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In a recent article [D. M. van Egmond and U. Reinosa, Phys. Rev. D 106, 074005 (2022)], we have
identified new signatures for the Yang-Mills deconfinement transition, based on the finite-temperature
longitudinal or (chromo-)electric gluon propagator as computed in the center-symmetric Landau gauge.
Here, we generalize these considerations into a systematic study of the center symmetry identities obeyed
by the correlation functions in this gauge. Any violation of these constraints signals the breaking of center
symmetry and can thus serve as a probe for the deconfinement transition.
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I. INTRODUCTION

Functionalmethods are by now awell-developed corpus of
approaches in the framework of non-Abelian gauge theories
[1–19] that can bring valuable complementary information in
situations where Monte Carlo lattice simulations are the least
efficient. One limitation of functional methods, as compared
to the lattice, is, however, that the primary quantities they
give access to are gauge-dependent correlation functions.
Although observables can be reconstructed from the corre-
lation functions in principle, this strongly rests on the
accuracy at which the latter are computed and on their
particular relation to the observables under consideration.
A natural question that emerges is then whether it could be

possible to extract relevant physical information directly
from the correlation functions themselves, an idea that can be
further elaborated in at least two distinct directions. The most
obvious one is to try to identify gauge-independent features
of the correlation functions [20], which are then more prone
to encapsulate observable information. A different strategy is
based on the idea that certain physical questions could be
addressed directly from gauge-dependent features of the
correlation functions, in certain, well-chosen gauges. A
paradigmatic example is the question of symmetries and

their breaking, which usually underlies the phase structure of
the system under consideration.
In particular, in recent years, both lattice simulations

[21–26] as well as various analytical studies [27–31] have
searched for signatures of the Yang-Mills deconfinement
phase transition within the Landau gauge gluon propagator.
It is apparent that a change of behavior is observed in the
vicinity of the transition in quantities constructed from the
propagator, which, for some of them (see for instance
Ref. [26]), seem to behave like order parameters. It is of
course natural to expect that this change of behavior relates
to the breaking of the underlying center symmetry, as
probed for instance from the Polyakov loop. However, it is
also fair to say that, to date, this connection has not been
fully established. A very interesting step in this direction
has been taken in Ref. [32] which investigates the corre-
lations between the Polyakov loop and the SU(3) propa-
gator and identifies an order parameter for the center
symmetry in the form of a difference of propagators
evaluated for field configurations in different angular
sectors of the Polyakov loop. This study, however, does
not elucidate how center symmetry can impose any specific
behavior on quantities,1 such as the ones discussed in
Ref. [26], constructed from the propagator associated to a
single sector of the Polyakov loop. Let us also add that, in
the particular case of the SU(2) gauge group, where the
transition is known to be second order, the Landau gauge
gluon propagator does not seem to become critical.Published by the American Physical Society under the terms of
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1Toqualify as an order parameter, thebehavior of a givenquantity
in the symmetric phase should be dictated by the symmetry.
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In order to try to clarify some of these questions, in a
series of works [33–35], we have put forward the idea that
the Landau gauge might not be the most appropriate gauge
to analyze the deconfinement transition, in particular when
it comes to identifying signatures of symmetry breaking at
the level of the correlation functions. One can actually
understand this on very general grounds since, as we argue
below, the gauge-fixed action associated to a chosen gauge
does not necessarily reflect the symmetries of the problem.
Even though this feature has no influence on the way the
symmetry constrains the observables,2 it can have a strong
impact on whether and how the symmetries manifest
themselves at the level of the correlation functions.
To be more specific, consider a gauge theory defined by

some non-gauge-fixed action S½A� and consider a physical
symmetry A → A0 such that S½A0� ¼ S½A�. Now, when
specifying to a given gauge g, one needs to work with
the corresponding gauge-fixed action Sg½A�. But the con-
sidered physical transformation does not need to be a
symmetry of Sg½A�. In fact, one could more generally have3

Sg½A0� ¼ Sg0 ½A�; ð1Þ

with g0 a gauge choice that can differ from the original
gauge choice g. Indeed, although not representing a
symmetry of the action in a given gauge, the identity (1)
is actually sufficient for the physical symmetry to be
manifest at the level of the observables hO½A�ig. For
instance, assuming a linear transformation

O½A0� ¼ LO½A�; ð2Þ

and because the observables do not depend on the gauge,
we can write the following chain of identities4:

hO½A�ig ¼ hO½A0�ig ¼ LhO½A�ig0 ¼ LhO½A�ig: ð3Þ

This gives a symmetry constraint for the considered
observable in any chosen gauge and can then be used as
a probe for the breaking of the symmetry under consid-
eration. Awell-known example of such a type of observable
is the Polyakov loop that probes the center symmetry in
pure Yang-Mills theories.
If we consider instead a correlation function hC½A�ig, and

assuming again a linear transformation C½A0� ¼ LC½A�, the
previous chain of identities stops one step earlier because
correlation functions depend explicitly on the gauge:

hC½A�ig ¼ hC½A0�ig ¼ LhC½A�ig0 : ð4Þ

In this case, one obtains a relation between the correlation
functions in the two different gauges g and g0 but certainly
not a constraint on the correlation functions of a given gauge.
For this reason, the correlation functions cannot in general be
used as probes for the breaking of physical symmetries.
There is one important exception, however, correspond-

ing to the case where the chosen gauge leads to a gauge-
fixed action that is invariant under the considered physical
transformation, that is g0 ¼ g. In this case, the chain of
identities (4) can be continued one step further, just as for
the case of observables (but not for the same reason), and
one obtains symmetry constraints for the correlation
functions themselves, which can be used as order param-
eters for the symmetry at hand.
In this work, we consider one particular example of such

symmetry invariant gauges, the recently introduced center-
symmetric Landau gauges [33] which are invariant under
the center symmetry of pure SU(N) Yang-Mills theories at
finite temperature [37–42] and which are thus adapted to
the study of the deconfinement transition from the corre-
lation functions. Some of these aspects were analyzed in
Ref. [35] using specific Lorentz/color projections of the
gluon two-point function. The present work makes the
discussion more general by extending it to any correlation
function and any Lorentz/color projection.
The paper is organized as follows. In the next section, we

define the notion of center-symmetric gauge-field back-
grounds and the associated center-symmetric Landau
gauges. We also particularize to backgrounds (and thus,
gauges) that are, in addition, charge conjugation invariant,
and also invariant under particular color rotations. Section III
analyzes the constraints on correlation functions associated
to color invariance. The discussion of charge conjugation
and center symmetry is more subtle because one needs to
pay attention to the fact that physical symmetries act on
gauge fields modulo genuine gauge transformations. One
convenient way to handle this aspect of the theory is through
the notion of Weyl transformations and Weyl chambers
which we discuss in Sec. IV. Sections V, VI and VII are then
devoted to a systematic analysis of the constraints on the
correlation functions that derive from charge conjugation
and center symmetry for N ¼ 2 and N ¼ 3, as well as the
identification of new order parameters for center symmetry.
Additional details are gathered in the Appendixes.

II. CENTER-SYMMETRIC LANDAU GAUGES

In what follows, we consider SU(N) Euclidean Yang-Mills
theories within the framework of backgroundLandau gauges
[43–46]. The latter actually refers to a family of gauges
parametrized by a background gauge field configuration Ā
that, in a sense, plays the role of an infinite collection of
gauge-fixing parameters. The gauge condition is

2At least at an exact level of treatment; see the general
discussion in Refs. [34,36].

3For a thorough discussion of these questions, see Refs. [34,36].
4The first equality is just the fact that A is a dummy integration

variable under the functional integral, the second equality uses
both (1) and (2), and the third equality uses the gauge independ-
ence of the observables.
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D̄μðAa
μ − Āa

μÞ ¼ 0; ð5Þ

where

D̄μφ
a ≡ ∂μφ

a þ gfabcĀb
μφ

c ð6Þ
stands for the adjoint covariant derivative in the presence of
the background.
A given background defines a particular choice of gauge

within the class of background Landau gauges. For instance,
when the background is taken equal to zero, one retrieves the
standard Landau gauge ∂μAa

μ ¼ 0. Here, we are interested
in the subclass of center-symmetric Landau gauges [33]
obtained by choosing, instead, center-symmetric back-
grounds which we now define in more detail.

A. Center-symmetric backgrounds

A center-symmetric background Āc is defined by the
condition

∀U∈G; ∃U0 ∈G0; ĀU0U
c ¼ Āc: ð7Þ

Here, G denotes the group of gauged SU(N) matrices
Uðτ; x⃗Þ obeying the particular boundary conditions5

Uðτ þ β; x⃗Þ ¼ ei2πk=NUðτ; x⃗Þ; ð8Þ
with k ¼ 0; 1;…; N − 1, while G0 is the subgroup of G
corresponding to k ¼ 0.
Any U∈G acts on the gauge field as

AU
μ ≡UAμU† þ i

g
U∂μU†; ð9Þ

where we have defined Aμ ≡ Aa
μta. It should be stressed,

however, that only those U0 ∈G0 correspond to genuine
gauge transformations, that is transformations that do not
alter the state of the system. In contrast, any U∈G
with k ≠ 0 transforms at least one observable, the
Polyakov loop [47],6

l≡ 1

N
tr

�
P exp

�
i
Z

β

0

dτA0ðτ; x⃗Þ
��

; ð10Þ

and should therefore be considered as a physical
transformation.
Actually, because U and U0U act on the Polyakov loop

in the same way, these physical transformations are defined
only modulo multiplication by elements of G0. This is of

course in correspondence with the fact that two gauge field
configurations A and AU0 connected by an element of G0

should be interpreted as two equivalent representations of
the same physical state. In turn, this explains the particular
definition of center-invariant configurations given in
Eq. (7).7 This definition can actually be replaced by a
simpler condition, namely

∃Uc ∈U1; ĀUc
c ¼ Āc; ð11Þ

where U1 denotes the set (not a group) of gauged SU(N)
matrices that fulfill Eq. (8) with k ¼ 1. We shall stick to this
simpler formulation in what follows.
It should also be mentioned that a given center-

symmetric background can obey additional symmetries.
It can happen for instance that it is invariant under charge
conjugation in the following sense:

∃U0 ∈G0; ð−Āt
cÞU0 ¼ Āc; ð12Þ

where Xt denotes the transpose of X. Finally, the back-
ground could be invariant under certain elements of G0

(in general global transformations):

∃U0 ∈G0; ĀU0
c ¼ Āc: ð13Þ

The center-symmetric backgrounds that we consider below
obey such additional symmetries which we also exploit.

B. Symmetry constraints

The main interest of center-symmetric backgrounds and
center-symmetric Landau gauges is that the gauge-fixed
action is invariant under center transformations. By this,
we mean that

∃Uc ∈U1; SĀc
½A� ¼ SĀc

½AUc �: ð14Þ

This is to be contrasted with what happens for a gauge
choice corresponding to an arbitrary background Ā. In this
case, one has instead SĀ½A� ¼ SĀU ½AU�, with ĀU ≠ Ā for
any U∈U1. The latter identity connects the gauge-fixed
actions in two different gauges, corresponding respectively
to Ā and ĀU, and is thus quite different from Eq. (14) which
is a symmetry identity within a single gauge, corresponding
to the choice Ā ¼ Āc.
The symmetry identity (14) implies constraints on the

correlation functions as computed in the center-symmetric
Landau gauge. Take first the one-point function hAiĀc

.
If the symmetry is not broken, then we must have

hAiĀc
¼ hAUciĀc

¼ hAiUc

Āc
: ð15Þ

5As usual, β≡ 1=T denotes the inverse temperature and
corresponds to the extent of the Euclidean time interval over
which the fields are defined.

6The Polyakov loop is directly related to the free-energy Fq of
a static quark in a thermal bath of gluons, l ∼ e−βFq . Under the
action of U∈G, it gets multiplied by a phase factor ei2πk=N.

