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Modular symmetries offer a dynamic approach to understanding the flavor structure of leptonic mixing.
Using the modular A4 flavor symmetry integrated in a type-II seesaw, we propose a simple and
minimalistic model that restricts the neutrino oscillation parameter space and, most importantly, introduces
a sum rule in the physical neutrino masses. When combined with the mass squared differences observed in
neutrino oscillations, this sum rule determines the absolute neutrino mass scale. This has significant
implications for cosmology, neutrinoless double beta decay experiments, and direct neutrino mass
measurements. In particular, the model predicts Y ; m; ~ 0.1 eV for both normal and inverted ordering, and
thus can be fully probed by the current generation of cosmological probes in the upcoming years.
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I. INTRODUCTION

More than two decades after the discovery of neutrino
oscillations, the origin of their masses and mixing param-
eters is still not well understood. This challenge, known as
the “leptonic flavor puzzle,” stands as a central topic in both
theoretical and experimental research. There are now
several theoretical approaches and proposals in the liter-
ature, aimed at understanding the leptonic mass and mixing
pattern. One of the most popular approach is to use new
symmetries, often taken as non-Abelian discrete groups,
called “flavor symmetries,” to obtain a deeper understand-
ing of the leptonic flavor puzzle. The flavor symmetries
often lead to predictions for the neutrino mixing angles and
phases, which can be then tested in various experiments,
particularly in neutrino oscillations.

Another interesting consequence of flavor symmetries is
occurrences of neutrino mass “sum rules.” In their usual
form these are relations between the complex eigenvalues
of the neutrino mass matrix, which in turn can be read
as a constraint on the physical neutrino masses and the
Majorana phases, thus restricting, for example, the neu-
trinoless double beta decay (Ovee) parameter space. This
approach enables a complementary path to neutrino oscil-
lation experiments as a way to distinguish between given

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(3)/035016(12)

035016-1

flavor models, as detailed in [1-3] and the references
within.

A further development which has recently gained con-
siderable attention is to promote the flavor symmetry to a
modular symmetry, first achieved in [4]. In the modular
symmetry approach all the Yukawa couplings are promoted
to modular forms that transform nontrivially under the
modular group. This approach leads to the prediction of the
lepton and/or quark mixing angles. Several studies, since
2017’s initial paper, then have been performed. They
include A, modular symmetry based works [5-26], S,
modular symmetry based works [27-35], As modular
symmetry based works [36-39], application of modular
symmetries to quark and lepton sectors [17,22,40-42],
modular symmetries in the context of theories of the grand
unification [5,23,35], modular symmetry based Dirac
neutrino mass models [10,34], (generalized) CP symmetry
and modular invariance [29,38,43-46], nonfine-tuned
explanations of fermion mass hierarchies in modular-
invariant models [40,47-51], modulus stabilization [52],
S; modular symmetry based [46,53-55], eclectic flavor
symmetry based [41,51], leptonic sum rules with modular
symmetries [56], W-mass anomaly related modular sym-
metries [55], modular symmetry models based on extra
dimensional extensions and compactifications of the modu-
lar space [57], and the strong CP problem related to
modular invariance [42].

In this work we aim to use the powerful framework
of the modular symmetries to obtain a stronger version of
the traditional sum rules, where a relation is obtained for
the singular values of the mass matrix, i.e., the physical
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neutrino masses, instead of the complex eigenvalues as
in [56]. Once the measured mass squared differences
constraints are applied, the absolute neutrino mass scale
is fixed. We derive this sum rule in a particular UV
complete model in which the neutrino masses come from
a type-II seesaw [58—61] with the Yukawas transforming as
modular forms under .4, modular symmetry. The model is
simple and elegant with a SU(2), triplet A and modulus 7
being the only superfields added beyond the minimal
supersymmetric Standard Model (MSSM). Yet our model
is highly predictive where along with the sum rules we also
obtain predictions for the leptonic mixing angles and CP
phases and analyze their implications for various running
and upcoming experiments.

This paper is organized as follows. In Sec. II we present
the field content of the model and their gauge and modular
transformation rules. In Sec. III we show the consequences
of the strongest prediction of the model, the neutrino mass
sum rule, in neutrinoless double beta decay experiments,
cosmology and KATRIN. In Sec. IV we flesh out the
predictions of the model in neutrino oscillation experiments
for both normal and inverted ordering. Finally we conclude
in Sec. V.

