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Center-symmetric Landau gauge: Further signatures of confinement
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In a recent article [D. M. van Egmond and U. Reinosa, Phys. Rev. D 106, 074005 (2022)], we have
identified new signatures for the Yang-Mills deconfinement transition, based on the finite-temperature
longitudinal or (chromo-)electric gluon propagator as computed in the center-symmetric Landau gauge.
Here, we generalize these considerations into a systematic study of the center symmetry identities obeyed

by the correlation functions in this gauge. Any violation of these constraints signals the breaking of center
symmetry and can thus serve as a probe for the deconfinement transition.
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I. INTRODUCTION

Functional methods are by now a well-developed corpus of
approaches in the framework of non-Abelian gauge theories
[1-19] that can bring valuable complementary information in
situations where Monte Carlo lattice simulations are the least
efficient. One limitation of functional methods, as compared
to the lattice, is, however, that the primary quantities they
give access to are gauge-dependent correlation functions.
Although observables can be reconstructed from the corre-
lation functions in principle, this strongly rests on the
accuracy at which the latter are computed and on their
particular relation to the observables under consideration.

A natural question that emerges is then whether it could be
possible to extract relevant physical information directly
from the correlation functions themselves, an idea that can be
further elaborated in at least two distinct directions. The most
obvious one is to try to identify gauge-independent features
of the correlation functions [20], which are then more prone
to encapsulate observable information. A different strategy is
based on the idea that certain physical questions could be
addressed directly from gauge-dependent features of the
correlation functions, in certain, well-chosen gauges. A
paradigmatic example is the question of symmetries and
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their breaking, which usually underlies the phase structure of
the system under consideration.

In particular, in recent years, both lattice simulations
[21-26] as well as various analytical studies [27-31] have
searched for signatures of the Yang-Mills deconfinement
phase transition within the Landau gauge gluon propagator.
It is apparent that a change of behavior is observed in the
vicinity of the transition in quantities constructed from the
propagator, which, for some of them (see for instance
Ref. [26]), seem to behave like order parameters. It is of
course natural to expect that this change of behavior relates
to the breaking of the underlying center symmetry, as
probed for instance from the Polyakov loop. However, it is
also fair to say that, to date, this connection has not been
fully established. A very interesting step in this direction
has been taken in Ref. [32] which investigates the corre-
lations between the Polyakov loop and the SU(3) propa-
gator and identifies an order parameter for the center
symmetry in the form of a difference of propagators
evaluated for field configurations in different angular
sectors of the Polyakov loop. This study, however, does
not elucidate how center symmetry can impose any specific
behavior on quantities,l such as the ones discussed in
Ref. [26], constructed from the propagator associated to a
single sector of the Polyakov loop. Let us also add that, in
the particular case of the SU(2) gauge group, where the
transition is known to be second order, the Landau gauge
gluon propagator does not seem to become critical.

"To qualify as an order parameter, the behavior of a given quantity
in the symmetric phase should be dictated by the symmetry.
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In order to try to clarify some of these questions, in a
series of works [33-35], we have put forward the idea that
the Landau gauge might not be the most appropriate gauge
to analyze the deconfinement transition, in particular when
it comes to identifying signatures of symmetry breaking at
the level of the correlation functions. One can actually
understand this on very general grounds since, as we argue
below, the gauge-fixed action associated to a chosen gauge
does not necessarily reflect the symmetries of the problem.
Even though this feature has no influence on the way the
symmetry constrains the observables,” it can have a strong
impact on whether and how the symmetries manifest
themselves at the level of the correlation functions.

To be more specific, consider a gauge theory defined by
some non-gauge-fixed action S[A] and consider a physical
symmetry A — A’ such that S[A’] = S[A]. Now, when
specifying to a given gauge g, one needs to work with
the corresponding gauge-fixed action Sg[A]. But the con-
sidered physical transformation does not need to be a
symmetry of Sg[A]. In fact, one could more generally have®

[AT] = Sq[Al, (1)

with g’ a gauge choice that can differ from the original
gauge choice g. Indeed, although not representing a
symmetry of the action in a given gauge, the identity (1)
is actually sufficient for the physical symmetry to be
manifest at the level of the observables (O[A])g. For
instance, assuming a linear transformation

O[A'] = LOJA]. (2)

and because the observables do not depend on the gauge,
we can write the following chain of identities:

This gives a symmetry constraint for the considered
observable in any chosen gauge and can then be used as
a probe for the breaking of the symmetry under consid-
eration. A well-known example of such a type of observable
is the Polyakov loop that probes the center symmetry in
pure Yang-Mills theories.

If we consider instead a correlation function (C[A])4, and
assuming again a linear transformation C[A’] = LC[A], the
previous chain of identities stops one step earlier because
correlation functions depend explicitly on the gauge:

2At least at an exact level of treatment; see the general
discussion in Refs. [34,36].

For a thorough discussion of these questions, see Refs. [34,36].

“The first equality is just the fact that A is a dummy integration
variable under the functional integral, the second equality uses
both (1) and (2), and the third equality uses the gauge independ-
ence of the observables.

{ClA])g = (ClA"])g = L(C[A]) g - 4)

In this case, one obtains a relation between the correlation
functions in the two different gauges g and g’ but certainly
not a constraint on the correlation functions of a given gauge.
For this reason, the correlation functions cannot in general be
used as probes for the breaking of physical symmetries.

There is one important exception, however, correspond-
ing to the case where the chosen gauge leads to a gauge-
fixed action that is invariant under the considered physical
transformation, that is g’ = g. In this case, the chain of
identities (4) can be continued one step further, just as for
the case of observables (but not for the same reason), and
one obtains symmetry constraints for the correlation
functions themselves, which can be used as order param-
eters for the symmetry at hand.

In this work, we consider one particular example of such
symmetry invariant gauges, the recently introduced center-
symmetric Landau gauges [33] which are invariant under
the center symmetry of pure SU(N) Yang-Mills theories at
finite temperature [37-42] and which are thus adapted to
the study of the deconfinement transition from the corre-
lation functions. Some of these aspects were analyzed in
Ref. [35] using specific Lorentz/color projections of the
gluon two-point function. The present work makes the
discussion more general by extending it to any correlation
function and any Lorentz/color projection.

The paper is organized as follows. In the next section, we
define the notion of center-symmetric gauge-field back-
grounds and the associated center-symmetric Landau
gauges. We also particularize to backgrounds (and thus,
gauges) that are, in addition, charge conjugation invariant,
and also invariant under particular color rotations. Section I1I
analyzes the constraints on correlation functions associated
to color invariance. The discussion of charge conjugation
and center symmetry is more subtle because one needs to
pay attention to the fact that physical symmetries act on
gauge fields modulo genuine gauge transformations. One
convenient way to handle this aspect of the theory is through
the notion of Weyl transformations and Weyl chambers
which we discuss in Sec. I'V. Sections V, VI and VII are then
devoted to a systematic analysis of the constraints on the
correlation functions that derive from charge conjugation
and center symmetry for N = 2 and N = 3, as well as the
identification of new order parameters for center symmetry.
Additional details are gathered in the Appendixes.

II. CENTER-SYMMETRIC LANDAU GAUGES

In what follows, we consider SU(N) Euclidean Yang-Mills
theories within the framework of background Landau gauges
[43-46]. The latter actually refers to a family of gauges
parametrized by a background gauge field configuration A
that, in a sense, plays the role of an infinite collection of
gauge-fixing parameters. The gauge condition is
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D,(A; - A5) =0, (5)
where
Do = 0,9" + gf " Abgc (6)

stands for the adjoint covariant derivative in the presence of
the background.

A given background defines a particular choice of gauge
within the class of background Landau gauges. For instance,
when the background is taken equal to zero, one retrieves the
standard Landau gauge 9,Ay = 0. Here, we are interested
in the subclass of center-symmetric Landau gauges [33]
obtained by choosing, instead, center-symmetric back-
grounds which we now define in more detail.

A. Center-symmetric backgrounds

A center-symmetric background A, is defined by the
condition
YUEG., AU,eGy. AYY =4, (1)
Here, G denotes the group of gauged SU(N) matrices
U(z,X) obeying the particular boundary conditions’

Ut + B, %) = e?*/NU(z,%), (8)

with k =0,1,...,N — 1, while G, is the subgroup of G
corresponding to k = 0.
Any U €@ acts on the gauge field as

i
Al =UAU + p Uo,U", 9)

where we have defined A, = Aj“. It should be stressed,
however, that only those U, €, correspond to genuine
gauge transformations, that is transformations that do not
alter the state of the system. In contrast, any U€g
with k # 0 transforms at least one observable, the
Polyakov loop [47),°

E%tr<Pexp{iAﬂdrAO(T,f)}>, (10)

and should therefore be considered as a physical
transformation.

Actually, because U and U,U act on the Polyakov loop
in the same way, these physical transformations are defined
only modulo multiplication by elements of G,. This is of

SAs usual, #=1/T denotes the inverse temperature and
corresponds to the extent of the Euclidean time interval over
which the fields are defined.

%The Polyakov loop is directly related to the free-energy F'; of
a static quark in a thermal bath of gluons, # ~ e™#Fs. Under the
action of U €@, it gets multiplied by a phase factor e?7/V,

course in correspondence with the fact that two gauge field
configurations A and AY connected by an element of G,
should be interpreted as two equivalent representations of
the same physical state. In turn, this explains the particular
definition of center-invariant configurations given in
Eq. (7). This definition can actually be replaced by a
simpler condition, namely

jv.eu,, Al=A4A, (11)
where U/, denotes the set (not a group) of gauged SU(N)
matrices that fulfill Eq. (8) with k = 1. We shall stick to this
simpler formulation in what follows.