7These considerations apply in fact to any physical symmetry;
see the discussion in Refs. [34,36].
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This means that the one-point function should also corre-
spond to a center-symmetric configuration. Any departure
from this expectation signals the breaking of center
symmetry.
Next, if we consider a connected correlation function

hAa1
μ1ðx1Þ � � �Aan

μnðxnÞiconnectedĀc
¼ hδAa1

μ1ðx1Þ � � � δAan
μnðxnÞiĀc

;

ð16Þ

with δA≡ A − hAiĀc
transforming as

ðδAUcÞaμðxÞ ¼ ðUcðxÞδAμðxÞU†
cðxÞÞa

≡ Uab
c ðxÞδAb

μðxÞ; ð17Þ

we have, when the symmetry is not broken,

hAa1
μ1ðx1Þ � � �Aan

μnðxnÞiconnectedĀc

¼ Ua1b1
c ðx1Þ � � �Uanbn

c ðxnÞhAb1
μ1ðx1Þ � � �Abn

μnðxnÞiconnectedĀc
:

ð18Þ

It is easily seen that the vertex functions obey similar
identities.8 These constraints can serve as probes of
deconfinement since the violation of any of these identities
signals the breaking of center symmetry.
We stress that the converse is not true as some of these

identities could be further protected by other (unbroken)
symmetries even when center symmetry breaks. This is in
particular the case when (12) or (13) apply. From these
equations, one can indeed derive similar constraints as (18),
provided one replaces Uc with the appropriate UC or U0.
We will see below that some of the constraints derived from
charge conjugation coincide with some of the constraints
derived from center symmetry. Since charge conjugation is
not expected to break spontaneously, these particular
constraints cannot be used as probes of the breaking of
center symmetry.
Let us mention that, in principle, in order to treat the

broken phase, one should extend Eq. (18) in the presence of
an external source jaμðxÞ coupled to δAa

μðxÞ which even-
tually is taken to 0. In the presence of the source, the
symmetry constraints read as

hAa1
μ1ðx1Þ � � �Aan

μnðxnÞiconnectedĀc;j

¼ Ua1b1
c ðx1Þ � � �Uanbn

c ðxnÞhAb1
μ1ðx1Þ � � �Abn

μnðxnÞiconnectedĀc;U−1
c j :

ð19Þ

In the limit j → 0, two things can happen. Either the limit is
regular, meaning that it does not depend on the way it is
taken, and one retrieves the constraints (18) characterizing
the symmetric phase, or, the limit depends on the way it is
taken, that is jaμ ¼ jμna with na some unit vector and
j → 0. Then, one finds

hAa1
μ1ðx1Þ � � �Aan

μnðxnÞiconnectedĀc;n

¼ Ua1b1
c ðx1Þ � � �Uanbn

c ðxnÞhAb1
μ1ðx1Þ � � �Abn

μnðxnÞiconnectedĀc;U−1
c n ;

ð20Þ

which characterizes the broken phase and expresses how
the correlation functions in the various sectors, that is as
obtained from the various inequivalent zero-source limits,
are connected to each other by the symmetry. These sector-
dependent correlators are continuous versions of the ones
analyzed in Ref. [32] but computed in a different gauge,
Ā ¼ Āc rather than Ā ¼ 0, where the relation between the
sector-dependent correlators can be made explicit in the
form of Eq. (20). In this paper, we are not interested in
investigating this relation further.9 Rather, we concentrate
on the constraints that this relation imprints on the
propagator in the symmetric phase (which, by definition
does not depend on the considered sector). To date, such
constraints have not been identified in the Landau gauge. It
is a strength of the presently considered center-symmetric
Landau gauge to allow one to identify such type of
constraints, which can then be used to define new order
parameters.
A remark on notation is finally in order. From now on,

we shall omit the label “connected” when writing corre-
lation functions, and neither should we use the label Āc. It is
implicitly assumed that, with the exception of the one-point
function, the notation hAa1

μ1ðx1Þ � � �Aan
μnðxnÞi refers either

to a connected correlation function or to a vertex function,
computed in the center-symmetric Landau gauge.
Moreover, we shall use a condensed notation such that,
unless specifically stated, both Lorentz indices and position
arguments are combined into one single index.

C. Constant, temporal and diagonal backgrounds

In practice, one does not need to determine all possible
backgrounds complying with Eq. (11), but it is enough to
find just one. Particularly simple examples are obtained by
first restricting to backgrounds of the form

ĀμðxÞ ¼ δμ0
T
g
r̄jtj; ð21Þ

where the tj’s provide a maximal set of commuting
generators of the algebra. One then looks for specific

8These identities can be obtained more directly by first writing
a symmetry constraint on the generating functional for connected
correlation functions, and, then, deducing a similar constraint on
the associated effective action; see Refs. [34,36] for details. 9This would not be too difficult.
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values r̄c of r̄ that correspond to center-symmetric back-
grounds. A convenient way to find these particular values is
through the use of Weyl transformations and Weyl cham-
bers; see below for further details, as well as the discussion
in Ref. [36].
In the SU(2) case, one possible choice is

r̄c ¼ r̄3c ¼ π; ð22Þ

with tj ¼ σ3=2, whereas in the SU(3) case, one can take

r̄c ¼ ðr̄3c; r̄8cÞ ¼
�
4π

3
; 0

�
; ð23Þ

with tj ∈ fλ3=2; λ8=2g. We shall restrict to these choices in
what follows. We will see below that not only do they fulfill
Eq. (11), but they also comply with Eqs. (12) and (13).

III. COLOR CONSTRAINTS

The presence of a background makes the color structure of
the various correlation functions more intricate than in the
Landau gauge. For backgrounds of the form (21), the color
structure remains simple, however, due to the fact that the
background, and thus the gauge-fixed action, is invariant
under global color rotations of the form Uθ ¼ eiθ

jtj .
This is just a particular example of Eq. (13), with

similar consequences on the correlation functions as the
constraints (18) provided one replaces Uc with the corre-
sponding Uθ. To make the most of this symmetry, and in
fact of the other symmetries as well, it will be convenient to
work within a Cartan-Weyl basis ftκg whose definition we
now recall.

A. Cartan-Weyl bases

By construction, the generators tκ of a Cartan-Weyl basis
simultaneously diagonalize the adjoint action of the tj’s:

½tj; tκ� ¼ κjtκ: ð24Þ

It can be helpful to recall these relations using a quantum
mechanical language: the labels κ are real-valued, (N − 1)-
dimensional vectors that collect the “quantum (eigen)
numbers” κj that a given “(eigen)state” tκ acquires under
the action of the various charges ½tj; �. In more technical
terms, the vectors κ are the adjoint weights of the algebra.
The adjoint weights can be of two types. If they are

nonzero, they are called roots and are represented using the
first letters of the Greek alphabet, κ ¼ α, β,… The roots are
nondegenerate, meaning that there is only one eigenstate tα

associated to a given root α. It is also generally true that, if α
is a root, then −α is a root as well. Aside from the roots,
there is also a vanishing adjoint weight. It is degenerate10

because any tj is an eigenstate with vanishing charges. One
can again write these states as tκ provided one sets κ ¼ 0ðjÞ.
This notation should be understood as representing multi-
ple copies of the null vector, needed to distinguish the
various degenerate zero-charge states t0

ðjÞ ¼ tj. Of course,
this label should be interpreted as nothing else but the null
vector when appearing in algebraic expressions (that is any
time it is not used as a label).
In what follows, we refer to κ ¼ 0ðjÞ and κ ¼ α as the

neutral and chargedmodes respectively. In the SU(2) case,
we have one neutral mode 0ð3Þ and two charged modes
α12 ¼ 1 and α21 ≡ −α12. In the SU(3) case, we have two
neutral modes, 0ð3Þ and 0ð8Þ, as well as six charged modes
α12 ¼ ð1; 0Þ, α23 ¼ ð−1=2; ffiffiffi

3
p

=2Þ, α31 ¼ ð−1=2;− ffiffiffi
3

p
=2Þ,

α21 ≡ −α12, α32 ≡ −α23 and α13 ≡ −α31. We note that the
roots are all of norm α2 ¼ 1, a property which extends to
the SU(N) case; see Appendix A. The notation αkl will be
explained further below.

B. Constraints

From Eq. (24), it is easily deduced that the adjoint action
of Uθ on the generators tκ of a Cartan-Weyl basis gives

UθtκU
†
θ ¼ eiθ

j½tj;�tκ ¼ eiθ·κtκ; ð25Þ
with X · Y ≡ XjYj. It follows that, within a Cartan-Weyl
basis, Uκλ

θ ¼ eiθ·κδκλ and the correlation functions are
invariant under the transformation

Aκ
μ → UκλAλ

μ ¼ eiθ·κAκ
μ: ð26Þ

The constraints on the correlation/vertex functions then
take the form

hAκ1
μ1 � � �Aκn

μni ¼ eiθ·ðκ1þ���þκnÞhAκ1
μ1 � � �Aκn

μni: ð27Þ
This implies that the nonvanishing correlators are ne-
cessarily such that color is conserved in the sense
κ1 þ � � � þ κn ¼ 0.
In particular, the nonvanishing components of the

two-point function Gκλ
μν ≡ hAκ

μAλ
νi are necessarily such that

κ þ λ ¼ 0. In the SU(2) case, it immediately follows that
Gκλ
μν ¼ Gλ

μνδ
κð−λÞ. In the SU(3) case, we cannot conclude this

as yet, however, because there are two neutral modes, and
we could have κ þ λ ¼ 0 with κ ¼ 0ð3Þ and λ ¼ 0ð8Þ. What
can be said without any further assumption is that

Gα0ðjÞ
μν ¼ G0ðjÞα

μν ¼ 0; ð28Þ

and

Gαβ
μν ¼ Gβ

μνδαð−βÞ; ð29Þ

but the structure of G0ðjÞ0ðj0Þ
μν still needs to be investigated.10The only exception is the SU(2) case.
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Let us now study, in a similar way, the constraints
deriving from charge conjugation and center invariance.
Their study is slightly more delicate because the corre-
sponding symmetries, (7) and (12), involve an element
U0 ∈G0 which we still need to characterize. This can be
done with the help of Weyl transformations whose defi-
nition we recall in the next section.

C. Defining weights

Before doing so, it is useful to generalize Eq. (24)
beyond the adjoint representation.
In particular, when diagonalizing the defining action11 of

all the tj’s,

tjjρi ¼ ρjjρi; ð30Þ
one obtains the defining weights ρ, which, just like the
roots, are real-valued, (N − 1)-dimensional vectors. For
instance, in the SU(2) case, there are two defining weights
ρ1 ¼ 1=2 and ρ2 ¼ −1=2, while in the SU(3) case, there are
three weights ρ1¼ð1=2;1=ð2 ffiffiffi

3
p ÞÞ, ρ2 ¼ ð−1=2; 1=ð2 ffiffiffi

3
p ÞÞ

and ρ3 ¼ ð0;−1= ffiffiffi
3

p Þ.
The defining weights are closely connected to the roots

since the latter arise as all possible differences of two
distinct weights αkl ¼ ρk − ρl, thus explaining the notation
that we introduced above. In the SU(N) case at least, the
pair of weights that decompose a given root is unique.
Sometimes, given a root α, we might want to access the
corresponding weights which we denote12 ρα and ρ̄α such
that α ¼ ρα − ρ̄α.
Let us finally mention that the SU(N) weights are all

such that

ρ2 ¼ 1

2

�
1 −

1

N

�
; ð31Þ

whereas

ρ · ρ0 ¼ −
1

2N
; ð32Þ

for two distinct weights ρ and ρ0; see Appendix A. It
follows in particular that the scalar product ρ · α between a
defining weight and a root can only take a certain number
of values:

ρ · α ¼ þ1=2 if ρ ¼ ρα;

¼ −1=2 if ρ ¼ ρ̄α;

¼ 0 otherwise:

ð33Þ

Similarly, given two roots α and β, one has

α · β ¼ þ1 if β ¼ α;

¼ −1 if β ¼ −α;
¼ −1=2 if αþ β is a root;

¼ þ1=2 if α − β is a root:

ð34Þ

IV. WEYL TRANSFORMATIONS

AWeyl transformation is a particular element of G0. It is
a global color transformation associated to a given root α as

Wα ≡ ei
πffiffi
2

p ðtαþt−αÞeiπðρ
j
αþρ̄jαÞtj : ð35Þ

Details on the choice of the two factors that enter this
definition are given in Appendix C together with a number
of properties. In particular we will need to know the adjoint
action of Wα on the color algebra.

A. Action on the algebra

It is shown in Appendix C that

WαtjW
†
α ¼ tj − 2αjðα · tÞ; ð36Þ

WαtβW
†
α ¼ tβ−2ðβ·αÞα: ð37Þ

In order to alleviate the notation, we have explicitly used
the fact that the SU(N) roots are unit vectors. Otherwise,
α in the rhs of Eqs. (36) and (37) needs to be replaced
by α=

ffiffiffiffiffi
α2

p
.

