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In this work, the transition form factors of the semileptonic decays of By, to the light scalar mesons with
masses close to 1.5 GeV such as K;;(1430), a(1450), and f(1500) are calculated in the framework of the
light-cone sum rules. For this purpose, the two- and three-particle B-meson distribution amplitudes (DAs)
are used. Note that it is possible to use the B-meson DAs for the B, meson in the SU(3)g symmetry limit.
The transition form factors are obtained in terms of the two-particle DAs up to twist-five accuracy, and the
three-particle up to twist-six level. We apply two classes of the phenomenological models for the DAs of
the B meson. The longitudinal lepton polarization asymmetries and branching fractions for the
semileptonic decays of By, to the light scalar mesons are estimated with the help of these form factors.
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I. INTRODUCTION

Although scalar states with J© = 07 have been observed
for more than half a century, their inner structure is still
controversial both experimentally and theoretically. In order
to discover their underlying structure, many different theo-
retical and phenomenological descriptions are presented
including considering the scalar mesons as the conventional
mesons gg or nonconventional mesons such as tetraquark
[1], molecule [2], hybrid [3], and glueballs [4]. A tetraquark
is a complex structure made up of one diquark and one
antidiquark gg — g g. A molecule or a meson-meson bound
state is composed of two quark-antiquark couples ¢gg — qg.
In addition, a hybrid is an object consisting of a ¢g pair with
at least one extra gluon gg — g, and the glueballs are made
only of gluons (for instance see Ref. [5]). Itis very likely that
some scalar mesons are not made of one simple component
but are the superpositions of these contents. For example, it
is suggested that a((980) is a superposition of gg and
tetraquark [6]. The dominant component of the scalar
mesons can be found from the decay and production of them.

A number of the scalar mesons have been discovered in
the spectroscopic studies. Because of the large decay
widths of the scalar mesons, the identification of them is
more difficult in contrast to the pseudoscalars and vector
mesons. Among them, there are nine light scalar mesons
together, below or near 1 GeV, including the isoscalars

* . . . .
rezakhosravi @saadi.shirazu.ac.ir

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(3)/036003(18)

036003-1

f0(500) (also denoted as o) and f((980), isodoublets
[K;T(700) (also refereed as ), K;°(700)] and [K;°(700),
K;=(700)], and isovector [ag(980), af(980), ag(980)]
which can form an SU(3) nonet, while the scalar mesons
around 1.5 GeV, consisting of isoscalars f,(1370) and
£0(1500)/fo(1700), isodoublets [K5(1430), K;°(1430)]
and [K;°(1430), K;=(1430)], and isovector [aj(1450),
a(1450), ag(1450)] can be members of another nonet.
From a survey of the accumulated experimental data, two
scenarios can be suggested to describe these two groups of
nine scalar mesons in the quark model [7]. In the first one,
scenario 1(S1), it is supposed that the light scalar mesons
are composed from two quarks. The nonet mesons below
1 GeV are treated as the lowest lying states, and the nonet
mesons near 1.5 GeV are the excited states corresponding
to the lowest lying states. In scenario 2 (S2), the scalar
states below 1 GeV are considered as the members of a
tetraquark nonet, while the nonet mesons near 1.5 GeV are
viewed as the lowest lying states, with the corresponding
first excited states between 2.0-2.3 GeV. In both scenarios,
it is suggested that the heavier nonet near 1.5 GeV consists
of the scalar mesons with two quarks in the quark model.
However in S1, those are regarded as the excited states,
and in S2 they are seen as the ground states. Therefore,
the calculation of the decay constant values and DAs for
the scalar mesons near 1.5 GeV are different via the two
scenarios.

In recent years, some experimental efforts have been
devoted to measuring the decay modes involving the light
scalar mesons in final state. The BESIII Collaboration
has recently measured the nonleptonic and semileptonic
decays of D; to the light scalar mesons [8—10]. In the same
context, the nonleptonic two-body B-meson decays
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involving a scalar final state have been observed by
Belle [11], BABAR [12], and LHCb [13]. These observa-
tions provide an efficient way to investigate the features and
the possible inner structures of the scalar mesons.

In the particle physics an accurate calculation of the
transition form factors for the semileptonic B, decays to
the light scalar mesons is important in two folds. First, to
study the quantities related to the semileptonic and non-
leptonic decays involving By to the scalar mesons, it is
necessary to know the appropriate behavior of the transition
form factors. Second, for the indirect search of new physics
beyond the standard model (SM), these form factors are the
essential ingredients. Since the heavy to light transition
form factors are nonperturbative in nature, the nonpertur-
bative QCD approaches are applied to evaluate them.
Usually, the lattice QCD (LQCD) works well to calculate
the form factors in these cases.

So far, the transition form factors of By — S,
[S = K{;(1430), ay(1450), f((1500)] have been not esti-
mated through the LQCD, although they have been
calculated from other methods such as the perturbative
QCD (pQCD) [14], covariant light front (CLF) [15], QCD
sum rules (QCDSR) [16-18], light-front quark model
(LFQM) [19], minimal supersymmetric standard model
(MSSM) [20], and also the light-cone sum rules (LCSR).

The LCSR is a proper approach to evaluate the transition
form factors of the heavy to light meson decays. The
conventional LCSR starts with a two-point correlation
function inserting the operators between vacuum and light
meson. Then, it develops in terms of the nonlocal operators
by using the operator product expansion (OPE) near the
light-cone region x> =0. The matrix elements of the
nonlocal operators are parametrized as the light meson
DAs of the increasing twist, i.e., twist-two, twist-three,
twist-four, and so on. These DAs offer valuable insights
into the nonperturbative makeup of hadrons and the
distribution of partons in relation to their momentum
fractions within these particles. More research on the
B(;) — § transition form factors have been performed in
the framework of the LCSR with the light scalar meson
twist-two and twist-three DAs [21-23], only scalar meson
twist-two DA [24,25], or twist-three DAs [26], respectively.
In this method, a reliable estimation of the form factors
depends on an accurate knowledge of the internal structure
of the light meson and its DAs. Since the intrinsic nature of
the light scalar mesons is still not completely clear, the DAs
attributed to them can also be doubted. Therefore, it is
important to use a new LCSR method to calculate the form
factors that is independent of the light scalar meson DA,
and then compare its results with the conventional method.

In Ref. [27], the authors proposed a new method based
on the LCSR technique that relates the B-meson DAs to the
B — 7 form factor. This model was independently sug-
gested in the framework of the soft-collinear effective
theory (SCET) in Ref. [28]. In this new approach, which

is sometimes called the B-meson LCSR, the main idea is to
invert the correlation function compared to the conven-
tional LCSR, so that the light meson interpolates with an
appropriate light-quark current, and the nonlocal operators
between an on-shell B-meson state and the hadronic
vacuum are expressed as convolutions of hard scattering
kernels with light-cone distribution amplitudes (LCDAs) of
the B meson. Recently, considering the next-to-leading
order QCD corrections to the correlation function in order
to extract the hard and jet functions, the form factors of
semileptonic decays B to scalar mesons have been calcu-
lated in terms of leading twist function of the B-meson
DA [29]. Also, considering the SU(3) symmetry limit and
using the two-particle B-meson DAs up to twist-three,
and three-particle DAs up to twist-four, the transition
form factors of the semileptonic By — K{j(1430) decays
have been calculated in the framework of the B-meson
LCSR [30].

