linear combinations

IOOaa — 10011 + 10022 + 10033,

Iaabb — 11122 + 12233 + 13311 and

of the quantities listed in this table, for example, I} = (1/3)8;;1%, 1% = (1/3)8;;1944, etc.

V& 100 Jaa IOOO 10(1(1 IOOOO I()Oaa Iaahh Jaaaa
® (my/2)g"° mg /4 dym /4 my/8 domy /8 my /16 dymy /16 dgm /80 d2m4/80
Fy (2/my)g"° 1 dy my/2 doymy/2 my /4 domy /4 Jlm¢/20 3dgmy /20
1 1 4,
~¢ / ¢ / / N2 4 /
T R O R e SR
o 3 3 mé To v m; Tgff
1 4g, 4g,,
+ C, {— (s’ € - LoEL ) — (€0 &)+ (e - EL)?|, (58)
3 m; Tgff r myT o ’

where the fields with primes are in the rest frame of the
vector meson, £ and @ denote the electric and magnetic
parts of the vorticity tensor w*”, respectively, E, and B
denote the electric and magnetic parts of the ¢ field tensor
F, ", respectively, and C, and C, are two coefficients
depending on masses of the quark and vector mesons
defined as

8m? + 16m§mé + 3m35
120m3 (m3 + 2m3)
4 2,2 4
8my — 14mgmy, + 3my

C, = . 59
: 120m3 (mj 4 2m3) (59)

C]:

’

The result for pf(x,p) in Eq. (58) is rigorous and
remarkable since all contributions are in squares of the
fields. This is a clear piece of evidence that there exists in
the ¢» meson an exact correlation between the strong force
field coupled to the s quark and that coupled to the § quark.
This feature makes p, for unflavored vector mesons very
different from that for other vector mesons carrying net
charges or flavors.

In evaluating the integrals in momentum moments in the
rest frame of the vector meson, we assume a simple form
for the fluid four-velocity u* = (1, 0) so that the quark and
antiquark distributions depend only on energies. Then we
obtain the simple form of pg’o (x,p) in Eq. (58) with C; and
C, depending only on masses as shown in (59). In general,
the fluid four-velocity has also a spatial component or
three-velocity, and in this case pfy(x,p) should have a
much more complicated form than Eq. (58) where the
coefficients also depend on the three-velocity of the fluid in
a more sophisticated way.

One can approximate /_’go by expanding C; and C, in
terms of the average quark momentum inside the vector
meson as

11 )
C,~ 6+9c10+0(az)
1
C,~ 18d0+0(d2) (60)

with do = 1-4m;/my, and the result is

1 ] ] / ! 4g§’ ! !
/’oo<xp)~ + 6+9d0 3 ()] AT B¢-B¢

My L e
—(eg-@')* + 4935 (€0 B, )2}
mfz/)Tesz /

1 1 4g¢
—I——do{—(e’-s’ E/ - EZ)
18 713 m2T2 ¢ Y

4q’
(e b e By [ O(R). (61
o1 et

The above result can be compared with that in the non-
relativistic limit (see Appendix C). To recover the momen-
tum dependence, one can express pp, in terms of lab-frame
fields. The transformation of the fields between the lab and
rest frame reads

B, — /B, —yvxE,+ (1 —7)~
o —VYPp—V ) 14

E, yE(,,+yva(,,+(1—y>;} v,

a)’:ya)—yvxe—l—(l—y)v;—;ov,
, V€
e:ys—i—yvxa)—i—(l—y)?V, (62)
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where y = Eff /my is the Lorentz factor and v = p/ Eff is the velocity of the ¢ meson. Taking the y direction as the spin
quantization direction, €y = (0, 1,0), we obtain pgo in terms of the fields in the lab frame

4955 4g¢ #y2
Poo X, p) 3 Z IBz(p o; sz i Z Igi(p € — (E7)?|. (63)

o
=123 ¢ 3,4 123 m¢Teff

where the coefficients are given by
$\2 3py 2 2 2
IB.x<p) - Cl (EP) —-(1+ ( ¢,)2 px| + CZ(py - 2pz>’

) 3p;
Iz (p) = Ci(p}=2p2)+ C, [(Ei/r)z - (1 + m> P;zc} ,
¢ p

Iy, (p)=C [6—E¢ —2(ED? - p2 _ e } + Cy(p2 + p?)
y\P) = y p - Py~ b Px P7)s
B Wmg+ BTy ED T :
E? 3p?

