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In this work, the transition form factors of the semileptonic decays of BðsÞ to the light scalar mesons with
masses close to 1.5 GeV such as K�

0ð1430Þ; a0ð1450Þ, and f0ð1500Þ are calculated in the framework of the
light-cone sum rules. For this purpose, the two- and three-particle B-meson distribution amplitudes (DAs)
are used. Note that it is possible to use the B-meson DAs for the Bs meson in the SUð3ÞF symmetry limit.
The transition form factors are obtained in terms of the two-particle DAs up to twist-five accuracy, and the
three-particle up to twist-six level. We apply two classes of the phenomenological models for the DAs of
the B meson. The longitudinal lepton polarization asymmetries and branching fractions for the
semileptonic decays of BðsÞ to the light scalar mesons are estimated with the help of these form factors.
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I. INTRODUCTION

Although scalar states with JP ¼ 0þ have been observed
for more than half a century, their inner structure is still
controversial both experimentally and theoretically. In order
to discover their underlying structure, many different theo-
retical and phenomenological descriptions are presented
including considering the scalar mesons as the conventional
mesons qq̄ or nonconventional mesons such as tetraquark
[1], molecule [2], hybrid [3], and glueballs [4]. A tetraquark
is a complex structure made up of one diquark and one
antidiquark qq − q̄ q̄. A molecule or a meson-meson bound
state is composed of two quark-antiquark couples qq̄ − qq̄.
In addition, a hybrid is an object consisting of a qq̄ pair with
at least one extra gluon qq̄ − g, and the glueballs are made
only of gluons (for instance see Ref. [5]). It is very likely that
some scalar mesons are not made of one simple component
but are the superpositions of these contents. For example, it
is suggested that a0ð980Þ is a superposition of qq̄ and
tetraquark [6]. The dominant component of the scalar
mesons can be found from the decay and production of them.
A number of the scalar mesons have been discovered in

the spectroscopic studies. Because of the large decay
widths of the scalar mesons, the identification of them is
more difficult in contrast to the pseudoscalars and vector
mesons. Among them, there are nine light scalar mesons
together, below or near 1 GeV, including the isoscalars

f0ð500Þ (also denoted as σ) and f0ð980Þ, isodoublets
½K�þ

0 ð700Þ (also refereed as κ), K�0
0 ð700Þ] and [K̄�0

0 ð700Þ,
K̄�−

0 ð700Þ], and isovector [aþ0 ð980Þ, a00ð980Þ, a−0 ð980Þ]
which can form an SU(3) nonet, while the scalar mesons
around 1.5 GeV, consisting of isoscalars f0ð1370Þ and
f0ð1500Þ=f0ð1700Þ, isodoublets ½K�þ

0 ð1430Þ, K�0
0 ð1430Þ]

and [K̄�0
0 ð1430Þ, K̄�−

0 ð1430Þ], and isovector [aþ0 ð1450Þ,
a00ð1450Þ, a−0 ð1450Þ] can be members of another nonet.
From a survey of the accumulated experimental data, two
scenarios can be suggested to describe these two groups of
nine scalar mesons in the quark model [7]. In the first one,
scenario 1(S1), it is supposed that the light scalar mesons
are composed from two quarks. The nonet mesons below
1 GeV are treated as the lowest lying states, and the nonet
mesons near 1.5 GeV are the excited states corresponding
to the lowest lying states. In scenario 2 (S2), the scalar
states below 1 GeV are considered as the members of a
tetraquark nonet, while the nonet mesons near 1.5 GeV are
viewed as the lowest lying states, with the corresponding
first excited states between 2.0–2.3 GeV. In both scenarios,
it is suggested that the heavier nonet near 1.5 GeV consists
of the scalar mesons with two quarks in the quark model.
However in S1, those are regarded as the excited states,
and in S2 they are seen as the ground states. Therefore,
the calculation of the decay constant values and DAs for
the scalar mesons near 1.5 GeV are different via the two
scenarios.
In recent years, some experimental efforts have been

devoted to measuring the decay modes involving the light
scalar mesons in final state. The BESIII Collaboration
has recently measured the nonleptonic and semileptonic
decays of Ds to the light scalar mesons [8–10]. In the same
context, the nonleptonic two-body B-meson decays
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involving a scalar final state have been observed by
Belle [11], BABAR [12], and LHCb [13]. These observa-
tions provide an efficient way to investigate the features and
the possible inner structures of the scalar mesons.
In the particle physics an accurate calculation of the

transition form factors for the semileptonic BðsÞ decays to
the light scalar mesons is important in two folds. First, to
study the quantities related to the semileptonic and non-
leptonic decays involving BðsÞ to the scalar mesons, it is
necessary to know the appropriate behavior of the transition
form factors. Second, for the indirect search of new physics
beyond the standard model (SM), these form factors are the
essential ingredients. Since the heavy to light transition
form factors are nonperturbative in nature, the nonpertur-
bative QCD approaches are applied to evaluate them.
Usually, the lattice QCD (LQCD) works well to calculate
the form factors in these cases.
So far, the transition form factors of BðsÞ → S,

[S ¼ K�
0ð1430Þ; a0ð1450Þ; f0ð1500Þ] have been not esti-

mated through the LQCD, although they have been
calculated from other methods such as the perturbative
QCD (pQCD) [14], covariant light front (CLF) [15], QCD
sum rules (QCDSR) [16–18], light-front quark model
(LFQM) [19], minimal supersymmetric standard model
(MSSM) [20], and also the light-cone sum rules (LCSR).
The LCSR is a proper approach to evaluate the transition

form factors of the heavy to light meson decays. The
conventional LCSR starts with a two-point correlation
function inserting the operators between vacuum and light
meson. Then, it develops in terms of the nonlocal operators
by using the operator product expansion (OPE) near the
light-cone region x2 ¼ 0. The matrix elements of the
nonlocal operators are parametrized as the light meson
DAs of the increasing twist, i.e., twist-two, twist-three,
twist-four, and so on. These DAs offer valuable insights
into the nonperturbative makeup of hadrons and the
distribution of partons in relation to their momentum
fractions within these particles. More research on the
BðsÞ → S transition form factors have been performed in
the framework of the LCSR with the light scalar meson
twist-two and twist-three DAs [21–23], only scalar meson
twist-two DA [24,25], or twist-three DAs [26], respectively.
In this method, a reliable estimation of the form factors
depends on an accurate knowledge of the internal structure
of the light meson and its DAs. Since the intrinsic nature of
the light scalar mesons is still not completely clear, the DAs
attributed to them can also be doubted. Therefore, it is
important to use a new LCSR method to calculate the form
factors that is independent of the light scalar meson DAs,
and then compare its results with the conventional method.
In Ref. [27], the authors proposed a new method based

on the LCSR technique that relates the B-meson DAs to the
B → π form factor. This model was independently sug-
gested in the framework of the soft-collinear effective
theory (SCET) in Ref. [28]. In this new approach, which

is sometimes called the B-meson LCSR, the main idea is to
invert the correlation function compared to the conven-
tional LCSR, so that the light meson interpolates with an
appropriate light-quark current, and the nonlocal operators
between an on-shell B-meson state and the hadronic
vacuum are expressed as convolutions of hard scattering
kernels with light-cone distribution amplitudes (LCDAs) of
the B meson. Recently, considering the next-to-leading
order QCD corrections to the correlation function in order
to extract the hard and jet functions, the form factors of
semileptonic decays B to scalar mesons have been calcu-
lated in terms of leading twist function of the B-meson
DA [29]. Also, considering the SUð3ÞF symmetry limit and
using the two-particle B-meson DAs up to twist-three,
and three-particle DAs up to twist-four, the transition
form factors of the semileptonic Bs → K�

0ð1430Þ decays
have been calculated in the framework of the B-meson
LCSR [30].
In this work, we focus on the three light scalar mesons

K�
0ð1430Þ; a0ð1450Þ, and f0ð1500Þ, with the mass of about

1.5 GeV. The production of the light scalar mesons K�
0; a0,

and f0 can provide a different unique insight to the
mysterious structure of them. Our main goal is to calculate
the form factors of the BðsÞ → ðK�

0; a0; f0Þ decays via the
B-meson LCSR applying the two-particle DAs up to
twist-five, and considering the new results for the complete
set of the three-particle DAs up to twist-six. The four-
particle B-meson DAs are not taken into account in this
work due to the negligible effects. Note that in the SUð3ÞF
symmetry limit, it is possible to use the B-meson DAs for
the Bs meson. The functional form of the higher-twist
B-meson DAs involve contributions of multiparton states.
To calculate the form factors, we use two classes
of the phenomenological models for the two- and three-
particle DAs of the B meson which contain a minimum
number of free parameters and satisfy equation of
motion (EOM) constraints in tree level [31,32]. Utilizing
these form factors, the semileptonic BðsÞ → ðK�

0; a0Þlνl and
BðsÞ → ðK�

0; f0Þll=νν̄, l ¼ e, μ, τ decays are analyzed. In
the SM, the rare semileptonic BðsÞ → ðK�

0; f0Þll̄=νν̄ decays
occur at loop level instead of tree level, by electroweak
penguin and weak box diagrams via the flavor changing
neutral current (FCNC) transitions of b → slþl− at quark
level.
The content of paper is as follows: In Sec. II, the form

factors of the semileptonic BðsÞ → S; ðS ¼ K�
0; a0; f0Þ

decays are calculated with the B-meson LCSR approach
using the two- and three-particle DAs of the B meson up to
twist-five, and twist-six, respectively. These form factors
are basic parameters to study the other quantities such as
forward-backward asymmetry, longitudinal lepton polari-
zation asymmetry, and the branching fraction of semi-
leptonic decays. In Sec. III, the two phenomenological
models for the DAs of the B meson are presented.
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This section is also devoted to the numerical and analytical
results for the semileptonic BðsÞ → S decays.