It should also be mentioned that a given center-
symmetric background can obey additional symmetries.
It can happen for instance that it is invariant under charge
conjugation in the following sense:

U, €Y. (ALY = A, (12)
where X' denotes the transpose of X. Finally, the back-
ground could be invariant under certain elements of G,
(in general global transformations):

U, eG,, Al =A,. (13)

The center-symmetric backgrounds that we consider below
obey such additional symmetries which we also exploit.

B. Symmetry constraints

The main interest of center-symmetric backgrounds and
center-symmetric Landau gauges is that the gauge-fixed
action is invariant under center transformations. By this,
we mean that

AU.elU,, Si [A] :SAC[AUf]. (14)

This is to be contrasted with what happens for a gauge
choice corresponding to an arbitrary background A. In this
case, one has instead S3[A] = S;0[AY], with AV # A for
any U €lU,. The latter identity connects the gauge-fixed
actions in two different gauges, corresponding respectively
to A and AY, and is thus quite different from Eq. (14) which
is a symmetry identity within a single gauge, corresponding
to the choice A = A,.

The symmetry identity (14) implies constraints on the
correlation functions as computed in the center-symmetric
Landau gauge. Take first the one-point function (A)j .
If the symmetry is not broken, then we must have

(A)a, = (AY); = (A)F". (15)

AL‘

"These considerations apply in fact to any physical symmetry;
see the discussion in Refs. [34,36].

036002-3



DUIFJE MARIA VAN EGMOND and URKO REINOSA

PHYS. REV. D 109, 036002 (2024)

This means that the one-point function should also corre-
spond to a center-symmetric configuration. Any departure
from this expectation signals the breaking of center
symmetry.

Next, if we consider a connected correlation function

(A (x1) - A () S0meed — (SAL (x,) -+~ 5481 (x,)

(16)
with A = A — (A);_transforming as
(8AY ) (x) = (Ue(x)8A,(x)Ue(x)*
= U (x)5A,(x). (17)

we have, when the symmetry is not broken,

(A (e1) -+ Al () mmeed
= U () U™ () (A () - Ay (3,)) 5.
(18)

It is easily seen that the vertex functions obey similar
identities.® These constraints can serve as probes of
deconfinement since the violation of any of these identities
signals the breaking of center symmetry.

We stress that the converse is not true as some of these
identities could be further protected by other (unbroken)
symmetries even when center symmetry breaks. This is in
particular the case when (12) or (13) apply. From these
equations, one can indeed derive similar constraints as (18),
provided one replaces U/, with the appropriate /o or U,.
We will see below that some of the constraints derived from
charge conjugation coincide with some of the constraints
derived from center symmetry. Since charge conjugation is
not expected to break spontaneously, these particular
constraints cannot be used as probes of the breaking of
center symmetry.

Let us mention that, in principle, in order to treat the
broken phase, one should extend Eq. (18) in the presence of
an external source j;(x) coupled to 6A§(x) which even-
tually is taken to 0. In the presence of the source, the
symmetry constraints read as

(A (30 - A e et

= U () - UE™ () (A () - A () S0mested,

AU
(19)

¥These identities can be obtained more directly by first writing
a symmetry constraint on the generating functional for connected
correlation functions, and, then, deducing a similar constraint on
the associated effective action; see Refs. [34,36] for details.

In the limit j — 0, two things can happen. Either the limit is
regular, meaning that it does not depend on the way it is
taken, and one retrieves the constraints (18) characterizing
the symmetric phase, or, the limit depends on the way it is
taken, that is j; = j,n® with n® some unit vector and
j — 0. Then, one finds

(A ) - A o

n A..n

— Y4 (x1)-- Y (xn)<A/l;11 (x1)-- 'A/I;Z (x,,))connected

AU 'n
(20)

which characterizes the broken phase and expresses how
the correlation functions in the various sectors, that is as
obtained from the various inequivalent zero-source limits,
are connected to each other by the symmetry. These sector-
dependent correlators are continuous versions of the ones
analyzed in Ref. [32] but computed in a different gauge,
A = A, rather than A = 0, where the relation between the
sector-dependent correlators can be made explicit in the
form of Eq. (20). In this paper, we are not interested in
investigating this relation further.” Rather, we concentrate
on the constraints that this relation imprints on the
propagator in the symmetric phase (which, by definition
does not depend on the considered sector). To date, such
constraints have not been identified in the Landau gauge. It
is a strength of the presently considered center-symmetric
Landau gauge to allow one to identify such type of
constraints, which can then be used to define new order
parameters.

A remark on notation is finally in order. From now on,
we shall omit the label “connected” when writing corre-
lation functions, and neither should we use the label A,.. It is
implicitly assumed that, with the exception of the one-point
function, the notation (Ay'(x;)---Ay;"(x,)) refers either
to a connected correlation function or to a vertex function,
computed in the center-symmetric Landau gauge.
Moreover, we shall use a condensed notation such that,
unless specifically stated, both Lorentz indices and position
arguments are combined into one single index.

C. Constant, temporal and diagonal backgrounds

In practice, one does not need to determine all possible
backgrounds complying with Eq. (11), but it is enough to
find just one. Particularly simple examples are obtained by
first restricting to backgrounds of the form

T_. .
A”(X) = ”Ogijﬂ, (21)

where the #’s provide a maximal set of commuting
generators of the algebra. One then looks for specific

This would not be too difficult.
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values 7. of 7 that correspond to center-symmetric back-
grounds. A convenient way to find these particular values is
through the use of Weyl transformations and Weyl cham-
bers; see below for further details, as well as the discussion
in Ref. [36].

In the SU(2) case, one possible choice is

o5}

F. =T, =m, (22)

o

with # = ¢°/2, whereas in the SU(3) case, one can take

o= (R, 7) = (43_ﬂ’0>’ >

with ¢/ € {43/2, A3/2}. We shall restrict to these choices in
what follows. We will see below that not only do they fulfill
Eq. (11), but they also comply with Egs. (12) and (13).

III. COLOR CONSTRAINTS

The presence of a background makes the color structure of
the various correlation functions more intricate than in the
Landau gauge. For backgrounds of the form (21), the color
structure remains simple, however, due to the fact that the
background, and thus the gauge-fixed action, is invariant
under global color rotations of the form U, = e'"'.

This is just a particular example of Eq. (13), with
similar consequences on the correlation functions as the
constraints (18) provided one replaces U/ with the corre-
sponding Uy. To make the most of this symmetry, and in
fact of the other symmetries as well, it will be convenient to
work within a Cartan-Weyl basis {7} whose definition we
now recall.

A. Cartan-Weyl bases

By construction, the generators * of a Cartan-Weyl basis
simultaneously diagonalize the adjoint action of the #/’s:

[/, 1] = K/1*. (24)

It can be helpful to recall these relations using a quantum
mechanical language: the labels « are real-valued, (N — 1)-
dimensional vectors that collect the “quantum (eigen)
numbers” k/ that a given “(eigen)state” * acquires under
the action of the various charges [#/,]. In more technical
terms, the vectors k are the adjoint weights of the algebra.

The adjoint weights can be of two types. If they are
nonzero, they are called roots and are represented using the
first letters of the Greek alphabet, xk = a, f3, ... The roots are
nondegenerate, meaning that there is only one eigenstate #*
associated to a given root a. It is also generally true that, if &
is a root, then —a is a root as well. Aside from the roots,
there is also a vanishing adjoint weight. It is degeneratelo

"“The only exception is the SU(2) case.

because any # is an eigenstate with vanishing charges. One
can again write these states as 7 provided one sets k = 0U).
This notation should be understood as representing multi-
ple copies of the null vector, needed to distinguish the
various degenerate zero-charge states " = . Of course,
this label should be interpreted as nothing else but the null
vector when appearing in algebraic expressions (that is any
time it is not used as a label).

In what follows, we refer to k = 0¥) and k = a as the
neutral and charged modes respectively. In the SU(2) case,
we have one neutral mode 0©) and two charged modes
a;, = 1 and ay; = —a;,. In the SU(3) case, we have two
neutral modes, 0®) and 0®), as well as six charged modes
ap, = (1,0), ap3 = (=1/2, \/§/2)’ A3 = (—1/2,—\/§/2),
Oy = —Aqp, A3p = —0y3 and a3 = —03q. We note that the
roots are all of norm a®> = 1, a property which extends to
the SU(N) case; see Appendix A. The notation a;; will be
explained further below.

B. Constraints

From Eq. (24), it is easily deduced that the adjoint action
of Uy on the generators ¢ of a Cartan-Weyl basis gives

Ugl‘KUg _ eié’j[ﬂﬂ]tk — eiH*KtK’ (25)
with X - Y = X/Y/. It follows that, within a Cartan-Weyl
basis, U = ¢*5* and the correlation functions are
invariant under the transformation

AE = USAL = eFAL, (26)

The constraints on the correlation/vertex functions then
take the form

(Af} - Ay = () (ARl

| .

Ay (27)

This implies that the nonvanishing correlators are ne-
cessarily such that color is conserved in the sense
ki 44K, = 0.