We also note that Eq. (36) would remain unchanged were
we not to include the second factor in Eq. (35). However,
this factor is crucial in order to avoid uninteresting but
annoying extra factors in Eq. (37) as we could show in the
SU(N) case; see Appendix C.
Let us finally mention that the combination β − 2ðβ · αÞα

appearing on the rhs of this equation takes different forms
depending on the relation between α and β:

β − 2ðβ · αÞα ¼ −α if β ¼ α;

¼ þα if β ¼ −α;
¼ β þ α if β þ α is a root;

¼ β − α if β − α is a root;

¼ 0 otherwise:

ð38Þ

This combination corresponds to the reflection of β with
respect to a hyperplane orthogonal to α.

B. Weyl chambers

The Weyl transformations play an important role in
identifying center-symmetric backgrounds among the
backgrounds of the form (21). As explained in Ref. [36],

11The term “defining” is here chosen in place of “fundamental”
since there is in general more than one fundamental representa-
tion associated to a given group.

12The subscript α should not be confused with the subscript k
above. They are related as ραkl ¼ ρk and ρ̄αkl ¼ ρl.
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one first restricts to the subgroup G̃0 of transformations of
G0 that keep the background of the form (21). These
transformations are seen to be of the form [36]

WVsðτÞ; ð39Þ

where W is a global color rotation that leaves the diagonal
part of the algebra globally invariant, and

VsðτÞ≡ ei4π
τ
βs

jtj ; ð40Þ

with s such that

ei4πs
jtj ¼ 1: ð41Þ

Interestingly, the Weyl transformations Wα provide exam-
ples of global color rotation that leave the diagonal part of
the algebra globally invariant, as follows from Eq. (36).
Similarly, given a root α, one always has

ei4πα
jtj ¼ 1 ð42Þ

(see Appendix C), and, therefore, a possible choice of s in
Eq. (40) is s ¼ α.13

Therefore, one can generate all transformations of G̃0

from the elementary transformations Wα and VαðτÞ. In the
space of backgrounds of the form (21), the latter correspond
to simple geometrical transformations: reflections with
respect to hyperplanes orthogonal to α and translations
of r̄ by 4πα. By combining those transformations, one
obtains a more interesting generating set, namely the
reflections with respect to hyperplanes orthogonal to α,
displaced by any multiple of 2πα. The benefit of this
generating set is that it subdivides the space of backgrounds
of the form (21) into regions, known as Weyl chambers,
that are connected to each other by elements of G̃0 and are
thus physically equivalent. In the SU(2) case, from the roots
given above, one obtains that the Weyl chambers are the
intervals r̄∈ ½2πk; 2πðkþ 1Þ�. In the case of SU(3), the
Weyl chambers are equilateral triangles; see Fig. 1.
Once the Weyl chambers have been identified, one can

easily construct the particular transformations U0 that
appear in Eqs. (7) and (12). The idea is the same in both
cases. A physical transformation such as charge conjuga-
tion or an element of G̃ typically displaces a given Weyl
chamber. By using elements of G̃0, one can bring the Weyl
chamber back to its original location. In doing so, one
generates a transformation of a given Weyl chamber into
itself. The fixed points of this transformation correspond to
backgrounds obeying (7) or (12), and the so-constructed

combinations of elements of G0 provide the transformations
U0 appearing in these equations.

C. Charge conjugation

In the SU(2) case, the transformation Āμ → −Āt
μ is itself

an element iσ2 ∈G0. Therefore, Eq. (12) is fulfilled for any
choice of background since one can choose U0 to be the
inverse of this element. It follows that charge conjugation
imposes no constraint in this case.
In the SU(3) case, in contrast, the transformation

Āμ → −Āt
μ is not an element of G0. For backgrounds of

the form (21), it corresponds to the transformation r̄ → −r̄.
Under this transformation, the Weyl chamber that is high-
lighted in the first plot of Fig. 2 is transformed as shown in
the second plot of that same figure. To bring the Weyl
chamber back to its original location, one can use the
reflection ðr̄3; r̄8Þ → ð−r̄3; r̄8Þ which corresponds to Wα12 .
From this, not only do we deduce that all backgrounds of
the form (21) with r̄ ¼ ðr̄3; 0Þ comply with Eq. (12),14 but
we also identify U0 in this equation with Wα12 .

D. Center transformations

We can proceed similarly to construct the transformation
U0 that appears in Eq. (7) or, more directly, the

FIG. 1. SU(3) Weyl chambers in the ðr̄3; r̄8Þ plane and their
relation to the Weyl transformations and the roots. The red vectors
represent the roots multiplied by 4π. The elements of G̃0 are
generated by translations along these vectors and reflections with
respect to lines orthogonal to these vectors that go through the
origin. Equivalently, they are generated by all possible reflections
with respect to lines orthogonal to the roots and displaced by any
multiple of 2π times the corresponding root. The corresponding
symmetry axes define a paving of the ðr̄3; r̄8Þ plane into physically
equivalent regions, known as Weyl chambers.

13Later, we shall consider other possible choices of s, such as
s ¼ ρ, but they lead to nonperiodic transformations.

14Since all Weyl chambers are physically equivalent, each
Weyl chamber contains one axis of charge-conjugation invariant
states.
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transformation Uc that appears in Eq. (11). First of all, it
can be shown that, modulo elements of G̃0, the trans-
formations of U1 that leave the Cartan subalgebra globally
invariant are winding transformations of the form V−ρðτÞ,
with ρ one of the defining weights of the algebra.15 The
winding transformations act on the algebra as

V−ρðτÞtjV†
−ρðτÞ ¼ tj; ð43Þ

V−ρðτÞtαV†
−ρðτÞ ¼ e−i4π

τ
βρ·αtα; ð44Þ

where we have used similar considerations as in Eq. (25). In
the space of backgrounds of the form (21), they correspond
to translations by −4πρ.
In the SU(2) case for instance, if we choose to work on

the Weyl chamber ½0; 2π�, we see that V−ρ1ðτÞ transforms it
into ½−2π; 0�. This Weyl chamber can be brought back to its

original location by applying Wα12 . Eventually, this pro-
duces the transformation r̄ → 2π − r̄ that leaves the origi-
nal Weyl chamber globally invariant and identifies
r̄ ¼ π as a fixed point. It follows that the transformation
Uc that appears in (11) is the transformation

Uc ¼ Wα12V−ρ1ðτÞ; ð45Þ

and that the center-symmetric background is indeed (22).
As for the SU(3) case, a similar argumentation leads to

Uc ¼ Wα31Wα12V−ρ1ðτÞ; ð46Þ

corresponding to the center-symmetric background (23).
For a graphical representation of this construction, see
Fig. 3. We mention that simple rules to permute the order
between the various Wα or between the Wα and Vρ are
provided in Appendix C.
We are now fully equipped to investigate the constraints

that charge conjugation and center symmetry impose on
correlation functions.

FIG. 2. Transformation of a Weyl chamber under charge conjugation. The colored chamber represents the various locations of the
Weyl chamber along the transformation process. We have chosen a point and a particular axis of the Weyl chamber to ease orientation as
the Weyl chamber is transformed. In the first two figures, the blue items represent the transformations that will be applied to the Weyl
chamber, Ā → −Āt and Wα12 respectively, while in the third figure, the blue item represents the combined effect of these two
transformations, which corresponds to a transformation of the original Weyl chamber into itself, more specifically a reflection with
respect to its horizontal symmetry axis.

FIG. 3. Transformation of a Weyl chamber under a center transformation. The colored chamber represents the various locations of the
Weyl chamber along the transformation process. We have chosen a point and a particular axis of the Weyl chamber to ease orientation as
the Weyl chamber is transformed. In the first three figures, the blue items represent the transformations that will be applied to the Weyl
chamber, V−ρ1ðτÞ, Wα12 and Wα31 respectively, while in the fourth figure, the blue item represents the combined effect of these three
transformations, which corresponds to a transformation of the original Weyl chamber into itself, more specifically a rotation by an angle
2π=3 around its center.

15Note that, unlike VαðτÞ, V−ρðτÞ does not obey the condition
underneath Eq. (40) and is therefore not a part of G0.
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V. CHARGE CONJUGATION CONSTRAINTS

As already mentioned above, charge conjugation
imposes no constraints in the SU(2) case.
In the SU(3) case, we have seen that, for backgrounds

of the form (21) with r̄ ¼ ðr̄3; 0Þ, the transformation
Āμ → −Āt

μ combined with Wα12 is a symmetry. Using
Eqs. (36) and (37), we find that this symmetry acts on
the generators of the algebra as

t0
ð3Þ

→ t0
ð3Þ
; t0

ð8Þ
→ −t0ð8Þ ; ð47Þ

and

t�α12 → −t�α12 ;

t�α23 → −t�α31 ;

t�α31 → −t�α23 : ð48Þ

We can further use color rotation invariance and redefine
the above transformation such that it appears as16

t�α12 → −t�α12 ;

t�α23 → t�α31 ;

t�α31 → t�α23 : ð49Þ

It follows that the correlation/vertex functions are invariant
under the transformation

A3
μ → A3

μ; A8
μ → −A8

μ; ð50Þ

and

A�α12
μ → −A�α12

μ ;

A�α23
μ → A�α31

μ ;

A�α31
μ → A�α23

μ ; ð51Þ

corresponding to a change of sign of the components in the
color 0ð8Þ and �α12 directions and a permutation of the
components in the �α23 and �α31 directions.
Let us now investigate the consequences of this sym-

metry on the correlation functions, first using some
examples and then in full generality.

A. Some examples

1. Neutral sector

Consider a correlation function whose external legs are
all in the neutral sector:

hA3
μ1 � � �A3

μmA
8
ν1 � � �A8

νni: ð52Þ

The constraints from charge conjugation invariance read as

hA3
μ1 � � �A3

μmA
8
ν1 � � �A8

νni ¼ ð−1ÞnhA3
μ1 � � �A3

μmA
8
ν1 � � �A8

νni:
ð53Þ

As a consequence, all correlators with an odd number of
components along the color 8 direction need to vanish:

hA3
μ1 � � �A3

μmA
8
ν1 � � �A8

ν2pþ1
i ¼ 0: ð54Þ

We expect these constraints to always be valid since charge
conjugation should not be spontaneously broken.

2. Two-point function

In particular, for the two-point function, it follows that

G0ð3Þ0ð8Þ
μν ¼ G0ð8Þ0ð3Þ

μν ¼ 0: ð55Þ

Combined with Eqs. (28) and (29), this implies

Gκλ
μν ¼ Gλ

μνδ
κð−λÞ; ð56Þ

as in the SU(2) case. We mention, however, that we do not
know at this point whether and how the neutral diagonal
elements G0ð3Þ0ð3Þ

μν and G0ð8Þ0ð8Þ
μν are connected to each other.

We will come back to this question below as it is linked to
center symmetry.
In the charged sector, we have that

G�α23
μν ¼ G�α31

μν ; ð57Þ

as follows from (51) but we cannot tell at this point whether
and how they are connected to the components along
the �α12 directions. Again, we will come back to this
question below.

3. Three-point function

For the three-point functions, we have

hA3
μA3

νA8
ρi ¼ hA8

μA8
νA8

ρi ¼ 0: ð58Þ

Similarly

hA8
μA

α12
ν A−α12

ρ i ¼ 0; ð59Þ

as well as

hA3
μA

α23
ν A−α23

ρ i ¼ hA3
μA

α31
ν A−α31

ρ i; ð60Þ

and

hA8
μA

α23
ν A−α23

ρ i ¼ −hA8
μA

α31
ν A−α31

ρ i: ð61Þ
16To this purpose, we consider the color rotation ei2πρ

j
3
tj

and exploit the fact that ρ3 · α12 ¼ 0, ρ3 · α23 ¼ −1=2 and
ρ3 · α31 ¼ þ1=2.
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Finally

hAα12
μ Aα23

ν Aα31
ρ i ¼ −hAα12

μ Aα31
ν Aα23

ρ i: ð62Þ

B. General case

To derive the general constraints from charge conjuga-
tion invariance, it is convenient to introduce the field
Aσ
μ ≡ A3

μ þ σiA8
μ (with σ ¼ �1) which transforms as

Aσ
μ → A−σ

μ : ð63Þ
A general correlation function then takes the form

hAþ
μ1 � � �Aþ

μmA
−
ν1 � � �A−

νn

Aα12
ρ1 � � �Aα12

ρp A
−α12
σ1 � � �A−α12

σq

Aα23
ω1

� � �Aα23
ωk A

−α23
τ1 � � �A−α23

τl

Aα31
η1 � � �Aα31

ηi A
−α31
ζ1

� � �A−α31
ζj

i; ð64Þ

which we write formally as

hðþÞmnð12Þpqð23Þklð31Þiji: ð65Þ
We note that we have the constraint

ðp − qÞα12 þ ðk − lÞα23 þ ði − jÞα31 ¼ 0; ð66Þ
as follows from color conservation; see the discussion
below Eq. (27). Now, because α12 þ α23 þ α31 ¼ 0, this
rewrites as ðpþ j − q − iÞα12 þ ðkþ j − l − iÞα23 ¼ 0.
Since α12 and α23 are linearly independent, this eventually
leads to p − q ¼ i − j ¼ k − l. Moreover, correlation
functions involving A3

μ and A8
μ rather than A�

μ can be
obtained through appropriate linear combinations of (64).
With this compact notation, the constraints due to charge

conjugation invariance read as

hðþÞmnð12Þpqð23Þklð31Þiji
¼ ð−1Þpþqhð−Þmnð12Þpqð31Þklð23Þiji: ð67Þ

One easily checks that this identity contains the constraints
already derived above and allows one to generate all
other possible constraints related to charge conjugation
invariance.