I =C(p2+ 2+c{641’ 2-2(Ep)? - pl - ]

Ey(p) l(p pz) 2 m¢ +Eg p) ( p) py (m¢ —|—E$)2
1neto) = &1 1 yo )02] + oo -2

,Z p (m¢ +Eg)2 z y x)s

_ 2_ 9,2 ) 1 3p3 2 4

IE,z(p) - Cl(py - px) + C2 (Ep) - + (M¢ I Ei/),)z Pz |- (6 )

The result in Eq. (63) is remarkable in its factorization form: the momentum functions are separated from spacetime
functions. This has an advantage that the momentum functions can be determined by experimental data on momentum

spectra while unknown spacetlme functions can be extracted from data on Pgo
One can take an average of poo(x p) over the local spacetime volume in which the vector meson is formed as

Gl x5+ 5 Y i) | %>—m;gfgff< )| +3 X e e %>—m;f§ff<<E?>2>] (65)

1123 =123

These averaged field squares can play as parameters and be determined by comparing (f)go(x, p)), with the data of /’go as
functions of transverse momenta. One can further take a momentum average of <[)§0(x, p))p and compare with the data as
functions of collision energies,

oo Dlp s 5 3 s [ = 28 (92)] 3 3ttt 1 i) ()] oo
3,535 mg miTee \ 345, T my L my T N

[
where the momentum average can be defined as distribution which may contain information about collective
flows such as v and v,, etc. If we want to obtain the transverse
Lo( )f4(P) momentum spectra of /_’go’ we have to integrate over the
(p)) = W, (67) azimuthal angle and rapidity in the average [)?0 and keep pr,

P

i.e.,toreplace d*p/ E}/,’ in (67) by dyde. The theoretical results

for (/")g()) as functions of transverse momenta, collision
if we want to obtain momentum-integrated data for [)30. Here  energies and centralities are presented in Ref. [41], which
E, is the ¢ meson’s energy, and f,(p) is its momentum  are in a good agreement with recent STAR data [22].
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VI. DISCUSSIONS

In this section we will discuss the main results as well as
approximations or assumptions that have been made in
this paper.

The Lagrangian (1) is for real vector fields since we are
concerned about the charge or flavor neutral particles such
as quarkonia made of a quark and its antiquark. To describe
those particles that carry net charge or flavor, we have to
consider complex vector fields. The generalization of the
formalism to complex vector fields is straightforward.

About the kinetic parts of the Boltzmann equations (20)
or (27) one may ask if there are additional vorticity terms
arising from noninertia force such as Coriolis and centrifu-
gal force as in Ref. [68] for massless fermions. The answer
is no. The effect of local rotation of the fluid in terms of
vorticity does not depend on whether one sees the system in
noninertia frame or inertia frame. What is essential is that
the fluid is really rotating relative to an inertia frame but not
just caused by the rotation of the observer. This means one
can describe the same system either in a rotating frame or in
an inertia frame. In the inertia frame, such a term does not
appear in the kinetic term of the Boltzmann equation for a
simple reason: there is no noninertia force. This has been
shown in several independent investigations, for example,
in Eq. (19) of Ref. [69] for massless fermions. One may
wonder where the vorticity effect (such as the chiral vortical
effect) goes. It actually comes from an equilibrium dis-
tribution function with spin-vorticity coupling in Egs. (32)
and (33) that finally enters the current in Eq. (34). Both
approaches in Refs. [68,69] are equivalent in describing the
vorticity effect for massless fermions.

For massive fermions, the covariant Wigner functions (in
an inertia frame) are powerful tools to describe phase-space
evolution of spin-1/2 fermions. Several groups have devel-
oped this approach and made significant progress. For
example, the collisionless kinetic equations are given in
Eq. (60) of Ref. [65]. We can see that once the external
electromagnetic field is turned off, the kinetic field is just in
the formof p - 9,V(x, p) = 0(V is proportional to the vector
component of the Wigner function) and p - 9,%,,(x, p) =0
(%, is the tensor component of the Wigner function), and
both V.and X, depend on distribution functions of fermions.
The vorticity effect is actually encoded in the vector and
axial vector components of Wigner functions, as shown in
Egs. (101) and (111). Note that the axial vector component
of the Wigner function gives the spin (pseudo)vector.
The absence of such a vorticity force term in the collisionless
part of the kinetic equation can also be confirmed in
Egs. (94)—(97) of Ref. [70].