In this work, we focus on the three light scalar mesons
K{(1430), ag(1450), and f((1500), with the mass of about
1.5 GeV. The production of the light scalar mesons K, ay,
and f, can provide a different unique insight to the
mysterious structure of them. Our main goal is to calculate
the form factors of the B(,) — (K. ag, fo) decays via the
B-meson LCSR applying the two-particle DAs up to
twist-five, and considering the new results for the complete
set of the three-particle DAs up to twist-six. The four-
particle B-meson DAs are not taken into account in this
work due to the negligible effects. Note that in the SU(3)
symmetry limit, it is possible to use the B-meson DAs for
the B; meson. The functional form of the higher-twist
B-meson DAs involve contributions of multiparton states.
To calculate the form factors, we use two classes
of the phenomenological models for the two- and three-
particle DAs of the B meson which contain a minimum
number of free parameters and satisfy equation of
motion (EOM) constraints in tree level [31,32]. Utilizing
these form factors, the semileptonic By — (K, a){; and
B — (Kz‘),fo)lf/ui/, [ = e, p, T decays are analyzed. In
the SM, the rare semileptonic B, — (K, fo)ll/vb decays
occur at loop level instead of tree level, by electroweak
penguin and weak box diagrams via the flavor changing
neutral current (FCNC) transitions of b — sITI~ at quark
level.

The content of paper is as follows: In Sec. II, the form
factors of the semileptonic B, — S, (S = K§, ag, fo)
decays are calculated with the B-meson LCSR approach
using the two- and three-particle DAs of the B meson up to
twist-five, and twist-six, respectively. These form factors
are basic parameters to study the other quantities such as
forward-backward asymmetry, longitudinal lepton polari-
zation asymmetry, and the branching fraction of semi-
leptonic decays. In Sec. III, the two phenomenological
models for the DAs of the B meson are presented.
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This section is also devoted to the numerical and analytical
results for the semileptonic B, — S decays.

II. FORM FACTORS OF B — S WITH
HIGHER-TWIST CORRECTIONS

Considering parity and using Lorentz invariance, the
transition matrix elements involved in B(,) — S transitions
can be parametrized as

(S(PI2 1B (p)) = =il f (P Pu+f-(d%)q,).

fT(qz)

(S(P)IEIB ()= g [4*P, — (m}  —m3)q,].

(1)

In these phrases P, = (p'+p),, q.= (p—p'),- The
transition currents J4 = g,7,ysb, and J) = §,0,,75q"b
(q; = u, s) are used to calculate the transition form factors
fi(q%), f_(¢?) and f1(q?), respectively. ¢* is the momen-
tum transfer squared. The calculation of these form factors
using the LCSR method is described in this section.

To investigate the form factors in the frame work of
the B-meson LCSR, the two-point correlation function
II(p', q) is constructed from two currents inserted between
vacuum and B, meson as follows:

()

1(p'. q) =i/d4xei”""<0|T{JS(X)J(0)}|B<s)(P)>, (2)

where T is the time ordering operator, and J5(x) is the
interpolating current of the scalar meson S, so that

TR () =5 (0)u(x), J5 (x) = d(x)s(x), T (x) = d(x)u(x),
and J7o(x) = 5(x)s(x). The matrix element of JS between
the vacuum and scalar meson S is given in terms of the
decay constant fg, and mass of the scalar meson as
(0|J5]S) = fgmyg. In the correlation function, J(0) is the
transition current; J = J4 or J[. In addition, p’ and ¢ are
the momenta of the interpolating and transition currents,

respectively. The relation between these two quantities

is p? = (p'+q)* =mj .

The correlation function in Eq. (2) can be investigated
from two aspects, hadronic representation and QCD cal-
culations. The form factors are obtained via the LCSR
method in terms of the DAs of the B meson by equating the
two sides. As mentioned before, it is possible to use the
B-meson DAs for B;-meson in the SU(3) symmetry limit.

A. Hadronic representation

Inserting a complete set of the intermediate states
with the same quantum number as the interpolating current
J5, in Eq. (2), and isolating the pole term of the lowest
scalar meson S, and then applying the Fourier trans-
formation, the hadronic representation of the correlation

function is obtained. Defining the spectral density function
of the higher resonances and continuum states as p(s) =
>n (OIS () A(P"))(h(P")VIB sy (p))S(s — m3), the corre-
lation function can be written in terms of the scalar meson
state and the higher resonance contributions as

(O151S(P"))(S(P") I B 5 (P))
mg = p

+ / ” ds S”_(ij,z, (3)

where s is the continuum threshold of the scalar meson S.

T2y q) =

B. QCD calculations

At the quark level in QCD, the correlation function can
be evaluated in the deep Euclidean region as a complex
function. Using the dispersion relation, the correlation
function can be written as

1 feo  ImIIP(s)
(g = [Tasm

s—=p
Applying the Borel transformation in Egs. (3) and (4) with

_2/m2
'M/ZM , where M?
is the Borel parameter, guarantees that the contributions
of the higher states and continuum in the hadronic repre-
sentation are effectively suppressed. In addition, it assures
that the contributions of higher-dimensional operators in the
QCD side are small. Equating both sides of the correlation
function, and using the quark-hadron duality approximation
: ” ~1 QCD :
at large spacelike p= as p(s) = ImIT¥P(s), the following
equality is determined:

respect to the variable p’ as B » ()62_17) =¢

<0|JS|S(p/)><S(p/)|J|B(S)(p)>e—m§/MZ :/So dsp(s)e_S/Mz.

(5)

Investigating the spectral density at the quark level allows us
to derive the form factors f,, f_ and f7 in Eq. (5).

Based on the heavy quark effective theory (HQET), the
B(;)-meson state in the limit of large m,, can be estimated by
the relativistic normalization of it |B(,(p)) = |B((v)),
where v is four-velocity of the B(,) meson. Up to 1/m,
corrections, the correlation function of the By — S transition
can be approximated as IT9°P(p/,q) = [P (p', §) +
O(1/my,), where § = g — myw is called the static part of
q. Replacing the b-quark field by the HQET field 4, the
correlation function [Eq. (2)] in the heavy quark limit,
(mj — ), becomes [33]

ﬁQCD(p’JJ)Zi/d4xei1’""<0|T{51(X)Sql(X)Fhu(o)}lB(v)%

(6)
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where quark field g stands for 5 or d, and a matrix composition I"is YuYs Oro,,ysq” corresponding to the transition currents J,‘;‘ or
];, respectively. The full-quark propagator S, (x) of a massless quark g; (u or s) in the external gluon field in the Fock-
Schwinger gauge is as follows [34]:

: d4k —ik.x k ! 1 An,P Ap
S, (x) =i We : ?—&— | duG,,(ux) 2y —%ka (7)