VI. Z2-SYMMETRY CONSTRAINTS

Using Eqs. (36)–(38) and Eqs. (43)–(44), we find that the
action of Uc on the SU(2) algebra gives

UctjU
†
c ¼ −tj; ð68Þ

as well as

Uct�α12U†
c ¼ e∓i2πτ

βt∓α12 ; ð69Þ

where we have used that ρ1 · α12 ¼ 1=2. From this, one
reads the corresponding Uc and deduces that the correlation
functions are invariant under the transformation

δA3
μ → −δA3

μ; ð70Þ

δA�α12
μ → e�i2π

τμ
β δA∓α12

μ ; ð71Þ

where δA was defined below Eq. (16) and τμ stands for the
Euclidean time argument associated to the index μ. Let us
now analyze the consequences of this symmetry on the
correlation functions, first using some examples, and then
in full generality.

A. Some examples

1. Neutral sector

If we consider correlation functions that are purely in the
neutral sector, the constraint (18) takes the form

hA3
μ1 � � �A3

μni ¼ ð−1ÞnhA3
μ1 � � �A3

μni: ð72Þ

Thus, functions with an even number of external legs are
unconstrained, while those with an odd number of external
legs should vanish,

hA3
μ1 � � �A3

μ2pþ1
i ¼ 0; ð73Þ

as long as center symmetry is not broken.

2. Two-point function

In particular there is no constraint on the two-point
function in the neutral sector.17

On the contrary, from Eq. (71), we find the following
constraint on the two-point function in the charged sector:

hAα12
μ A−α12

ν i ¼ ei2π
τμ−τν

β hA−α12
μ Aα12

ν i; ð74Þ

where τμ and τν are the Euclidean time arguments asso-
ciated with the fields carrying the indices μ and ν
respectively. In other words (we now make the position
arguments explicit)

Gα12ð−α12Þ
μν ðx − yÞ ¼ ei2π

τx−τy
β Gð−α12Þα12

μν ðx − yÞ: ð75Þ

17In Refs. [33,35], we have seen that the two-point function in
the neutral sector develops a zero mode at the deconfinement
transition. Although this is a combined consequence of center
symmetry and of the second order nature of the transition in the
SU(2) case, it is not of the same type as the symmetry constraints
that we are presently discussing. The latter apply indeed over the
whole confining phase and not just at the transition.
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In Fourier space, this means that Gα12ð−α12Þ
μν ðQÞ and

Gð−α12Þα12
μν ðQÞ are related by a frequency shift of 2πT.

With our convention ∂μ → −iQμ for the Fourier transform,
this gives

Gα12ð−α12Þ
μν ðQÞ ¼ Gð−α12Þα12

μν ðQþ 2πTNÞ; ð76Þ

with N ¼ ð1; 0⃗Þ. Any violation of this identity signals a
breaking of center symmetry.

3. Three-point function

For the three-point function, either all color directions
are neutral, and then

hA3
μðxÞA3

νðyÞA3
ρðzÞi ¼ 0; ð77Þ

or, only one is neutral, and then

hAα12
μ ðxÞA−α12

ν ðyÞA3
ρðzÞi¼−ei2π

τμ−τν
β hA−α12

μ ðxÞAα12
ν ðyÞA3

ρðzÞi:
ð78Þ

In Fourier space, this leads to

hAα12
μ ðPÞA−α12

ν ðQÞA3
ρðKÞi

¼ −hA−α12
μ ðPþ 2πTNÞAα12

ν ðQ − 2πTNÞA3
ρðKÞi: ð79Þ

B. General case

A general SU(2) correlation function takes the form

hA3
μ1 � � �A3

μnA
α12
ρ1 � � �Aα12

ρp A
−α12
σ1 � � �A−α12

σp i ð80Þ

which we denote more simply as hð3Þnð12Þpi. The con-
straints due to center symmetry read as

hð3Þnð12Þpi ¼ ð−1Þnei2π
τρ1þ���þτρp−τσ1−���τσp

β hð3Þnð21Þpi: ð81Þ

We of course retrieve the previously obtained constraints as
particular cases of this general identity.

VII. Z3-SYMMETRY CONSTRAINTS

Using Eqs. (36)–(38) and Eqs. (43)–(44), we find again
that the neutral and charged sectors decouple under the
adjoint action of Uc. In the neutral sector, the trans-
formation corresponds to a rotation by an angle 2π=3,
whereas in the charged sector, we find

Uct�α12U†
c ¼ e∓i2πτβt�α23 ;

Uct�α23U†
c ¼ t�α31 ;

Uct�α31U†
c ¼ e�i2πτβt�α12 : ð82Þ

In terms of the gauge field, the rotation by an angle 2π=3 in
the neutral sector gives

δAσ
μ → ei

2π
3
σδAσ

μ; ð83Þ

while in the charged sector, we have

δA�α12
μ → e�i2π

τμ
β δA�α31

μ ;

δA�α23
μ → e∓i2π

τμ
β δA�α12

μ ;

δA�α31
μ → δA�α23

μ ; ð84Þ

which is a permutation 12 → 31 → 23 → 12 with appro-
priate phase factors. Let us now analyze the consequences
of this symmetry on the correlation functions.

A. Some examples

1. Neutral sector

If we consider correlation functions that are purely in the
neutral sector, the constraint (18) takes the form

hAσ1
μ1 � � �Aσn

μni ¼ ei
2π
3
ðσ1þ���þσnÞhAσ1

μ1 � � �Aσn
μni: ð85Þ

Thus, correlation functions such that σ1 þ � � � þ σn ∉ 3Z
need to vanish if the center symmetry is not broken.

2. Two-point function

For the two-point function, without loss of generality,18

we can consider hAþ
μ Aþ

ν i and then

0 ¼ hAþ
μ Aþ

ν i
¼ hA3

μA3
νi − hA8

μA8
νi þ i½hA3

μA8
νi þ hA8

μA3
νi�: ð86Þ

Taking the real and imaginary parts of this identity, we find
that both

hA3
μA3

νi − hA8
μA8

νi ¼ 0 ð87Þ

and

hA3
μA8

νi þ hA8
μA3

νi ¼ 0; ð88Þ

if center symmetry is not broken.
In fact, the second identity is always fulfilled due to the

constraints from charge conjugation invariance; see Sec. V.
On the other hand, the first combination has no reason to
remain 0 if center symmetry is broken. One could invoke
color rotation invariance, but the fact that the gauge choice
introduces a preferred color direction along λ3=2 prevents

18Indeed, hA−
μA−

ν i is nothing but the complex conjugate of
hAþ

μ Aþ
ν i.
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us from doing so. We deduce that this second combination
can be used as an (infinite collection of) order parameter(s)
for center symmetry. We have tested this hypothesis in
Ref. [35] for the case of the chromoelectric component of
the propagator in the zero-frequency limit. We now see that
this should apply to the chromomagnetic component as
well and for any value of the external momentum. This will
be studied in a future work.
In the charged sector, we find

hAα12
μ A−α12

ν i ¼ ei2π
τμ−τν

β hAα31
μ A−α31

ν i
¼ ei2π

τμ−τν
β hAα23

μ A−α23
ν i; ð89Þ

that is

Gα12ð−α12Þ
μν ðx − yÞ ¼ ei2π

τx−τy
β Gα23ð−α23Þ

μν ðx − yÞ
¼ ei2π

τx−τy
β Gα31ð−α31Þ

μν ðx − yÞ: ð90Þ

In Fourier space, this means that Gα12ð−α12Þ
μν ðQÞ is related

to Gα23ð−α23Þ
μν ðQÞ and Gα31ð−α31Þ

μν ðQÞ by a mere shift of the
external frequency by 2πT. With our convention ∂μ→−iQμ

for the Fourier transform, this gives

Gα12ð−α12Þ
μν ðQÞ ¼ Gα23ð−α23Þ

μν ðQþ 2πTNÞ
¼ Gα31ð−α31Þ

μν ðQþ 2πTNÞ; ð91Þ

with N ¼ ð1; 0⃗Þ. Any violation of these identities signals a
breaking of center symmetry. On the other hand, the fact

that Gα23ð−α23Þ
μν and Gα31ð−α31Þ

μν agree with each other is a
consequence of charge conjugation invariance, as we have
seen in Sec. V.

3. Three-point function

Consider first the case where all the external legs are
in the neutral sector. Without loss of generality, we can
consider hAþ

μ Aþ
ν A−

ρ i as the other cases are obtained from
permutations or complex conjugation. We then find

0 ¼ hAþ
μ Aþ

ν A−
ρ i

¼ hA3
μA3

νA3
ρi − hA8

μA8
νA3

ρi þ hA3
μA8

νA8
ρi þ hA8

μA3
νA8

ρi
þ i½hA8

μA8
νA8

ρi − hA3
μA3

νA8
ρi þ hA8

μA3
νA3

ρi þ hA3
μA8

νA3
ρi�:
ð92Þ

Taking the real and imaginary parts this gives

0¼hA3
μA3

νA3
ρi−hA8

μA8
νA3

ρiþhA3
μA8

νA8
ρiþhA8

μA3
νA8

ρi ð93Þ

and

0¼hA8
μA8

νA8
ρi−hA3

μA3
νA8

ρiþhA8
μA3

νA3
ρiþhA3

μA8
νA3

ρi: ð94Þ

Writing similar formulas for permutations of ðx; y; zÞ and
ðμ; ν; ρÞ, we find that these relations are equivalent to

hA3
μA3

νA3
ρi ¼ −hA8

μA8
νA3

ρi
¼ −hA8

μA3
νA8

ρi
¼ −hA3

μA8
νA8

ρi; ð95Þ

and

hA8
μA8

νA8
ρi ¼ −hA3

μA3
νA8

ρi
¼ −hA3

μA8
νA3

ρi
¼ −hA8

μA3
νA3

ρi: ð96Þ

A priori each of these identities could be used as a probe for
the deconfinement transition. However, the second set is
always (trivially) fulfilled for our particular choice of
background due to charge conjugation invariance.
Consider now a three-point function involving charged

modes. Let us first consider the correlators hAα
μA−α

ν A3
ρi and

hAα
μA−α

ν A8
ρi which we combine into hAα

μA−α
ν Aσ

ρi. We find

hAα12
μ A−α12

ν Aσ
ρi ¼ ei2π

τμ−τν
β þi2π

3
σhAα31

μ A−α31
ν Aσ

ρi; ð97Þ

hAα23
μ A−α23

ν Aσ
ρi ¼ e−i2π

τμ−τν
β þi2π

3
σhAα12

μ A−α12
ν Aσ

ρi; ð98Þ

hAα31
μ A−α31

ν Aσ
ρi ¼ eþi2π

3
σhAα23

μ A−α23
ν Aσ

ρi; ð99Þ

which can be interpreted as two independent equations
giving two correlation functions in terms of the third one.
Equivalently, this rewrites as

hAα23
μ A−α23

ν A3
ρi ¼ −

1

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A3

ρi

−
ffiffiffi
3

p

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A8

ρi; ð100Þ

hAα31
μ A−α31

ν A3
ρi ¼ −

1

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A3

ρi

þ
ffiffiffi
3

p

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A8

ρi; ð101Þ

hAα23
μ A−α23

ν A8
ρi ¼ −

1

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A8

ρi

þ
ffiffiffi
3

p

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A3

ρi; ð102Þ

and

hAα31
μ A−α31

ν A8
ρi ¼ −

1

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A8

ρi

−
ffiffiffi
3

p

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A3

ρi: ð103Þ
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Upon using charge conjugation invariance, the only non-
trivial information that arises from center symmetry is

hAα23
μ A−α23

ν A3
ρi ¼ −

1

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A3

ρi ð104Þ

and

hAα23
μ A−α23

ν A8
ρi ¼

ffiffiffi
3

p

2
e−i2π

τμ−τν
β hAα12

μ A−α12
ν A3

ρi; ð105Þ

since the other correlators are fixed through Eqs. (59)–(61).
Finally we find the constraint

hAα12
μ Aα23

ν Aα31
ρ i ¼ ei2π

τμ−τν
β hAα31

μ Aα12
ν Aα23

ρ i: ð106Þ

B. General case

The argument in the previous section is in fact more
general.
The symmetry will always connect the correlators

hðþÞmnð12Þpqð23Þklð31Þiji and hðþÞmnð23Þpqð31Þkl ×
ð12Þiji. More precisely, we find

hðþÞmnð23Þpqð31Þklð12Þiji
¼ ei2π

τiþτq−τj−τp
β þi2π

3
ðm−nÞσhðþÞmnð12Þpqð23Þklð31Þiji;

ð107Þ

where τp (respectively τq) is the sum of the time arguments
associated to the field along the color α12 (resp. ð−α12Þ)
direction, τk (resp. τl) is the sum of the time arguments
associated to the field along the color α23 (resp. ð−α23Þ)
direction, and τi (resp. τj) is the sum of the time arguments
associated to the field along the color α31 (resp. ð−α31Þ)
direction.