In particular, the nonvanishing components of the
two-point function G = (A5A}) are necessarily such that
Kk + A4 =0. In the SU(2) case, it immediately follows that
g = gﬁvé’d‘ﬁ). In the SU(3) case, we cannot conclude this
as yet, however, because there are two neutral modes, and
we could have k + 4 = 0 with x = 0®) and 4 = 0®®). What

can be said without any further assumption is that

g = go)* =0, (28)

and

i = G P, (29)

but the structure of ”Lj)om still needs to be investigated.
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Let us now study, in a similar way, the constraints
deriving from charge conjugation and center invariance.
Their study is slightly more delicate because the corre-
sponding symmetries, (7) and (12), involve an element
Uy € Gy which we still need to characterize. This can be
done with the help of Weyl transformations whose defi-
nition we recall in the next section.

C. Defining weights

Before doing so, it is useful to generalize Eq. (24)
beyond the adjoint representation.

In particular, when diagonalizing the defining action'" of
all the #/’s,

Ylp) = p'lp). (30)
one obtains the defining weights p, which, just like the
roots, are real-valued, (N — 1)-dimensional vectors. For
instance, in the SU(2) case, there are two defining weights
p1 = 1/2and p, = —1/2, while in the SU(3) case, there are
three weights p; = (1/2,1/(2v/3)), p» = (=1/2,1/(2V/3))
and p; = (0,-1//3).

The defining weights are closely connected to the roots
since the latter arise as all possible differences of two
distinct weights ay; = p; — p;, thus explaining the notation
that we introduced above. In the SU(N) case at least, the
pair of weights that decompose a given root is unique.
Sometimes, given a root a, we might want to access the
corresponding weights which we denote'? p. and p, such
that a = Pa _ﬁa'

Let us finally mention that the SU(N) weights are all

such that
1 1
2=—(1=-—]), 31
P=s ( N) (31)
whereas
pp= - L (32)
2N’

for two distinct weights p and p’; see Appendix A. It
follows in particular that the scalar product p - a between a
defining weight and a root can only take a certain number
of values:

pra =+1/2 if p=p,,
:_1/2 lfp:pa’ (33)
=0 otherwise.

""The term “defining” is here chosen in place of “fundamental”
since there is in general more than one fundamental representa-
tion_associated to a given group.

"The subscript a should not be confused with the subscript k
above. They are related as p,, = py and p,,, = p;.

Similarly, given two roots a and f, one has

a-f =+1 if f=a,
=-1 ifp=-a
. / . (34)
=—1/2 if a+ pis a root,
=+1/2 if a—fis aroot.

IV. WEYL TRANSFORMATIONS

A Weyl transformation is a particular element of G,. It is

a global color transformation associated to a given root a as

W, = e A pinlol i)t (35)

Details on the choice of the two factors that enter this

definition are given in Appendix C together with a number

of properties. In particular we will need to know the adjoint
action of W, on the color algebra.

A. Action on the algebra
It is shown in Appendix C that

Wt Wh =t =200 (a - 1), (36)

W PW), = P-2pa)a (37)
In order to alleviate the notation, we have explicitly used
the fact that the SU(N) roots are unit vectors. Otherwise,
a in the rhs of Egs. (36) and (37) needs to be replaced
by a/Vd.

We also note that Eq. (36) would remain unchanged were
we not to include the second factor in Eq. (35). However,
this factor is crucial in order to avoid uninteresting but
annoying extra factors in Eq. (37) as we could show in the
SU(N) case; see Appendix C.

Let us finally mention that the combination f — 2(f - a)a
appearing on the rhs of this equation takes different forms
depending on the relation between a and f:

=20 a)a =-a if p=a,
=+a if f=-—a,
=pf+a if f+aisaroot, (38)
=pf—a if f—aisaroot,
=0 otherwise.

This combination corresponds to the reflection of f with
respect to a hyperplane orthogonal to a.

B. Weyl chambers

The Weyl transformations play an important role in
identifying center-symmetric backgrounds among the
backgrounds of the form (21). As explained in Ref. [36],
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one first restricts to the subgroup QO of transformations of
Gy that keep the background of the form (21). These
transformations are seen to be of the form [36]

WV(z), (39)

where W is a global color rotation that leaves the diagonal
part of the algebra globally invariant, and

VS(T) = ei4zr/1}sftf’ (40)
with s such that
eldns’t — 1. (41)

Interestingly, the Weyl transformations W, provide exam-
ples of global color rotation that leave the diagonal part of
the algebra globally invariant, as follows from Eq. (36).
Similarly, given a root a, one always has

ei4ﬂa-/t-f =1 (42)

(see Appendix C), and, therefore, a possible choice of s in
Eq. (40) is s = a.”

Therefore, one can generate all transformations of Qo
from the elementary transformations W, and V(7). In the
space of backgrounds of the form (21), the latter correspond
to simple geometrical transformations: reflections with
respect to hyperplanes orthogonal to a and translations
of 7 by 4za. By combining those transformations, one
obtains a more interesting generating set, namely the
reflections with respect to hyperplanes orthogonal to «a,
displaced by any multiple of 2za. The benefit of this
generating set is that it subdivides the space of backgrounds
of the form (21) into regions, known as Weyl chambers,

that are connected to each other by elements of QO and are
thus physically equivalent. In the SU(2) case, from the roots
given above, one obtains that the Weyl chambers are the
intervals 7€ [2zk,2z(k + 1)]. In the case of SU(3), the
Weyl chambers are equilateral triangles; see Fig. 1.

Once the Weyl chambers have been identified, one can
easily construct the particular transformations U, that
appear in Eqs. (7) and (12). The idea is the same in both
cases. A physical transformation such as charge conjuga-
tion or an element of G typically displaces a given Weyl
chamber. By using elements of QO, one can bring the Weyl
chamber back to its original location. In doing so, one
generates a transformation of a given Weyl chamber into
itself. The fixed points of this transformation correspond to
backgrounds obeying (7) or (12), and the so-constructed

13Later, we shall consider other possible choices of s, such as
s = p, but they lead to nonperiodic transformations.

\/

r3~

FIG. 1. SU(3) Weyl chambers in the (73, 7g) plane and their
relation to the Weyl transformations and the roots. The red vectors
represent the roots multiplied by 4z. The elements of G, are
generated by translations along these vectors and reflections with
respect to lines orthogonal to these vectors that go through the
origin. Equivalently, they are generated by all possible reflections
with respect to lines orthogonal to the roots and displaced by any
multiple of 27 times the corresponding root. The corresponding
symmetry axes define a paving of the (73, 7g) plane into physically
equivalent regions, known as Weyl chambers.

combinations of elements of G, provide the transformations
U, appearing in these equations.

C. Charge conjugation

In the SU(2) case, the transformation Aﬂ - —AL is itself
an element ic* € G,,. Therefore, Eq. (12) is fulfilled for any
choice of background since one can choose U, to be the
inverse of this element. It follows that charge conjugation
imposes no constraint in this case.

In the SU(3) case, in contrast, the transformation
A, — —A} is not an element of Gy. For backgrounds of
the form (21), it corresponds to the transformation 7 — —7.
Under this transformation, the Weyl chamber that is high-
lighted in the first plot of Fig. 2 is transformed as shown in
the second plot of that same figure. To bring the Weyl
chamber back to its original location, one can use the
reflection (73, 7g) — (=73, 7g) which corresponds to W,, ..
From this, not only do we deduce that all backgrounds of
the form (21) with 7 = (7,0) comply with Eq. (12),' but
we also identify U in this equation with W, ..

D. Center transformations

We can proceed similarly to construct the transformation
U, that appears in Eq. (7) or, more directly, the

“Since all Weyl chambers are physically equivalent, each
Weyl chamber contains one axis of charge-conjugation invariant
states.
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FIG. 2. Transformation of a Weyl chamber under charge conjugation. The colored chamber represents the various locations of the
Weyl chamber along the transformation process. We have chosen a point and a particular axis of the Weyl chamber to ease orientation as
the Weyl chamber is transformed. In the first two figures, the blue items represent the transformations that will be applied to the Weyl
chamber, A - —A" and W,,, respectively, while in the third figure, the blue item represents the combined effect of these two
transformations, which corresponds to a transformation of the original Weyl chamber into itself, more specifically a reflection with
respect to its horizontal symmetry axis.

FIG. 3. Transformation of a Weyl chamber under a center transformation. The colored chamber represents the various locations of the
Weyl chamber along the transformation process. We have chosen a point and a particular axis of the Weyl chamber to ease orientation as
the Weyl chamber is transformed. In the first three figures, the blue items represent the transformations that will be applied to the Weyl
chamber, V_, (z), W,,, and W, respectively, while in the fourth figure, the blue item represents the combined effect of these three
transformations, which corresponds to a transformation of the original Weyl chamber into itself, more specifically a rotation by an angle

27/3 around its center.

transformation U, that appears in Eq. (11). First of all, it
can be shown that, modulo elements of GO, the trans-
formations of {; that leave the Cartan subalgebra globally
invariant are winding transformations of the form V_,(z),
with p one of the defining weights of the algebra.'” The
winding transformations act on the algebra as

V_, ()t Vi, (z) =1, (43)

V_/,(T)t”Vip(r) = e Mg (44)
where we have used similar considerations as in Eq. (25). In
the space of backgrounds of the form (21), they correspond
to translations by —4zp.