II. FORM FACTORS OF BðsÞ → S WITH
HIGHER-TWIST CORRECTIONS

Considering parity and using Lorentz invariance, the
transition matrix elements involved in BðsÞ → S transitions
can be parametrized as

hSðp0ÞjJAμ jBðsÞðpÞi¼−i
�
fþðq2ÞPμþf−ðq2Þqμ

�
;

hSðp0ÞjJTμ jBðsÞðpÞi¼−
fTðq2Þ

mBðsÞ þmS

�
q2Pμ−ðm2

BðsÞ −m2
SÞqμ

�
:

ð1Þ

In these phrases Pμ ¼ ðp0 þ pÞμ, qμ ¼ ðp − p0Þμ. The
transition currents JAμ ¼ q̄1γμγ5b, and JTμ ¼ q̄1σμνγ5qνb
(q1 ¼ u, s) are used to calculate the transition form factors
fþðq2Þ, f−ðq2Þ and fTðq2Þ, respectively. q2 is the momen-
tum transfer squared. The calculation of these form factors
using the LCSR method is described in this section.
To investigate the form factors in the frame work of

the B-meson LCSR, the two-point correlation function
Πðp0; qÞ is constructed from two currents inserted between
vacuum and BðsÞ meson as follows:

Πðp0; qÞ ¼ i
Z

d4x eip
0:xh0jTfJSðxÞJð0ÞgjBðsÞðpÞi; ð2Þ

where T is the time ordering operator, and JSðxÞ is the
interpolating current of the scalar meson S, so that
JK

�þ
0 ðxÞ¼ s̄ðxÞuðxÞ, JK�0

0 ðxÞ¼ d̄ðxÞsðxÞ, Ja0ðxÞ¼ d̄ðxÞuðxÞ,
and Jf0ðxÞ ¼ s̄ðxÞsðxÞ. The matrix element of JS between
the vacuum and scalar meson S is given in terms of the
decay constant fS, and mass of the scalar meson as
h0jJSjSi ¼ fSmS. In the correlation function, Jð0Þ is the
transition current; J ¼ JAμ or JTμ. In addition, p0 and q are
the momenta of the interpolating and transition currents,
respectively. The relation between these two quantities
is p2 ¼ ðp0 þ qÞ2 ¼ m2

BðsÞ .

The correlation function in Eq. (2) can be investigated
from two aspects, hadronic representation and QCD cal-
culations. The form factors are obtained via the LCSR
method in terms of the DAs of the Bmeson by equating the
two sides. As mentioned before, it is possible to use the
B-meson DAs for Bs-meson in the SUð3ÞF symmetry limit.

A. Hadronic representation

Inserting a complete set of the intermediate states
with the same quantum number as the interpolating current
JS, in Eq. (2), and isolating the pole term of the lowest
scalar meson S, and then applying the Fourier trans-
formation, the hadronic representation of the correlation

function is obtained. Defining the spectral density function
of the higher resonances and continuum states as ρðsÞ≡P

hh0jJSðp0Þjhðp0Þihhðp0ÞjJjBðsÞðpÞiδðs −m2
hÞ, the corre-

lation function can be written in terms of the scalar meson
state and the higher resonance contributions as

ΠHADðp0; qÞ ¼ h0jJSjSðp0ÞihSðp0ÞjJjBðsÞðpÞi
m2

S − p02

þ
Z

∞

s0

ds
ρðsÞ

s − p02 ; ð3Þ

where s0 is the continuum threshold of the scalar meson S.

B. QCD calculations

At the quark level in QCD, the correlation function can
be evaluated in the deep Euclidean region as a complex
function. Using the dispersion relation, the correlation
function can be written as

ΠQCDðp0; qÞ ¼ 1

π

Z
∞

0

ds
ImΠQCDðsÞ
s − p02 : ð4Þ

Applying theBorel transformation inEqs. (3) and (4)with

respect to the variable p02 asBp02ð 1
x2−p02Þ ¼ e−x

2=M2

M2 , whereM2

is the Borel parameter, guarantees that the contributions
of the higher states and continuum in the hadronic repre-
sentation are effectively suppressed. In addition, it assures
that the contributions of higher-dimensional operators in the
QCD side are small. Equating both sides of the correlation
function, and using the quark-hadron duality approximation
at large spacelike p02 as ρðsÞ ≃ 1

π ImΠQCDðsÞ, the following
equality is determined:

h0jJSjSðp0ÞihSðp0ÞjJjBðsÞðpÞie−m2
S=M

2 ¼
Z

s0

0

dsρðsÞe−s=M2

:

ð5Þ
Investigating the spectral density at the quark level allows us
to derive the form factors fþ, f− and fT in Eq. (5).
Based on the heavy quark effective theory (HQET), the

BðsÞ-meson state in the limit of largemb can be estimated by
the relativistic normalization of it jBðsÞðpÞi ¼ jBðsÞðvÞi,
where v is four-velocity of the BðsÞ meson. Up to 1=mb

corrections, the correlation functionof theBðsÞ → S transition
can be approximated as ΠQCDðp0; qÞ ¼ Π̃QCDðp0; q̃Þ þ
Oð1=mbÞ, where q̃ ¼ q −mbv is called the static part of
q. Replacing the b-quark field by the HQET field hv, the
correlation function [Eq. (2)] in the heavy quark limit,
(mb → ∞), becomes [33]

Π̃QCDðp0;q̃Þ¼ i
Z

d4xeip
0:xh0jTfq̄ðxÞSq1ðxÞΓhvð0ÞgjBðvÞi;

ð6Þ
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where quark field q̄ stands for s̄ or d̄, and amatrix compositionΓ is γμγ5 or σμνγ5qν corresponding to the transition currents JAμ or
JTμ , respectively. The full-quark propagator Sq1ðxÞ of a massless quark q1 (u or s) in the external gluon field in the Fock-
Schwinger gauge is as follows [34]:

Sq1ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ik:x
�
k
k2

þ
Z

1

0

duGλρðuxÞ
�
1

k2
uxλγρ −

1

2k4
kσλρ

��
: ð7Þ

If the full-quark propagator Sq1ðxÞ in Eq. (7) is replaced in Eq. (6), operators between vacuum mode and BðvÞ state create the
nonzero matrix elements as h0jq̄αðxÞhvβð0ÞjBðvÞi and h0jq̄αðxÞGλρðuxÞhvβð0ÞjBðvÞi. These matrix elements of the nonlocal
heavy-light currents are parametrized in terms of the B-meson DAs. The two-particle higher-twist DAs of theBmeson arise in
the expansion of the relevant nonlocal quark-antiquark operator close to the light cone as [31,32,35]

h0jq̄αðxÞhvβð0ÞjBðvÞi ¼ −
ifBmB

4

Z
∞

0

dω e−iωv·x
�
ð1þ vÞ

�
ðφþðωÞ þ x2gþðωÞÞ −

x
2v · x

�ðφþðωÞ − φ−ðωÞÞ

þ x2ðgþðωÞ − g−ðωÞÞ
��
γ5

�
βα

; ð8Þ

where φþðωÞ, φ−ðωÞ, gþðωÞ, and g−ðωÞ are of leading twist, twist-three, twist-four, and twist-five, respectively. The three-
particle contributions involve a further gluon field, so that thematrix elements of the nonlocal operator qαðxÞGλρðuxÞhvβð0Þ are
parametrized in terms of the B-meson DAs of increasing twist as [31,32,35]

h0jq̄αðxÞGλρðuxÞhvβð0ÞjBðvÞi ¼
fBmB

4

Z
∞

0

dω
Z

∞

0

dξ e−iðωþuξÞv·x
�
ð1þ vÞ

�
ðvλγρ − vργλÞðΨAðω; ξÞ −ΨVðω; ξÞÞ

− iσλρΨVðω; ξÞ −
xλvρ − xρvλ

v · x
XAðω; ξÞ þ

xλγρ − xργλ
v · x

ðWðω; ξÞ þ YAðω; ξÞÞ

− iϵλρδη
xδvηγ5
v · x

X̄Aðω; ξÞ þ iϵλρδη
xδγηγ5
v · x

ȲAðω; ξÞ − u
xλvρ − xρvλ
ðv · xÞ2 xWðω; ξÞ

þ u
xλγρ − xργλ
ðv · xÞ2 xZðω; ξÞ

�
γ5

�
βα

: ð9Þ

There exist eight independent Lorentz structures and therefore eight invariant functions;ΨA,ΨV ,XA, YA, X̄A, ȲA,W, andZ are
the eight independent three-particle DAs of the B meson. The three-particle DAs are related to a basis of DAs such as
ϕiði ¼ 3;…; 6Þ, ψ j and ψ̄ j (j ¼ 4, 5) with definite twist (i and j indicate the twist level) as follows:

ΨAðω; ξÞ ¼
1

2
½ϕ3 þ ϕ4�; ΨVðω; ξÞ ¼

1

2
½−ϕ3 þ ϕ4�;

XAðω; ξÞ ¼
1

2
½−ϕ3 − ϕ4 þ 2ψ4�; YAðω; ξÞ ¼

1

2
½−ϕ3 − ϕ4 þ ψ4 − ψ5�;

X̄Aðω; ξÞ ¼
1

2
½−ϕ3 þ ϕ4 − 2ψ̄4�; ȲAðω; ξÞ ¼

1

2
½−ϕ3 þ ϕ4 − ψ̄4 þ ψ̄5�;

Wðω; ξÞ ¼ 1

2
½ϕ3 − ψ4 − ψ̄4 þ ϕ5 þ ψ5 þ ψ̄5�; Zðω; ξÞ ¼ 1

4
½−ϕ3 þ ϕ4 − 2ψ̄4 þ ϕ5 þ 2ψ̄5 − ϕ6�: ð10Þ

Substituting the appropriate expressions of Eqs. (8) and (9) instead of the matrix elements h0jq1αðxÞhvβð0ÞjBðvÞi and
h0jq1αðxÞGλρðuxÞhvβð0ÞjBðvÞi that appear in the correlation function in Eq. (6), and integrating over the variables x and k,
and then separating the solutions according to the Lorentz structures Pμ and qμ, the general form of the correlation function,
Π̃QCDðp0; q̃Þ can be written as i½Π̃Aþðp0; q̃ÞPμ þ Π̃A

−ðp0; q̃Þqμ� and Π̃Tðp0; q̃ÞPμ corresponding to JAμ and JTμ , respectively.
Finally, inserting Eq. (1) in Eq. (3), and then equating the coefficients of the same Lorentz structures on both sides of the

correlation function, the form factors are obtained via the LCSR in terms of the two- and three-particle DAs of the Bmeson.
Our results for fþðq2Þ, f−ðq2Þ, and fTðq2Þ are obtained as
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fþðq2Þ ¼
fBðsÞm

2
BðsÞ

2fSmS
e

m2
S

M2

Z
σ0

0

dσ e−
sðσÞ
M2

�
φþðσmBðsÞ Þ −

˜̄φðσmBðsÞ Þ
σ̄mBðsÞ

−
4gþðσmBðsÞ Þ

σ̄M2

þ
Z

σmBðsÞ

0

dω
Z

∞

σmBðsÞ−ω

dξ
ξ

��
ð2uþ 2Þ

�
q̄2

σ̄3M2
þ 1

σ̄2

	
þ
ð2uþ 1Þm2

BðsÞ

σ̄M2

�
Ψ̄ðω; ξÞ
m2

BðsÞ

þ 6u
σ̄M2

ΨVðω; ξÞ þ
�
ð2u − 1Þ

�
q̄2

σ̄3M4
þ 1

σ̄2M2

	
þ 3

σ̄2M2

�
X̃Aðω; ξÞ
mBðsÞ

−
4ðuþ 3Þ
σ̄2M2

ỸAðω; ξÞ
mBðsÞ

−
�

q̄2

σ̄3M4
þ 1

σ̄2

	 ˜̄XAðω; ξÞ
m2

BðsÞ

−
4u
m2

BðsÞ

�
q̄2

σ̄4M4
−

m2
BðsÞ

σ̄2M4
−

2

σ̄2M2

	
˜̃Wðω; ξÞ − 48u

σ̄2M4
˜̃Zðω; ξÞ

��
;

f−ðq2Þ ¼ −
fBðsÞm

2
BðsÞ

2fSmS
e

m2
S

M2

Z
σ0

0

dσ e−
sðσÞ
M2

�ð1þ σÞ
σ̄

φþðσmBðsÞ Þ þ
˜̄φðσmBðsÞ Þ
σ̄mBðsÞ

−
4ð1þ σÞ
σ̄2M2

gþðσmBðsÞ Þ

−
Z

σmBðsÞ

0

dω
Z

∞

σmBðsÞ−ω

dξ
ξ

��
ð2uþ 2Þ

�
q̄2

σ̄3M2
þ 1

σ̄2

	
−
ð2uþ 1Þð1þ σÞm2

BðsÞ

σ̄2M2

�
Ψ̄ðω; ξÞ
m2

BðsÞ

þ 6uð1þ σÞ
σ̄2M2

ΨVðω; ξÞ þ
�ð2u − 1Þð1þ σÞ

σ̄

�
q̄2

σ̄3M4
þ 1

σ̄2M2

	
þ 4ðuþ σ̄Þ

σ̄3M2

�
X̃Aðω; ξÞ
mBðsÞ

−
4ðuþ 3Þ
σ̄2M2

ỸAðω; ξÞ
mBðsÞ

−
�ð1þ σÞð2q2 − σ̄2Þ

σ̄4M4
þ 3þ σ

σ̄3

� ˜̄XAðω; ξÞ
m2

BðsÞ

−
48uð1þ σÞ

σ̄3M4
˜̃Zðω; ξÞ

þ 4u
m2

BðsÞ

�
q̄2

σ̄4M4
þ
ð1þ σÞm2

BðsÞ

σ̄3M4
−

2

σ̄2M2

	
˜̃Wðω; ξÞ

��
;

fTðq2Þ ¼
fBðsÞmBðsÞ

2fSmS
ðmBðsÞ þmSÞe

m2
S

M2

Z
σ0

0

dσ e−
sðσÞ
M2

�
φþðσmBðsÞ Þ

σ̄
þ
Z

σmBðsÞ

0

dω
Z

∞

σmBðsÞ−ω

dξ
ξ

��
6u

σ̄2M2

�
ΨVðω; ξÞ

þ
�
2uþ 1

σ̄2M2

�
Ψ̄ðω; ξÞ −

�
q̄2

σ̄4M4
þ 2

�
X̃A

mBðsÞ
−
�

q̄2

2σ̄4M4
−

1

σ̄2M2

� ˜̄XAðω; ξÞ
mBðsÞ

−
uσmBðsÞ ð1þ σ̄Þ

σ̄4M4
˜̃Wðω; ξÞ

−
6uσð1þ σ̄Þ

σ̄4M4
˜̃Zðω; ξÞ

��
; ð11Þ

where σ ¼ ω=mBðsÞ , u ¼ ðσmBðsÞ − ωÞ=ξ, sðσÞ ¼ σm2
BðsÞ −

σ
σ̄ q

2, σ̄ ¼ 1 − σ, φ̄ ¼ φþ − φ−, Ψ̄ ¼ ΨA −ΨV ,

q̄2 ¼ q2 − σ̄2m2
BðsÞ , σ0 ¼

s0þm2
BðsÞ

−q2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0þm2

BðsÞ
−q2Þ2−4s0m2

BðsÞ

q
2m2

BðsÞ
, and

φ̃�ðσmBðsÞ Þ ¼
Z

σmBðsÞ

0

dτ φ�ðτÞ; ỸAðω; ξÞ ¼
Z

ω

0

dτ YAðτ; ξÞ;

X̃Aðω; ξÞ ¼
Z

ω

0

dτXAðτ; ξÞ; ˜̄XAðω; ξÞ ¼
Z

ω

0

dτ X̄Aðτ; ξÞ;

˜̃Wðω; ξÞ ¼
Z

ξ

0

dζ
Z

ω

0

dτWðτ; ζÞ; ˜̃Zðω; ξÞ ¼
Z

ξ

0

dζ
Z

ω

0

dτ Zðτ; ζÞ: ð12Þ

III. NUMERICAL ANALYSIS

This section encompasses our numerical analysis of the form factors fþ, f−, and fT of the semileptonic decays
BðsÞ → S; ðS ¼ K�

0ð1430Þ; a0ð1450Þ; f0ð1500ÞÞ, branching fractions, longitudinal lepton polarization asymmetries, and
discussion. The B-meson LCSR expressions of the form factors in Eq. (11) depict that the main input values are the masses
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and leptonic decay constants of mesons. In addition, the
two- and three-particle DAs of B-meson are the effective
terms that must be specified in calculations of the form
factors. The expressions of the form factors contain also
two auxiliary parameters; Borel mass square M2 and the
continuum threshold s0 of the scalar mesons.
The values for the masses and leptonic decay constants

of B;Bs; K�
0ð1430Þ; a0ð1450Þ, and f0ð1500Þ are given in

Table I.
To continue, we need to specify appropriate functions for

the DAs of the B meson. The B-meson light-cone DAs are
the main nonperturbative input to the QCD description of
weak decays involving light hadrons in the framework
of QCD factorization. The knowledge about the behavior of
the higher-twist B-meson DAs is still rather limited due to
infrared divergences which appear in power-suppressed
contributions. To overcome the divergences in these cases,
some efforts have been made, including the calculation
of nonperturbative contributions of B-meson decays in
terms of increasing twist based on the LCSR approach
[33,38–41]. One of the problems of this way is that the
higher-twist B-meson DAs involve contributions of multi-
parton states and are practically unknown.
In Ref. [31], the authors present a systematic study of the

higher-twist DAs of the B meson which give rise to power-
suppressed 1=mB contributions to B decays in final

states with energetic light particles in the framework
of QCD factorization. As the main result, they find
that the renormalization group equations for the three-
particle distributions are completely integrable in the large
Nc limit and can be solved exactly. Finally, they study the
general properties of the solutions and suggest two simple
models including the exponential (Exp) model, and local
duality (LD) model for the higher-twist DAs of the B
meson with a minimum number of free parameters
which satisfy all tree-level EOM constraints and can be
used in phenomenological studies. The authors in
Ref. [32] construct the LD model for the twist-five and
twist-six B-meson DAs, in agreement with the corres-
ponding asymptotic behaviors at small quark and gluon
momenta.
The Expmodel is the simplest model based on combining

the regime of low momentum of quarks and gluons with an
exponential suppression at large momentum, whereas the
LD model is based on the duality assumption to match the
B-meson state with the perturbative spectral density inte-
grated over the duality region. In this work, we apply these
two models, Exp and LD models, for an estimation of
the semileptonic form factors of BðsÞ to the light scalar
mesonsK�

0ð1430Þ; a0ð1450Þ, andf0ð1500Þ via theB-meson
LCSR.Note that in the SUð3ÞF symmetry limit, it is possible
to use the B-meson DAs for the Bs meson.

A. Exp model

Combining the known low momentum behavior with an
exponential fall-off at large quark and gluon momenta, and
considering the normalization conditions, the Exp model
can be obtained [31]. The shapes of the two-particle DAs
φþðωÞ;φ−ðωÞ; gþðωÞ and g−ðωÞ are presented as

φþðωÞ ¼
ω

ω2
0

e−ω=ω0 ; φ−ðωÞ ¼
�

1

ω0

−
λ2E − λ2H
9ω3

0

�
1 − 2

�
ω

ω0

	
þ 1

2

�
ω

ω0

	
2
��

e−ω=ω0 ;

gþðωÞ ¼
15

32ω0

ω2e−ω=ω0 ; g−ðωÞ ¼
�
3

4
−
λ2E − λ2H
12ω3

0

�
1 −

�
ω

ω0

	
þ 1

3

�
ω

ω0

	
2
��

ωe−ω=ω0 : ð13Þ

The values of the parameters λ2E and λ
2
H of the B-meson DAs

are chosen as λ2E ¼ ð0.01� 0.01Þ GeV2 and λ2H ¼ ð0.15�
0.05Þ GeV2 [42]. Implementing the EOM constraint for the
Exp model leads to ω0 ¼ λBðsÞ [43]. Prediction of the λB and
λBs

values are varied in different models [27,44,45]. In this
work, we use the values for λB and λBs

based on the recent
researches. Analyzing the B̄u → γl−ν̄ decay by the LCSR
leads to λB ¼ ð360� 110Þ MeV [46]. On the other hand,

the inverse moment of the Bs-meson DA is predicted from
the QCDSR as λBs

¼ ð438� 150Þ MeV [47]. Therefore

ω0¼
�
λB¼0.360�0.110GeV ðForB-mesonÞ;
λBs

¼0.438�0.150GeV ðForBs-mesonÞ: ð14Þ

The dependence of the two-particle DAs in Eq. (13) with
respect to ω is shown in Fig. 1 for the Exp model.

TABLE I. Masses and leptonic decay constants of mesons in
GeV [7,36,37].

Meson B Bs K�
0ð1430Þ a0ð1450Þ f0ð1500Þ

Mass 5.28 5.37 1.43� 0.05 1.47� 0.02 1.50� 0.00
Decay constant 0.19 0.23 0.45� 0.05 0.46� 0.05 0.49� 0.05
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The three-particle DAs of the B meson up to twist-six in the Exp model can be constructed as

ϕ3ðω; ξÞ ¼
λ2E − λ2H
6ω5

0

ωξ2e−ðωþξÞ=ω0 ; ϕ4ðω; ξÞ ¼
λ2E þ λ2H
6ω4

0

ξ2e−ðωþξÞ=ω0 ;

ψ4ðω; ξÞ ¼
λ2E
3ω4

0

ωξe−ðωþξÞ=ω0 ; ψ̄4ðω; ξÞ ¼
λ2H
3ω4

0

ωξe−ðωþξÞ=ω0 ;

ψ5ðω; ξÞ ¼ −
λ2E
3ω3

0

ξe−ðωþξÞ=ω0 ; ψ̄5ðω; ξÞ ¼ −
λ2H
3ω3

0

ξe−ðωþξÞ=ω0 ;

ϕ5ðω; ξÞ ¼
λ2E þ λ2H
3ω3

0

ωe−ðωþξÞ=ω0 ; ϕ6ðω; ξÞ ¼
λ2E − λ2H
3ω2

0

e−ðωþξÞ=ω0 : ð15Þ

B. LD model

Another class of the phenomenological models for the B-meson DAs is the LD model. In this model, the structures of the
two-particle DAs φþðωÞ;φ−ðωÞ; gþðωÞ and g−ðωÞ are presented as [31]

φþðωÞ ¼
5

8ω5
0

ωð2ω0 − ωÞ3θð2ω0 − ωÞ;

φ−ðωÞ ¼
5ð2ω0 − ωÞ2

192ω5
0

�
6ð2ω0 − ωÞ2 − 7ðλ2E − λ2HÞ

ω2
0

ð15ω2 − 20ωω0 þ 4ω2
0Þ
�
θð2ω0 − ωÞ;

gþðωÞ ¼
115

2048ω5
0

ω2ð2ω0 − ωÞ4θð2ω0 − ωÞ;

g−ðωÞ ¼
ωð2ω0 − ωÞ3

ω5
0

�
5

256
ð2ω0 − ωÞ2 − 35ðλ2E − λ2HÞ

1536

�
4 − 12

�
ω

ω0

	
þ 11

�
ω

ω0

	
2
��

θð2ω0 − ωÞ: ð16Þ

Applying the EOM constraint between the leading-twist and the higher-twist B-meson DAs, the HQET parameters entering
the LD model for the BðsÞ-meson DAs must satisfy the relation ω0 ¼ 5

2
λBðsÞ [31]. So according to Eq. (14), we have

ω0 ¼
�
λB ¼ 0.900� 0.275 GeV ðFor B −mesonÞ;
λBs

¼ 1.095� 0.375 GeV ðFor Bs −mesonÞ: : ð17Þ

The dependence of the two-particle DAs in Eq. (16) with respect to ω is shown in Fig. 2 for the LD model.