II. MODEL

In this section we discuss the model framework based
on the finite modular group I'; ~.4,. Neutrino masses
and mixing will be generated from a type-II seesaw
mechanism. Within our model framework, we assign the
leptonic superfields L; and EY to be triplet (3) and singlets
(1,1/,1”) under A, respectively, with weights of —3 and
—1. The Higgs doublets H,, and H ; are trivial singlets (1) of
Ay with weight 0. To accommodate the type-II seesaw
mechanism we include a SU(2), triplet A, which is also a
trivial singlet (1) of A, with weight 0. The charge assign-
ment of the superfields and their weights are summarized in
Tab. I. The detailed discussion of modular symmetry and its
transformation laws are given in Appendix B. A field ¢/
transforms under the modular transformation of Eq. (1), as

P — (cr+d)1pD(y)pD, (1)

TABLE 1. The charge assignments of the superfields under
SU(3)®SU12), ® U(l)y ® Ay, where —k is modular
weight.

Fields SU(3), SU(2), U(l)y I~ Ay —k
L 1 2 -1 3 -3
E¢ 1 1 1 1,11 1
H, 1 2 i 1 0
H, 1 2 -1 1 0
A 1 3 1 1 0

where —k; represents the modular weight and p)(y)
signifies an unitary representation matrix of y €I'(2).

Under these symmetries the superpotential of our model
is given as follows:

W = (Xl<YeL)1E€Hd + az(YeL>1//E§Hd
+a3(Y,L) ESH, + a(Y,,,l(LL)%)lA
+P(Yy2(LL)5,) A+ pH Hy+ psHyH A - (2)

Neutrino masses come at the tree level from the terms
Y, ;LLA. It is important to note that the Yukawa couplings
Y, ; have a weight of 6, which is determined by the weights
of L (weight 3) and A (weight 0) involved. Here, we are
exploiting the fact that for modular A, at weight 6, there
are two types of triplets denoted as 3a and 3b (given in
Appendix B). Hence, we have two terms, aY,;LLA and
PY, ,LLA for neutrino sector superpotential. In the Eq. (2),
charged lepton Yukawa (Y, ) and neutrino sector Yukawas
(Y,1.Y,,) are triplets of A, with weight 4 and 6
respectively, as given in Table II. Note that Yukawas which
have trivial transformation as modular forms are not added.
The explicit form of the Yukawas in terms of Dedekind eta-
function 5(z) of modulus 7 and its derivative #/(z) is
provided in App. B. Owing to the minimal particle content
of the model and the constraints imposed by the modular
symmetry, the form of the leptonic mass matrices is
restricted as we discuss next.

A. Neutrino and charged lepton mass matrix

For the charged lepton sector the mass matrix is given by

4 (4)
Yg.l Ys,; Y33 ap 0 O

M= | ¥ v v [0 @ o] o)
4 4 4 0 O
GGG .

On the other hand, the neutrino mass matrix is given by
2Y, -Y; -Y,

MU = VA * 2Y2 _Yl (4)
* *  2Y3

TABLE II. Modular transformations of Yukawa couplings and
their weights.
Yukawas Iy~ Ay k
Y, = Y§4> 3 4
6
Y, = Yga ) 3 6
6
Y,, = Y(3b) 3 6
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where ¥; = a¥'¥; + gy withi € {1,2,3}, v, is the VEV
of superfield A and (x) represents the symmetric part of
neutrino mass matrix. Details of the diagonalization of the
matrices in Eq. (3) and (4) are shown in Appendix A. The
neutrino mass matrix features the interesting neutrino mass
ordering independent sum rule

1
Mpeayiest — 5 E mi,
i

where m;; i = 1, 2, 3 are the three physical masses of the
neutrinos and my,.,.iese 1 the heaviest out of the three light
neutrinos. Note that, being a type-II seesaw mechanism,
there are no heavy sterile neutrinos. This sum rule was
pointed outin [62] in an unrelated setup and can be shown by
explicitly computing the invariants Tr(m'm) and
Tr(m"mm'm). The explicit derivation is shown in
Appendix C. This sum rule can be tested in different
currently running and upcoming experiments. We now
explore the consequences of this sum rule in Sec. III.

(5)

III. TESTS OF THE SUM RULE
The sum rule in Eq. (5) can be rewritten in an ordering-

dependent way and, after imposing the mass squared
differences, the neutrino masses become fixed. If we for
now ignore the < 3% experimental errors in Am%j we get
NO:

msy=my+ny
Am3,=75x107eV?, Am3; =2.55x1073eV?

m; =0.0282eV, m,=0.0295eV, m3=0.0578eV
10:

my =my+ms
Am3; =7.5x107eV?,

my;=75x10"*eV,

Am%1 =-2.45%x1073eV?
m; =0.049¢eV, m,=0.050eV

where NO (IO) refers to the normal (inverted) mass
ordering of the neutrinos. The Am%j quoted above are
the current global best fit values taken from Ref. [63,64].