If the full-quark propagator S, (x) in Eq. (7) is replaced in Eq. (6), operators between vacuum mode and B(v) state create the
nonzero matrix elements as (0[Gq(x)n,,(0)[B(v)) and (0|g4(x)G,,(ux)h,5(0)|B(v)). These matrix elements of the nonlocal
heavy-light currents are parametrized in terms of the B-meson DAs. The two-particle higher-twist DAs of the B meson arise in
the expansion of the relevant nonlocal quark-antiquark operator close to the light cone as [31,32,35]

£

20 x

Ot 0/B0) = =572 [ dweorsd (14.6) (0. 0) + 9. 0) = 55 [0(0) = (@)

205, (0) - 9. 0)] ys}ﬁa, ®)

where ¢ (), ¢p_(®), g, (w), and g_(w) are of leading twist, twist-three, twist-four, and twist-five, respectively. The three-
particle contributions involve a further gluon field, so that the matrix elements of the nonlocal operator g, (x)G,, (ux)h,4(0) are
parametrized in terms of the B-meson DAs of increasing twist as [31,32,35]

(0/G0()Gy (1x) 1y (0) | B()) =L 2 / / dE il rud {(1+ﬁ) {(vﬂp—vﬂn)(‘l’fx(a),é)—‘Pv(w,f))

—i0;,¥y(, &) — DPU%XXA( &)+ W (W(w,8) + Y (,8))
5 —
- ieipén xUU 75 XA ((0 5) + le/lpéﬂ 1}7/ ;/5 (a) 5) xii{; K x))cgvl kW(wa é)
xﬂ’p x/)yﬁ
— 5 AZ . 9
! (1) ’ )C) (w 5>:| }/ia ( )

There exist eight independent Lorentz structures and therefore eight invariant functions; ¥4, Wy, X4, Y4, X4, Y4, W, and Z are
the eight independent three-particle DAs of the B meson. The three-particle DAs are related to a basis of DAs such as
¢:i(i=3,...,6), y; and ; (j = 4, 5) with definite twist (i and j indicate the twist level) as follows:

1
Wa0.8) = 1[¢3 Fod .8 = [+ ]

Xy(@,8) = [ — s + 2y, Yi(w,§) = 5[ 3 — s+ w4 — s,
_ _ 1
Xy(0,8) = 5[ &3 + s — 2], Yy(0,8) = 5[ ¢3+¢4—1l74+1/75]v
1
W(w,§) = §[¢3—W4—17/4+¢5+W5 +Ws). Z(0,¢&) = [ &3 + s — 204 + s + 205 — o). (10)

Substituting the appropriate expressions of Egs. (8) and (9) instead of the matrix elements (0[q4(x)n,,0)|B(v)) and
(0[q14(x)G,,(ux)h,z(0)|B(v)) that appear in the correlation function in Eq. (6), and integrating over the Vanables x and k,
and then separating the solutions according to the Lorentz structures P, and g,,, the general form of the correlation function,
1P (p’, §) can be written as i[f1}(p’. §)P, + 2(p'. §)g,] and ﬁT(p’, )P, corresponding to J4 and J7, respectively.

Finally, inserting Eq. (1) in Eq. (3), and then equating the coefficients of the same Lorentz structures on both sides of the
correlation function, the form factors are obtained via the LCSR in terms of the two- and three-particle DAs of the B meson.
Our results for £, (¢?), f-(¢*), and f;(g*) are obtained as
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FORM FACTORS OF B TO LIGHT SCALAR MESONS

|

|

|

foyMmp, " foo s @lomg, ) 49, (omp)
2y = fvel doe ©7_ ©)
rota) =gt [ o g omn, ) - T
2 -
oy o dE g 1\  QutDmp 19w,
d 2 )| =—+=
* /0 wlmg( - é { |:( e ) <53M2 * 52 5M2 m%(s)
6” 7 1 3 1 Xu(@8) 4u+3)Va(w,8)
_M2 ‘I‘V(w 5) [( u-—= 1)<53M4+52M2) 52M4 mp - 2 M-? mg
0 ®
_2 = _2 2
q 1\ Xa(@.8)  4u q mg. 2 48u
(63M4 - 52> my,  my, \&'M* FMP FM? W(o.6) - #M* Z(@.8)
fByMB, " [oo @ ((1 4 o) @lomp)  4(1+0)
2y _ @ By % T
f-(q%) = _WWZA doe Mz{ p @ (omp )+ 6m3() BT YE g+ (omp))
_ 2 1
~ /am% dw/oo dg (u+ 2)( 7 +i> B (Qu+1)(1+ a)mBm} ¥Y(w, &)
0 omy, o £ FM?* 5?2 52M? mg(l\)
6u(l + 2u—1) (1+6) g* N 1 4u+5)] X4 (0, &)
‘2M2 Py &M M FM> | mg,
Wu+3) V(0.8 [(1+0)2¢°=5%) 3+0]Xu(0.8) 48u(l+0)s
TEME  m & M* o T e A @d)
B B(s)
T (1+o)mg 2 Wiw.8)
my, \&*M* M *M? ’ ’
B, ms "5 oo f/’+(0m3 ) omg & dé
2y _ 7B By 3 d M2 (s) © 4 dae
Tr@) = gy o )¢ /) o { 5 +A “’lmm—w ¢ H-W} v
2u+1]; 7 X4 7 1 | Xa(@.8) uomp, (1+5) -
Y(w, 2 - - W(w,
[62M2] (@) [64M4 i mp, |[26'M* &M*| mpg M4 (@)
6uc(l+45) z
_WZ(CO’ )}}, (11)
where  o=w/mg , u=(omg, —o)/ s(a)—am%m—ng, 6=1-0, p=¢,—¢p., VP=¥,-9,
s0+m§ —qz— (Y0+m2 —q2)2—4\0m§( )
(—]2 — qz _ 52m%(s)’ oy = ng : and
8
puloms,) = [ drpa@. Va0 = [Taevacee)
%a0.0) = [Martiiro)
(12)

Xa(.0) = [ dexire)
W(w, &) = /dcj/ dtW(.0),  Z(w. &) = /dc/ drZ(1,0).

III. NUMERICAL ANALYSIS

This section encompasses our numerical analysis of the form factors f,, f_, and f; of the semileptonic decays
(5) = S, (S = K(1430), ay(1450), fo(1500)), branching fractions, longitudinal lepton polarization asymmetries, and

*
discussion. The B-meson LCSR expressions of the form factors in Eq. (11) depict that the main input values are the masses
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TABLE I. Masses and leptonic decay constants of mesons in states with energetic light particles in the framework
GeV [7,36,37]. of QCD factorization. As the main result, they find

that the renormalization group equations for the three-
Meson B B, K;(1430) ao(1450) fo(1500) particle distributions are completely integrable in the large
Mass 5.28 5.37 1.434+0.05 1.47 £0.02 1.50 £0.00 N, limit and can be solved exactly. Finally, they study the

Decay constant 0.19 0.23 0.45 4 0.05 0.46 4 0.05 0.49 £ 0.05

and leptonic decay constants of mesons. In addition, the
two- and three-particle DAs of B-meson are the effective
terms that must be specified in calculations of the form
factors. The expressions of the form factors contain also
two auxiliary parameters; Borel mass square M? and the
continuum threshold s, of the scalar mesons.