VIII. SU(N) CASE

Let us now see how the previous considerations extend
to the SU(N) case.

A. Weyl chambers

Recall that the Weyl chambers appear as the result of the
tiling of the Cartan subalgebra by the network of hyper-
planes orthogonal to the roots and displaced from the origin
by any multiple of 2π times the corresponding root; see
Sec. IV B. To construct the Weyl chambers more explicitly,
one can proceed as follows.
First, one selects N − 1 out of the N defining weights.

We denote them as ρ1;…; ρN−1.
19 It is easily seen that they

form a basis [48]. Next, denoting the remaining weight as
ρN ¼ −ρ1 − � � � − ρN−1, we particularize N − 1 roots as

αj ≡ ρj − ρN; j ¼ 1;…; N − 1; ð108Þ

which allow one to rewrite any other root as a linear
combination with integer coefficients:

αjk ¼ ρj − ρk

¼ ρj − ρN þ ρN − ρk ¼ αj − αk; ð109Þ

with j; k ≠ N. The reason for particularizing the roots αj is
that it is convenient to first determine the regions delimited
by the hyperplanes orthogonal to the αj and then to
determine how these regions are further subdivided by
the hyperplanes orthogonal to the other roots.
Let us now take a point r ¼ rjtj in the Cartan sub-

algebra. It lies in the hyperplane orthogonal to αj displaced
from the origin by 2παjn if and only if r · αj ¼ 2πn (recall
that the roots are unit length vectors). To make the most of
this condition, it is convenient to decompose r along the
basis formed by the vectors 4πρ1;…; 4πρN−1:

r ¼ 4π
XN−1

k¼1

xkρk: ð110Þ

Then,

r · αj ¼ 4π
XN−1

k¼1

xkρk · αj

¼ 4π
XN−1

k¼1

xkρk · ðρj − ρNÞ ¼ 2πxj; ð111Þ

and, thus, the considered hyperplane corresponds to the
equation xj ¼ n. This, in turn, shows that the regions
delimited by the hyperplanes associated to the αj are the
regions delimited by the lattice generated by vectors
4πρ1;…; 4πρN−1. In what follows, it will be sufficient to
consider the parallelepiped defined by these vectors,
corresponding to xk ∈ ½0; 1� in Eq. (110).
Let us now see how the remaining hyperplanes further

subdivide this parallelepiped. Consider a hyperplane
orthogonal to αjk and displaced by a multiple n of 2π
times this root. That r belongs to that hyperplane means
again that r · αjk ¼ 2πn. However, we now have

r · αjk ¼ 2πðxj − xkÞ; ð112Þ

and then, the equation of the hyperplane is xj − xk ¼ n.
Since xj; xk ∈ ½0; 1�, the only hyperplanes that split the
parallelepiped into nontrivial regions correspond to n ¼ 0,
that is xj ¼ xk. We deduce that one possible Weyl chamber

19This labeling does not need to be the particular one chosen in
Eq. (A2).
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in the considered parallelepiped is the one defined by the
equations 0 < x1 < x2 < � � � < xN−1 < 1. The other Weyl
chambers in that same parallelepiped correspond to
0 < xσð1Þ < xσð2Þ < � � � < xσðN−1Þ < 1 where σ is any per-
mutation of 1;…; N − 1. This also implies that the paral-
lelepiped is subdivided into ðN − 1Þ! Weyl chambers.
These Weyl chambers can be given yet another useful

characterization in terms of the defining weights. Let us
consider for instance the Weyl chamber 0 < x1 <
x2 < � � � < xN−1 < 1, and let us define the variables
y1 ≡ x1, y2 ≡ x2 − x1, …, yN−1 ≡ xN−1 − xN−2 and
yN ≡ 1 − xN−1. It is easily seen that when the xj span
the consideredWeyl chamber, the only constraints on the yk
are yk ∈ ½0; 1� and P

N
k¼1 yk ¼ 1. Moreover, one can easily

retrieve the xj from the yj as xk ¼ y1 þ � � � þ yk. We can
then write

XN−1

k¼1

xkρk ¼
XN−1

k¼1

ðy1 þ � � � þ ykÞρk

¼
XN−1

k¼1

ykðρN−1 þ � � � þ ρkÞ: ð113Þ

It follows that the considered Weyl chamber is the convex
hull of the points ρN−1, ρN−1 þ ρN−2, …, ρN−1 þ � � � þ ρ1
and 0. Since we could have labeled the weights as we
wanted, the general rule is that, for any choice ρ1;…; ρN−1
of N − 1 weights, the convex hull of η1 ≡ ρ1, η2 ≡ ρ1 þ ρ2,
… ηN−1 ≡ ρ1 þ � � � þ ρN−1 and 0 ¼ ρ1 þ � � � þ ρN ≡ ηN
defines one Weyl chamber attached to the origin. The
other Weyl chambers attached to the origin correspond to
the convex hull of η1 ≡ ρσð1Þ, η2 ≡ ρσð1Þ þ ρσð2Þ,… ηN−1 ≡
ρσð1Þ þ � � � þ ρσðN−1Þ and 0, with σ being any permutation
of 1;…; N − 1.

B. Confining configurations

The previous characterization of the Weyl chambers
attached to the origin is quite useful. In particular, it can be
used to find symmetry invariant points within the Weyl
chamber. Let us first decompose an arbitrary element of the
Cartan subalgebra along the basis 4πη1;…; 4πηN−1:

r ¼ 4π
XN−1

k¼1

zkηk: ð114Þ

Since ηN ¼ 0, we can extend this decomposition into a
decomposition along an affine basis

r ¼ 4π
XN
k¼1

zkηk; ð115Þ

with z1 þ � � � þ zN ¼ 1. The considered Weyl chamber
corresponds to the extra constraints zk ∈ ½0; 1�. Its vertices

4πηk correspond to those points with one of the coordinates
zk equal to 1 and the rest equal to 0.
Let us now associate to each value of r, the “classical”

Polyakov loop:

lðrÞ ¼ 1

N
treir

jtj ¼ 1

N

XN
h¼1

eir·ρh : ð116Þ

Its value at the vertices of the Weyl chamber is

lð4πηkÞ ¼
1

N

XN
h¼1

ei4πηk·ρh : ð117Þ

Now

ηk · ρ ¼ ðρ1 þ � � � þ ρkÞ · ρh
¼ Θðk − hÞ

2
−

k
2N

; ð118Þ

and thus

lð4πηkÞ ¼
1

N

XN
h¼1

e−i
2π
Nk ¼ e−i

2π
Nk; ð119Þ

where we have used that the term with the Θ function in
Eq. (118) does not contribute to the exponential in
Eq. (116). We have thus found that the value of the
classical Polyakov loop at the vertex 4πηk is nothing but
the kth center element of SU(N).
Consider now a center transformation with associated

center element ei2π=N . Since the Polyakov loop is multi-
plied by this center element, we deduce that the vertices
of the Weyl chamber are transformed as 4πη1 → 4πη2,
4πη2 → 4πη3, …, 4πηN−1 → 4πηN ¼ 0 and 4πηN ¼
0 → 4πη1. From the point of view of a passive trans-
formation, this means that the coordinates zk in Eq. (115)
are transformed as z1 → zN , z2 → z1, …, zN → zN−1.
Then, the only invariant points are those such that
z1 ¼ z2 ¼ … ¼ zN and, because z1 þ � � � þ zN ¼ 1, this
common coordinate needs to be 1=N. It follows that the
center-symmetric point in the considered Weyl chamber is

rc ¼
4π

N

XN
k¼1

ηk

¼ 4π

N
ðNρ1 þ ðN − 1Þρ2 þ � � � þ ρNÞ

¼ 4π

N
ððN − 1Þρ1 þ ðN − 2Þρ2 þ � � � þ ρN−1Þ; ð120Þ

where we have used that ρ1 þ � � � þ ρN ¼ 0.
We can similarly consider the case of charge conjugation

which transforms the Polyakov loop l associated to a
particle into the Polyakov loop l� of the corresponding
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antiparticle. We deduce that, under charge conjugation, a
vertex 4πηk of associated Polyakov loop e−i2πk=N is trans-
formed into the vertex of associated Polyakov loop
ei2πk=N ¼ e−i2πðN−kÞ=N , that is 4πηN−k. From the point of
view of a passive transformation, this means that the
coordinates zk in Eq. (115) are transformed as
zk → zN−k. We then need to distinguish two cases depend-
ing on whether or not there exists a k such that k ¼ N − k,
that is depending on whether N is even or odd.
If N is odd, all coordinates are transformed into different

ones: z1 ↔ zN−1, z2 ↔ zN−2, … zðN−1Þ=2 ↔ zðNþ1Þ=2. The
charge-invariant states correspond to those elements (115)
such that z1 ¼ zN−1, z2 ¼ zN−2, …, zðN−1Þ=2 ¼ zðNþ1Þ=2.
This represents an affine space of dimension
N − 1 − ðN − 1Þ=2 ¼ ðN − 1Þ=2. In the SU(3), case this
is a line, as we have recalled above.
IfN is even, all coordinates are transformed into different

ones, except for zN=2 which is mapped into itself:
z1↔ zN−1, z2↔ zN−2, … zN=2−1↔ zN=2þ1, zN=2 ↔ zN=2.
The charge-invariant states correspond to those elements
(115) such that z1 ¼ zN−1, z2 ¼ zN−2,…, zN=2−1 ¼ zN=2þ1,
the value of zN=2 being unconstrained. This represents an
affine space of dimension N − 1 − ðN=2 − 1Þ ¼ N=2. In
the SU(2) case, this is again a line, corresponding to the
whole Weyl chamber as we have already seen above. In the
SU(4) case, this would correspond to a plane; see for
instance [36].