FIG. 1. The dependence of the two-particle DAs, φþðωÞ;φ−ðωÞ; gþðωÞ, and g−ðωÞ on ω for the Exp model.
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The three-particle DAs of the B meson are derived in the
LD model up to twist-six as [31,32]

ϕ3ðω;ξÞ¼
105ðλ2E−λ2HÞ

8ω7
0

ωξ2
�
ω0−

ωþξ

2

	
2

θð2ω0−ω−ξÞ;

ϕ4ðω;ξÞ¼
35ðλ2Eþλ2HÞ

4ω7
0

ξ2
�
ω0−

ωþξ

2

	
3

θð2ω0−ω−ξÞ;

ψ4ðω;ξÞ¼
35λ2E
2ω7

0

ωξ

�
ω0−

ωþξ

2

	
3

θð2ω0−ω−ξÞ;

ψ̄4ðω;ξÞ¼
35λ2H
2ω7

0

ωξ

�
ω0−

ωþξ

2

	
3

θð2ω0−ω−ξÞ;

ϕ5ðω;ξÞ¼
35ðλ2Eþλ2HÞ

64ω7
0

ωð2ω0−ω−ξÞ4θð2ω0−ω−ξÞ;

ψ5ðω;ξÞ¼−
35λ2E
64ω7

0

ξð2ω0−ω−ξÞ4θð2ω0−ω−ξÞ;

ψ̄5ðω;ξÞ¼−
35λ2H
64ω7

0

ξð2ω0−ω−ξÞ4θð2ω0−ω−ξÞ;

ϕ6ðω;ξÞ¼
7ðλ2E−λ2HÞ

64ω7
0

ð2ω0−ω−ξÞ5θð2ω0−ω−ξÞ: ð18Þ

The two-particle leading-twist DA of the B meson φþðωÞ
has the most important contribution in the estimation of the
form factors. The evolution effects show that the DA φþðωÞ
satisfies the condition φþðωÞ ∼ ω as ω → 0 and falls off
slower than 1=ω for ω → ∞ [48]. In Fig. 3, the shape of
φþðωÞ in the Exp and LD models is compared with those
proposed by other models in Refs. [49–55].
After introducing the DAs of the B meson, we set the

values of the parameters. There are two auxiliary para-
meters in Eq. (11), the Borel mass square M2 and the
continuum threshold s0, the values of which must be
determined before analyzing the form factors of the
semileptonic BðsÞ → S decays. These parameters are not
physical quantities, so the form factors as physical
quantities should be independent of them. The continuum
threshold s0 is not completely arbitrary and it is related to
the energy of the first exited state of the scalar meson.

The working region for the continuum threshold for the
scalar mesons K�

0ð1430Þ; a0ð1450Þ and f0ð1500Þ is taken
to be s0 ¼ ð4.4� 0.4Þ GeV2 [56]. The Borel parameter
M2 is chosen in the region where (a) the contributions of
the higher states and continuum are effectively sup-
pressed, which can ensure that the sum rule does not
sensitively depend on the approximation for the higher
states and continuum, and (b) the contributions of the
condensates should not be too large, which can ensure that
the contributions of the higher-dimensional operators are
small and the truncated OPE is effective. Considering the
central value 4.4 GeV2 for s0, a good stability of the form
factors with respect to the Borel parameter is obtained at
q2 ¼ 0 in the interval 2.5 GeV2 ≤ M2 ≤ 3.5 GeV2. The
dependence of the form factors fþ, f− and fT for the
semileptonic decays B → ða0; K�

0Þ and Bs → ðK�
0; f0Þ on

the Borel parameter M2 at three fixed values of the
continuum threshold i.e., s0 ¼ 4.0, 4.4 and 4.8, and
q2 ¼ 0 is shown in Figs. 4 and 5 through the two Exp
and LD models, respectively. We take M2 ¼ 3 GeV2 in
our calculations.

FIG. 3. The shape of φþðωÞ for the Bmeson in the Exp and LD
and other models.

FIG. 2. The same as Fig. 1 but for the LD model.
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C. Form factor analysis

Inserting the values of the masses, the leptonic decay
constants fS and fBðsÞ , the continuum threshold s0, the Borel
parameter M2, the B-meson DAs and other quantities and
parameters related to them such asω0; λ2E and λ

2
H, in addition

considering all sources of uncertainties, the central values of
the form factors fþ, f−, and fT and also their errors can be
estimated for the semileptonic decaysBðsÞ → ðK�

0; a0; f0Þ at
q2 ¼ 0 via theB-meson LCSR approach. Our results for the
form factors at q2 ¼ 0 using the B-meson DAs through the

two Exp and LD models, as well as the predictions of
other approaches such as the pQCD [14], CLF [15],
QCDSR [16–18], LFQM [19], MSSM [20], and the
LCSR with the light-meson DAs [21,24,26] are collected
in Table II. The most important sources of uncertainties in
our calculations are ω0 and then the decay constants of the
lightmesons. For example, considering the form factorfþ of
the semileptonic decay B → a0, and taking into account the
variation of the input values and parameters, we obtain the
following results in the Exp model:

fB→a0þ ð0Þ ¼ 0.52þ0.21
−0.13 jδω0

þ0.06
−0.05

jδfa0
þ0.01
−0.02

jδs0
þ0.00
−0.01

jδλ2H
þ0.00
−0.01

jδM2

þ0.00
−0.01

jδma0

þ0.00
−0.00

jδλ2E : ð19Þ

As the calculations show, the most value of error for fþ
enters through the variation of ω0.
Table II shows that considering the uncertainties, there

is a good agreement between our results in the Exp
model and predictions of the conventional LCSR in
S2 [21,24] for all cases. As a result, our calculations
confirm scenario 2 for describing the scalar mesons
K�

0ð1430Þ; a0ð1450Þ, and f0ð1500Þ. This means that the
scalar mesons K�

0ð1430Þ; a0ð1450Þ, and f0ð1500Þ can be
seen as the lowest lying states with two quarks in the
quark model.

Table III shows the individual contributions of the two- and
three-particle DAs to the semileptonic form factors BðsÞ →
ðK�

0; a0; f0Þ at q2 ¼ 0. Note that the contributions of the two-
particle DAs are listed based on twist level φþ, φ−, and gþ,
while g− does not appear in the results of the form factors.
As can be seen, the two-particle leading-twist DA of the
B meson φþ has the most important contribution in the
calculation of the form factors. In this table, the higher-twist
contributions of the three-particle DAs are not presented
separately because their contributions are usually less than
0.01. For instance, the contributions of the eight twist

FIG. 5. The same as Fig. 4 but for the LD model.

FIG. 4. The dependence of the form factors fþ, −f− and fT on the Borel parameterM2 at three fixed values s0 ¼ 4.0, 4.4, and 4.8 for
B → ða0; K�

0Þ and Bs → ðK�
0; f0Þ at q2 ¼ 0 in the Exp model.
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functions ΨA, ΨV , XA, YA, X̄A, ȲA, W, and Z for the form
factor fB→a0þ at q2 ¼ 0 are reported in Table IV in the
Exp model.
Because of the cutoff in QCD theories, the form factors

for each aforementioned semileptonic decay can be esti-
mated by the B-meson LCSR method in nearly half of the
physical region 0 ≤ q2 ≤ ðmBðsÞ −mSÞ2. In order to extend
our results to the full physical region, we look for a
parametrization of the form factors in such a way that in
the validity region of the LCSR, this parametrization
coincides with the LCSR predictions. We use the following
fit functions of the form factors with respect to q2 as

fIðq2Þ ¼ fð0Þ
1 − αsþ βs2

;

fIIðq2Þ ¼ 1

1 − s

X2
k¼0

bk½zðq2Þ − zð0Þ�k; ð20Þ

where s ¼ q2=m2
BðsÞ , zðtÞ ¼

ffiffiffiffiffiffiffi
tþ−t

p
−

ffiffiffiffiffiffiffiffi
tþ−t0

pffiffiffiffiffiffiffi
tþ−t

p þ ffiffiffiffiffiffiffiffi
tþ−t0

p , t0 ¼ tþð1−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p Þ, and t� ¼ ðmBðsÞ �mSÞ2. The parameters
ðfð0Þ; α; βÞ and (b0, b1, b2), related to the fit functions
fIðq2Þ and fIIðq2Þ respectively, are determined from the
fitting procedure. Table V shows the values of these

TABLE II. The form factors of the semileptonic BðsÞ → ðK�
0; a0; f0Þ transitions at zero momentum transfer from different approaches.

