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We consider the creation of kink-antikink pairs of a scalar field ϕ by the scattering of classical wave
packets of a second scalar field ψ when there are no direct interactions between ϕ and ψ . The creation
becomes possible only due to a quantum field that interacts with both ϕ and ψ . We scan parameter space
and find it favorable for kink production when the initial wave packets have large total energy and wide
spatial extent but scatter at low velocities.
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I. INTRODUCTION

One of the most fascinating aspects of quantum field
theory is the existence of nonperturbative topological
structures (solitons) and their interactions with the pertur-
bative excitations (particles) of the model [1–5]. This area
of research has received much attention, but most of it has
been relegated to treating the soliton sector as a fixed static
or dynamical classical background. In any attempt in which
solitons annihilate or are created, one is faced with the
additional conceptual issue that solitons are described in
terms of classical fields while particles are quantum
excitations. A bridge between the soliton and particle
sectors must also bridge between classical and quantum
behavior, unless one can overcome the difficult problem of
treating the soliton as a fully quantum object.
The creation of solitons by the scattering of particles

[6–15] is of particular physical interest. Sphalerons are
classical solutions in the standard model that are inter-
mediate states in baryon-number-violating processes that
are necessary to generate the cosmic matter-antimatter
asymmetry [16,17]. If baryon number violation is to be
experimentally tested in particle accelerators, it will be
necessary to understand the creation of a sphaleron in
particle collisions [18]. The expectation is that the process
will be exponentially suppressed because perturbative
expansions are in powers of the coupling constant, while
the sphaleron and its interactions depend inversely on the
coupling constant. Another process of interest is the
production of magnetic monopoles in proton-proton or
heavy ion scatterings such as at the Large Hadron Collider,

a process that is being searched by the MoEDAL experi-
ment [19–21]. These searches are based on Schwinger pair
production of magnetic monopoles [22,23] in relatively
strong magnetic fields that can be produced as heavy ions
scatter in close proximity [24–26]. The pair production rate
is evaluated using instanton methods. Alternately, monop-
ole creation by the scattering of large classical initial states
of gauge bosons has been considered in Ref. [27].
While the two-particle to soliton-antisoliton process is of

interest because of the way accelerators operate, one can
envision situations where many particles may scatter and
lead to the creation of solitons. This is the case for baryon
number violation at high temperatures such as in cosmol-
ogy. It may be possible that future particle machines may
also involve N particle scattering where N can be large.
Then the initial scattering state may be described classi-
cally, and the final state with solitons may also be
adequately described using classical physics. For example,
we may be interested in the production of magnetic
monopoles in the scattering of intense light. The problem
in this setup is that the classical description of light is given
by Maxwell equations that are linear, and, classically, light
does not interact with light. Colliding beams of intense light
will simply pass through each other in the classical
description. Only when we include quantum effects such
as box diagrams does light interact with light [28–30]. Such
quantum effects need occur only at intermediate stages in
the scattering—the initial and final states can be described
classically.
Guided by these motivations, we have studied the

creation of 1þ 1-dimensional kinks in the scattering of
classical initial states but those that interact with the
classical kink degrees of freedom only by a quantum
“bridge.” Then we have three fields: ϕ the classical field
that has kink configurations, ψ the classical field that
defines the initial scattering state, and ρ the quantum field
that bridges between ϕ and ψ , the two classical fields.
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We will set up the field theory model in more detail in
Sec. II. In Sec. III, we describe the kink solution and its
energy along with the initial conditions for the model. We
describe the numerical method in Sec. IV and present the
parameters that we have used. In Sec. V, we analyze few
typical cases in detail and display the parameter space
suitable for kink production. Finally, we discuss our results
in Sec. VI.