C. Symmetry constraints

The transformations of the Weyl chamber into itself
associated to center transformations can be seen as result-
ing from the application of a winding transformation
V−ρðτÞ that translates the Weyl chamber into a different
one by a vector −4πρ, followed by a sequence of Weyl
transformations which correspond to reflections with
respect to the facets of the Weyl chamber, in order to
bring the Weyl chamber back to its original position.20

In order to find the appropriate sequence of reflections,
let us consider the Weyl chamber defined by the vertices

ρ1; ρ1 þ ρ2;…; ρ1 þ ρ2 þ � � � þ ρN ¼ 0: ð121Þ

Under the winding transformation Vρ1ðτÞ it becomes the
Weyl chamber of vertices

ρ2; ρ2 þ ρ3;…; ρ2 þ ρ3 þ � � � þ ρN þ ρ1 ¼ 0: ð122Þ

To continue, let us first remark that the action of the
reflection with respect to the hyperplane orthogonal to a

given root αjk on the collections of weights ρh is only
to flip ρj and ρk. This can be easily checked using the
property (A5).21 It follows that, by successively applying
Wα12 ;Wα23 ;…WαðN−1ÞN , one transforms the Weyl chamber
(121) into theWeyl chamber (122). We have thus found that

Uc ¼ WαðN−1ÞN � � �Wα23Wα12V−ρ1ðτÞ: ð123Þ

This can be rewritten in an alternative form using the
crossing rules given in Appendix C.3 and by noticing that
the action of the reflection with respect to the hyperplane
orthogonal to a given root αjk on the collections of roots αjl
is to flip αjk and αkj, αjl and αkl, as well as αhk and αhj.
This can again be easily checked using the property (A5).
We then find

Uc ¼ Wα12Wα13 � � �WαðN−1ÞNV−ρ1ðτÞ: ð124Þ

In this form this is a generalization of Eqs. (45) and (46).
In the SU(3) case, the comparison actually requires
exchanging the labels 2 and 3 because, with the particular
labeling (A2), the Weyl chamber that we considered in the
main text is ρ1, ρ1 þ ρ3, ρ1 þ ρ3 þ ρ2. There are many
other forms ofUc obtained by exchanging some of theW’s.
In what follows, we denote the general form as
Uc ¼ WαN−1

� � �Wα1V−ρðτÞ.
The combination of the above Weyl transformations

results in an isometry of the Weyl chamber into itself,
centered around the confining configuration of the Weyl
chamber. We note that since V−ρðτÞ acts like a translation
for backgrounds of the form (21), the combined action of
the Weyl transformations only corresponds to the same
isometry centered about the origin of the algebra. We
denote this isometry by

I ¼ RαN−1
� � �Rα1 : ð125Þ

We now would like to analyze the constraints of the
symmetry Uc on the correlation functions.
Before doing so, it will be convenient to rewrite the

action (36) and (37) of aWeyl transformation on the various
generators of the algebra in a more compact form. To this
purpose, recall that another notation for tj is t0

ðjÞ
where the

use of 0 as a label emphasizes the fact that the generators tj

are vanishing-charge states, while the label (j) is used to
distinguish these various degenerate states. Now, 0ðjÞ

20The same considerations apply to charge conjugation upon
replacing the winding transformation by Aμ → −At

μ and adapting
the sequence of Weyl transformations.

21Using this remark, one can also easily deduce that the facets
of the considered Weyl chamber lie either within the hyperplanes
orthogonal to αkðkþ1Þ ¼ ρk − ρkþ1, with k ¼ 1;…; N − 1, that go
through the origin, or within the hyperplane orthogonal to αN1

displaced by 2παN1 with respect to the origin.
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should be understood as the zero vector associated with the
direction j in the commuting subalgebra. We can more
generally associate a zero to an arbitrary direction uj.
To this purpose, we define t0

ðuÞ ≡ ujtj. Then, we notice that

Wαt0
ðuÞ
W†

α ¼ ujtj − 2αktkαjuj

¼ ðuj − 2ðu · αÞαjÞtj ¼ t0
ðu−2ðu·αÞαÞ

: ð126Þ

We can now combine Eqs. (36) and (37) into the single
formula

WαtκW
†
α ¼ tRα·κ; ð127Þ

where Rα · κ ≡ κ − 2ðκ · αÞα denotes the geometrical
reflection of the vector κ with respect to an hyperplane
orthogonal to α. In particular, under this reflection, a zero
0ðuÞ is mapped onto another zero 0ðvÞ. The nuance,
however, is that it is not the same zero since v ¼ Rα · u.
Similarly, we can define the action of the isometry (125) on
any type of label κ, denoted I · κ in what follows. It is
obtained by repeated action of the Rαj , and we note in

particular that I · 0ðuÞ ≡ 0ðI ·uÞ.
Returning to the symmetry constraints associated to the

transformation Uc, let us evaluate UctκU
†
c. Upon repeated

use of Eq. (127), it is found that

UctκU
†
c ¼ e−i4π

τ
βρ·κtI ·κ: ð128Þ

In terms of the gauge field, this corresponds to the
transformation

δAκ
μ → e−i4π

τ
βρ·ðI−1·κÞδAI−1·κ

μ : ð129Þ

Since (129) is a symmetry within the center-symmetric
Landau gauge, we obtain the following constraint on the
(connected) correlation functions in this gauge:

hAκ1
μ1 � ��Aκn

μni¼e−i4π
P

n
i¼1

τi
β ρ·ðI−1·κiÞhAI−1·κ1

μ1 � ��AI−1·κn
μn i: ð130Þ

This formula compares well with those obtained in the
SU(2) and SU(3) case. We stress that

A0ðI−1 ·uÞ
μ ¼ I−1

jk u
kA0ðjÞ

μ ¼ ukIkjA0ðjÞ
μ ; ð131Þ

and thus, while the charged labels transform according to
I−1, the neutral components of the field transform accord-
ing to I . This is also what we observe in the above
examples; see for instance Eqs. (97)–(99).

IX. CONCLUSIONS

We have performed a systematic study of the center-
symmetry constraints on the correlation functions

computed within the center-symmetric Landau gauge, a
class of background Landau gauges where the background
is chosen to be center symmetric in a sense that we have
precisely defined. We have restricted our analysis to
backgrounds that comply with other symmetries such as
charge conjugation and invariance under particular color
rotations, whose consequences we have also thoroughly
investigated. As a result of our analysis, we have identified
new signatures for the deconfinement transition from the
correlation functions in those gauges, extending the results
obtained in Ref. [35].
The analysis made in that reference was restricted to

the (color) neutral, chromoelectric sector because this is
where the transition usually occurs. In the SU(2) case,
we found a sharp signature of the transition signaled
by a divergence of the zero-momentum propagator.
However, this does not really qualify as an order
parameter since there exists no phase over which this
quantity is constant. The present analysis shows that a
more standard SU(2) order parameter can be constructed
from the (color) charged components of the propagator,
both in the chromoelectric and chromomagnetic sectors;
see Eq. (76). Other order parameters can be constructed
from the three-point function, both in the purely neutral
sector (77), or in a sector mixing neutral and charged
components (79). This can also be generalized to higher
order correlators (81).
Similar conclusions hold for the SU(3) gauge group.

In that case, we had already identified an order parameter
from the chromoelectric propagator in the neutral sector.
The present analysis extends this conclusion to the chro-
momagnetic sector [see Eq. (87)], while revealing various
other order parameters from the charged sector; see
Eq. (91). The three-point function leads to four different
order parameters, Eqs. (95), (104), (105) and (106). Finally,
we have extended our analysis to the SU(N) case.
All these results confirm that the center-symmetric

Landau gauge put forward in Ref. [33] is a good gauge
for the study of the confinement-deconfinement transition
within functional approaches. Indeed, in this gauge, the
transition is encoded directly within the building blocks
that sustain these approaches, that is the correlation
functions for the primary fields, and does not require the
computation of more involved order parameters such as the
Polyakov loop.
In a work in preparation, we shall confront these

expectations to one-loop calculations within the Curci-
Ferrari model [49], a model accounting for some of the
low energy aspects of the continuum gauge-fixing pro-
cedure in (background) Landau gauges [50]. Similar
calculations for the gluon three-point function are also
in progress. Finally, it would be interesting to see whether
similar ideas extend to the lattice implementation of
center-symmetric gauges. Work in this direction is also
in progress.
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APPENDIX A: ROOTS AND WEIGHTS OF SU(N)

1. Weights

As recalled in the main text, the (defining) weights occur
when diagonalizing the defining action of the commuting
generators tj of the algebra:

tjjρi ¼ ρjjρi: ðA1Þ

In the SU(N) case, there are N weights ρk of components

ρjk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jðjþ 1Þp ×

8>><
>>:

1; if k ≤ j

−j; if k ¼ jþ 1

0; if k > jþ 1

; ðA2Þ

where 1 ≤ j ≤ N − 1. It follows in particular that

ρ2k ≡ ρk · ρk ¼
1

2

�
1 −

1

N

�
; ðA3Þ

for any k, and

ρk · ρk0 ¼ −
1

2N
; ðA4Þ

for any k and k0 ≠ k0. In other words

ρk · ρk0 ¼
δkk0

2
−

1

2N
: ðA5Þ

From these properties, one can show that any strict subset
of defining weights is a linearly independent set. The
complete set is not a linearly independent set because it is
constrained by the relation

XN
k¼1

ρk ¼ 0; ðA6Þ

which is in fact the only linear constraint among the
defining weights.

2. Roots

The roots occur when diagonalizing the adjoint action of
the commuting generators tj of the algebra

½tj; tα� ¼ αjtα; ðA7Þ

to be added to the relations ½tj; tj0 � ¼ 0. To each root α is
associated another root −α. In fact, quite generally, the tα’s
can be chosen such that ðtαÞ† ¼ t−α and ½tα; t−α� ¼ αjtj,
and of course ½tα; tα� ¼ 0. For β ≠ α and β ≠ −α, we have
instead ½tα; tβ� ¼ Nαβtαþβ, where Nαβ ¼ 0 if αþ β is not
a root.

The values of Nαβ when αþ β is a root depend on the
group. For SU(N), Nαβ ¼ σαβ=

ffiffiffi
2

p
, where the sign σαβ is

determined in the next subsection.

3. Relation between roots and weights

The roots are not independent of the weights. In fact,
they correspond to all possible differences of distinct
weights. This means that any root can be written as
α ¼ ρα − ρ̄α, and it is not difficult to argue that this
decomposition is unique. In particular, given that −α is
a root if α is a root, we must have ρ̄α ¼ ρ−α.
Also, given two roots α and β ≠ �α, the only possibility

for αþ β to be a root is that ρβ ¼ ρ̄α or ρα ¼ ρ̄β. This
discussion is actually connected with the value of σαβ

alluded to in the previous subsection since in the first case
σαβ ¼ þ1 whereas in the second case it equals σαβ ¼ −1. It
will be convenient to set σαβ equal to 0 in any other case.
It can be checked that this is summarized in the following
expression:

σαβ ¼ 2ðρα · ρ̄β − ρ̄α · ρβÞ; ðA8Þ

from which we can read off the following identities:

σαβ ¼ −σβα;

σð−αÞð−βÞ ¼ −σαβ;

σð−αÞðαþβÞ ¼ σαβ: ðA9Þ

From the relation between weights and roots, one can
also deduce the properties (33)–(34). Another important
consequence which we shall exploit later on is that, for
SU(N), αþ nβ cannot be a root if jnj > 1.

APPENDIX B: PRELIMINARY CALCULATIONS

Take a root α and a complex number z and consider
the transformation

UαðzÞ≡ eiðztαþz�t−αÞ: ðB1Þ

By construction UαðzÞ ¼ U−αðz�Þ. Moreover, using that
ðtαÞ† ¼ t−α, we find U†

αðzÞ ¼ Uαð−zÞ ¼ U−αð−z�Þ. Let us
now investigate how UαðzÞ acts on the algebra.

1. Action on the Cartan subalgebra

Consider first the action of UαðzÞ on a generator tj

of the Cartan subalgebra. Using eXYe−X ¼ e½X;�Y, we
can write

UαðzÞtjU†
αðzÞ ¼ e½iðztαþz�t−αÞ;�tj

¼
X∞
n¼0

in

n!
½ztα þ z�t−α; �ntj; ðB2Þ
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where ½X; �nY stands for the nested commutator
½X; ½X; ½X;…; ½X; Y���� of order n. The first commutators
give ½ztα þ z�t−α; �0tj ¼ tj as well as

½ztα þ z�t−α; �1tj ¼ αjðz�t−α − ztαÞ; ðB3Þ

½ztα þ z�t−α; �2tj ¼ 2jzj2αjðα · tÞ; ðB4Þ

where we introduced the notation α · t≡ αktk. Thus, aside
from the n ¼ 0 term in Eq. (B2), which equals tj, the series
oscillates between the two operators Xα ≡ α · t and
YαðzÞ≡ z�t−α − ztα. It is then convenient to rewrite the
above commutators as (we contract them by αj and use
that α2 ¼ 1)