Decay mode Method Reference fþð0Þ f−ð0Þ fTð0Þ
B → a0 LCSR(Exp model) Ours 0.52þ0.28

−0.23 −0.50þ0.13
−0.35 0.71þ0.37

−0.30
LCSR(LD model) Ours 0.58þ0.38

−0.23 −0.58þ0.29
−0.37 0.78þ0.44

−0.35
LCSR [26] 0.44 −0.26 0.43

LCSR(S2) [21] 0.52 −0.44 0.66
LCSR(S2) [24] 0.53 −0.53 � � �
pQCD(S2) [14] 0.68 � � � 0.92
LCSR(S1) [24] 0.26 −0.26 � � �
pQCD(S1) [14] −0.31 � � � −0.41

CLF [15] 0.26 � � � � � �
B → K�

0 LCSR(Exp model) Ours 0.53þ0.28
−0.22 −0.51þ0.13

−0.36 0.72þ0.39
−0.31

LCSR(LD model) Ours 0.60þ0.34
−0.28 −0.59þ0.30

−0.41 0.79þ0.45
−0.35

LCSR [26] 0.45 −0.28 0.46
LCSR(S2) [21] 0.49 −0.41 0.60
LCSR(S2) [24] 0.49 −0.49 0.69
pQCD(S2) [14] 0.60 � � � 0.78
LCSR(S1) [24] 0.17 −0.17 0.24
pQCD(S1) [14] −0.34 � � � −0.44

CLF [15] 0.26 � � � � � �
QCDSR [16] 0.31 −0.31 −0.26
LFQM [19] −0.26 0.21 −0.34
MSSM [20] 0.49 −0.41 0.60

Bs → K�
0 LCSR(Exp model) Ours 0.51þ0.38

−0.24 −0.48þ0.24
−0.40 0.70þ0.50

−0.32
LCSR(LD model) Ours 0.56þ0.48

−0.27 −0.54þ0.34
−0.50 0.75þ0.59

−0.37
LCSR [26] 0.39 −0.25 0.41

LCSR(S2) [21] 0.42 −0.34 0.52
LCSR(S2) [24] 0.44 −0.44 � � �
pQCD(S2) [14] 0.56 � � � 0.72
LCSR(S1) [24] 0.10 −0.10 � � �
pQCD(S1) [14] −0.32 � � � −0.41
QCDSR [17] 0.24 � � � � � �
QCDSR [18] 0.25 −0.17 0.21

Bs → f0 LCSR(Exp model) Ours 0.47þ0.36
−0.20 −0.45þ0.22

−0.35 0.66þ0.44
−0.31

LCSR(LD model) Ours 0.52þ0.43
−0.24 −0.50þ0.28

−0.47 0.71þ0.51
−0.38

LCSR [26] 0.38 −0.24 0.40
LCSR(S2) [21] 0.43 −0.37 0.56
LCSR(S2) [24] 0.41 −0.41 0.59
pQCD(S2) [14] 0.60 � � � 0.82
LCSR(S1) [24] 0.14 −0.14 0.20
pQCD(S1) [14] −0.26 � � � −0.34
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parameters for the form factors of the semileptonic decays
BðsÞ → ðK�

0; a0; f0Þ in the Exp model. Table VI shows the
same values as Table V but for the LD model.
The dependence of the fitted form factors fiði ¼ þ;−; TÞ

on q2 is given in Fig. 6 for BðsÞ → SðS ¼ K�
0; a0; f0Þ

transitions. These form factors are related to the Exp model.
Figure 7 depicts the same results as Fig. 6, but for the LD
model. In these figures, the black and gray lines show the
results for fIðq2Þ and fIIðq2Þ fit functions, respectively.
According to Figs. 6 and 7, the fitted form factors obtained
for the two fit functions are consistent in each case.
The form factors at large recoil should satisfy the

following relations [57]:

f−ðq2Þ ¼ −
m2

BðsÞ −m2
S

mbmBðsÞ
fþðq2Þ;

fTðq2Þ ¼
mBðsÞ þmS

mBðsÞ
fþðq2Þ: ð21Þ

Figures 6 and 7 show that the computed form factors from
the LCSR with the B-meson DAs for the two Exp and LD
models satisfy the relations in Eq. (21), by considering the
errors.

The results of the form factor fþðq2Þ for the aforemen-
tioned decays from different models are compared with our
results in the two Exp and LD models in Fig. 8.

D. Semileptonic B0
s → K�+

0 l − ν̄l
and B0 → a+

0 l
− ν̄l decays

At the quark level, the tree-level b → u transition is
responsible for the Bs → K�

0lν̄l and B → a0lν̄l decay
modes. The Hamiltonian for the b → ulν̄l transition is
written as

Heffðb→ulν̄lÞ¼
GFffiffiffi
2

p Vubūγμð1−γ5Þbl̄γμð1−γ5Þνl; ð22Þ

TABLE IV. Contributions of the eight twist functions ΨA, ΨV ,
XA, YA, X̄A, ȲA, W, and Z for the form factor fB→a0þ at q2 ¼ 0

up to Oð10−3Þ in the Exp model.

ΨA ΨV XA YA X̄A ȲA W Z

fB→a0þ −0.002 0.015 −0.002 0.001 0.000 0 −0.001 −0.001

TABLE V. Values of parameters ðfð0Þ; α; βÞ and (b0, b1, b2)
connected to the fit functions fIðq2Þ and fIIðq2Þ respectively, for
the fitted form factors of BðsÞ → ðK�

0; a0; f0Þ transitions in the
Exp model.

Form
factor fð0Þ α β b0 b1 b2

fB→a0þ 0.52 −0.49 1.68 0.52 −0.23 −6.83
fB→a0− −0.50 0.44 −1.51 −0.50 0.54 5.41
fB→a0
T

0.71 −0.59 2.53 0.71 −0.95 −3.79

f
B→K�

0þ 0.53 −0.50 1.71 0.53 −0.23 −6.79

f
B→K�

0− −0.51 0.44 −1.55 −0.51 0.55 5.39

f
B→K�

0

T
0.72 −0.60 2.57 0.72 −0.95 −3.77

f
Bs→K�

0þ 0.51 −0.43 1.51 0.51 −0.65 −4.46

f
Bs→K�

0− −0.48 0.38 −1.37 −0.48 0.89 2.32

f
Bs→K�

0

T
0.70 −0.51 2.25 0.70 −1.65 2.99

fBs→f0þ 0.47 −0.39 1.10 0.47 −0.69 −6.15
fBs→f0− −0.45 0.36 −1.34 −0.45 0.75 2.53

fBs→f0
T

0.66 −0.48 2.11 0.66 −1.58 3.05

TABLE III. Contributions of the two-particle DAs (2-P DAs)
and three-particle DAs (3-P DAs) to the form factor results at
q2 ¼ 0 in the two Exp and LD models.

Exp model LD model

2-P DAs 2-P DAs

Form
Factor φþ φ− gþ 3-P DAs φþ φ− gþ 3-P DAs

fB→a0þ 0.49 0.07 −0.05 0.01 0.52 0.08 −0.04 0.02

fB→a0− −0.61 0.07 0.05 −0.01 −0.68 0.08 0.04 −0.02
fB→a0
T

0.70 0.00 0.00 0.01 0.77 0.00 0.00 0.01

f
B→K�

0þ 0.50 0.07 −0.05 0.01 0.54 0.08 −0.04 0.02

f
B→K�

0− −0.63 0.07 0.06 −0.01 −0.69 0.08 0.04 −0.02

f
B→K�

0

T
0.71 0.00 0.00 0.01 0.78 0.00 0.00 0.01

f
Bs→K�

0þ 0.48 0.08 −0.06 0.01 0.51 0.08 −0.05 0.02

f
Bs→K�

0− −0.62 0.08 0.07 −0.01 −0.66 0.08 0.06 −0.02

f
Bs→K�

0

T
0.69 0.00 0.00 0.01 0.74 0.00 0.00 0.01

fBs→f0þ 0.44 0.07 −0.05 0.01 0.46 0.08 −0.04 0.02

fBs→f0− −0.57 0.07 0.06 −0.01 −0.61 0.08 0.05 −0.02
fBs→f0
T

0.65 0.00 0.00 0.01 0.70 0.00 0.00 0.01

TABLE VI. The same as Table V but for the LD model.

Form factor fð0Þ α β b0 b1 b2

fB→a0þ 0.58 −0.48 0.95 0.58 −0.86 −13.82
fB→a0− −0.58 0.42 −0.83 −0.58 1.49 11.43
fB→a0
T

0.78 −0.58 1.15 0.78 −1.82 −16.30

f
B→K�

0þ 0.60 −0.49 0.97 0.60 −0.87 −13.77

f
B→K�

0− −0.59 0.43 −0.85 −0.59 1.50 11.41

f
B→K�

0

T
0.79 −0.59 1.16 0.79 −1.83 −16.15

f
Bs→K�

0þ 0.56 −0.41 1.07 0.56 −1.44 −4.24

f
Bs→K�

0− −0.54 0.35 −0.93 −0.54 1.94 −2.27

f
Bs→K�

0

T
0.75 −0.49 1.26 0.75 −2.67 1.49

fBs→f0þ 0.52 −0.38 1.00 0.52 −1.36 −4.07
fBs→f0− −0.50 0.32 −0.86 −0.50 1.85 −2.33
fBs→f0
T

0.71 −0.46 1.19 0.71 −2.56 1.62
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whereGF is the Fermi constant, Vub ¼ ð3.82� 0.24Þ × 10−3. With this Hamiltonian, the differential decay width dΓ
dq2 for the

processes BðsÞ → Slν̄lðS ¼ K�
0; a0Þ in terms of the form factors can be expressed as [58]

dΓ
dq2

ðBðsÞ→Slν̄lÞ¼
G2

FjVubj2
384π3m3

BðsÞ

ðq2−m2
l Þ2

ðq2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

BðsÞ −m2
S−q2Þ2−4q2m2

S

q �
ðm2

l þ2q2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

BðsÞ −m2
S−q2Þ2−4q2m2

S

q
f2þðq2Þþ3m2

l ðm2
BðsÞ −m2

SÞ2
�
fþðq2Þþ

q2

m2
BðsÞ −m2

S
f−ðq2Þ

�
2
�
; ð23Þ

where ml is the mass of the lepton. The dependency of the differential branching ratios of Bs → K�
0lν̄l and B → a0lν̄l

(l ¼ μ, τ) decays on q2 is shown in Fig. 9 for both the Exp and LDmodels as well as the two fit functions fIðq2Þ and fIIðq2Þ.