In the SU(2) case for instance, if we choose to work on
the Weyl chamber [0, 27, we see that V_, (7) transforms it
into [-27, 0]. This Weyl chamber can be brought back to its

"Note that, unlike V,(z), V_,(z) does not obey the condition
underneath Eq. (40) and is therefore not a part of G.

original location by applying W, .. Eventually, this pro-
duces the transformation 7 — 27 — 7 that leaves the origi-
nal Weyl chamber globally invariant and identifies
7= as a fixed point. It follows that the transformation
U, that appears in (11) is the transformation
U.= Walzv—p] (T)v (45)
and that the center-symmetric background is indeed (22).
As for the SU(3) case, a similar argumentation leads to
U.= Wa31 Walzv—/)] (T)’ (46)
corresponding to the center-symmetric background (23).
For a graphical representation of this construction, see
Fig. 3. We mention that simple rules to permute the order
between the various W, or between the W, and V, are
provided in Appendix C.
We are now fully equipped to investigate the constraints

that charge conjugation and center symmetry impose on
correlation functions.
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V. CHARGE CONJUGATION CONSTRAINTS

As already mentioned above, charge conjugation
imposes no constraints in the SU(2) case.

In the SU(3) case, we have seen that, for backgrounds
of the form (21) with 7= (7¥3,0), the transformation
A - —At combined with W, is a symmetry. Using
Eqs (36) and (37), we find that this symmetry acts on
the generators of the algebra as

t0(3) N t0(3>, t0(8> N _to(S)’ (47)

and
i :t
T2 — — =
i :t
s R — 0«'31’

ti(m N _tiaﬁ‘ (48)

We can further use color rotation invariance and redefine
the above transformation such that it appears as'®

+a +a

t 12 — —f 12’
+a +a
[ I

tia3] N tiaﬂ. (49)

It follows that the correlation/vertex functions are invariant
under the transformation

Ay — AL AS — —AB, (50)
and
Af“ll N _A/TUCU7
A;‘:azs N A;‘:a,ﬂ’
A;(IM _)A":/.t(l%’ (51)

corresponding to a change of sign of the components in the
color 0®) and +a;, directions and a permutation of the
components in the +a,3; and +a3; directions.

Let us now investigate the consequences of this sym-
metry on the correlation functions, first using some
examples and then in full generality.

A. Some examples

1. Neutral sector

Consider a correlation function whose external legs are
all in the neutral sector:

"“To this purpose, we consider the color rotation ei2mi?
and exploit the fact that p;-a;; =0, p3-a3 =—1/2 and
p3-az = +1/2.

3 3 48 8
<Aﬂ] U AﬂIYIAyl U ADH > ° (52)
The constraints from charge conjugation invariance read as

<A2] .. AimAS Af)

= (—1)"(A3 .- A3 A8 ... AB).

m (53)

As a consequence, all correlators with an odd number of
components along the color 8 direction need to vanish:

3 3 8 8
<Aﬂ| o .A”mAV] : A

Vap+1

) = 0. (54)

We expect these constraints to always be valid since charge
conjugation should not be spontaneously broken.
2. Two-point function

In particular, for the two-point function, it follows that
3)o(®) e
g =gl =o. (55)
Combined with Egs. (28) and (29), this implies
Q gﬂ 5<(= (56)

as in the SU(2) case. We mention, however, that we do not

know at this point whether and how the neutral diagonal
() )0(8)

elements G),*" and G, " are connected to each other.

We will come back to this question below as it is linked to

center symmetry.

In the charged sector, we have that
+ +
Waz3 — WaBlv (57)

as follows from (51) but we cannot tell at this point whether
and how they are connected to the components along
the +a;, directions. Again, we will come back to this
question below.

3. Three-point function

For the three-point functions, we have

(A3A3AS) = (ASASAS) = 0. (58)
Similarly
(ASASRAL ") =0, (59)
as well as
<A2A323A;(123> — <AiA§31A;u3] >, (60)
and
(A,S,A,723A;“23> = —<A,§A33‘A;a3‘>. (61)
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Finally

<AZIZA;123AZ!31> — —<AZIZA;I31A;7123>. (62)

B. General case

To derive the general constraints from charge conjuga-
tion invariance, it is convenient to introduce the field
AG = Aj + 6iA} (with o = £1) which transforms as

A — A, (63)
A general correlation function then takes the form

<A;r] ...A;mA;l "'A;,,

a2 A2 A —012 —ap2
AP1 .. 'App Aal .. .Ao_q
a3 a3 A —023 —a3
Awl"'Akarl "'Ar/
a3y a3; A —a31 —a3)
A ATAT AT, (64)

which we write formally as

() (12) 54 (23)1,(31) ) (65)

We note that we have the constraint
(p—q)ay + (k=2C)ays + (i — jlas; =0, (66)

as follows from color conservation; see the discussion
below Eq. (27). Now, because aj, + a3 + a3y = 0, this
rewrites as (p+j—q—i)ap+ (k+j—¢—i)az =0.
Since a, and a,3 are linearly independent, this eventually
leads to p—qg=1i—j=k—¢. Moreover, correlation
functions involving A; and A% rather than A can be
obtained through appropriate linear combinations of (64).

With this compact notation, the constraints due to charge
conjugation invariance read as

<(+)mn(]2)pq(23)kf(31)1]>
= (_1)p+q<(_)mn(lz)pq(31>kf(23)ij>' (67)

One easily checks that this identity contains the constraints
already derived above and allows one to generate all
other possible constraints related to charge conjugation
invariance.

VI. Z,-SYMMETRY CONSTRAINTS

Using Eqgs. (36)—(38) and Eqgs. (43)—(44), we find that the
action of U, on the SU(2) algebra gives

U UL = -1, (68)
as well as

U Ul = T2 o, (69)

where we have used that p; - a;, = 1/2. From this, one
reads the corresponding ¢/, and deduces that the correlation
functions are invariant under the transformation

SA3 — —5A3, (70)

5Afa'2 N eiiZnT/—’;(sAlj:alz’ (71)
where 6A was defined below Eq. (16) and 7, stands for the
Euclidean time argument associated to the index u. Let us
now analyze the consequences of this symmetry on the
correlation functions, first using some examples, and then
in full generality.

A. Some examples

1. Neutral sector

If we consider correlation functions that are purely in the
neutral sector, the constraint (18) takes the form

A, AL) = (Z1)" (AL 43,

Hn Hn (72)
Thus, functions with an even number of external legs are
unconstrained, while those with an odd number of external
legs should vanish,

<A21--~A3

!¢2p+1> = 0’ (73)

as long as center symmetry is not broken.

2. Two-point function
In particular there is no constraint on the two-point
function in the neutral sector."’
On the contrary, from Eq. (71), we find the following
constraint on the two-point function in the charged sector:

i

Py T
elZﬂ 7

<AZ12A17012> — <A;0512Az!12>7 (74)
where 7, and 7, are the Euclidean time arguments asso-
ciated with the fields carrying the indices p and v
respectively. In other words (we now make the position

arguments explicit)

12(—0’12)(

o y— y) _ eiZJZTX;ygl(l;alz)alz (x _ y)_ (75)

n Refs. [33,35], we have seen that the two-point function in
the neutral sector develops a zero mode at the deconfinement
transition. Although this is a combined consequence of center
symmetry and of the second order nature of the transition in the
SU(2) case, it is not of the same type as the symmetry constraints
that we are presently discussing. The latter apply indeed over the
whole confining phase and not just at the transition.
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In Fourier space, this means that ,;,LZ(_(I'Z)(Q) and

g,(,;“”)“”(Q) are related by a frequency shift of 2zT.
With our convention d, — —iQ, for the Fourier transform,
this gives

W (Q) = g™ (Q + 22TN),  (76)

with N = (1,6). Any violation of this identity signals a
breaking of center symmetry.

3. Three-point function

For the three-point function, either all color directions
are neutral, and then

(A(0)AS(1)A5(z)) =0, (77)

or, only one is neutral, and then

<AZ'2(x)A;“‘2(y)A,3,(Z)> _ _ei2;ﬂu/;n <A;(112(X)A1(j]2 (y)A?} (Z)>

(78)
In Fourier space, this leads to

(AL (P)A" (Q)A(K))
= —(A,“2(P +27TN)A;*(Q - 22TN)A3(K)).  (79)

B. General case

A general SU(2) correlation function takes the form

(A AT APATTE - A)(80)

r

which we denote more simply as ((3),(12),). The con-
straints due to center symmetry read as

™| +--v+rpp ~To| —"'Tgp
i

(3),(12),) = (=1)"e"" ((3),(21),). (81)

We of course retrieve the previously obtained constraints as
particular cases of this general identity.

VIL Z;-SYMMETRY CONSTRAINTS

Using Egs. (36)—(38) and Eqgs. (43)-(44), we find again
that the neutral and charged sectors decouple under the
adjoint action of U,. In the neutral sector, the trans-
formation corresponds to a rotation by an angle 2x/3,
whereas in the charged sector, we find

Uprtony] = eFmipbon,
Uc tia23 UI — ti‘lﬂ ,

U 1 U] = e o, (82)

In terms of the gauge field, the rotation by an angle 27/3 in
the neutral sector gives

A7 — eH95AY, (83)

while in the charged sector, we have

o

6Aial2 N eiiZﬂﬁ 5A”ia3] ,

5A;‘:az3 N e¥i2ﬂ%‘5A3:012’

SAS — 5AS, (84)
which is a permutation 12 - 31 — 23 — 12 with appro-

priate phase factors. Let us now analyze the consequences
of this symmetry on the correlation functions.