II. MODEL

The Lagrangian for the model we study is

L ¼ 1

2
ð∂μϕÞ2 −

λ

4
ðϕ2 − η2Þ2 þ 1

2
ð∂μψÞ2 −

m2
ψ

2
ψ2

þ 1

2
ð∂μρÞ2 −

1

2
ðm2

ρ þ αϕ2 þ βψ2Þρ2; ð1Þ

and the equations of motion are

□ϕþ λϕðϕ2 − η2Þ þ αρ2ϕ ¼ 0; ð2Þ

□ψ þm2
ψψ þ βρ2ψ ¼ 0; ð3Þ

□ρþ ðm2
ρ þ αϕ2 þ βψ2Þρ ¼ 0: ð4Þ

Ideally, all three fields should be treated in quantum field
theory, but thismay be unnecessary for our purposes.Wewill
treat the incoming field ψ as a classical field. This can be
justified on the grounds that our incoming state has high
occupation number, typically of the order of N ∼ 103.
(Although high occupation number is not sufficient for a
field to behave classically, we will use this criterion as a
guide.) We expect quantum corrections to the initial state to
be suppressed by 1=N. The initial state evolves to excite
quanta of the ρ field. Thus, the occupation number of the ρ
field also grows, and parametrically it should go as β2N,
where β is the coupling constant for the interaction between
ψ and ρ.Wewill take β ¼ 0.5, and so the occupation number
of ρ is of the order of 102. Finally,ϕ is treated classically. The
occupation number forϕ quanta is expected to be of the order
of α2ðβ2NÞ, where α denotes the coupling between ρ and ϕ
and is taken to be 0.5. Thismeans that the occupation number
ofϕ particles is also large, in the 10–100 range, and quantum
corrections to the evolution of ϕ can be expected to be
suppressed by ðα2β2NÞ−1 ∼ 0.1.
The key approximation enters when we include quantum

backreaction on the classical background. Since ρ is a
quantum operator that also appears in the ϕ and ψ classical
equations of motion, we use the semiclassical approxima-
tion to write

□ϕþ λϕðϕ2 − η2Þ þ αhρ2iϕ ¼ 0; ð5Þ

□ψ þm2
ψψ þ βhρ2iψ ¼ 0; ð6Þ

where the expectation of ρ2 is taken in its initial quantum
state. (We work in the Heisenberg representation, in which
operators evolve but the quantum states do not.) The
equation for the quantum operator ρ can be solved, since
the equation is linear in ρ. As discussed in Refs. [31–33],
the solution is obtained using a “classical-quantum corre-
spondence” (CQC) that we now summarize.
Starting with the action for the field ρðt; xÞ,

Sρ ¼
Z

d2x

�
1

2
ð∂μρÞ2 −

1

2
ðm2

ρ þ αϕ2 þ βψ2Þρ2
�
: ð7Þ

This action describes the massive quantum field ρ in the
time-dependent background of ϕðt; xÞ and ψðt; xÞ. We
continue with discretizing the action in space. On a lattice
with N sites with lattice spacing a, for any field f, we
define

fðt; xÞ → fðt; jaÞ ¼ fjðtÞ; ð8Þ

∇2fjðtÞ ¼
1

a2
ðfjþ1ðtÞ − 2fjðtÞ þ fj−1ðtÞÞ; ð9Þ

where j ¼ 1; 2;…; N. The lattice under consideration is
subjected to periodic boundary conditions such that, for any
field fðt; xÞ, fjþNðtÞ ¼ fjðtÞ. The discretized action (7)
reads

Sρ ¼
Z

dt
1

a

�
1

2
ẋT ẋ −

1

2
xTΩ2x

�
; ð10Þ

where x ¼ ðaρ1;…; aρNÞT and Ω2 is an N × N matrix is
given by

Ω2
jk ¼

8>><
>>:

2=a2 þ ðm2
ρ þ αϕ2

j þ βψ2
jÞ j ¼ k;

−1=a2 j ¼ k� 1ðmod NÞ;
0 otherwise:

ð11Þ

The mod N is due to the periodic boundary conditions of
the lattice. The energy of the system given by the action Sρ

as above can be derived as follows:

Hρ ¼
a
2
pTpþ 1

2a
xTΩ2x; ð12Þ

where p ¼ ẋ=a. This expression is precisely the
Hamiltonian of N coupled harmonic oscillators with a
time-dependent spring constant matrix.
The Hamiltonian in (12) can be mapped to a classical

system. The technique is to use the Bogoliubov trans-
formations to map the N coupled quantum harmonic
oscillator problem to an N2 classical harmonic oscillator
problem whose variables are written as an N × N matrix
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ZðtÞ ¼ ½ZjkðtÞ� and the corresponding momentum matrix
PðtÞ ¼ ½PjkðtÞ� ¼ Ż=a [33]. The mapping is given by

x ¼ Z�a0 þ Za†T0 ; ð13Þ

p ¼ P�a0 þ Pa†T0 ; ð14Þ

where a ¼ ða1;…; aNÞT and a† ¼ ða†1;…; a†NÞ are the
ladder operators for each of the N harmonic oscillators
and the subscript “0” represents the operators at the initial
time t0. The quantum field ρðx; tÞ can now be represented
in terms of corresponding expressions of Z and P (or,
equivalently, Ż) using (13) and (14).
The resulting classical system of ZðtÞ has the following

action:

Sc ¼
Z

dt
1

2a
Tr½Ż†Ż − Z†Ω2Z�; ð15Þ

and the equations of motion are

ZþΩ2Z ¼ 0; ð16Þ

which are to be solved with the initial conditions

Z0 ¼ −i
ffiffiffi
a
2

r ffiffiffiffi
Ω

p −1 and Ż0 ¼
ffiffiffi
a
2

r ffiffiffiffi
Ω

p
: ð17Þ

Since the CQC provides an exact correspondence of the
quantum problem into its classical counterpart, from now
on we need only Eq. (16) and initial conditions (17) to fully
understand the time evolution of the quantum field. The
quantum evolution of ρ is then obtained from (13) and (14).
The vacuum expectation value of ρ2 at the spatial point

labeled by i can be written in terms of Z as

hρ2i i ¼
1

a2
XN
j¼1

Z�
ijZij ð18Þ

using (13). Therefore, from (5) and (6), the discretized
equations we would like to solve for ϕ and ψ are

ϕ̈i −∇2ϕi þ λϕiðϕ2
i − η2Þ þ α

a2
XN
j¼1

Z�
ijZijϕi ¼ 0; ð19Þ

ψ̈ i −∇2ψ i þm2
ψψ i þ

β

a2
XN
j¼1

Z�
ijZijψ i ¼ 0; ð20Þ

where we use second-order spatial differences as in (9) to
calculate the Laplacians. The equation for Zij is

Z̈ij þ Ω2
ikZkj ¼ 0: ð21Þ

The system of equations (19)–(21) need to be solved
with suitable boundary conditions that we will discuss
below. Before proceeding to the solution, however, the
issue of renormalization needs to be addressed.
The parameters appearing in the above equations of

motion are bare parameters that will get dressed by
quantum effects. This can also be seen by realizing that
the quantity hρ2i i in (18) diverges as logðNÞ asN → ∞. The
divergence can be absorbed in the mass parameters mϕ and
mψ [34,35]. Equivalently, we can subtract out the fluctua-
tions in the trivial vacuum:

hρ2i i → hρ2i i − hρ2i i0; ð22Þ

where

hρ2i i0 ≡ 1

a2
XN
j¼1

Z�
ijZij

����
0

: ð23Þ

The “0” subscript refers to the trivial vacuum with ϕ ¼ η
and ψ ¼ 0.
The energy in the quantum field ρ can now be written as

Eρ ¼
1

2a
Tr½Ż†Żþ Z†Ω2Z�; ð24Þ

and the discrete energy density

ϵρ;i ¼
1

a2
X
k

�
1

2
jŻijj2 þ

1

4a2
½jZiþ1j −Zijj2

þ jZij −Zi−1jj2� þ
1

2
½m2

ρ þ αϕ2
j þ βψ2

j �jZijj2
�
: ð25Þ

Owing to the last term, this expression also suffers from the
divergence mentioned above. We use the same renormaliz-
ing scheme to remove the lattice dependence and to obtain a
finite expression even as N → ∞:

ϵRρ;i ¼ ϵρ;i −
1

2
½m2

ρ þ αϕ2
i þ βψ2

i �hρ̂2i i0 − ϵρ;ij0; ð26Þ

where the last term is added for the purpose of subtracting
out the zero-point energy. The total energy of ρ is similarly
defined:

ER
ρ ¼ Eρ −

1

2

XN
i¼1

½m2
ρ þ αϕ2

i þ βψ2
i �hρ̂2i i0 − Eρj0: ð27Þ

By adding the energy of the fields ϕ and ψ , the total
conserved energy of the system is