½ztα þ z�t−α; Xα� ¼ YαðzÞ; ðB5Þ

½ztα þ z�t−α; YαðzÞ� ¼ 2jzj2Xα; ðB6Þ

from which we deduce that

½ztα þ z�t−α; �2pþ1YαðzÞ ¼ ð2jzj2Þpþ1Xα; ðB7Þ

½ztα þ z�t−α; �2pYαðzÞ ¼ ð2jzj2ÞpYαðzÞ; ðB8Þ

for any p ≥ 0, or equivalently

½ztα þ z�t−α; �2pXα ¼ ð2jzj2ÞpXα; ðB9Þ

½ztα þ z�t−α; �2pþ1Xα ¼ ð2jzj2ÞpYαðzÞ; ðB10Þ

for p ≥ 0. Using Eqs. (B7)–(B8), we find that

UαðzÞtjU†
αðzÞ ¼ tj þ

X∞
n¼1

in

n!
½ztα þ z�t−α; �ntj ¼ tj þ αj

X∞
n¼1

in

n!
½ztα þ z�t−α; �n−1YαðzÞ

¼ tj þ αj
X∞
p¼0

i2pþ1

ð2pþ 1Þ! ½zt
α þ z�t−α; �2pYαðzÞ þ αj

X∞
p¼0

i2pþ2

ð2pþ 2Þ! ½zt
α þ z�t−α; �2pþ1YαðzÞ

¼ tj þ αjYαðzÞ
X∞
p¼0

i2pþ1

ð2pþ 1Þ! ð2jzj
2Þp þ αjXα

X∞
p¼0

i2pþ2

ð2pþ 2Þ! ð2jzj
2Þpþ1: ðB11Þ

After resumming the series, we find eventually

UαðzÞtjU†
αðzÞ ¼ tj þ αjðcosð

ffiffiffi
2

p
jzjÞ − 1ÞXα þ iαj

sinð ffiffiffi
2

p jzjÞffiffiffi
2

p jzj YαðzÞ: ðB12Þ

2. Action outside the Cartan subalgebra

We now would like to study the action of UαðzÞ outside
the Cartan subalgebra, that is compute

UαðzÞtβU†
αðzÞ ¼

X∞
n¼0

in

n!
½ztα þ z�t−α; �ntβ: ðB13Þ

We need to consider various cases.
a. The simplest case is when β is equal neither to α nor to

−α, and neither αþ β nor −αþ β are roots. Then, all

nested commutators with n ≥ 1 vanish, and we get

UαðzÞtβU†
αðzÞ ¼ tβ: ðB14Þ

b. Next, we consider the case where β ¼ α or β ¼ −α.
Consider for instance β ¼ α. Then

½ztα þ z�t−α; �1tα ¼ −z�Xα: ðB15Þ

Using Eqs. (B9)–(B10), we then arrive at

UαðzÞtαU†
αðzÞ ¼ tα þ

X∞
n¼1

in

n!
½ztα þ z�t−α; �ntα ¼ tα − z�

X∞
n¼1

in

n!
½ztα þ z�t−α; �n−1Xα

¼ tα − z�
X∞
p¼0

i2pþ1

ð2pþ 1Þ! ½zt
α þ z�t−α; �2pXα − z�

X∞
p¼0

i2pþ2

ð2pþ 2Þ! ½zt
α þ z�t−α; �2pþ1Xα

¼ tα − z�Xα

X∞
p¼0

i2pþ1

ð2pþ 1Þ! ð2jzj
2Þp − z�YαðzÞ

X∞
p¼0

i2pþ2

ð2pþ 2Þ! ð2jzj
2Þp: ðB16Þ
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After resumming the series, we arrive eventually at

UαðzÞtαU†
αðzÞ ¼ tα −

1

2
ðcosðjzj

ffiffiffi
2

p
Þ − 1Þ z�

jzj2 YαðzÞ

− iz�
sinðjzj ffiffiffi

2
p Þ

jzj ffiffiffi
2

p Xα: ðB17Þ

To obtain the action on t−α, we use UαðzÞt−αU†
αðzÞ ¼

U−αðz�Þt−αU†
αðz�Þ, and we arrive at

UαðzÞt−αU†
αðzÞ ¼ t−α þ 1

2
ðcosðjzj

ffiffiffi
2

p
Þ − 1Þ z

jzj2 YαðzÞ

þ iz
sinðjzj ffiffiffi

2
p Þ

jzj ffiffiffi
2

p Xα; ðB18Þ

where we have used that Xα¼−X−α and YαðzÞ¼−Y−αðz�Þ.
c. Finally, when β is equal neither to α nor to −α but

αþ β is a root, we have

½ztα þ z�t−α; �1tβ ¼ σαβffiffiffi
2

p ztαþβ; ðB19Þ

½ztα þ z�t−α; �2tβ ¼ σαβσð−αÞðαþβÞ

2
zz�tβ ¼ jzj2 t

β

2
; ðB20Þ

where we have used that σð−αÞðαþβÞ ¼ σαβ. More generally

½ztα þ z�t−α; �2pþ1tβ ¼ σαβ
zjzj2p

ð ffiffiffi
2

p Þ2pþ1
tαþβ; ðB21Þ

½ztα þ z�t−α; �2ptβ ¼ jzj2p
ð ffiffiffi

2
p Þ2p t

β: ðB22Þ

Thus

UαðzÞtβU†
αðzÞ¼

X∞
p¼0

i2p

ð2pÞ! ½zt
αþz�t−α;�2ptβ

þ
X∞
p¼0

i2pþ1

ð2pþ1Þ! ½zt
αþz�t−α; �2pþ1tβ

¼
X∞
p¼0

i2p

ð2pÞ!
jzj2p

ð ffiffiffi
2

p Þ2p t
β

þσαβ
X∞
p¼0

i2pþ1

ð2pþ1Þ!
zjzj2p

ð ffiffiffi
2

p Þ2pþ1
tαþβ: ðB23Þ

After resumming the series, we eventually arrive at

UαðzÞtβU†
αðzÞ ¼ cos ðjzj=

ffiffiffi
2

p
Þtβ þ iσαβ

z
jzj sin ðjzj=

ffiffiffi
2

p
Þtαþβ;

ðB24Þ

if αþ β is a root. To obtain the corresponding formula in
the case where −αþ β is a root, we write UαðzÞtβU†

αðzÞ ¼
U−αðz�ÞtβU†

−αðz�Þ and thus

UαðzÞtβU†
αðzÞ

¼ cosðjzj=
ffiffiffi
2

p
Þtβþ iσð−αÞβ

z�

jzjsinðjzj=
ffiffiffi
2

p
Þt−αþβ: ðB25Þ

APPENDIX C: WEYL TRANSFORMATIONS

Weyl transformations correspond to particular cases
of UαðzÞ obtained with the choice jzj ¼ π=

ffiffiffi
2

p
, that is

z ¼ π=
ffiffiffi
2

p
eiθ. We shall define22

UαðθÞ≡Uα

�
πffiffiffi
2

p eiθ
�

¼ ei
πffiffi
2

p ðeiθtαþe−iθt−αÞ: ðC1Þ

By definition, we have that UαðθÞ ¼ Uαðθ þ 2πÞ and
Uαð−θÞ ¼ U−αðθÞ. Moreover U†

αðθÞ ¼ Uαðθ þ πÞ.

1. Action on the algebra

From Eq. (B12), we find that the action of UαðθÞ on the
Cartan subalgebra is

UαðθÞtjU†
αðθÞ ¼ tj − 2αjðα · tÞ; ðC2Þ

which does not depend on θ and corresponds to a reflection
symmetry with respect to a hyperplane orthogonal to α. The
action on the rest of the algebra can be read off from
Eqs. (B14), (B17), (B18), (B24) and (B25). When β is
different from α or −α and when neither αþ β nor −αþ β
are roots, we have

UαðθÞtβU†
αðθÞ ¼ tβ: ðC3Þ

When β is distinct from α or −α but αþ β is a root, then

UαðθÞtβU†
αðθÞ ¼ iσαβeiθtαþβ; ðC4Þ

whereas if −αþ β is a root

UαðθÞtβU†
αðθÞ ¼ iσð−αÞβe−iθt−αþβ: ðC5Þ

Finally,

UαðθÞtαU†
αðθÞ ¼ e−2iθt−α; ðC6Þ

and

UαðθÞt−αU†
αðθÞ ¼ e2iθtα: ðC7Þ

22There is a slight abuse of notation, but it should be harmless.
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2. Compact rewriting

Interestingly, Eqs. (C3)–(C7) can be summarized into a
single formula. First of all, owing to our choice of a
vanishing σαβ when αþ β is not a root, as well as Eqs. (38),
we can write23

UαðθÞtβU†
αðθÞ ¼ ei

π
2
ϕαβ

eiθψ
αβ
tβ−2ðβ·αÞα; ðC8Þ

where ϕαβ ¼ σαβ if αþ β is a root, ϕαβ ¼ σð−αÞβ if −αþ β
is a root, and ϕαβ ¼ 0 otherwise, and ψαβ ¼ 1 if αþ β is a
root, ψαβ ¼ −1 if −αþ β is a root, ψαα ¼ −2, ψαð−αÞ ¼ 2

and ψαβ ¼ 0 otherwise.
The three possible cases for ϕαβ can be summarized as

ϕαβ ¼ σαβ þ σð−αÞβ, and using Eq. (A8), this becomes

ϕαβ ¼ −2ðρα þ ρ̄αÞ · β: ðC9Þ

Similarly, it can be checked that

ψαβ ¼ −2α · β ¼ −2ðρα − ρ̄αÞ · β: ðC10Þ

This implies that Eq. (C8) can be rewritten as

WαtβW
†
α ¼ tβ−2ðβ·αÞα; ðC11Þ

upon defining

Wα ≡UαðθÞeiπðρ
j
αþρ̄jαÞtjþi2θðρjα−ρ̄jαÞtj ; ðC12Þ

while the action on the tj’s remains the same as before:

WαtjW
†
α ¼ tj − 2αjðα · tÞ: ðC13Þ

We stress that, so defined,Wα does not depend on θ. This is
because, from its action on the algebra, one can reconstruct
Wα modulo an element of the center of the group. But the
action on the algebra does not depend on θ and neither can
the center element since the center group is discrete. From
the θ independence of Wα and Eq. (C12), we also deduce

that UαðθÞei2θαjtj does not depend on θ, or in other words,
that the θ dependence of UαðθÞ is known explicitly:

UαðθÞ ¼ Uαðθ ¼ 0Þe−i2θαjtj : ðC14Þ

Another way of writing the same result is

Uαðθ1Þei2θ1αjtj ¼ Uαðθ2Þei2θ2αjtj ðC15Þ

or, using U†
αðθÞ ¼ Uαðθ − πÞ,

Uαðθ1ÞUαðθ2Þ ¼ ei2ðπþθ1−θ2Þαjtj : ðC16Þ

In particular

U2
αðθÞ ¼ ei2πα

jtj ; ðC17Þ

which is different from 1 in general. On the other hand, it
can be shown that U4

αðθÞ ¼ ei4πα
jtj ¼ 1. Indeed, using a

basis jρi that diagonalizes the defining action of the tj’s,
see Eq. (30), we have

ei4πα
jtj jρi ¼ ei4πα·ρjρi; ðC18Þ

with α · ρ∈ f−1=2; 0; 1=2g; see Eq. (33).

3. Crossing rules

Now that we know that the Wα are a convenient way to
define the Weyl transformations let us determine some
useful “crossing rules” for the latter. To this purpose, let us
evaluate WαWβW

†
α. We have

WαWβW
†
α ¼ Wαe

i πffiffi
2

p ðtβþt−βÞeiπðρ
j
βþρ̄jβÞtjW†

α

¼ Wαe
i πffiffi

2
p ðtβþt−βÞW†

αWαe
iπðρjβþρ̄jβÞtjW†

α

¼ ei
πffiffi
2

p Wαðtβþt−βÞW†
αeiπðρ

j
βþρ̄jβÞWαtjW

†
α : ðC19Þ

Using Eqs. (36)–(37), this becomes

WαWβW
†
α ¼ ei

πffiffi
2

p ðtβ−2ðβ·αÞαþt−βþ2ðβ·αÞαÞeiπðρ
j
βþρ̄jβ−2ðρβþρ̄βÞ·ααjÞtj ;

ðC20Þ

which starts looking like Wβ−2ðβ·αÞα. To prove that it is
indeed equal to Wβ−2ðβ·αÞα, we need to show that

ρβ − 2ðρβ · αÞα ¼ ρβ−2ðβ·αÞα; ðC21Þ

ρ̄β − 2ðρ̄β · αÞα ¼ ρ̄β−2ðβ·αÞα: ðC22Þ

23The appearance of tβ−2ðβ·αÞα on the rhs of Eq. (C8) is not a
surprise. Indeed, let us evaluate ½tj; UαðθÞtβU†

αðθÞ�. Using
Eqs. (24) and (36), we can write

½tj; UαðθÞtβU†
αðθÞ� ¼ UαðθÞ½U†

αðθÞtjUαðθÞ; tβ�U†
αðθÞ

¼ UαðθÞðδjk − 2αjαkÞ½tk; tβ�U†
αðθÞ

¼ ðβj − 2ðβ · αÞαjÞUαðθÞtβU†
αðθÞ:

Since UαðθÞtβU†
αðθÞ is nonzero and does not belong to the

commuting part of the algebra, we deduce first, that β − 2ðβ · αÞα
is a root, and second, that

UαðθÞtβU†
αðθÞ ¼ cαβðθÞtβ−2ðβ·αÞα:
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This seems plausible since

β−2ðβ ·αÞα¼ρβ− ρ̄β−2ðρβ− ρ̄βÞ ·αα
¼ðρβ−2ðρβ ·αÞαÞ−ðρ̄β−2ðρ̄β ·αÞαÞ; ðC23Þ

but we still need to show that the two expressions between
brackets in the last line correspond to defining weights.
This is actually a well-known result: the set of weights is
invariant under Weyl transformations. This is seen by
evaluating W†

αtjWαjρi. One has

W†
αtjWαjρi ¼ ðtj − 2ðαktkÞαjÞjρi

¼ ðρj − 2ðρ · αÞαjÞjρi ðC24Þ

and thus

tjWαjρi ¼ ðtj − 2ðαktkÞαjÞjρi
¼ ðρj − 2ðρ · αÞαjÞWαjρi: ðC25Þ

Since Wα is invertible, Wαjρi is nonzero, and therefore
ρ − 2ðρ · αÞα is one of the defining weights.
We have thus shown that

WαWβW
†
α ¼ Wβ−2ðβ·αÞα: ðC26Þ

Another way of recalling this rule is in the form of
crossing rules

WαWβ ¼ Wβ−2ðβ·αÞαWα ¼ WβWα−2ðα·βÞβ: ðC27Þ

In words,Wα can crossWβ, but in doing so, it replaces β by
β − 2ðβ · αÞα in its wake.