A. Some examples

1. Neutral sector

If we consider correlation functions that are purely in the
neutral sector, the constraint (18) takes the form

(Ag, - A7) = F AT AT (85)

Thus, correlation functions such that ¢! + - -- 4+ ¢" & 3Z
need to vanish if the center symmetry is not broken.

2. Two-point function

For the two-point function, without loss of generality,18
we can consider (A;A;") and then

0=(AFAS)
= (AA]) — (ALAD) + i[{ARAD) + (AAD)].  (86)

Taking the real and imaginary parts of this identity, we find
that both

(AJAD) = (AJAS) =0 (87)
and
(A;Aff) + (AEAE) =0, (88)

if center symmetry is not broken.

In fact, the second identity is always fulfilled due to the
constraints from charge conjugation invariance; see Sec. V.
On the other hand, the first combination has no reason to
remain 0 if center symmetry is broken. One could invoke
color rotation invariance, but the fact that the gauge choice
introduces a preferred color direction along A;/2 prevents

®Indeed, (A;A;) is nothing but the complex conjugate of
(AFAS).
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us from doing so. We deduce that this second combination
can be used as an (infinite collection of) order parameter(s)
for center symmetry. We have tested this hypothesis in
Ref. [35] for the case of the chromoelectric component of
the propagator in the zero-frequency limit. We now see that
this should apply to the chromomagnetic component as
well and for any value of the external momentum. This will
be studied in a future work.
In the charged sector, we find

(AiPAT) = 27T (AR AL
T A AL, (89)
that is
Gt ™ (x = y) = T G T (x - y)
= TG (=) (90)

In Fourier space, this means that G222 (Q) is related

o G2 () and G&'"(Q) by a mere shift of the
external frequency by 2zT. With our convention 9, = —iQ,,
for the Fourier transform, this gives

ZLZ(‘“IZ)(Q) _ ﬂis(—ay)(Q +2”TN)

= G5 (Q + 22TN), (91)

with N = (1,0). Any violation of these identities signals a
breaking of center symmetry On the other hand, the fact

that G2 and G5’ agree with each other is a
consequence of charge conjugation invariance, as we have
seen in Sec. V.

3. Three-point function

Consider first the case where all the external legs are
in the neutral sector. Without loss of generality, we can
consider (A,fA; A7) as the other cases are obtained from
permutations or complex conjugation. We then find
0=(AfASA7)

= (AJAJAD) — (ALADAT) + (AQATAD) + (ALADAD)

+il(AZADAD) — (AGASAD) + (AGADAT) + (ARATAT)].

(92)
Taking the real and imaginary parts this gives
0=(AGADA}) — (AADAD) + (AJADAD) + (AR ADAD) - (93)
and
0= (AJAJAD) — (AJADAD) + (ARADAD) + (AJADA) . (94)

Writing similar formulas for permutations of (x,y, z) and
(u,v,p), we find that these relations are equivalent to

(AGADAD) = —(ALAVAT)

—(ARAZA7)
—(AJAZAD), (95)
and
(ARAVAD) = —(ARADAD)

—(AAZA7)
—<A§A,§A2). (96)
A priori each of these identities could be used as a probe for
the deconfinement transition. However, the second set is
always (trivially) fulfilled for our particular choice of
background due to charge conjugation invariance.

Consider now a three-point function involving charged
modes. Let us first consider the correlators (A%A;*A3) and
(A2A;“A%) which we combine into (A%A;*A5). We find

(AGRATRAT) = 2T HETADATS AZY(97)
<AZZ3A;”23AZ> _ e_l2” = "+’7”6<A212A;a12A;>, (98)
<AZ31A;a31AZ> — €+i27”6<A223A;a23A;>’ (99)

which can be interpreted as two independent equations
giving two correlation functions in terms of the third one.
Equivalently, this rewrites as

(APATAS) = — % e (AR AT AB)

- ‘f TP ADR AT AS),(100)
(A1 AT A3) = —%e-ﬂ” “(ARRAT A3

+ ? eI AD AT A, (101)
(AIP A AS) = — % T (AR AT AS)

n g TP A AT AZ),  (102)

and

(AT AY) = =T AT

-~ ‘f TP A AT AZ). (103)
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Upon using charge conjugation invariance, the only non-
trivial information that arises from center symmetry is

_ 1 _yom _
(ApP A AD) = —Ee_lz”T(AZ‘zAV“‘ZA?,) (104)
and
3 4 —03 \/§ —i2r, a —a
(A" Ay ~A§>:7e TT(ARRATASY,  (105)

since the other correlators are fixed through Eqgs. (59)-(61).
Finally we find the constraint

<AZ]2A523A231> _ ei2zr1“/7b <AZ31AZ]2A223>. (106)

B. General case

The argument in the previous section is in fact more
general.

The symmetry will always connect the correlators
<(+)mn(lz)pq<23)kf<31)ij> and <(+>mn<23)pq(31)kt’ X
(12),;). More precisely, we find

<(+)mn (23)pq<31)kf<12)1]>

_ eth/ii+iT”(m_")g<(—|—)m’1 (12)1711 (23>kf(31)ij>’
(107)

where 7, (respectively 7,) is the sum of the time arguments
associated to the field along the color ay, (resp. (—ay,))
direction, 7, (resp. 7,) is the sum of the time arguments
associated to the field along the color ay3 (resp. (—ay3))
direction, and 7; (resp. 7;) is the sum of the time arguments
associated to the field along the color az; (resp. (—as;))
direction.

VIII. SUN) CASE

Let us now see how the previous considerations extend
to the SU(N) case.

A. Weyl chambers

Recall that the Weyl chambers appear as the result of the
tiling of the Cartan subalgebra by the network of hyper-
planes orthogonal to the roots and displaced from the origin
by any multiple of 2z times the corresponding root; see
Sec. IV B. To construct the Weyl chambers more explicitly,
one can proceed as follows.

First, one selects N — 1 out of the N defining weights.
We denote them as py, ..., py_; Mltis easily seen that they

Y This labeling does not need to be the particular one chosen in
Eq. (A2).

form a basis [48]. Next, denoting the remaining weight as
PN = —pP1 — - — Pn—1, We particularize N — 1 roots as

aj=pj—py. j=1..,N-1, (108)
which allow one to rewrite any other root as a linear
combination with integer coefficients:

Xjk = Pj — Pk

=Pj=PN T PN =Pk = X~ O, (109)
with j, k # N. The reason for particularizing the roots a; is
that it is convenient to first determine the regions delimited
by the hyperplanes orthogonal to the a; and then to
determine how these regions are further subdivided by
the hyperplanes orthogonal to the other roots.

Let us now take a point r = #/#/ in the Cartan sub-
algebra. It lies in the hyperplane orthogonal to «; displaced
from the origin by 2za;n if and only if r - a; = 2zn (recall
that the roots are unit length vectors). To make the most of
this condition, it is convenient to decompose r along the

basis formed by the vectors 4zp, ..., 4mpN_;:
N-1
r=4zY  xpy (110)
=1
Then,
N-1
rea; = 47:Zxkpk “aj
k=1
N-1
=d4n ) xupp - (pj—pn) = 27x;,  (111)
k=1

and, thus, the considered hyperplane corresponds to the
equation x; = n. This, in turn, shows that the regions
delimited by the hyperplanes associated to the a; are the
regions delimited by the lattice generated by vectors
4rp,, ..., 4npy_;. In what follows, it will be sufficient to
consider the parallelepiped defined by these vectors,
corresponding to x; € [0, 1] in Eq. (110).

Let us now see how the remaining hyperplanes further
subdivide this parallelepiped. Consider a hyperplane
orthogonal to aj and displaced by a multiple n of 2z
times this root. That r belongs to that hyperplane means
again that r - @, = 2zn. However, we now have

reay = 2x(x; — xi), (112)
and then, the equation of the hyperplane is x; — x; = n.
Since x;,x; €[0,1], the only hyperplanes that split the
parallelepiped into nontrivial regions correspond to n = 0,
that is x; = x;. We deduce that one possible Weyl chamber
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in the considered parallelepiped is the one defined by the
equations 0 < x; < xy < --- < xy_; < 1. The other Weyl
chambers in that same parallelepiped correspond to
0 < x5(1) < X(2) <+ < Xg(n—1) < | where o is any per-
mutation of 1, ..., N — 1. This also implies that the paral-
lelepiped is subdivided into (N — 1)! Weyl chambers.
These Weyl chambers can be given yet another useful
characterization in terms of the defining weights. Let us
consider for instance the Weyl chamber 0 < x; <
Xy < -+ <xy_1 <1, and let us define the variables
VI=X, Y2=X—X|, ..., Yy-] =Xy-j—Xy—p and
yv =1—xy_;. It is easily seen that when the x; span
the considered Weyl chamber, the only constraints on the y,
are y; €[0,1] and Y% | y; = 1. Moreover, one can easily

retrieve the x; from the y; as x;, = y; + -+ + y;. We can
then write
N-1 N-1
xpe =) i+ yipk
k=1 k=1
N-1
=D wlpyor++p). (113

ol
Il

1

It follows that the considered Weyl chamber is the convex
hull of the points py_i, py_1 + Pn=2> ---» Pn—1 + -+ P1
and 0. Since we could have labeled the weights as we
wanted, the general rule is that, for any choice p, ...
of N — 1 weights, the convex hull of ; = py, 17, = p; + po,

N1 =pr+cc+pyo and 0=pp+ -+ py =ny
defines one Weyl chamber attached to the origin. The
other Weyl chambers attached to the origin correspond to
the convex hull of 7, = p,(1), 2 = Po(1) + Po2)s - Nno1 =
Po(1) T+ + pev—1) and O, with ¢ being any permutation
of 1,....N—1.

s PN—-1

B. Confining configurations

The previous characterization of the Weyl chambers
attached to the origin is quite useful. In particular, it can be
used to find symmetry invariant points within the Weyl
chamber. Let us first decompose an arbitrary element of the

Cartan subalgebra along the basis 4zn, ..., 47ny_;:
N-1
r=4r> (114)
k=1

Since 77y = 0, we can extend this decomposition into a
decomposition along an affine basis

N
r=4r Z 2k
k=1

with z; +--- 4+ zy = 1. The considered Weyl chamber
corresponds to the extra constraints z; € [0, 1]. Its vertices

(115)

47, correspond to those points with one of the coordinates
z; equal to 1 and the rest equal to 0.