E ¼ Eϕþψ þ ER
ρ ; ð28Þ
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where Eϕþψ is defined as

Eϕþψ ¼
X
i

�
1

2
½ϕ̇2

i þ ϕ02
i þ ψ̇2

i þ ψ 02
i �

þ 1

2
m2

ψψ
2
i þ

λ

4
ðϕ2

i − η2Þ2
�
: ð29Þ

Spatial first derivatives are calculated using central differ-
encing:

f0i ¼
fiþ1 − fi−1

2a
: ð30Þ

To summarize this section, the final equations we wish to
solve are

ϕ̈i −∇2ϕi þ λϕiðϕ2
i − η2Þ

þ α

a2
XN
j¼1

ðZ�
ijZij − Z�

ijZijj0Þϕi ¼ 0; ð31Þ

ψ̈ i −∇2ψ i þm2
ψψ i

þ β

a2
XN
j¼1

ðZ�
ijZij − Z�

ijZijj0Þψ i ¼ 0 ð32Þ

and also Eq. (21) for Z.

III. INITIAL CONDITIONS

We are interested in the creation of Z2 kinks of ϕ due to
collisions of classical wave packets of ψ . The kink
configurations are solutions of the model

Lϕ ¼ 1

2
ð∂μϕÞ2 −

λ

4
ðϕ2 − η2Þ2; ð33Þ

and boosted kinks are given by the solutions

ϕKðt; xÞ ¼ �η tanh

� ffiffiffi
λ

2

r
ηγðx − vtÞ

	
; ð34Þ

where the Lorentz boost factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, the þ sign

denotes a kink, and a − sign denotes an antikink. The
energy of the kink (or antikink) is given by

EK ¼ γ
2

ffiffiffi
2

p

3

ffiffiffi
λ

p
η3: ð35Þ

In the classical scattering of ψ , kinks cannot be created
without the participation of the quantum field ρ, because ϕ
and ψ have no direct coupling. Initially, there are no kinks,
and we take ϕ to be in its vacuum state:

ϕðt ¼ 0; xÞ ¼ η; ϕ̇ðt ¼ 0; xÞ ¼ 0: ð36Þ

Our choice for the initial conditions for ψ contains two
Gaussian wave packets that move toward each other with
velocity v. Then,

ψðt ¼ 0; xÞ ¼ Fðγðxþ x0ÞÞ þ Fðγðx − x0ÞÞ; ð37Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, 2x0 is the initial (t ¼ 0) wave

packet separation, and

FðxÞ ¼ Ae−kx
2

: ð38Þ

We also have

ψ̇ðt ¼ 0; xÞ ¼ γv½F0ðγðxþ x0ÞÞ − F0ðγðx − x0ÞÞ�; ð39Þ

where primes denote derivatives with respect to the
argument.
The quantum field ρ is initially assumed to be in its ground

state in the background of ϕðt ¼ 0; xÞ and ψðt ¼ 0; xÞ. In
terms of Z, this is given by Eq. (17), where the matrix Ω2

0 is
evaluated from (11) using the initial values of ϕ and ψ .
In Fig. 1, we show theϕ and ψ fields and the renormalized

energy density in ρ at the initial time.

IV. NUMERICAL METHOD

There are a large number of parameters that we need to
fix before we can solve the equations. We choose

λ ¼ 1; η ¼ 1; α ¼ 0.5; mρ ¼ 1;

mψ ¼ 1; β ¼ 0.5: ð40Þ

The equations of motion are evolved using the position
Verlet method with lattice spacing a ¼ 0.4 and time step
dt ¼ a=50 on a periodic lattice withN ¼ 1000. The code is
evolved for less than a light-crossing time to prevent

FIG. 1. Initial field configurations for ϕ (blue line) and ψ
(orange line) and initial renormalized energy density of ρ (dashed
purple line).
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interference from excitations that propagate all the way
across the lattice.
There are also several parameters associated with the

initial conditions: x0, A, v, and k. The initial separation of
the Gaussian wave packets is fixed to be 2x0 ¼ 30. This is
large enough that the overlap of the Gaussian wave packets
is minimal for all runs. We scan over A, v, and k in the
following intervals:

A∈ ½7; 16�; v∈ ½0.1; 0.8�; k ¼ 0.03; 0.1; 0.3: ð41Þ

There is some ambiguity in deciding if the scattering has
led to kink-antikink production. The simplest definition is
to identify a zero of ϕ as a kink or an antikink (depending
on the gradient of ϕ at the location of the zero). However,
two zeros representing a kink and an antikink may be very
close to each other, and they may eventually annihilate. A
further refinement of the criterion that we adopt is to require
that the distance between zeros be larger than 4 times the
kink width and should increase with time.