The values for the masses and leptonic decay constants
of B, By, K;(1430), ay(1450), and f(1500) are given in
Table L.

To continue, we need to specify appropriate functions for
the DAs of the B meson. The B-meson light-cone DAs are
the main nonperturbative input to the QCD description of
weak decays involving light hadrons in the framework
of QCD factorization. The knowledge about the behavior of
the higher-twist B-meson DAs is still rather limited due to
infrared divergences which appear in power-suppressed
contributions. To overcome the divergences in these cases,
some efforts have been made, including the calculation
of nonperturbative contributions of B-meson decays in
terms of increasing twist based on the LCSR approach
[33,38—41]. One of the problems of this way is that the
higher-twist B-meson DAs involve contributions of multi-
parton states and are practically unknown.

In Ref. [31], the authors present a systematic study of the
higher-twist DAs of the B meson which give rise to power-
suppressed 1/mp contributions to B decays in final

|

— _CO —(U/(UO = —1 _
0(@) = e, v-(®) {wo
5 5
= —w/wy
9+(@) 32w0w ¢ 4

The values of the parameters 1% and 1%, of the B-meson DAs
are chosen as A% = (0.01 £ 0.01) GeV? and 42, = (0.15 &
0.05) GeV? [42]. Implementing the EOM constraint for the
Exp model leads to wy = 13 . [43]. Prediction of the 13 and
Ap, values are varied in different models [27,44,45]. In this
work, we use the values for 4z and 15 based on the recent
researches. Analyzing the B, — yI~¥ decay by the LCSR
leads to 4z = (360 = 110) MeV [46]. On the other hand,

32— ®
S 1— (=
o= {5 - (&)

general properties of the solutions and suggest two simple
models including the exponential (Exp) model, and local
duality (LD) model for the higher-twist DAs of the B
meson with a minimum number of free parameters
which satisfy all tree-level EOM constraints and can be
used in phenomenological studies. The authors in
Ref. [32] construct the LD model for the twist-five and
twist-six B-meson DAs, in agreement with the corres-
ponding asymptotic behaviors at small quark and gluon
momenta.

The Exp model is the simplest model based on combining
the regime of low momentum of quarks and gluons with an
exponential suppression at large momentum, whereas the
LD model is based on the duality assumption to match the
B-meson state with the perturbative spectral density inte-
grated over the duality region. In this work, we apply these
two models, Exp and LD models, for an estimation of
the semileptonic form factors of B, to the light scalar
mesons K{;(1430), ay(1450), and f,(1500) via the B-meson
LCSR. Note that in the SU(3) symmetry limit, it is possible
to use the B-meson DAs for the B, meson.

A. Exp model

Combining the known low momentum behavior with an
exponential fall-off at large quark and gluon momenta, and
considering the normalization conditions, the Exp model
can be obtained [31]. The shapes of the two-particle DAs
¢ (w),p_(®),9,.(w) and g_(w) are presented as

22— ® 1 [(w)?
1-2(— — | — —w/wo
9“’3 [ (a’()) +2 (0)0) ]}e '
1/ w)\?2 )
+§ a)— we™? w”.
0
[

the inverse moment of the B;-meson DA is predicted from
the QCDSR as 15 = (438 £ 150) MeV [47]. Therefore

(13)

A3 =0.360+0.110GeV (For B-meson),

Ag, =0.438+0.150GeV (For B,-meson).

The dependence of the two-particle DAs in Eq. (13) with
respect to @ is shown in Fig. 1 for the Exp model.
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FIG. 1. The dependence of the two-particle DAs, ¢, (@), ¢p_(®), g, (@), and g_(®) on w for the Exp model.

The three-particle DAs of the B meson up to twist-six in the Exp model can be constructed as

2 2 2
b3(w, &) = u wEe~(@ o)/ Pa(w, &) = ugz ~(@+8)/wo
6w} 6ar;
22 2
(CU 5) _a)ge aH’é)/wO (a) 5) —a)ée w+§)/w0
20 @y
/12 /12
(CU 5) ge w+§)/w0 (a) g) ée w+é>/w0
12 + ,12 B - 12
¢5(0),§) _ %we—(uﬂrf)/wo’ ¢6(a)’§) = %e—(u&é)/wo‘ (15)
y @5
B. LD model

Another class of the phenomenological models for the B-meson DAs is the LD model. In this model, the structures of the
two-particle DAs ¢ (»), p_(®), g, (@) and ¢g_(w) are presented as [31]

¢ (0) = 020y — ©)*0(2w) — w),

8wp)
52wy — w)? ) 7(/1% - ii,) ) )
p_(0) = ————=5"16(20) — ®)* = ——5—> (150" — 200w, + 4wy 1020, — ),
192005 e
() = 2 0220y - )*0(200 - ©)
@) =———* 2wy — o Wy — o),
T = 204807 @ 0
0wy —w)* (5 35(42 = 2%) a) w2
_ ooy — o) 2 2 PVEZ Ay () 11 ()] Yow, — o). 16
o) = LR Ry - - R 2)eu(2) ooy-a. o)

Applying the EOM constraint between the leading-twist and the higher-twist B-meson DAs, the HQET parameters entering
the LD model for the B,-meson DAs must satisfy the relation o, = %/IB@ [31]. So according to Eq. (14), we have

Ag = 0.900 £ 0.275 GeV  (For B — meson),

Ap, = 1.095+0.375 GeV  (For B; — meson).

The dependence of the two-particle DAs in Eq. (16) with respect to @ is shown in Fig. 2 for the LD model.
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LD-model

004 Fr—— 0.06
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g_ 003
0.021

0.011
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FIG. 2. The same as Fig. 1 but for the LD model.

The three-particle DAs of the B meson are derived in the
LD model up to twist-six as [31,32]

105(2% — 22 2
¢3(w,§):%w§2 (wo_wT%> 02wy—w—¢),
0

35(A2 422 3
b0 ) =202 (005 ) 020 -0-),
3512 3
i) =5k (0035 ) 02 -0,
3512 3
¢/4(w,§)—2—§’w§<a}0—wTﬁ> 02wy —w—$),
@
35(A%+ A2
t5(0.8) =2 0, eyt020 -0,
@
3542
1/15(6075):—64—55(20)0—0)—5)49(2@0—0)—5),
0
3502
1/75(6075):—Wagfewo—w—i)m@wo—w—f),
0
T -7
a0 6) =" G om0 02 -0, (19

The two-particle leading-twist DA of the B meson ¢ (w)
has the most important contribution in the estimation of the
form factors. The evolution effects show that the DA ¢, (@)
satisfies the condition ¢, (@) ~® as @ — 0 and falls off
slower than 1/w for @ — oo [48]. In Fig. 3, the shape of
¢, () in the Exp and LD models is compared with those
proposed by other models in Refs. [49-55].

After introducing the DAs of the B meson, we set the
values of the parameters. There are two auxiliary para-
meters in Eq. (11), the Borel mass square M? and the
continuum threshold s,, the values of which must be
determined before analyzing the form factors of the
semileptonic B(,) — S decays. These parameters are not
physical quantities, so the form factors as physical
quantities should be independent of them. The continuum
threshold s is not completely arbitrary and it is related to
the energy of the first exited state of the scalar meson.