APPENDIX D: WINDING TRANSFORMATIONS

Given a fundamental weight ρ, we define

VρðτÞ ¼ ei
τ
β4πρjt

j
; ðD1Þ

known as a winding transformation. These transformations
correspond to nontrivial center transformations. They act
on the algebra as

VρðτÞtjV†
ρðτÞ ¼ tj; ðD2Þ

VρðτÞtαV†
ρðτÞ ¼ ei

τ
β4πρ·αtα: ðD3Þ

It is useful to derive the relation between these trans-
formations and the previously defined Weyl transforma-
tions. For instance

WαVρW
†
α ¼ Wαe

iτβ4πρjt
j
W†

α

¼ ei
τ
β4πρjWαtjW

†
α

¼ ei
τ
β4πρjðtj−2αjðα·tÞÞ

¼ ei
τ
β4πðρj−2ðρ·αÞαjÞtj ; ðD4Þ

which rewrites more simply as

WαVρW
†
α ¼ Vρ−2ðρ·αÞα: ðD5Þ

Similarly

VρWαV
†
ρ ¼ Vρe

i πffiffi
2

p ðtαþt−αÞeiπðρ
j
αþρ̄jαÞtjV†

ρ;

¼ Vρe
i πffiffi

2
p ðtαþt−αÞV†

ρVρeiπðρ
j
αþρ̄jαÞtjV†

ρ;

¼ ei
πffiffi
2

p Vρðtαþt−αÞV†
ρeiπðρ

j
αþρ̄jαÞVρtjV

†
ρ ;

¼ ei
πffiffi
2

p ðei
τ
β
4πρ·α

tαþe
−iτ
β
4πρ·α

t−αÞeiπðρ
j
αþρ̄jαÞtj : ðD6Þ

The first factor is nothing but Uαðθ ¼ 4πρ · ατ=βÞ. Using
Eq. (C14), we then arrive at

VρWαV
†
ρ ¼ WαV−2ðρ·αÞα: ðD7Þ

The identities (D5) and (D7) can again be conveniently
recast in the form of crossing rules:

WαVρ ¼ Vρ−2ðρ·αÞαWα; ðD8Þ

and

VρWα ¼ WαVρ−2ðρ·αÞα: ðD9Þ

Once more,Wα can cross Vρ, but, in doing so, it replaces ρ
by ρ − 2ðρ · αÞα in its wake.

[1] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001).
[2] L. von Smekal, R. Alkofer, and A. Hauck, Phys. Rev. Lett.

79, 3591 (1997).
[3] D. Zwanziger, Phys. Rev. D 65, 094039 (2002).

[4] C. S. Fischer andR. Alkofer, Phys. Rev. D 67, 094020 (2003).
[5] J. C. R. Bloch, Few Body Syst. 33, 111 (2003).
[6] A. C. Aguilar and A. A. Natale, J. High Energy Phys. 08

(2004) 057.

CENTER-SYMMETRIC LANDAU GAUGE: FURTHER SIGNATURES … PHYS. REV. D 109, 036002 (2024)

036002-21

https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1103/PhysRevLett.79.3591
https://doi.org/10.1103/PhysRevLett.79.3591
https://doi.org/10.1103/PhysRevD.65.094039
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1007/s00601-003-0013-3
https://doi.org/10.1088/1126-6708/2004/08/057
https://doi.org/10.1088/1126-6708/2004/08/057


[7] P. Boucaud, T. Bruntjen, J. P. Leroy, A. Le Yaouanc, A. Y.
Lokhov, J. Micheli, O. Pene, and J. Rodriguez-Quintero,
J. High Energy Phys. 06 (2006) 001.

[8] A. C. Aguilar and J. Papavassiliou, Eur. Phys. J. A 35, 189
(2008).

[9] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D
78, 025010 (2008).

[10] P. Boucaud, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene,
and J. Rodriguez-Quintero, J. High Energy Phys. 06 (2008)
099.

[11] C. S. Fischer, A. Maas, and J. M. Pawlowski, Ann. Phys.
(Amsterdam) 324, 2408 (2009).

[12] J. Rodriguez-Quintero, J. High Energy Phys. 01 (2011) 105.
[13] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[14] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363,

223 (2002).
[15] J. M. Pawlowski, D. F. Litim, S. Nedelko, and

L. von Smekal, Phys. Rev. Lett. 93, 152002 (2004).
[16] C. S. Fischer and H. Gies, J. High Energy Phys. 10

(2004) 048.
[17] J. M. Pawlowski, Ann. Phys. (Amsterdam) 322, 2831

(2007).
[18] A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N.

Strodthoff, Phys. Rev. D 94, 054005 (2016).
[19] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.

Pawlowski, M. Tissier, and N. Wschebor, Phys. Rep.
910, 1 (2021).

[20] R. Kobes, G. Kunstatter, and A. Rebhan, Nucl. Phys. B355,
1 (1991).

[21] A. Cucchieri and T. Mendes, Proc. Sci., FACESQCD2010
(2010) 007 [arXiv:1105.0176].

[22] C. S. Fischer, A. Maas, and J. A. Muller, Eur. Phys. J. C 68,
165 (2010).

[23] A. Maas, J. M. Pawlowski, L. von Smekal, and D.
Spielmann, Phys. Rev. D 85, 034037 (2012).

[24] T. Mendes and A. Cucchieri, Proc. Sci., LATTICE2014
(2015) 183.

[25] P. J. Silva, O. Oliveira, P. Bicudo, and N. Cardoso, Phys.
Rev. D 89, 074503 (2014).

[26] R. Aouane, V. G. Bornyakov, E. M. Ilgenfritz, V. K.
Mitrjushkin, M. Muller-Preussker, and A. Sternbeck, Phys.
Rev. D 85, 034501 (2012).

[27] L. Fister and J. M. Pawlowski, arXiv:1112.5440.
[28] C. S. Fischer and J. Luecker, Phys. Lett. B 718, 1036

(2013).
[29] K. Fukushima and N. Su, Phys. Rev. D 88, 076008 (2013).
[30] M. Q. Huber and L. von Smekal, J. High Energy Phys. 04

(2013) 149.
[31] M. Quandt and H. Reinhardt, Phys. Rev. D 92, 025051

(2015).
[32] P. J. Silva and O. Oliveira, Phys. Rev. D 93, 114509 (2016).
[33] D. M. van Egmond, U. Reinosa, J. Serreau, and M. Tissier,

SciPost Phys. 12, 087 (2022).
[34] D. M. van Egmond and U. Reinosa, Phys. Rev. D 108,

054029 (2023).
[35] D. M. van Egmond and U. Reinosa, Phys. Rev. D 106,

074005 (2022).
[36] U. Reinosa, Perturbative Aspects of the Deconfinement

Transition—Physics Beyond the Faddeev-Popov Model,
Lecture Notes in Physics, Springer Monographs (Springer
Nature, Switzerland, 2022).

[37] R. V. Gavai, Nucl. Phys. B215, 458 (1983).
[38] R. V. Gavai and F. Karsch, Phys. Lett. 125B, 406 (1983).
[39] T. Celik, J. Engels, and H. Satz, Phys. Lett. 125B, 411 (1983).
[40] B. Svetitsky, Phys. Rep. 132, 1 (1986).
[41] R. D. Pisarski, arXiv:hep-ph/0203271.
[42] J. Greensite, Lect. Notes Phys. 821, 1 (2011).
[43] L. F. Abbott, Nucl. Phys. B185, 189 (1981).
[44] L. F. Abbott, Acta Phys. Pol. B 13, 33 (1982).
[45] J. Braun, H. Gies, and J. M. Pawlowski, Phys. Lett. B 684,

262 (2010).
[46] J. Braun, A. Eichhorn, H. Gies, and J. M. Pawlowski,

Eur. Phys. J. C 70, 689 (2010).
[47] A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
[48] D. M. van Egmond and U. Reinosa, arXiv:2104.12139.
[49] G. Curci and R. Ferrari, Nuovo Cimento A 32, 151 (1976).
[50] M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and N.

Wschebor, Rep. Prog. Phys. 84, 124202 (2021).

DUIFJE MARIA VAN EGMOND and URKO REINOSA PHYS. REV. D 109, 036002 (2024)

036002-22

https://doi.org/10.1088/1126-6708/2006/06/001
https://doi.org/10.1140/epja/i2008-10535-4
https://doi.org/10.1140/epja/i2008-10535-4
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1088/1126-6708/2008/06/099
https://doi.org/10.1088/1126-6708/2008/06/099
https://doi.org/10.1016/j.aop.2009.07.009
https://doi.org/10.1016/j.aop.2009.07.009
https://doi.org/10.1007/JHEP01(2011)105
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1103/PhysRevLett.93.152002
https://doi.org/10.1088/1126-6708/2004/10/048
https://doi.org/10.1088/1126-6708/2004/10/048
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/0550-3213(91)90300-M
https://doi.org/10.1016/0550-3213(91)90300-M
https://doi.org/10.22323/1.117.0007
https://doi.org/10.22323/1.117.0007
https://arXiv.org/abs/1105.0176
https://doi.org/10.1140/epjc/s10052-010-1343-1
https://doi.org/10.1140/epjc/s10052-010-1343-1
https://doi.org/10.1103/PhysRevD.85.034037
https://doi.org/10.22323/1.214.0183
https://doi.org/10.22323/1.214.0183
https://doi.org/10.1103/PhysRevD.89.074503
https://doi.org/10.1103/PhysRevD.89.074503
https://doi.org/10.1103/PhysRevD.85.034501
https://doi.org/10.1103/PhysRevD.85.034501
https://arXiv.org/abs/1112.5440
https://doi.org/10.1016/j.physletb.2012.11.054
https://doi.org/10.1016/j.physletb.2012.11.054
https://doi.org/10.1103/PhysRevD.88.076008
https://doi.org/10.1007/JHEP04(2013)149
https://doi.org/10.1007/JHEP04(2013)149
https://doi.org/10.1103/PhysRevD.92.025051
https://doi.org/10.1103/PhysRevD.92.025051
https://doi.org/10.1103/PhysRevD.93.114509
https://doi.org/10.21468/SciPostPhys.12.3.087
https://doi.org/10.1103/PhysRevD.108.054029
https://doi.org/10.1103/PhysRevD.108.054029
https://doi.org/10.1103/PhysRevD.106.074005
https://doi.org/10.1103/PhysRevD.106.074005
https://doi.org/10.1016/0550-3213(83)90255-9
https://doi.org/10.1016/0370-2693(83)91313-8
https://doi.org/10.1016/0370-2693(83)91314-X
https://doi.org/10.1016/0370-1573(86)90014-1
https://arXiv.org/abs/hep-ph/0203271
https://doi.org/10.1007/978-3-030-51563-8
https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/10.1016/j.physletb.2010.01.009
https://doi.org/10.1016/j.physletb.2010.01.009
https://doi.org/10.1140/epjc/s10052-010-1485-1
https://doi.org/10.1016/0370-2693(78)90737-2
https://arXiv.org/abs/2104.12139
https://doi.org/10.1007/BF02729999
https://doi.org/10.1088/1361-6633/ac36b8