V. RESULTS

In this section, we present our simulation results based
on the methods mentioned above. Initially, we analyze a
few distinct cases as examples for kink creation.
Subsequently, we study the regions within parameter space
that satisfy the conditions necessary for kink formation.
In Fig. 2, we illustrate a clear case of kink production.

The three snapshots of the evolution for v ¼ 0.3 and A ¼
11.0 show the collision of the ψ wave packets and the
creation of a kink-antikink pair that separates out with
velocities �0.68, respectively. Initially, there is some
energy in ρ that propagates together with the incoming
wave packets. After the collision, if kinks are created, they
too carry some ρ energy along with them. In addition, we
observe that there is energy in ρ not directly related to the
interactions with the initial Gaussian wave packets or the

final kinks. This energy is in the form of quantum radiation
and can be seen in Fig. 3(a). The evolution of the total
energy in the various fields is shown in Fig. 3(b).
From Fig. 3(b), we see that the initial energy is ∼500 in

units of
ffiffiffi
λ

p
, whereas the energy of a kink ∼1 from (35) and

that of a kink-antikink pair is ∼2. The collision has,
therefore, converted less than a percent of the initial energy
into solitons; the rest is in radiative modes.
With somewhat different parameters, the evolution can

be quite different, with the production of several kink-
antikink pairs. An example is shown in Fig. 4 for the
parameters v ¼ 0.25 and A ¼ 13.5. Now the evolution
leads to a lot more fluctuations of ϕ, and there are many
zeros of ϕ at the final time. With further evolution, we
expect some of the zeros to annihilate, but by our criteria,
described in Sec. IV, this final state contains five kink-
antikink pairs. Now the energy density in ρ is more spread
out as in Fig. 5(a), and the total energies in the fields show
an interesting crossover in Fig. 5(b), where most of the
energy ends up in the quantum field ρ.
In this case, we start out with a higher initial energy

∼750, but we end up with five kink-antikink pairs with
energy ∼10 which is a higher fraction of the initial energy
than in the case of Fig. 2. However, it is not clear how many
of the five kink-antikink pairs will survive at very late
times. The complexity is shown in Fig. 6, where we plot the
zeros of ϕ as a function of time. In the case of Fig. 2, the
zeros are shown in Fig. 6(a), there is only one kink-antikink
pair, and they are separating with velocity ∼� 0.68. In the
case corresponding to Fig. 4, the plot of zeros of ϕ is shown
in Fig. 6(b). The outermost zeros are moving apart with
∼� 0.78, but the inner ones are slower and some annihi-
lations are very likely.
In order to find initial conditions that are favorable for

the production of kinks, we have evolved the system for the
range of initial conditions given in (41) and checked which
initial conditions lead to kink production. Our results are
shown in Fig. 7 and indicate favorable conditions for kink

FIG. 2. Three snapshots of the time evolution of the fields ϕ and ψ with initial parameters v ¼ 0.3 and A ¼ 11.0. This is a clear case
where a kink-antikink pair is produced.
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production for large A and small v (at least in the k ¼ 0.1,
0.3 cases). However, the results suggest a fractal structure,
and there are lots of holes in the parameter space where
otherwise one may expect kink production. There are also
isolated special places in parameter space where a large
number of kinks are produced.
From Fig. 7, it is clear that choosing wider Gaussian

wave packets (smaller k) is more favorable to kink
production. A first thought is that smaller k might imply
higher initial energy, which would explain the greater rate
of kink production, but that is not necessarily the case,
since the initial energy in ψ can be calculated explicitly in
the limit of large x0 by using (37) and (39) in (29) (see the
Appendix):