The vector fields that polarize s and § are assumed to be
the ¢ field according to the chiral quark model [27]. It is the
effective (color singlet) vector field induced by the current of
pseudo-Goldstone bosons. The local averaged field squares

((B?)2) and ((E?)?) are also related to gluon fluctuation of

instantons [30,31] according to the quark model based on
instanton vacuum [71]. If quarks and antiquarks are polar-
ized by gluon fields, the local averaged field squares are
related to the gluon condensate that contributes to the trace
anomaly of the energy momentum tensor. Therefore, the
local averaged field squares are in connection with funda-
mental properties of the QCD vacuum which play an
important role in hadron structures [28,29].

As an input to the general formula (35) we assume that
Py and P/, have the linear form in Eq. (39) in the vorticity
and ¢ fields. The coupling between the spin and fluid
velocity field is assumed to be through the vorticity. One
can also introduce other coupling forms such as spin-shear
couplings [72—75]. The spin polarization by the ¢ field for
g and g is assumed to have a covariant and linear form
~e””“/5Fj’:/}py. There may be contributions to Py and P

from the ¢ field in quadratic or higher orders in F fﬁ, but we

neglected these contributions in this paper for simplicity
because the purpose of this paper is to illustrate the effects
of field fluctuations on the spin alignment. This is our main
assumption. Furthermore, one can use other forms of spin-
field couplings or add more terms to Eq. (39). An
alternative choice is to use the coupling of the spin and
gluon field as in the nonrelativistic quantum chromody-
namics (NRQCD) [76,77]. But the Hamiltonian of
NRQCD is not covariant at all and may be different from
the covariant from ~e** F¢,p, where F, is the gluon

field with adjoint color c. In this case the final result may be
different from the result in this paper.

We can generalize the current relativistic coalescence
model to the spin alignment of heavy quarkonia such as
J/w. Then the ¢ vector field should be replaced by the
gluon field. The generalization is straightforward.

VII. SUMMARY AND CONCLUSION

In summary, a relativistic transport theory with spin
degrees of freedom for vector mesons is constructed based
on KB equations from which the spin Boltzmann equations
are derived. With the spin Boltzmann equations we for-
mulate the spin density matrix element p, for the ¢p meson.

The dominant contributions to /’go at lower energies are
assumed to come from the ¢ field, a kind of the vector force
field in strong interaction that can polarize the strange and
antistrange quarks in the same way as the electromagnetic
field polarizes charged particles. The key observation is that
there is correlation inside the ¢ meson’s wave function
between the ¢ field that polarizes the strange antistrange
quarks. This is reflected by the fact that the contributions to
Pgo are all in squares of the fields which are nonvanishing
even if the fields may strongly fluctuate. There are six
parameters for fluctuations of strong force fields, ((B?)2)

and ((Ef’)2> with i = x, y, z, that can be extracted from
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experimental data. Constrained by the number and pre-
cision of data and considering the geometry of heavy-ion
collisions, one can approximately reduce the number of
parameters to two: longtitudinal and transverse field
squares as was done in Ref. [41]. These parameters of
strong force field fluctuations in pg, for unflavored vector
mesons reflect fundamental properties of QCD.
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APPENDIX A: COLLISION TERMS FOR COALESCENCE AND DISSOCIATION

In this appendix, we will derive the collision term for the coalescence process of the quark and antiquark into the vector

meson corresponding to /_, . in Eq. (26).
The explicit form of 7_, | is

oy = Z

I I
1817258247 4%

{em(A},p)e” (A, p)Tr [T v(s). —p

No(r. —p ) u(ry. p +p')a(s2.p +P')] + (2. p)ei (2. p)

x Tr[T*v(sy, —p')o(ry, —=p')T%u(ry, p + p)it(s2.p + p')] }

x{[8ns,

f"lYl X, =P )} [6r252 - f(rzs)z (x’ p+ p/)]fll/]/l’z (-)C7 p)

o (e = (e ) 8+ F g (5o )] (A1)
The corresponding collision term in the left-hand side of Eq. (26) reads
fihs = 4(21;m) / @ 'méwg ~Ey —Eyy)(p° - E})
P11 Fsa A A pEp-pp
x {e*(A1, p)e (A, p)Tr[Tyv(sy, )0 (ry, p ) u(ry, p — p')it(s2, p — p')]
+ e (A, p)ea (4. P)Tr [ u(s1, p)o(ry )T u(ry. p — p)i(s2.p — p)] }
X {[81,s, = 110 (6P [, = £ (5. = P)] 1 (3. )
—fi (. P (x.p = D) (82 + Fra(x.0)] }, (A2)

where we have changed the sign of the antiquark’s three-momentum as p’ — —p’ in the integral, used Eq. (7), and the
relation

s(p* —m2)s[(p+p')?
1

— m3]8(p? = m3)0(=py)0(po + p)0(po)