The working region for the continuum threshold for the
scalar mesons K(j(1430), ay(1450) and f((1500) is taken
to be sy = (4.4 +£0.4) GeV? [56]. The Borel parameter
M? is chosen in the region where (a) the contributions of
the higher states and continuum are effectively sup-
pressed, which can ensure that the sum rule does not
sensitively depend on the approximation for the higher
states and continuum, and (b) the contributions of the
condensates should not be too large, which can ensure that
the contributions of the higher-dimensional operators are
small and the truncated OPE is effective. Considering the
central value 4.4 GeV? for s, a good stability of the form
factors with respect to the Borel parameter is obtained at
g*> = 0 in the interval 2.5 GeV? < M? < 3.5 GeV>. The
dependence of the form factors f,, f_ and f; for the
semileptonic decays B — (ag, K§;) and B; — (K, fo) on
the Borel parameter M? at three fixed values of the
continuum threshold i.e., so =4.0, 4.4 and 4.8, and
g*> = 0 is shown in Figs. 4 and 5 through the two Exp
and LD models, respectively. We take M?> =3 GeV? in
our calculations.

Exp —— LD —[49] —— [50] — [51]
— — [52] —— [53] — — [54] [55]

1.5

FIG. 3. The shape of ¢, (@) for the B meson in the Exp and LD
and other models.
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FIG. 4. The dependence of the form factors f, —f_ and f; on the Borel parameter M?> at three fixed values s, = 4.0, 4.4, and 4.8 for

B = (ay, K}) and By — (K}, fo) at ¢*> = 0 in the Exp model.

=,
0.99 0.99 - 1.0 - 0.8 -
B—a, LD-Model B—K, LD-Model L Bk—toom B~f, LD-Model
08{=————————————=— 8= =TT ———— 0.94 (4
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FIG. 5. The same as Fig. 4 but for the LD model.

C. Form factor analysis

Inserting the values of the masses, the leptonic decay
constants fgand fp " the continuum threshold s, the Borel
parameter M?, the B-meson DAs and other quantities and
parameters related to them such as wy, 4% and A%, in addition
considering all sources of uncertainties, the central values of
the form factors f,, f_, and f and also their errors can be
estimated for the semileptonic decays B(,) — (Kj, ao, fo) at
g*> = 0 via the B-meson LCSR approach. Our results for the
form factors at g> = 0 using the B-meson DAs through the
|

+0.06 -+0.01

(0) = 052143

As the calculations show, the most value of error for f
enters through the variation of wj.

Table II shows that considering the uncertainties, there
is a good agreement between our results in the Exp
model and predictions of the conventional LCSR in
S2 [21,24] for all cases. As a result, our calculations
confirm scenario 2 for describing the scalar mesons
K{(1430), a¢(1450), and f(1500). This means that the
scalar mesons K{(1430), a(1450), and f,(1500) can be
seen as the lowest lying states with two quarks in the
quark model.

g -0.05 7., -0.02 sy

two Exp and LD models, as well as the predictions of
other approaches such as the pQCD [14], CLF [15],
QCDSR [16-18], LFQM [19], MSSM [20], and the
LCSR with the light-meson DAs [21,24,26] are collected
in Table II. The most important sources of uncertainties in
our calculations are @, and then the decay constants of the
light mesons. For example, considering the form factor f, of
the semileptonic decay B — ay, and taking into account the
variation of the input values and parameters, we obtain the
following results in the Exp model:

+0.00,  +0.00 +0.00 -+0.00

—0.01 15 _g.01 1™ _ 01 lma _ 00 % (19)

Table III shows the individual contributions of the two- and
three-particle DAs to the semileptonic form factors B, —
(K, ag, fo) at ¢* = 0. Note that the contributions of the two-
particle DAs are listed based on twist level ¢, ¢_, and g,
while g_ does not appear in the results of the form factors.
As can be seen, the two-particle leading-twist DA of the
B meson ¢, has the most important contribution in the
calculation of the form factors. In this table, the higher-twist
contributions of the three-particle DAs are not presented
separately because their contributions are usually less than
0.01. For instance, the contributions of the eight twist
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TABLEIL.  The form factors of the semileptonic B, — (K}, ag, fo) transitions at zero momentum transfer from different approaches.

Decay mode Method Reference f+(0) f-(0) f1(0)
B = ay LCSR(Exp model) Ours o,52j(‘;-2238 _o,5ojg;31§ 0,71jg'-33g
LCSR(LD model) Ours 0.58703% -0.58102 0.781044
LCSR [26] 0.44 -0.26 0.43
LCSR(S2) [21] 0.52 —-0.44 0.66
LCSR(S2) [24] 0.53 -0.53 e
pQCD(S2) [14] 0.68 e 0.92
LCSR(S1) [24] 0.26 —0.26 e
pQCD(S1) [14] —0.31 e -0.41
CLF [15] 0.26 e
B - K} LCSR(Exp model) Ours 0.53702% -0.51753 0.72793
LCSR(LD model) Ours 0.60107% —0.591037 0.79%033
LCSR [26] 0.45 —0.28 0.46
LCSR(S2) [21] 0.49 —0.41 0.60
LCSR(S2) [24] 0.49 —0.49 0.69
pQCD(S2) [14] 0.60 - 0.78
LCSR(S1) [24] 0.17 —0.17 0.24
pQCD(S1) [14] —0.34 e —0.44
CLF [15] 0.26 e e
QCDSR [16] 0.31 —0.31 -0.26
LFQM [19] —0.26 0.21 —0.34
MSSM [20] 0.49 -0.41 0.60
B, — K}, LCSR(Exp model) Ours 0.51* 8:232 —0.48* gﬁ(‘)‘ 0.70f8.‘353
LCSR(LD model) Ours 0.56705% -0.54103 0.751937
LCSR [26] 0.39 —0.25 0.41
LCSR(S2) [21] 0.42 —0.34 0.52
LCSR(S2) [24] 0.44 —0.44 e
pQCD(S2) [14] 0.56 e 0.72
LCSR(S1) [24] 0.10 —0.10 e
pQCD(S1) [14] —0.32 e -0.41
QCDSR [17] 0.24 e e
QCDSR [18] 0.25 —-0.17 0.21
By = fo LCSR(Exp model) Ours 0471030 —0.451033 0.661031
LCSR(LD model) Ours 0.520% -0.50702% 0.717 93
LCSR [26] 0.38 —0.24 0.40
LCSR(S2) [21] 0.43 —0.37 0.56
LCSR(S2) [24] 0.41 -0.41 0.59
pQCD(S2) [14] 0.60 e 0.82
LCSR(S1) [24] 0.14 —0.14 0.20
pQCD(S1) [14] —0.26 e —0.34
functions ¥4, ¥y, X4, Y4, X4, Y4, W, and Z for the form Plq?) = £(0)
factor f27% at ¢> =0 are reported in Table IV in the i 1 —as + ps*’
Exp model.