Let us now associate to each value of r, the “classical”
Polyakov loop:

1 0 1 .
£(r) = tre™ :N;e Pi (116)
Its value at the vertices of the Weyl chamber is
£(4mny) = Z HmPy (117)
Now
me-p=(pr+-+p) Py
Ok—-h) k
i L7 S 118
2 2N (118)
and thus
1 & 2
£(4mny) = Z = ¢k, (119)

h:l

where we have used that the term with the ® function in
Eq. (118) does not contribute to the exponential in
Eq. (116). We have thus found that the value of the
classical Polyakov loop at the vertex 4z, is nothing but
the kth center element of SU(N).

Consider now a center transformation with associated
center element ¢’>”/V. Since the Polyakov loop is multi-
plied by this center element, we deduce that the vertices
of the Weyl chamber are transformed as 4z, — 4zn,,
4rn, — 4nns, ..., dany_y = dany =0 and 4dany =
0 — 4zn,. From the point of view of a passive trans-
formation, this means that the coordinates z; in Eq. (115)
are transformed as z; = zy, 22 = 215 ..o Iy = Iy1-
Then, the only invariant points are those such that
7y =2y = ... = zy and, because z; + -+ zy = 1, this
common coordinate needs to be 1/N. It follows that the
center-symmetric point in the considered Weyl chamber is

47/721\[:
re = —7 Nk
Nk:l

4r
= Vo1 + (N =1)py + -+ py)
47
=y (N=Dpr +(N=2)pp + -+ pya). - (120)
where we have used that p; + -+ py = 0.

We can similarly consider the case of charge conjugation
which transforms the Polyakov loop ¢ associated to a
particle into the Polyakov loop £* of the corresponding
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antiparticle. We deduce that, under charge conjugation, a
vertex 4z, of associated Polyakov loop e=>"/N is trans-
formed into the vertex of associated Polyakov loop
e27KIN — o=22(N=K)/N ' that is 4zny_,. From the point of
view of a passive transformation, this means that the
coordinates z; in Eq. (115) are transformed as
Zx — Zn—k- We then need to distinguish two cases depend-
ing on whether or not there exists a k such that k = N — &,
that is depending on whether N is even or odd.

If N is odd, all coordinates are transformed into different
ONes: zj <> Zy_1» 22 <> IN-2> --- Z(N=1)/2 <> Z(N+1)/2- The
charge-invariant states correspond to those elements (115)
such that z; = zy_1, 22 = Zy-2, ---» Z(N=1)/2 = Z(N+1)/2-
This represents an affine space of dimension
N—-1-(N-1)/2=(N-=1)/2. In the SU@3), case this
is a line, as we have recalled above.

If N is even, all coordinates are transformed into different
ones, except for zy,, which is mapped into itself:
21 <> 2AN-1> 227 2N=25 -+ TN/2-1 <7 2N/2+1> ANJ2 <> 2N/2-
The charge-invariant states correspond to those elements
(115)such that z; = zy_1, 20 = Zy_2s ---» IN/2-1 = ZN/2+1>
the value of zy,, being unconstrained. This represents an
affine space of dimension N —1—(N/2—-1)=N/2. In
the SU(2) case, this is again a line, corresponding to the
whole Weyl chamber as we have already seen above. In the
SU(4) case, this would correspond to a plane; see for
instance [36].

C. Symmetry constraints

The transformations of the Weyl chamber into itself
associated to center transformations can be seen as result-
ing from the application of a winding transformation
V_,(z) that translates the Weyl chamber into a different
one by a vector —4zp, followed by a sequence of Weyl
transformations which correspond to reflections with
respect to the facets of the Weyl chamber, in order to
bring the Weyl chamber back to its original position.*

In order to find the appropriate sequence of reflections,
let us consider the Weyl chamber defined by the vertices

/)1,p1+p2,...,,01+/)2+"'+,0N=0. (121)
Under the winding transformation V, (7) it becomes the
Weyl chamber of vertices

P2s P2+ P3Pyt p3 oy +p =00 (122)
To continue, let us first remark that the action of the
reflection with respect to the hyperplane orthogonal to a

*The same considerations apply to charge conjugation upon
replacing the winding transformation by A, — —A}, and adapting
the sequence of Weyl transformations.

given root aj on the collections of weights p, is only
to flip p; and p;. This can be easily checked using the
property (A5).*" It follows that, by successively applying
Wais Wayss "'Wa(N—l)N’ one transforms the Weyl chamber

(121) into the Weyl chamber (122). We have thus found that

Ue =W Wau Wa, Vo, (). (123)

A(N-1

This can be rewritten in an alternative form using the
crossing rules given in Appendix C.3 and by noticing that
the action of the reflection with respect to the hyperplane
orthogonal to a given root &, on the collections of roots a,
is to flip aj; and oy, a;r and o, as well as a;;, and @y;.
This can again be easily checked using the property (AS).
We then find

vV_, (7).

Ue=Wo Wy, W, (124)

A(N-1)N

In this form this is a generalization of Egs. (45) and (46).
In the SU(3) case, the comparison actually requires
exchanging the labels 2 and 3 because, with the particular
labeling (A2), the Weyl chamber that we considered in the
main text is p;, p; +p3, p1 +p3 + po. There are many
other forms of U . obtained by exchanging some of the W’s.
In what follows, we denote the general form as
Ue=Wg - Wo V_, (7).

The combination of the above Weyl transformations
results in an isometry of the Weyl chamber into itself,
centered around the confining configuration of the Weyl
chamber. We note that since V_,(7) acts like a translation
for backgrounds of the form (21), the combined action of
the Weyl transformations only corresponds to the same
isometry centered about the origin of the algebra. We
denote this isometry by

IT=TR

Ry, (125)

ay_ " 1"
We now would like to analyze the constraints of the
symmetry U, on the correlation functions.

Before doing so, it will be convenient to rewrite the
action (36) and (37) of a Weyl transformation on the various

generators of the algebra in a more compact form. To this

purpose, recall that another notation for #/ is " where the
use of 0 as a label emphasizes the fact that the generators #/
are vanishing-charge states, while the label (j) is used to
distinguish these various degenerate states. Now, 0U)

21Using this remark, one can also easily deduce that the facets
of the considered Weyl chamber lie either within the hyperplanes
orthogonal t0 @11y = pix — Pr+1, Withk =1,..., N — 1, that go
through the origin, or within the hyperplane orthogonal to ay;
displaced by 2zay; with respect to the origin.
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should be understood as the zero vector associated with the
direction j in the commuting subalgebra. We can more
generally associate a zero to an arbitrary direction u/.

To this purpose, we define °’ = u/#/. Then, we notice that

W, Wi = wth — 2aktkad

= (= 2(u- @)t = O (126)
We can now combine Egs. (36) and (37) into the single
formula

W W = (Rex, (127)
where R, -k =k —2(k-a)a denotes the geometrical
reflection of the vector x with respect to an hyperplane
orthogonal to a. In particular, under this reflection, a zero
0% is mapped onto another zero 0(*). The nuance,
however, is that it is not the same zero since v = R, - u.
Similarly, we can define the action of the isometry (125) on

any type of label x, denoted Z -k in what follows. It is
obtained by repeated action of the R, , and we note in

particular that Z - 0) = (2w,

Returning to the symmetry constraints associated to the
transformation U, let us evaluate U .t*U L Upon repeated
use of Eq. (127), it is found that

U MU = o™ Ix, (128)
In terms of the gauge field, this corresponds to the
transformation
—idxip-(T-1. ~1,
SAS — T IR GAT (129)
Since (129) is a symmetry within the center-symmetric
Landau gauge, we obtain the following constraint on the
(connected) correlation functions in this gauge:

<AK' - A;Z> _ e—i4nzi:1%p.(zfl-;<i)<API£1—1.KI 3 .A;Iln—l.x,,>‘

Hi

(130)

This formula compares well with those obtained in the
SU(2) and SU(3) case. We stress that

0w 1 kA0Y) ok 0u)
A =T uAy =uwI A,

u (131)

and thus, while the charged labels transform according to
Z~', the neutral components of the field transform accord-
ing to Z. This is also what we observe in the above
examples; see for instance Egs. (97)-(99).