8(ph + E%)8(po + Py — EL,,)8(po — E})

q 14 v
8Ep El E}
= ————8(p, + E!)8(Ey — EY, — EZ_)3(po — E}). (A3)
qd q \4 )4 p p+p’ 14
8Ep E,  Ep
From (11), the particle sector of p - 9,G<**(x, p) in the left-hand side of Eq. (26) becomes
P 0,G=(x, p) = 2nh EV 8(po— Ey)> _e"(Z.p)e (2. p)p - 0f 1 (x. D). (A4)

i,
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Using Eqs. (A2) and (A4) into Eq. (26), taking a contraction of the resulting equation with €} (4,, p) and €, (4,, p), and using
the first identity in (7), we obtain

P Oufnlep) = ¢ / =) E” g 2eh3(EY ~ B}~ Ef,)

r].sl,rz,sz./l’ Ay

X {5,1216 (41,P) "(/I’l,p)Tr[F U(ShP Jo(ri, ") u(ry, p —p')a(s p—p )}

+ 5/11,1’,€u(/12’13) (45, p)Tr [FDU(SMP )o(ri, p )T u(ry, p —p')i(s,, p— P )]}

X< {f1 (P (e = B) [ + F (9]

—[ ris) frlsl(x P)H 1285 frm(x P—-P )]fﬂ’l/lé(xvp)}’ (AS)
which reproduces Eq. (27). Note that the terms proportional to p# and p* in the left-hand side of Eq. (26) do not contribute
since their contraction with €;,(4;,p) and €,(4,,p) is vanishing.

We consider the coalescence process in heavy-ion collisions in which the MVSDs of quarks, antiquarks, and vector
mesons are assumed to be much smaller than unity. So the term with &, ; dominates the gain term that can be simplified as

g N e ) 8(2x h)2 ) / Pipip Eq S(E) = By = Ey_y)ei(h1.P)ea(da.P)

F1,81,12,82 P ~p-p’

x Te[[%0(sy, p) 3 (ry. p )T u(rs. p — p)(52. p — )] firo) (x. ') frash (2. D = '), (A6)

which gives Eq. (31). The loss term can be simplified as

1 ~N T T A 3 ! 5EV _Eq ’
O T 6(2nh)? > / ( pv)

F1581,72,82

x {p1€; /11,p)e"(/l’l,p)Tr[Fav(sl,p)17('"1, Nu(ry,p —p)ik(so. p — p')]
+5ﬂlzq€u(ﬂz»l’) (/1/27P)TY[F" (s1,p)o(r, )T u(ry, p—p')i(s2, p— p’ ]}5r|s15r2s2fi'l/1/2(x’p)

1 1 .
= ee—— d3 ,_75 EV_Eq/_Eq ’
16(27h)> / P EZ,Eg_p, (Ep ~E, b-v)

{mezxp (s D) D) TE [l -7 = mg)D((p = ') 7+ my)]

3 o0 Ble DI BT 9 = (p =) y+mq>]}

2

1 1 _
= —_— d3 /_75 Ev_Eq/_Eq /
16(2ﬂh)2/ p EZ’Eg—p’ (E, - E, p-p)

X [mez (x.P)es (A1 P)ea(.P) + > f1,0 (x. P)es (2. P)eq(a, p)]
I 7,
X Te{T*(p" -y —mg)[*[(p = p') -y + m,] }, (A7)

where we have neglected f’ £1‘21 and f §;>2 relative to &, ,, and &, ,, respectively. After completing the integral over p’ in the
vector meson’s rest frame, one can prove

1 _
€.(41.p)eq /1/1,P)/ & ’Wé(EX —Ej —Ep )T (" y =mg)T*[(p = p') -y +my| } <8, (AS)
P p-p’

so we can replace
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. 2 PuPa
mez X, p)e ﬂl,P) (41,p) + Zfa,a;(x,l’)%(ﬂz,P)ea(ﬂ/pp) - —gfmz(x’P) <9ﬂa - :12 >’ (A9)
S

\%

and then the loss term becomes

1 pﬂpa 3./ 1 \%4 q q x( 1/ !
loss Nmf,mz (x.p) (gﬂ(l - m%, a’p mé(Ep - Ep, — Ep_p/)Tr{l—“ (py-— mq)l—‘” [(p —p)r+ mq} }

(A10)

This gives Eq. (32).