Because of the cutoff in QCD theories, the form factors
for each aforementioned semileptonic decay can be esti-
mated by the B-meson LCSR method in nearly half of the
physical region 0 < ¢ < (mg Y mg)?. In order to extend
our results to the full physical region, we look for a
parametrization of the form factors in such a way that in
the validity region of the LCSR, this parametrization
coincides with the LCSR predictions. We use the following
fit functions of the form factors with respect to g> as

2
() = 1Y hilelg?) =), (20)
k=0

where s = qz/mé(s), 7(t) = % to=1t.(1-
V1-1_/t,), and t. = (mp =+ mg)*. The parameters
(f(0),a,p) and (by, by, b,), related to the fit functions
f1(q*) and f"(q?) respectively, are determined from the
fitting procedure. Table V shows the values of these
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TABLE III. Contributions of the two-particle DAs (2-P DAs)
and three-particle DAs (3-P DAs) to the form factor results at
g* = 0 in the two Exp and LD models.

TABLE V. Values of parameters (f(0),a, ) and (by, by, b,)
connected to the fit functions f1(¢?) and fM(g?) respectively, for
the fitted form factors of B, — (K. ag, fo) transitions in the
Exp model.

Exp model LD model
2-P DAs 2-P DAs Form
Form factor f(0) a B by b, by
Factor ¢y ¢~ 9+ 3PDAs ¢y - 9+ 3PDAS  bog 052 —049 168 052 -023 —6.83
fﬁ*“o 049 0.07 =0.05 0.01 0.52 0.08 -0.04 0.02 fBa —0.50 044 =151 -=-0.50 0.54 541
fB=a —0.61 0.07 0.05 —-0.01 —0.68 0.08 0.04 —0.02 Vil 071 -059 253 071 -095 —3.79
fITg"ao 0.70 0.00 0.00 0.01 0.77 0.00 0.00 0.01 B—K;; 0.53 —0.50 1.71 0.53 =023 —6.79
7K 050 007 -005 001 054 0.08-0.04 002 fLKO 051 044 —155 —051 055 539
ffj—’KB -0.63 0.07 0.06 -0.01 —-0.69 0.08 0.04 —-0.02 ;_,K(*] 072 —0.60 2.57 072 —095 —377
A=K 071000 000 001 078 0.00 000 001 f T 0'51 0'43 1'51 0’51 0'65 4'46
5K 048 0.08-0.06 001 051 0.08-0.05  0.02 £ o ‘ oL
B=Ki —0.62 0.08 0.07 —0.01 —0.66 0.08 0.06 —0.02 = —048 038 -137 —048 089 232
£k 069 000 000 001 074 000 000 001 2k 070 -0.51 225 070 -165 299
f%ﬁfo 044 0.07 -0.05 0.01 046 0.08 -0.04 0.02 fﬁ«"fo 047 -0.39 1.10 047 -0.69 —6.15
fB=f —-0.57 0.07 0.06 -0.01 -0.61 0.08 0.05 -0.02 fﬁs_)fo —0.45 0.36 —1.34 -045 0.75 2.53
f;’iv—’fo 0.65 0.00 0.00 0.01 0.70 0.00 0.00 0.01 flTi—hfo 0.66 —0.48 2.11 0.66 —1.58 3.05
TABLE IV. Contributions of the eight twist functions W4, ¥y, TABLE VI.  The same as Table V but for the LD model.
v v B—a 2 _
Xus Ya, X4, YA', W, and Z for the form factor /" at g =0 Form factor  f(0) o i bo by b,
up to O(1072) in the Exp model.
= = i"“o 0.58 —-048 095 058 —-0.86 —13.82
Yy Wy Xy Y4 Xy Y4 W Z fBa -0.58 042 -0.83 -0.58 149 1143
FE=0 —0.002 0.015 ~0.002 0.001 0.000 0 —0.001 ~0.001  f7 0.78 —0.58 115078 -182 -16.30
fﬁ‘}’(é 0.60 —-049 097 0.60 -0.87 —-13.77
B-K; —0.59 043 -0.85 -0.59 1.50 11.41
parameters for the form factors of the semileptonic decays ?HKS 079 =059 1.16 079 -1.83 -16.15
B, — (Kp, g, fo) in the Exp model. Table VI shows the ’iv"KS 056 -041 1.07 056 -1.44 —424
same values as Table V but for the LD model. B,~Kj -0.54 035 -0.93 -0.54 194 =227
Th;: dependence of the fitted form factors f;(i = +,—,T) ?x—>Kl*J 075 —049 126 075 —=2.67 1.49
on ¢° is given in Fig. 6 for B(y) = S(S = Kj.a0.fo) = ny 052 -038 100 052 —1.36 —407
trflnsitions. These form factors are relat'ed to the Exp model. fB=fo 050 032 —08 -050 185 -—233
Figure 7 depicts the same results as Fig. 6, but for the LD FB=o 071 —-046 1.19 071 =256 1.62

model. In these figures, the black and gray lines show the
results for f1(g?) and fM(g¢?) fit functions, respectively.
According to Figs. 6 and 7, the fitted form factors obtained
for the two fit functions are consistent in each case.

The form factors at large recoil should satisfy the
following relations [57]:

mp., — Mg
f(q) = ——2v &),
( s +(q%)
me +m5
fr(q®) = ;;Th(qz)- (21)

Figures 6 and 7 show that the computed form factors from
the LCSR with the B-meson DAs for the two Exp and LD
models satisfy the relations in Eq. (21), by considering the
errors.

The results of the form factor f, (¢*) for the aforemen-
tioned decays from different models are compared with our
results in the two Exp and LD models in Fig. 8.

D. Semileptonic B! — K;*1~ i,
and B’ — a I~ 7, decays
At the quark level, the tree-level b — u transition is
responsible for the B; — K/, and B — aylp; decay

modes. The Hamiltonian for the b — ulp, transition is
written as

_ G _ -
Hegs (b — ulp;) :72‘/“17”7’;4(1 —ys)bly*(1=ys)y,,  (22)
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FIG. 6. Black and gray lines show the fitted form factors ., —f_, and f of the B(;) — S transitions by using the fit functions (g%
and fT(q?), respectively, with respect to ¢* in the Exp model.

l A-- fi——n & o r‘)‘] l A= [ e f]n] l [ p— [ o f'“l l [ p—— [ o i
169 B-a, LD-model,”] 189 B—K, LD-model 221 B—K, LD-model ) 209 B~f, LD-model ,
4 ) 2.0 Vi 184 7
14 7 167 / 4
e 1.84 7/ 4
Ve N v 1.6 7/
Fe . 1.4 Y
129 e - 161 1 14+ 7 7
- Z i ,° 7 ,
- 2" 1.2 144 L, s L,
f; 1.0 - /.// f; f; e e f; 124 e
~ R 1.0 1.2 7 -
- ~ P
— - ~ P 1.0 -
0.8 .= - 1.0 -7 P> 7 -
= 0.84 - — .
- 084 - P 089~ //
0.64—" |- —
0.6~ 05«/ 0.6«/
A 04— 0.4 —————+———— 0.4 —————————
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
2 2 2 2 2 2 2 2
a*(Gev?) a*(Gev?) a*(Gev?) a*(Gev?)
FIG. 7. The same as Fig. 6 but for the LD model.
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FIG. 8. Form factor f, for B — (ay, K§) and B; — (K§, fo) decays in different models such as the pQCD [14], CLF [15], QCDSR
[16-18], the LCSR with the light-meson DAs [21] and our results via B-meson LCSR in two Exp and LD models.