IX. CONCLUSIONS

We have performed a systematic study of the center-
symmetry constraints on the correlation functions

computed within the center-symmetric Landau gauge, a
class of background Landau gauges where the background
is chosen to be center symmetric in a sense that we have
precisely defined. We have restricted our analysis to
backgrounds that comply with other symmetries such as
charge conjugation and invariance under particular color
rotations, whose consequences we have also thoroughly
investigated. As a result of our analysis, we have identified
new signatures for the deconfinement transition from the
correlation functions in those gauges, extending the results
obtained in Ref. [35].

The analysis made in that reference was restricted to
the (color) neutral, chromoelectric sector because this is
where the transition usually occurs. In the SU(2) case,
we found a sharp signature of the transition signaled
by a divergence of the zero-momentum propagator.
However, this does not really qualify as an order
parameter since there exists no phase over which this
quantity is constant. The present analysis shows that a
more standard SU(2) order parameter can be constructed
from the (color) charged components of the propagator,
both in the chromoelectric and chromomagnetic sectors;
see Eq. (76). Other order parameters can be constructed
from the three-point function, both in the purely neutral
sector (77), or in a sector mixing neutral and charged
components (79). This can also be generalized to higher
order correlators (81).

Similar conclusions hold for the SU(3) gauge group.
In that case, we had already identified an order parameter
from the chromoelectric propagator in the neutral sector.
The present analysis extends this conclusion to the chro-
momagnetic sector [see Eq. (87)], while revealing various
other order parameters from the charged sector; see
Eq. (91). The three-point function leads to four different
order parameters, Egs. (95), (104), (105) and (106). Finally,
we have extended our analysis to the SU(N) case.

All these results confirm that the center-symmetric
Landau gauge put forward in Ref. [33] is a good gauge
for the study of the confinement-deconfinement transition
within functional approaches. Indeed, in this gauge, the
transition is encoded directly within the building blocks
that sustain these approaches, that is the correlation
functions for the primary fields, and does not require the
computation of more involved order parameters such as the
Polyakov loop.

In a work in preparation, we shall confront these
expectations to one-loop calculations within the Curci-
Ferrari model [49], a model accounting for some of the
low energy aspects of the continuum gauge-fixing pro-
cedure in (background) Landau gauges [50]. Similar
calculations for the gluon three-point function are also
in progress. Finally, it would be interesting to see whether
similar ideas extend to the lattice implementation of
center-symmetric gauges. Work in this direction is also
in progress.
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APPENDIX A: ROOTS AND WEIGHTS OF SU(N)
1. Weights

As recalled in the main text, the (defining) weights occur
when diagonalizing the defining action of the commuting
generators #/ of the algebra:

Ulp) = pllp). (A1)

In the SU(N) case, there are N weights p; of components

. I, ifk<y
pp=————=xq—J, ifk=j+1, (A2)
2j(j+1) . :
0, ifk>j+1
where 1 < j < N — 1. It follows in particular that
1 1
C=prpr==1—-—], A3
Pr = Pk " Pk 2 < N) (A3)
for any k, and
__ L (A4)
Pk Pr = N’
for any k and k' # k. In other words
S 1
P = -—. AS
Pk " Pk 2 TN (AS)

From these properties, one can show that any strict subset
of defining weights is a linearly independent set. The
complete set is not a linearly independent set because it is
constrained by the relation

M=

Pk = O’ (A6)

k=1

which is in fact the only linear constraint among the
defining weights.

2. Roots

The roots occur when diagonalizing the adjoint action of
the commuting generators # of the algebra
[, 1%] = a1, (A7)
to be added to the relations [/, #'] = 0. To each root a is
associated another root —a. In fact, quite generally, the *’s
can be chosen such that (#*)" == and [t%, %] = &/¥/,
and of course [1*, *] = 0. For f # a and f # —a, we have
instead (1%, /] = N%1**F, where N =0 if a + 8 is not
a root.

The values of N% when a + f is a root depend on the
group. For SUN), N* = 6% /\/2, where the sign 6% is
determined in the next subsection.

3. Relation between roots and weights

The roots are not independent of the weights. In fact,
they correspond to all possible differences of distinct
weights. This means that any root can be written as
a=p,—Pg and it is not difficult to argue that this
decomposition is unique. In particular, given that —a is
a root if a is a root, we must have p, = p_,.

Also, given two roots a and f# # *a, the only possibility
for a+ f to be a root is that py = p, or p, = ps. This
discussion is actually connected with the value of &%
alluded to in the previous subsection since in the first case
0% = +1 whereas in the second case it equals 6% = —1. It
will be convenient to set 6% equal to 0 in any other case.
It can be checked that this is summarized in the following
expression:

Gaﬁ = 2(pa : ﬁ/i - pa 'p/)')v (AS)

from which we can read off the following identities:

Gaﬂ — _O.ﬂa’
o—(h) — _ b,

oD atp) — gap

(A9)

From the relation between weights and roots, one can
also deduce the properties (33)—(34). Another important
consequence which we shall exploit later on is that, for
SU(N), @ + nf} cannot be a root if |n| > 1.

APPENDIX B: PRELIMINARY CALCULATIONS
Take a root @ and a complex number z and consider

the transformation

Ua(Z) = ei(ztﬂ+z*z‘a>. (Bl)

By construction U,(z) = U_,(z*). Moreover, using that
(1) = 12, we find Ul(z) = Uy(—=z) = U_,(=2"). Let us
now investigate how U,(z) acts on the algebra.

1. Action on the Cartan subalgebra

Consider first the action of U,(z) on a generator t/

of the Cartan subalgebra. Using eXYe X = Xy, we
can write
Ua(2)UL(z) = eliee =
Sl " )
— Z_' [Zla + Z*[—aJn[_/’ (Bz)

n=0 """
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where [X,]"Y stands for the nested commutator ‘o A2
(X, [X,[X,....,[X,Y]]]] of order n. The first commutators [21 + 277 Ya(2)] = 2J2f°Xe. (B6)
ive [z1% + 277, )% = ¢/ | ,
give [z1* + z*17%,] as well as from which we deduce that
2%+ 27V = ol (2 — 7%, B3
[ ] ( ) (B3) (2% 4+ 279, 1%1Y . (2) = (2|z]*)PT'X,,  (B7)
(2% + 277, 20 = 2|z*d/ (a - 1), (B4)
217+ 270 Y, (2) = (2]2P)PYe(z).  (BY)
where we introduced the notation « - t = a*r*. Thus, aside
from the n = 0 term in Eq. (B2), which equals #/, the series ~ for any p > 0, or equivalently
oscillates between the two operators X,=a-t and
Y,(z) = z*t™* — z¢*. It is then convenient to rewrite the [z1% + 7172, 127X, = (2|z]*)P X, (B9)
above commutators as (we contract them by o/ and use
that ¢* = 1) [zt + 2 PPHIX, = (2]2P)PYe(2).  (B1O)
21" + 2177, Xo] = Yo(2). (B5)  for p > 0. Using Egs. (B7)~(B8), we find that
|
o =" &
U ()P Ul(z) = ¥ + Z; [zt + " =¥ 4o 2; [2t* + 207, ] 1Y 4 (2)
n= n=
e e S e
=t+ay ——[u"+7N]PY () + )y —— [+ P (2)
2o(2p+ 1)! « 2 (2p+2)! @
© j2p
= ﬂ+aJY,,(z)Z (2z)2)? + @/ X, Z (@), (B11)
= (2p )
After resumming the series, we find eventually
- S ;sin(v2[z
U,(2)HU(z) = ¢ 4 ad (cos(V2]z]) — 1)X, \(/\{|—|| D Y, (2). (B12)
2|z

2. Action outside the Cartan subalgebra
We now would like to study the action of U,(z) outside

|
nested commutators with n > 1 vanish, and we get

. T _
the Cartan subalgebra, that is compute Uu(2)PUs(2) = 7. (B14)
2 " b. Next, we consider the case where f = a or ff = —a.
- o %= 1n4f d
Ua(2)?! U" Zon. [zt + 27 (BI3) Consider for instance f = a. Then
n=
We need to consider various cases. [21% + 777, 11" = =7 X,,. (B15)
a. The simplest case is when f is equal neither to @ nor to
—a, and neither a4 # nor —a + f are roots. Then, all| Using Egs. (B9)—(B10), we then arrive at
s o in 0 l'n .
a a a —a n %= 1n—
(2)rPUL(z) =1 +n:1”_[Zt + 7't Z:n—zfurzt X,
1 i i [ ]Zp . 22 [ 1 1 ]2 +1
=% — Z* e Zl{l + Z*t—a’ Xz _ Z* e Zt( + Z*t—( , p Xa
= 2p+1)! ‘ = (2p+2)!
) l'2p+1 © 2P+2 5
=1"-7'X ——(2]z)*)? - Y P, B16
za;(szr)(IZI za(z;2+2 2/zP?) (B16)
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After resumming the series, we arrive eventually at

Un(rUL(e) = ¢ = 5 (cos(1zV2) = ) Y4)

sin(|z[v2)

i T

272 (B17)

To obtain the action on 12, we use U,(z)t*Uk(z) =
U_,(z)t?Uk(z*), and we arrive at

2
i 2
L psin(zv2)

Zv2 "

where we have used that X, =—-X_, and Y, (z) ==Y _,(z").
c. Finally, when S is equal neither to a nor to —a but
a+ f is a root, we have

U (2)Ul(z) = -+ (cos([2|V3) — l)éYa(z)

(B18)

6{1/3

[Zta + Z*l‘_a,}ltﬂ _ Zla+ﬂ,

(B19)

2B =) (a+) y
e = |z|2§, (B20)

[Zla + z*t‘“,}zt/’ —
where we have used that 6(-®(@+f) = 5% More generally

2
[zt + 20 PP = o L Y

(\/§)2p+1

ﬂ # (B22)
(V2pr

(B21)

[Zta + Z*l_a,]ZPtﬁ —

[Zla +Z*l_a,]2plﬂ
2p)!
p=0(

N
P ad 2p+1tﬂ
+Z(2p+l)![z +z %]

o) i2p+] Z|Z|2p

t(lJr/}.
S (2p+1)!(V2)r+!