Eψðt ¼ 0Þ ¼
ffiffiffi
π

2

r
γA2

�
ð1þ v2Þ

ffiffiffi
k

p
þm2

ψffiffiffi
k

p ð1 − v2Þ
�
: ð42Þ

For fixed v, Eψðt ¼ 0Þ is minimum when

k ¼ k� ¼ m2
ψ

�
1 − v2

1þ v2

	
; ð43Þ

and the energy does not monotonically increase with
decreasing k. While it is true that, for our choice of values
of k and v in (41), the initial energy is higher for smaller
values of k, the energies for k ¼ 0.1 and k ¼ 0.3 and with
v ¼ 0.8 are very close, to within 6%, yet there is much

FIG. 3. (a) Evolution of the energy density ϵρ;i for v ¼ 0.3 and A ¼ 11.0. At the initial time, the quantum fluctuations are affected by
the wave packets of ψ , and there is nonvanishing energy density of ρ within the wave packets. Once kinks are created (t≳ 50), energy in
the quantum fluctuations of ρ is carried by the kink-antikink pair. In addition, ρ particles are radiated. (b) Total energies of the individual
fields over time. For ϕ and ψ , only their kinetic, gradient, and potential terms are included [see (29)]. The suitably renormalized
interaction energy is included in ρ. The final energy in the kink field, ϕ, is Eϕ;final ∼ 21.02, which is about 10 times the energy in the
kink-antikink pair.

FIG. 4. Three snapshots of the time evolution of the fields ϕ and ψ with initial parameters v ¼ 0.25 and A ¼ 13.5. We observe a
somewhat chaotic behavior where there are multiple kink-antikink creations.
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more kink production with k ¼ 0.03 than with k ¼ 0.1.
This suggests that a more spread out wave packet in the
initial conditions is favorable for kink production.
To explore the effect of changing Gaussian width and

wave packet velocity, we have performed several runs in
which the total initial energy in ψ is fixed. We implement
this by choosing

A2 ¼ Eiffiffi
π
2

p
γ½ð1þ v2Þ ffiffiffi

k
p þ m2

ψffiffi
k

p ð1 − v2Þ�
ð44Þ

for some choice of initial energy Ei. We scan over
parameters k and v, adjusting A2 according to (44) so that

the initial energy stays fixed (up to very tiny corrections due
to the quantum fluctuations of ρ and exponentially small
corrections due to the overlap of the two wave packets).
The results are shown in Fig. 8 for fixed initial energy of
250, 400, and 550. The first feature that stands out is that
for fixed Eψ ;0 ¼ 250 there is only a very small area that
yields kink production as seen in Fig. 8(a), which suggests
an energy threshold for kink production for the model.
Figures 8(b) and 8(c) exhibit similar band patterns,
although the location and size of these bands are slightly
different; for example, the gap between the two bright
bands is larger for Eψ ;0 ¼ 400. The plots show the general
trend that higher energy, wider wave packets, and slower

FIG. 5. (a) Space-time plot of energy density ϵρ;i. Imprints of the initial ψ wave packets and resulting kink-antikinks in ϕ are observed.
(b) Energies of individual fields over time. For ϕ and ψ , only kinetic, gradient, and potential terms are included. Interaction energy is
included in ρ with apt renormalization. Eϕ;final ∼ 101.8EK jγ¼1. The parameters are v ¼ 0.25 and A ¼ 13.5.

FIG. 6. The space-time graphs of zeros of ϕ for cases (a) v ¼ 0.3, A ¼ 11.0 and (b) v ¼ 0.25, A ¼ 13.5. Only zeros that are well
separated (four kink widths) and moving away with time from their neighbors are counted as kink-antikinks. These plots also display the
kink-antikink pairs that are created but annihilate during the simulation.

CREATING KINKS WITH QUANTUM MEDIATION PHYS. REV. D 109, 036001 (2024)

036001-7



scattering velocities create favorable conditions for kink
production.