where G is the Fermi constant, V,;, = (3.82 4- 0.24) x 103, With this Hamiltonian, the differential decay width % for the
processes B, — Sl (S = K}, ap) in terms of the form factors can be expressed as [58]

S}

dr . GilVi|* (¢?—m})?
1 Be = S =g V(b —m3—a?)? —4qPm3s (m} +24°)
By

2

q 2
(k== P=am ) 3o, =32 )+ )| ] e
mp, —Ms

where m; is the mass of the lepton. The dependency of the differential branching ratios of B; — K{jli; and B — aylp,
(I = p, 7) decays on g* is shown in Fig. 9 for both the Exp and LD models as well as the two fit functions f'(¢?) and f(g?).
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FIG. 9. Differential branching ratios of the semileptonic B, —
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(K, ao)lv(l = p,7) transitions on ¢* for the Exp model and fit

function fY(¢?) (Exp, f1), the Exp model and fit function f(g?) (Exp, f1), the LD model and fit function f'(g?) (LD, f"), and the LD

model and fit function f(¢?) (LD, f).

Integrating Eq. (23) over ¢”> in the whole physical
region m} < q* < (mp —mg)*, and using the total mean
lifetimes 75 = (1.51540.004) ps and 7z = (1.519 &
0.004) ps [36], we present the branching ratio values of
the semileptonic decays B, — (K§, ao)lo; (I=p, 1) in
Table VII, for both the Exp and LD models, in addition the
two fit functions. The results obtained for the electron are
very close to the results of the muon. Therefore, the
branching ratios for muon are only presented in this table.
Table VII shows that the difference between the calcula-
tions through the two fit functions can be completely
ignored. This table also contains the results estimated
via the conventional LCSR [21] and pQCD [14] through
S2 as well as the QCDSR [17] approach. In general, the
values obtained in this work are in a logical agreement with
the two models, the conventional LCSR and pQCD.
Especially, the obtained values of the Exp model are in
a good agreement with the conventional LCSR. As can be
seen in this table, uncertainties in the values obtained for
the branching ratios of the semileptonic decays are very
large. The main source of errors comes from the form

factor £ (¢?).

E. Semileptonic B — K;"1*1~ /vv
and BY — f)I*1~ /v0 decays
The semileptonic decays B,y — (K, fo)l*1” /b are
conducted by the FCNC b — s loop transition. In the

SM, the weak effective Hamiltonian responsible for these
rare decays, neglecting the Cabibbo-Kobayashi-Maskawa-
suppressed contributions proportional to V,, Vi, and also
considering the approximation |V, V,|=~|V., V], is
described at the energy scale y = m;, as [59-61]:

Heff(b g Sl+l_)

4G 10
-y, (c1 05 + C,05+ Y cio,-) . (24)
V2 =

where C;(u) are the Wilson coefficients. Of , are current-
current operators, O;_g are QCD penguin operators, O7 g
are magnetic penguin operators, and Qg ; are semileptonic
electroweak penguin operators. The contributions
of the operators O; and Oy, in the decay amplitudes
B,y = (K. fo) are factorized in the form factors f, and
f7- The effect of other operators appears as the factorizable
and nonfactorizable contributions.

The factorizable contributions have the same form factor
dependence as Cy which can be absorbed into an effective
Wilson coefficient C§'. The dominant factorizable contri-
bution is generated by the tree-level four quark operators
Of , with large Wilson coefficients |V, V|. This contri-
bution includes intermediate vector charmonium states in
the upper part of the decay kinematical region as long-
distance effect.

TABLE VII.  The branching ratio values of B(;) — (Kj, ao)l7; for both the Exp and LD models as well as the two fit functions in

addition different approaches.

This work
Mode Exp, f'  Exp, f! LD, f! LD, /'  LCSR(S2) [21] pQCD(S2) [14]  QCDSR [17]
Br(B; — Kyuy,) x 104 1.987021  2.007022 2635357  2.607 ¢ 130530 2454177 0.36705%
Br(B, — Kyrw,) x 104 0705037 07175038 0957077 0.95597! 0.52404 1091043
Br(B — aouv,) x 10* L6753 170503 220005 21848 1.8059%0 3.251738
Br(B — agrv,) x 10* 051501 053505 0.67733%  0.661057 0.637034 1327997
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The nonfactorizable contributions arise from electro-
magnetic corrections to the matrix elements of purely
hadronic operators in the weak effective Hamiltonian.
The weak annihilation and quark-loop diagrams with
soft and hard gluons create the nonfactorizable correc-
tions [61,62]. These contributions for the FCNC
B,y — (Kp, fo) decays are highly suppressed due to the
large current uncertainties of the form factors, and
|

GF(X

M(b > sItI7) = > on

also the small Wilson coefficients of the penguin
operators.

According to the effective weak Hamiltonian of the
b — sIT[™ transition in Eq. (24), the matrix element for this
FCNC decay, by considering the contributions of the
operators O and Qg o as well as the factorizable con-
tributions of the operators through C¢, and ignoring the
nonfactorizable contributions, can be written as

thV;FS C9ﬁs}//4(1 - yS)bly/ll + CIOsy,u(l - 75)bZY;475l - 2ceﬁ q_SIG w4 (1 + }/5)177}/”[ ’

where a is the fine structure constant at Z mass scale, the Cabibbo-Kobayashi-Maskawa matrix elements |V, V5| = 0.041

[63], and the Wilson coefficients CST =
the short-distance and long-distance effects as

—0.313 and Cyy = —4.669 [59]. The effective Wilson coefficient C" includes both

G = Cy+ Ys(q*) + Y1.(4%). (25)

where Y¢(q?

) describes the short-distance contributions from four-quark operators far away from the resonance regions,

which can be calculated reliably in perturbative theory as [60]

1
YS(q2) = 01240)(6') + h(l’ﬁc, S)CO - Eh(l, S)(4C3 + 4-C4 + 3C5 -+ C6)

1
—Sh(0.5)(C5 +3C4)

2
+ 6(3C3 + C4 + 3C5 + Cé), (26)

where S = qz/m[z], Vﬁc = mc/mb, C() = 3C1 + C2 + 3C3 + C4 + 3C5 + C67 and

2 4 5+4s

2s(1 4 5)(1 = 2s) 5+ 9s — 652

2
— S22~ Lig(s) = ZIn(s) In(1 = 8) — > _In(1 —5) — 1 B e N ¥
os) = —g#" =3 Li(s) =3Il In(l =) =375 Sl =) 3= i " s sy 20
The functional form of the h(ri,, s) and h(0, s) are as
0 o s 4 o <ln‘ ‘/Tx“) iﬂ), for x 54’?% <1
h(ie, s) = —=In "2 = Snjing + -+ ~x = = (2 + x)|1 — x|/ (28)
9" w9 2779 79 .
2arctan\/—., forx==<>1
and 3r LV, = It )my,
YL(q2):_2 Z 2 2 1—" . (30)
Vi=J/yp(2S) my, —4q tmy Ly,
h(0,5) = %_gl il —§lns +gm (29)  In the range of 4mj < g* < (mp  —my)?, there are two

The long-distance contributions, Y, (¢?) from four-quark
operators near the cc¢ resonances, cannot be calculated from
the first principles of QCD and are usually parametrized
in the form of a phenomenological Breit-Wigner formula
as [60]

charm-resonances J/y/(3.097) and (3.686). To avoid the
background of charmonium resonances, it is common to
delete the experimental measurements around the reso-
nance regions. For this reason, the long-distance contribu-
tions are ignored in our calculations.