(B23)

After resumming the series, we eventually arrive at

U, (2)PUL(z) = cos (|z|/V/2)1 + iaaﬂésin(|z|/\/§)ta+ﬂ,

(B24)

if @ 4 f is a root. To obtain the corresponding formula in
the case where —a + f3 is a root, we write U, (z)??Ul(z) =
U_,(z)PU" 4(z*) and thus

U, (2)?PU(z)

=cos (|z]/V2)¢ + ia(‘“)ﬂ%sin (lz]/V2)retf.  (B25)

APPENDIX C: WEYL TRANSFORMATIONS

Weyl transformations correspond to particular cases
of U,(z) obtained with the choice |z| = z/v/2, that is
z = /2. We shall define®

U,(0) = U, (%eW) —e

By definition, we have that U,(6) = U,(0 +2x) and
Uy(=0) = U_,(6). Moreover Uj(0) = U,(0 + x).

20 _io —
tiz(e’ 1“+e "t ")‘

S

(C1)

1. Action on the algebra
From Eq. (B12), we find that the action of U,(8) on the
Cartan subalgebra is
U (0)HULO) =t/ =2/ (a - 1), (C2)
which does not depend on @ and corresponds to a reflection
symmetry with respect to a hyperplane orthogonal to a. The
action on the rest of the algebra can be read off from
Egs. (B14), (B17), (B18), (B24) and (B25). When f is
different from a or —a and when neither a + f nor —a +
are roots, we have

U (0)PUL0) = 7. (C3)

When f is distinct from a or —a but @ + f is a root, then

U, (0)PUL(0) = ic® e®1tF (C4)
whereas if —a 4+ f is a root
Ul (0)PUL(0) = ict-e=0ratP, (Cs)
Finally,
U (0)1°UL(0) = e 201, (C6)
and
U (0)r2UL(0) = 2?12, (C7)

There is a slight abuse of notation, but it should be harmless.
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2. Compact rewriting

Interestingly, Eqgs. (C3)—(C7) can be summarized into a
single formula. First of all, owing to our choice of a
vanishing 6% when a + f3is not a root, as well as Egs. (38),
we can write™

Ul (0)PUL(0) = o507 e p=2b)a . (C8)

where ¢y = 0 if a + f is aroot, oy = 6" if —a +
is aroot, and ¢, = 0 otherwise, and w3 = lif a + fis a
100t, Wop = —1if —a+ fis a 100t Wy = =2, Wy(—q) = 2
and y,5 = 0 otherwise.

The three possible cases for ¢,; can be summarized as
bap = 0 + o=9” and using Eq. (A8), this becomes

bap = =2(pa + Pa) - P- (©9)
Similarly, it can be checked that
Wap = =20 = ~2(pg — Pa) - P- (C10)
This implies that Eq. (C8) can be rewritten as
W AW = =2, (C11)
upon defining
W, = U, (0)eimutm)i+200p=p)t (C12)

while the action on the #’s remains the same as before:

W Wh =t/ = 2 (a - 1). (C13)
We stress that, so defined, W, does not depend on 6. This is
because, from its action on the algebra, one can reconstruct
W, modulo an element of the center of the group. But the
action on the algebra does not depend on @ and neither can
the center element since the center group is discrete. From
the 0 independence of W, and Eq. (C12), we also deduce

ZThe appearance of #~2F®)a on the rhs of Eq. (C8) is not a
surprise. Indeed, let us evaluate [¢/,U,(0)#U}(6)]. Using
Egs. (24) and (36), we can write

[, Ua(0)PUi(0)] = Ua(0)[Ua(0)F Uq(0), #1UL(0)
= U, (0)(6™ — 2ada*)[*, P|UL(0)
= (/=28 @) )U(0)P UG(0).
Since U,(0)’UL(0) is nonzero and does not belong to the

commuting part of the algebra, we deduce first, that f — 2(f - a)a
is a root, and second, that

Ua (6) l'[; UZ; (9) = Cuﬂ (6) tﬁ—z(/i(z)a.

that U,(6)e™°*" does not depend on 6, or in other words,
that the 6 dependence of U,(6) is known explicitly:

Uy(0) = Upy(6 = 0)e=2027 (C14)
Another way of writing the same result is
Ua(6))eP1%" = U,y (6r)e" (C15)
or, using U§(0) = U,(0 — 7),
Ug(01)Uy(6,) = e2rttr=02)a’t’, (C16)
In particular
U%(0) = eV, (C17)

which is different from 1 in general. On the other hand, it
can be shown that U4(#) = ¢** = 1. Indeed, using a
basis |p) that diagonalizes the defining action of the #/’s,
see Eq. (30), we have

ei47za/z/|p> — ei47m-/)|p>, (C18)

with a-pe{-1/2,0,1/2}; see Eq. (33).

3. Crossing rules

Now that we know that the W, are a convenient way to
define the Weyl transformations let us determine some
useful “crossing rules” for the latter. To this purpose, let us

evaluate WaWﬂW(T,. ‘We have

WaW/;Wl = Waei%(’ﬁ“_ﬂ)ei”(ﬂfﬁf’é)ﬂ WJ;

— Waei%(tul_ﬂ)WZ,Waei”(”é+ﬁ£)’jW;
_ eiﬁwa(zﬂﬂ*ﬂ)wgem(pwp;;)waszg' (C19)
Using Eqgs. (36)—(37), this becomes
WaW/jWIC _ ei%(t/}’z(/i'”)“+t’/}+2</}"’)”)ei]r(/);iJr/_);;—Z(/)/;Jr[_)/;)~mzj)tj’
(C20)

which starts looking like Wjs_s(54),- To prove that it is
indeed equal to Wy_»(5.4)q» We need to show that

Pp— 2(/)ﬁ ‘a)a = Pp-2(p-a)a (C21)

Pp—2(Pp - @) = Pp2(paa- (C22)
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This seems plausible since

B=2(B-a)a=ps—ps—2(ps—pp)-aa

=(pp—2(pp-a)a) = (ps—2(pg-a)a),  (C23)

but we still need to show that the two expressions between
brackets in the last line correspond to defining weights.
This is actually a well-known result: the set of weights is
invariant under Weyl transformations. This is seen by

evaluating W#/W,|p). One has

WEtW,|p) = (¢ - 2(a4)a ) )

= (p! =2(p- a)a)|p) (C24)
and thus
PW,lp) = (¢ = 2(a* 1)) |p)
=(p/ =2(p-a)ad)W,lp).  (C25)

Since W, is invertible, W,|p) is nonzero, and therefore
p—2(p - a)a is one of the defining weights.
We have thus shown that

WaWﬂWl - Wﬂ—Z(ﬂ-a)a' (C26)

Another way of recalling this rule is in the form of
crossing rules

W(IW/)’ = W/J—Z(/)’-(l)aWa = WﬁW(l—Z((l~/})[)" (C27)

In words, W, can cross Wy, but in doing so, it replaces f§ by
B —2(f - a)a in its wake.
APPENDIX D: WINDING TRANSFORMATIONS

Given a fundamental weight p, we define

V,(7) = i, (D1)
known as a winding transformation. These transformations
correspond to nontrivial center transformations. They act
on the algebra as

V,(0)tVi(z) =, (D2)

V,(0)1Vi(z) = e, (D3)

It is useful to derive the relation between these trans-
formations and the previously defined Weyl transforma-
tions. For instance

T _ iZdmp it vt
WV, Wi = W,eBmil wi
_ eiﬁ4np_,waﬂwj;
_ eiﬁ4ﬂpj(r-f—2¢1f(a-t))

eiﬁ4ﬂ(p_,—2(p~a)aj)tf 7 (D4)
which rewrites more simply as

WV, Wi = p=2(p-a)a-

Similarly

IZ( 1Y) in(o)+5 V0 11
VW, Vh =V, 3 it i,
(10417 in(pl 45\t
=V,e 1 )VZVpelﬂ(ﬂa+pa)t VZ,,
; oyt i
_ e’JLiV/’U{ +1 r)Vpel,,(/,{lJr/,(fl)‘/p,JV;7

. '/13471/) -a o i/%4lr/7~rz

I —, ; H .
_ T T gl

(D6)

The first factor is nothing but U, (0 = 4zp - az/p). Using
Eq. (C14), we then arrive at

V/) W, V/t =W, V—Z(/)-(l)(l' (D7)

The identities (D5) and (D7) can again be conveniently
recast in the form of crossing rules:

Wan = Vp—2(p~a)aWa’ (DS)
and
V. Wa =WV, 2000 (D9)

Once more, W, can cross V,, but, in doing so, it replaces p
by p —2(p - @)a in its wake.
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