VI. CONCLUSIONS

We have studied the creation of classical kinks by
scattering classical wave packets but where the wave packet
and kink interactions are mediated by a quantum field. This
setup was motivated by the case of monopole production in
light on light scattering, since classical light on light
scattering is trivial and becomes nontrivial only when
quantum effects, such as box diagrams, are included.
However, there are differences between our toy model
and the physical case of magnetic monopole production. In
the latter, light on light scattering would produce heavy
gauge bosons due to quantum interactions, and the heavy
gauge bosons themselves would form the magnetic

monopoles. This is unlike in our toy model, where we
have chosen a classical field, distinct from the quantum
fields, that composes the kinks. Our choice was necessary,
because kinks are conveniently described as classical
configurations, not as a conglomerate of quantum particles.
We have scanned a set of parametrized initial conditions

for successful kink production. Certain trends are clear
within our analysis. The initial conditions that led to kink
production in our simulations all have total energy that is
102–103 times the energy in a kink-antikink pair. However,
the energy per quanta need not be large and is of the order
of mψ as the velocities are only mildly relativistic. In fact,
we found that it is somewhat favorable to choose moderate
velocities, v ∼ 0.5, but to have large values of the amplitude
A corresponding to a large number of quanta in the initial
state, N ∼ E=mψ ∼ 102–103. There is no systematic trend,
however, and there are “holes” in our scan of parameter

FIG. 7. Kink-antikink pair production in the amplitude (A) and velocity (v) plane as a contour plot for (a) k ¼ 0.03, (b) k ¼ 0.1, and
(c) k ¼ 0.3. The color bar shows the total number of kink-antikinks produced—a kink-antikink pair counts as 2 on the color bar. The
gaps are genuine and show chaotic behavior—simply increasing the amplitude, for example, does not guarantee kink production. Since
the width of the initial wave packets decreases as k increases, the plots show that kink production is favored for larger widths.

FIG. 8. Kink-antikink pair production at fixed initial energies (a) Eψ ;0 ¼ 250, (b) Eψ ;0 ¼ 400, and (c) Eψ ;0 ¼ 550 showing enhanced
production at small k (wider wave packets) scattering at low velocities. In (a), there is only one case of kink production at k ¼ 0.14
and v ¼ 0.78.
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space as seen in Fig. 7. This suggests that there may be
resonances at work—if certain frequencies match, kink
production is more favorable. It would be of interest to find
initial conditions with less energy and that convert into
kink-antikink pairs more efficiently.
We have investigated the effect of the width of the initial

wave packets and the scattering velocity on the kink
production with fixed initial energies. It is clear from
Fig. 8 that there is a lower energy threshold and wider
wave packets with lower velocities provide better con-
ditions for kink production. We also observe a band
structure where certain widths seems more favorable than
others. It is also worth noting that production is signifi-
cantly lower for smaller widths (higher k) in all the cases.
Our analysis is of an exploratory nature, as magnetic

monopole production in the real world is much more
complicated. Yet our analysis suggests that scattering at
high luminosities is much more desirable than scattering at
high energies if the goal is to produce magnetic monopoles.
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APPENDIX: ENERGY OF THE INITIAL
WAVE PACKETS

We ignore the quantum corrections to the energy of
the initial wave packets as these are small [see Figs. 3(b)

and 5(b)] and consider widely separated wave packets in
which case the initial energy is just twice that of a single
wave packet:

Eψ ;0 ¼ 2

Z
dx

�
1

2
ðψ̇2 þ ψ 02Þ þm2

ψ

2
ψ2

�
ðA1Þ

with

ψ ¼ Ae−kX
2

; ψ̇ ¼ γvAð−2kXÞe−kX2

; ðA2Þ

where X ¼ γðxþ x0Þ. This leaves us with Gaussian inte-
grals, and we get

Eψðt ¼ 0Þ ¼
ffiffiffi
π

2

r
γA2

�
ð1þ v2Þ

ffiffiffi
k

p
þm2

ψffiffiffi
k

p ð1 − v2Þ
�
: ðA3Þ

This expression can also be written as

Eψðt ¼ 0Þ ¼ γEψ ;v¼0 þ
ffiffiffi
π

2

r
γv2A2

� ffiffiffi
k

p
−
m2

ψffiffiffi
k

p
�
: ðA4Þ

Note that Eψ ðt ¼ 0Þ is not γEψ ;v¼0 as we might expect from
special relativistic boosts. This is because the Gaussian
wave packet is not a solution of the static equations of
motion. Only static solutions of the equations of motion
obey the special relativistic transformation when boosted.
For k < m2

ψ , the term in square brackets in (A4) can be
negative, and it may happen that the initial energy
decreases with increasing v.
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