APPENDIX B: COLLISION KERNEL

The spin density matrix element for vector mesons is given by Eq. (35). In this appendix we evaluate the collision kernel
in Eq. (35):

Ly, (P.P) = I (p.P')eq (A1 P)eg (4. ). (B1)

where 1%/(p,p’) is defined as

19(pp') = Tr[[Pu(s1, p')a(r1. P )T “u(rs. p = p)it(s52.p = B)] 1%, (5. B 12, (. P = ). (B2)
Now we use the following formula to simplify /%’. For quark spinors of particles and antiparticles we have

1

u(r.p)i(s.B) = 3 (m, + 7D, )b + 5

o) €;4ua/}6”ypanﬂ(nsra P, mq)’

mzﬂ/ 7/ n ( srap’mq) _Z

_ 1
ZM(}’, p)u(s7 p)(Tj)rs = mqysyﬂn;t(nj’ P, mq) - Eeyuaﬁaﬂbpanﬂ(nji P, mq)’

r,s

1 1
(_mt} + pﬂ7ﬂ>5rs - EmZ]}/S}/Mn”(n:r’p’ mg ) - 16’4 ﬂo- bpanﬁ'(nsrv p.m _)’

N =

v(r,p)o(s,p) =

_ 1
ZU(I’, p)U(S, p)<Tj)sr = _mZ]}/Syﬂn” (nj’ P, mé) - Eeﬂyaﬂd,uypanﬂ(njv P, mc_])7 (BS)

where we have used n}, = n,; = n;(z;),, with n; (i = 1, 2, 3) being three basis directions in Eq. (23). Inserting Eq. (22)
into Eq. (B2) gives

1 _
1(p,p’) = Tr[TPu(s,. p")o(ry, p')Tu(ry. p — p')ii(s2.p — p')] §fq(x,p’)[5r.s, — Pi(x, p)n " (=p")ehs ]
1 .
x5fq (x.p—p')[8,,5, = Ph(x.p - p’)nﬁ»“”(p —p')hs,)

=—fa (.0 ) f (e, p = p)Te{TP(p" - y = mg) [1 + ysy - P1(x.p')]T®
[(p=p)-y+m)][1+ysy-Pi(x,p—p)]}, (B4)

X -I>I>—*

where we have used

0(51.0")0(r1, ) [81,5, = PA(x, PR (=p) el ] = (0 7 = mg) [1 + 757 - PA(x,p)] (BS)

and
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u(ry,p—p’)i(s,,p—p’) Inserting (B4) into (B1) we obtain

% (8,5, = Ph(x.p—p")n{ " (p—p')7hs,]

=[(p=p)y+m ) [1+7°y-P(x,p—p)].  (B6)  Lui = SalxP)fg(x.p=P)ea(di,p)es(22,p)
x Te{?(p' -y — my) [l + ysy - Py(x.p")|T”

X [(p=p)-v+mg] [1+7sy-Pylx,p—p)]}.
%6“””” = rsrr” — ¢y, (BS)

7 (=p') = n(n ;. my), . ,

- , Napd , From Eq. (B8) one arrives at Eq. (35). Using (28), the trace
P Pu(x,p') = (p = p')'Pu(x.p—p') = 0. (B7) i (BS) can be worked out and the result of 1), is
|

In deriving (B5) and (B6) we have used

L, = =4gy B2 (p — p'. ) f 4 (x. p')f 4 (x.p — P)es(A)es(A) { (PP + pP2)(p' - P,) = (p"“Py + p"P2)(p - Py)
a Q| o 5 o o]
+2p’ P/ﬁ(l —Pq‘Pq)Jrgﬂ[P"PJF(P/'Pq)(P‘Pq)} + [(mq—mq)quFP'P/](PqP{J+PqP§_9(ﬂP?1‘Pq)
— (mg —my)myg™ — i(m, — my)e® pl, (P + PY) — imge® p, (P} + P)}, (B9)

where we have used shorthand notations €(4) = ¢(4,p), P, = P,(x,p —p’), and P, = P;(x,p’). We can take the sum of
I, over A as