FIG. 6. Black and gray lines show the fitted form factors fþ, −f−, and fT of the BðsÞ → S transitions by using the fit functions fIðq2Þ
and fIIðq2Þ, respectively, with respect to q2 in the Exp model.

FIG. 7. The same as Fig. 6 but for the LD model.

FIG. 8. Form factor fþ for B → ða0; K�
0Þ and Bs → ðK�

0; f0Þ decays in different models such as the pQCD [14], CLF [15], QCDSR
[16–18], the LCSR with the light-meson DAs [21] and our results via B-meson LCSR in two Exp and LD models.
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Integrating Eq. (23) over q2 in the whole physical
region m2

l ≤ q2 ≤ ðmBðsÞ −mSÞ2, and using the total mean
lifetimes τBs

¼ ð1.515� 0.004Þ ps and τB0 ¼ ð1.519�
0.004Þ ps [36], we present the branching ratio values of
the semileptonic decays BðsÞ → ðK�

0; a0Þlν̄l (l ¼ μ, τ) in
Table VII, for both the Exp and LD models, in addition the
two fit functions. The results obtained for the electron are
very close to the results of the muon. Therefore, the
branching ratios for muon are only presented in this table.
Table VII shows that the difference between the calcula-
tions through the two fit functions can be completely
ignored. This table also contains the results estimated
via the conventional LCSR [21] and pQCD [14] through
S2 as well as the QCDSR [17] approach. In general, the
values obtained in this work are in a logical agreement with
the two models, the conventional LCSR and pQCD.
Especially, the obtained values of the Exp model are in
a good agreement with the conventional LCSR. As can be
seen in this table, uncertainties in the values obtained for
the branching ratios of the semileptonic decays are very
large. The main source of errors comes from the form
factor fþðq2Þ.

E. Semileptonic B0 → K�0
0 l + l − =νν̄

and B0
s → f 00l

+ l − =νν̄ decays

The semileptonic decays BðsÞ → ðK�
0; f0Þlþl−=νν̄ are

conducted by the FCNC b → s loop transition. In the

SM, the weak effective Hamiltonian responsible for these
rare decays, neglecting the Cabibbo-Kobayashi-Maskawa-
suppressed contributions proportional to VubV�

us, and also
considering the approximation jVtbVtsj ≃ jVcbVcsj, is
described at the energy scale μ ¼ mb as [59–61]:

Heffðb → slþl−Þ

¼ −
4GFffiffiffi

2
p VtbV�

ts

�
C1Oc

1 þ C2Oc
2 þ

X10
i¼3

CiOi

	
; ð24Þ

where CiðμÞ are the Wilson coefficients. Oc
1;2 are current-

current operators, O3−6 are QCD penguin operators, O7;8

are magnetic penguin operators, and O9;10 are semileptonic
electroweak penguin operators. The contributions
of the operators O7 and O9;10 in the decay amplitudes
BðsÞ → ðK�

0; f0Þ are factorized in the form factors f� and
fT . The effect of other operators appears as the factorizable
and nonfactorizable contributions.
The factorizable contributions have the same form factor

dependence as C9 which can be absorbed into an effective
Wilson coefficient Ceff

9 . The dominant factorizable contri-
bution is generated by the tree-level four quark operators
Oc

1;2 with large Wilson coefficients jVcbVcsj. This contri-
bution includes intermediate vector charmonium states in
the upper part of the decay kinematical region as long-
distance effect.

� � � �

FIG. 9. Differential branching ratios of the semileptonic BðsÞ → ðK�
0; a0Þlνðl ¼ μ; τÞ transitions on q2 for the Exp model and fit

function fIðq2Þ (Exp, fI), the Exp model and fit function fIIðq2Þ (Exp, fII), the LD model and fit function fIðq2Þ (LD, fI), and the LD
model and fit function fIIðq2Þ (LD, fII).

TABLE VII. The branching ratio values of BðsÞ → ðK�
0; a0Þlν̄l for both the Exp and LD models as well as the two fit functions in

addition different approaches.

This work

Mode Exp, fI Exp, fII LD, fI LD, fII LCSR(S2) [21] pQCD(S2) [14] QCDSR [17]

BrðBs → K�
0μνμÞ × 104 1.98þ1.51

−0.65 2.00þ1.52
−0.66 2.63þ1.99

−0.87 2.60þ1.98
−0.86 1.30þ1.30

−0.40 2.45þ1.77
−1.05 0.36þ0.38

−0.24

BrðBs → K�
0τντÞ × 104 0.70þ0.57

−0.26 0.71þ0.58
−0.27 0.95þ0.77

−0.35 0.95þ0.77
−0.35 0.52þ0.57

−0.18 1.09þ0.82
−0.47 � � �

BrðB → a0μνμÞ × 104 1.67þ1.27
−0.53 1.70þ1.29

−0.54 2.20þ1.67
−0.70 2.18þ1.66

−0.69 1.80þ0.90
−0.70 3.25þ2.36

−1.36 � � �
BrðB → a0τντÞ × 104 0.51þ0.41

−0.19 0.53þ0.42
−0.20 0.67þ0.54

−0.25 0.66þ0.53
−0.24 0.63þ0.34

−0.25 1.32þ0.97
−0.57 � � �
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The nonfactorizable contributions arise from electro-
magnetic corrections to the matrix elements of purely
hadronic operators in the weak effective Hamiltonian.
The weak annihilation and quark-loop diagrams with
soft and hard gluons create the nonfactorizable correc-
tions [61,62]. These contributions for the FCNC
BðsÞ → ðK�

0; f0Þ decays are highly suppressed due to the
large current uncertainties of the form factors, and

also the small Wilson coefficients of the penguin
operators.
According to the effective weak Hamiltonian of the

b → slþl− transition in Eq. (24), the matrix element for this
FCNC decay, by considering the contributions of the
operators O7 and O9;10 as well as the factorizable con-
tributions of the operators through Ceff

9 , and ignoring the
nonfactorizable contributions, can be written as

Mðb → slþl−Þ ¼ GFα

2
ffiffiffi
2

p
π
VtbV�

ts

�
Ceff
9 s̄γμð1 − γ5Þbl̄γμlþ C10s̄γμð1 − γ5Þbl̄γμγ5l − 2Ceff

7

mb

q2
s̄iσμνqνð1þ γ5Þbl̄γμl

�
;

where α is the fine structure constant at Z mass scale, the Cabibbo-Kobayashi-Maskawa matrix elements jVtbV�
tsj ¼ 0.041

[63], and the Wilson coefficients Ceff
7 ¼ −0.313 and C10 ¼ −4.669 [59]. The effective Wilson coefficient Ceff

9 includes both
the short-distance and long-distance effects as

Ceff
9 ¼ C9 þ YSðq2Þ þ YLðq2Þ; ð25Þ

where YSðq2Þ describes the short-distance contributions from four-quark operators far away from the resonance regions,
which can be calculated reliably in perturbative theory as [60]

YSðq2Þ ¼ 0.124ωðsÞ þ hðm̂c; sÞC0 −
1

2
hð1; sÞð4C3 þ 4C4 þ 3C5 þ C6Þ

−
1

2
hð0; sÞðC3 þ 3C4Þ þ

2

9
ð3C3 þ C4 þ 3C5 þ C6Þ; ð26Þ

where s ¼ q2=m2
b, m̂c ¼ mc=mb, C0 ¼ 3C1 þ C2 þ 3C3 þ C4 þ 3C5 þ C6, and

ωðsÞ ¼ −
2

9
π2 −

4

3
Li2ðsÞ −

2

3
lnðsÞ lnð1 − sÞ − 5þ 4s

3ð1þ 2sÞ lnð1 − sÞ − 2sð1þ sÞð1 − 2sÞ
3ð1 − sÞ2ð1þ 2sÞ lnðsÞ þ

5þ 9s − 6s2

6ð1 − sÞð1þ 2sÞ : ð27Þ

The functional form of the hðm̂c; sÞ and hð0; sÞ are as

hðm̂c; sÞ ¼ −
8

9
ln
mb

μ
−
8

9
ln m̂c þ

8

27
þ 4

9
x −

2

9
ð2þ xÞj1 − xj1=2

8>><
>>:

�
ln
��� ffiffiffiffiffiffi

1−x
p þ1ffiffiffiffiffiffi
1−x

p
−1

��� − iπ

; for x≡ 4m̂2

c
s < 1

2 arctan 1ffiffiffiffiffiffi
x−1

p ; for x≡ 4m̂2
c

s > 1

ð28Þ

and

hð0; sÞ ¼ 8

27
−
8

9
ln
mb

μ
−
4

9
ln sþ 4

9
iπ: ð29Þ

The long-distance contributions, YLðq2Þ from four-quark
operators near the cc resonances, cannot be calculated from
the first principles of QCD and are usually parametrized
in the form of a phenomenological Breit-Wigner formula
as [60]

YLðq2Þ ¼
3π

α2
X

Vi¼J=ψ ;ψð2SÞ

ΓðVi → lþl−ÞmVi

m2
Vi
− q2 − imVi

ΓVi

: ð30Þ

In the range of 4m2
l ≤ q2 ≤ ðmBðsÞ −mSÞ2, there are two

charm-resonances J=ψð3.097Þ and ψð3.686Þ. To avoid the
background of charmonium resonances, it is common to
delete the experimental measurements around the reso-
nance regions. For this reason, the long-distance contribu-
tions are ignored in our calculations.
Using the parametrization of the aforementioned decays

in terms of the form factors, the differential decay width in
the rest frame of BðsÞ-meson can be written as
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dΓ
dq2

ðBðsÞ → Sνν̄Þ ¼
G2

FjVtbV�
tsj2m3

BðsÞα
2

28π5
jDνðxtÞj2
sin4θW

ϕ3=2ð1; r̂; ŝÞjfþðq2Þj2;

dΓ
dq2

ðBðsÞ → Slþl−Þ ¼
G2

FjVtbV�
tsj2m3

BðsÞα
2

3 × 29π5
vϕ1=2ð1; r̂; ŝÞ

��
1þ 2l̂

ŝ

	
ϕð1; r̂; ŝÞα1 þ 12l̂β1

�
; ð31Þ

where r̂ ¼ m2
S

m2
BðsÞ

, ŝ ¼ q2

m2
BðsÞ

, l̂ ¼ m2
l

m2
BðsÞ

, xt ¼ m2
t

m2
W
, m̂b ¼ mb

mBðsÞ
, v ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − 4l̂

ŝ

q
, ϕð1; r̂; ŝÞ ¼ 1þ r̂2 þ ŝ2 − 2r̂ − 2ŝ − 2r̂ ŝ, and the

functions DνðxtÞ, α1 and β1 are defined as

DνðxtÞ ¼
xt
8

�
2þ xt
xt − 1

þ 3xt − 6

ðxt − 1Þ2 ln xt
	
;

α1 ¼
����Ceff

9 fþðq2Þ þ
2m̂bCeff

7 fTðq2Þ
1þ ffiffiffî

r
p

����
2

þ jC10fþðq2Þj2;

β1 ¼ jC10j2
��

1þ r̂ −
ŝ
2

	
jfþðq2Þj2 þ ð1 − r̂ÞRe½fþðq2Þf�−ðq2Þ� þ

1

2
ŝjf−ðq2Þj2

�
: ð32Þ

The dependency of the differential branching ratios for
BðsÞ → ðK�

0; f0Þlþl−=νν̄ on q2 for both the Exp and LD
models as well as the two different fit functions is shown in
Figs. 10 and 11.
Integrating Eq. (31) over q2 in the physical region

4m2
l ≤q2≤ ðmBðsÞ −mSÞ2, and using τBðsÞ , the branching ratio

results of the BðsÞ → Slþl−=νν̄ are obtained. Table VIII
shows the branching ratios of the aforementioned decays

for both the Exp and LD models as well as the two
different fit functions, in addition to predictions by
the conventional LCSR(S2) [21], pQCD(S2) [14], and
LFQM(S2) [19].
The polarization asymmetries provide valuable informa-

tion on the flavor changing loop effects in the SM. The
longitudinal lepton polarization asymmetry formula for
BðsÞ → Slþl− is given as

PL ¼ 2v

ð1þ 2l̂
ŝ Þϕð1; r̂; ŝÞα1 þ 12l̂β1

Re

�
ϕð1; r̂; ŝÞ

�
Ceff
9 fþðq2Þ −

2C7fTðq2Þ
1þ ffiffiffî

r
p

	
ðC10fþðq2ÞÞ�

�
; ð33Þ

where v; l̂; r̂; ŝ;ϕð1; r̂; ŝÞ; α1 and β1 were defined before. The dependence of the longitudinal lepton polarization
asymmetries for the BðsÞ → ðK�

0; f0Þlþl−ðl ¼ μ; τÞ decays on the transferred momentum square q2 for both the Exp
and LD models as well as the two different fit functions is plotted in Fig. 12.

FIG. 10. The differential branching ratios of the semileptonic B → K�
0l

þl−=νν̄ decays (l ¼ μ, τ) on q2 for both the Exp and LD models
as well as the two different fit functions.
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It should be noted that the forward-backward asymmetry
for the decay modes BðsÞ → ðK�

0; f0Þlþl− is exactly equal to
zero in the SM [64,65], due to the absence of scalar-type
coupling between the lepton pair.
In summary, our main goal was to calculate the form

factors of the semileptonic decaysBðsÞ → S (S ¼ K�
0ð1430Þ;

a0ð1450Þ; f0ð1500Þ) in the framework of the LCSRwith the
B-meson DAs.

(i) Two different phenomenological models including
exponential and local duality models were used for
the shapes of the B-meson DAs.

(ii) The B-meson DAs were also applied for Bs meson in
the SUð3ÞF symmetry limit.

(iii) The form factors of the aforementioned decays were
estimated at q2 ¼ 0 through the two exponential and
local duality models, and compared with the pre-
dictions of other approaches.

(iv) It was shown that the two-particle leading-twist DA
of the B meson φþ has the most important con-
tribution in the calculation of the form factors.

(v) In addition, it was shown that the main sources of the
uncertainties in the estimation of the form factors
were the shape parameter ω0 and the decay constants
of the scalar mesons.

(vi) Considering the uncertainties, there was a good
agreement between our results in the exponential
model and predictions of the conventional LCSR in
scenario 2. As a result, our calculations confirmed
that the scalar mesons K�

0ð1430Þ; a0ð1450Þ, and
f0ð1500Þ can be viewed as the lowest lying states
with two quarks in the quark model.

(vii) For a better analysis, the results obtained for the
form factors via the B-meson LCSR method were
parametrized to the two different fit functions. The
form factors obtained by both fit functions were very
consistent in each case.

(viii) Using the form factors fþðq2Þ, f−ðq2Þ, and fTðq2Þ,
the branching ratio values for the semileptonic Bs →
K�

0lνl and B → a0lνl decays, and also the FCNC
semileptonic transitions B → K�

0 and Bs → f0 were
calculated.

(ix) The dependence of the differential branching ratios
as well as the longitudinal lepton polarization
asymmetries for the aforementioned decays were
plotted with respect to q2.

(x) Future experimental measurements can give valu-
able information about these aforesaid decays and
the nature of the scalar mesons.

FIG. 11. The same as Fig. 10 but for Bs → f0lþl−=νν̄ decays (l ¼ μ, τ).

TABLE VIII. The branching ratio values of BðsÞ → ðK�
0; f0Þlþl−=νν̄ for both the Exp and LD models as well as the two different fit

functions in addition to the LCSR, pQCD, and LFQM approaches.

This work

Mode Exp, fI Exp, fII LD, fI LD, fII LCSR(S2) [21] pQCD(S2) [14] LFQM(S2) [19]

BrðB → K�
0νν̄Þ × 106 4.49þ1.35

−0.90 4.78þ1.43
−0.95 6.22þ1.87

−1.24 6.32þ1.90
−1.26 � � � � � � � � �

BrðB → K�
0μ

þμ−Þ × 107 5.66þ2.77
−1.98 6.03þ2.95

−2.11 7.89þ3.86
−2.76 8.03þ3.93

−2.81 5.6þ3.1
−2.3 9.78þ7.66

−4.40 1.62

BrðB → K�
0τ

þτ−Þ × 108 0.55þ0.36
−0.28 0.61þ0.40

−0.31 0.65þ0.42
−0.33 0.69þ0.44

−0.35 0.98þ1.24
−0.55 0.63þ0.57

−0.30 0.29

BrðBs → f0νν̄Þ × 106 3.97þ1.07
−0.71 4.14þ1.12

−0.75 5.52þ1.49
−0.99 5.46þ1.47

−0.98 � � � � � � � � �
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