Using the parametrization of the aforementioned decays
in terms of the form factors, the differential decay width in
the rest frame of B(,)-meson can be written as

036003-14
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dr GHVaVislPmy o D, (x,)|?
. s 3/2(1 » % 212
d—qz(B(‘) - Sup) = 85 si;“ew (L7, 8)|f (a7
dr GHV o Vis Py, o . 2\ ;
d_q2(B(s> = SIFI) = TP O ppl/2(1,7,3) [(1 +? O(1, 7, 8)ay + 1216, |, (31)
where = 25 § =4 ] =M ="y, =y =\ /14 §(1,7,5) = 1+ 72 + 32— 27— 23 — 275, and the
B By B w (s)

)
functions D,(x,), a; and f, are defined as

2 3x,— 6
Dy(xt):ﬁ< +x,+ ol lnx,>,

8 \x,—1  (x,—1)?
2% Ceff 2\|2
a = |C§"f1 (%) + mb]l—{/%(q) +1Cof ()%,
§ 1
= 1CuP | (147 =3 )7 )P+ (1 = DRl ()2 + 5317 (32)

|
The dependency of the differential branching ratios for ~ for both the Exp and LD models as well as the two
By — (K§. fo)l17 /v on ¢* for both the Exp and LD  different fit functions, in addition to predictions by
models as well as the two different fit functions is shown in ~ the conventional LCSR(S2) [21], pQCD(S2) [14], and
Figs. 10 and 11. LFQM(S2) [19].
Integrating Eq. (31) over ¢ in the physical region The polarization asymmetries provide valuable informa-
4m% <¢*<(m B, —myg)?, and using TB(i‘,),the branching ratio tion on the flavor changing loop effects in the SM. The

results of the B, — SI*1~/ub are obtained. Table VIII longitudinal lepton polarization asymmetry formula for

i
shows the branching ratios of the aforementioned decays B() — SI"I™ is given as

2 oo [ ett 2C fT(q2)> }
= _ 1’ , eff 2\ _ 21T\ ) 2 , 33
o T D17 5 + 1205, Re[¢( " <C9 Fle) == 7 ) (Cof+ld) (33)

where v,1,7,8,¢(1,7,8),a; and f; were defined before. The dependence of the longitudinal lepton polarization
asymmetries for the By — (K, fo)l" 17 (I = p.7) decays on the transferred momentum square g* for both the Exp
and LD models as well as the two different fit functions is plotted in Fig. 12.

— e B " Y [—Ee ! B " | [ B ' DD r
0.6 1.4 14
124
0.5 | <
w 0.8 ..
(=] ©
S S
— 0.4 X x
- = oed™
+ >
L2l 03 "o
12l O ;T
TS “
~ ~—
= 0.2 &
~m
~ =

a*(Gev?) a*(Gev?) a*(Gev?)

FIG. 10. The differential branching ratios of the semileptonic B — K§I*1~ /v decays (I = p, 7) on q? for both the Exp and LD models
as well as the two different fit functions.
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FIG. 11.

It should be noted that the forward-backward asymmetry
for the decay modes B(,) — (K, fo)!1™ is exactly equal to
zero in the SM [64,65], due to the absence of scalar-type
coupling between the lepton pair.

In summary, our main goal was to calculate the form
factors of the semileptonic decays B(,) — S (S = K;5(1430),
ao(1450), £o(1500)) in the frame work of the LCSR with the
B-meson DAs.

®

(i)

(iif)

(iv)

)

Two different phenomenological models including
exponential and local duality models were used for
the shapes of the B-meson DAs.

The B-meson DAs were also applied for B, meson in
the SU(3)p symmetry limit.

The form factors of the aforementioned decays were
estimated at g> = 0 through the two exponential and
local duality models, and compared with the pre-
dictions of other approaches.

It was shown that the two-particle leading-twist DA
of the B meson ¢, has the most important con-
tribution in the calculation of the form factors.

In addition, it was shown that the main sources of the
uncertainties in the estimation of the form factors
were the shape parameter @, and the decay constants
of the scalar mesons.

a’(Gev?)

(vi)

(vii)

(viii)

(ix)

x)

The same as Fig. 10 but for By — fylT1~/vb decays (I = u, 7).

Considering the uncertainties, there was a good
agreement between our results in the exponential
model and predictions of the conventional LCSR in
scenario 2. As a result, our calculations confirmed
that the scalar mesons K{(1430),ay(1450), and
fo(1500) can be viewed as the lowest lying states
with two quarks in the quark model.

For a better analysis, the results obtained for the
form factors via the B-meson LCSR method were
parametrized to the two different fit functions. The
form factors obtained by both fit functions were very
consistent in each case.

Using the form factors £, (¢?), f_(¢*), and f1(q?),
the branching ratio values for the semileptonic B, —
Kilv; and B — ayly; decays, and also the FCNC
semileptonic transitions B — K and B; — f, were
calculated.

The dependence of the differential branching ratios
as well as the longitudinal lepton polarization
asymmetries for the aforementioned decays were
plotted with respect to ¢°.

Future experimental measurements can give valu-
able information about these aforesaid decays and
the nature of the scalar mesons.

TABLE VIII.  The branching ratio values of B(;y — (K. fo)l" 1~ /v© for both the Exp and LD models as well as the two different fit
functions in addition to the LCSR, pQCD, and LFQM approaches.

This work
Mode Exp, f'  Exp, f!' LD,f LD, f" LCSR(S2)[21] pQCD(S2)[14] LFQM(S2) [19]
Br(B — Kjwp) x 10° 4491550 478555 622715 6.327)%¢ -
Br(B — Kgu'p~) x 107 5.667 75 6031377 7.8913486  8.0373%] 5.6131 9.78148 1.62
Br(B — Kjr'r7) x 108 0.55703¢ 0611090 0.6570%  0.691054 0987324 0.631030 0.29
Br(B, — fovb) x 10° 3.97587 4147002 55270650 5.467400 :
Br(B, — fou'u™) x 107 500719 522020 700070 6927200 52723 10.0*83
Br(B, - for'z7) x 108 0.65703% 071703 0907933  0.95703 12998 1352
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FIG. 12. The dependence of the longitudinal lepton polarization asymmetries on g for both the Exp and LD models as well as the two

different fit functions.
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