51 = 20 =B 050 5 = 0] [~y 4 ) o 5—mq>}<P P,

[
2 CRC R 2
—|—m2 (my —mg)*(p - P,)(p- Py)+2m3 + 6mymy — m3 — my — —2(m - m2) (B10)
4 my
From Eq. (B10) one can obtain Tr(py) in Eq. (36). €*(4) =0,
APPENDIX C: SPIN DENSITY MATRIX 1€(h) ~ 0,
IN NONRELATIVISTIC LIMIT p'-prRmymg,
We consider m, = m; and assume my ~2m, in the € () - e(d) = —€* (1) - €(y). (C2)

nonrelativistic limit, which is a good approximation for
heavy quarkonia and the constituent quark coalescence

model. In this case we can approximate In Eqgs. (C1) and (C2) we have used the shorthand notation

e(4) = €(4,p). Using (C1) and (C2), I, ;, in Eq. (BY) has a

' (my,0), simple form
p¥ = (mg.0) = (mg,0),
- p¥=(my - mg, 0) ~ (mq’ 0), L, :4g%meQ{€* (41)-€(A)(1 +P;-P )
< )~ (0. Py(x.p)). [P € (ﬂ >] [Pq e(m] [P, € (21)] [Py -€(ho)]

Py(x,p—p') = (0,P,(x,p —p)), —ile*( )] (P, +Pg)}. (C3)

e(4) ~ (0.€(4))), o o .

ne can verify I; ; =1 ;.
¢(%) ~ (0.€(%2)), (C1) From (35), the spin density matrix for the vector meson
which leads to in the nonrelativistic limit is given by
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At By’ 1

v )

P, (X P) = gvmeq/ 304 g4 gV
8 (27h)* ET,E!_E}

faep)fo(x.p —P)22hS(E} — ES, — Ej )

x {€" (1) - €(da) [1 + Py (x.p = ') - Py(x.p')] = [P, (x.p = P') - €(1)] [Py (x. ') - €"(21)]

= [Py(x.p = p') € ()] [Py (x.0) - €(d)] = i[€" (A1) x €(1)] - [P, (x.p = P) + P (x. )] }.

We can simplify the above formula by using the shorthand
notation

Dy At , / &’p’ 1
P = _ngqu 3 1 q v
8 (27h) EVE! JE}
X fale.p')fo(x. p = P)2mh6(EY — Ef, — ES._).
(C5)
We can put pl‘{l ;, Into a matrix form
P11 Lo P1-1
pV = Pio  Poo  Po-i (Co)
Pio1 Po—1 P-1-1

P Z/DP/(1+U3'Pq)(1+n3'Pq),

(C4)

|
Note that p¥ is a Hermitian matrix and we have suppressed
the index “V” in all elements.

For a given spin quantization direction n;, we can
construct €(1) as follows:

€(0) = nj,

€(l) = _L(nl +in,),

V2
1

e(-1) :75(111 — iny), (C7)

where n;, n,, and n3 form orthogonal basis vectors in the
rest frame of the vector meson. From (C4) we obtain

P10 _\/LE/DP’{[(IH = iny) - PyJ(1+n3-Pg) + [(ny —iny) - P] (1 +my - Py) .

Pl-1= /DP/ () —iny) - P,] [(ny —iny) - Py,

Poo — /Dpl{l + Pq . Pq - 2(113 . Pq)(n3 . Pq)},

Pt = _\/LE/DP/{[(HI +iny)-P,J(1=n3-P;) + [(n, +iny) - Py[(1—n3-P,))},

paci = [ DY =ns P (1 =0y ).

where we have used shorthand notations P, = P (x,p — p’)
and P, =P, (x,p’). The 00-element of the normalized
density matrix is given by
Poo
Pt Poo + P-1.-1
_ [Dp'[1+P,-P;—=2(n;-P,)(n;-P,)]
/Dp'(3+P,-Py) '
where N = [Dp' is the normalization constant. If the

magnitude of the polarization is much smaller than 1, we
can make a Taylor expansion in it and obtain

Poo =

(C9)

1 2
Poo(x.p) 1’§+9—N/DP' [(n;-P,)(n;-Py)

+(ny-P,)(ny-P;) —2(n5-P,)(n3-P;)]. (C10)

(C8)

I
If we assume P, and P are only in the direction of nj3, i.e.,

n-P,=n-P,=n,-P,=n, P, =0, (C11)
we obtain
_ 14 Dy P ,
ﬂoo(xvp)Ng—ﬁ 14 [n3- q(x,P—Pﬂ
x [n3 - Py(x.p)], (C12)

which recovers a form similar to the previous result
but expressed in terms of the weighted integral Dp’
in (C5).
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