This result has important consequences for a number of
experiments. Cosmological observations are sensitive to the
sum of neutrino masses which if we allow Am3, and Am3;
to vary inside their 3¢ regions, are predicted by our sum
rule with great precision

> mN°€(0.1138,0.1176] eV, (6a)

> ml°®€[0.1007,0.1041] eV. (6b)

These values are compatible with the Planck 2018
results [65]. Its successor, the Euclid mission, which was
launched in July 2023, will probe the sum of neutrino
masses with unprecedented precision, targeting a range of
> im; =0.03-0.06 eV [66], and similarly the ground-
based microwave background experiments CMB-S4 [67]
and SPT-3G [68] will also be able to rule out the sum rule.
As such, the sum rule’s validity will be under rigorous
examination in the imminent future.

Another important consequence appears in neutrinoless
double beta decay experiments. The main model contri-
bution to this process comes from the exchange of light
neutrinos. In this case, the total rate is proportional to |m,,|,
defined in Eq. (A1) which is also tightly predicted in our
setup. Not only the neutrino masses are nearly fixed, but
additionally the Majorana phases are not free but highly
correlated between each other and the other oscillation
parameters. This is shown for both cases in Fig. 1.

Finally, KATRIN directly measures the effective mass of
the electron neutrino defined as [70]

mft = [N U Pm?, (7a)
me <0.8eV, 90%CL(2023), (7b)

mT<0.2eV, 90%CL (2025 expected sensitivity) (7c)

If the mixing parameters are taken to their best fit values,
the sum rule predicts

NO: mgT = 0.028 eV, (8a)
10: me = 0.049 eV. (8b)

Therefore, if KATRIN measures the neutrino mass during
its current run the model would be ruled out.

IV. NEUTRINO OSCILLATIONS
PREDICTIONS

Apart from the sum rule predictions, the model can also
fit the mixing parameters in spite of the limited number of
parameters that form the neutrino and charged lepton
matrices of Eqgs. (3) and (4). Before delving into the
predictions of the mixing parameters let us do a parameter
count. In principle the system depends on 6 complex
parameters: the modulus 7, the neutrino sector free param-
eters a and f and the 3 charged lepton sector free
parameters ;. Additionally, the neutrino mass scale is
given by the VEV of the triplet v, as in the type-II seesaw
model while the charged lepton mass scale is given by the
VEV of the Higgs doublet, like in the MSSM. However,
without loss of generality, some considerations which will
simplify the computation are in order.
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FIG. 1.

Neutrinoless double beta decay predictions for both NO (blue) and IO (red). Left panel: correlation between Majorana phases.

Right panel: the combination of the sum rule, the measured mass squared differences and the correlation of the Majorana phases lead to a
very precise prediction for Ovee. The KamLAND-ZEN experiment constraints the value of |m,,| [69] while cosmology can constraint
the sum of neutrino masses [65] and thus, in conjunction with the neutrino oscillation results, the mass of the lightest neutrino. The

Planck limits shown are for the NO case.

(1) In the neutrino sector we can factor out . Then the
global factor will instead be v,/ and its phase will
be unphysical. Inside the neutrino matrix we are left
with a dependence on a/f which we parametrize
as a/f = rExp(i@).

(i) In the charged lepton sector we can rotate the

unphysical phases of the «a; by redefining the

right-handed fields. Therefore we can take the «;
to be real without loss of generality.

For a given value of 7 we can solve the values of a;

that will lead to the correct charged lepton masses. In

order to do so we can solve the invariant equations in

Eq. (9). This leads to 6 different solutions in the «;.

(iii)

[Det(M,)| = m.m,m, (9a)
Tr(M.M) = m? + m} + m2 (9b)
Tr(MLM M. My) = m? + m + m} (9¢)

where m;; i = e, u, 7 are the physical masses of the charged
leptons. Therefore, the neutrino sector is determined by
only 5 real parameters (Re(z),Im(z), r, ®, v,f) with the
charged lepton masses already fixed to their observed
values. In exchange we will obtain predictions for 9
fundamental parameters: 3 mixing angles 6;;, 3CP violat-
ing phases ¢;; and 3 neutrino masses. Alternatively, we can
rearrange these parameters into 8 directly measurable
observables: 6,;, dcp, |m..|, Am%j and ), m;. On top of
the naive parameter counting the model automatically
features the neutrino mass sum rule shown in Sec. III,
which in turn fixes the absolute neutrino mass scale. It is
therefore a very predictive setup as we will show explicitly
in Secs. IVA, IV B.

Before proceeding further let us also point out the
importance of the modular symmetry in constraining the
mixing angles. Since the Yukawas now transform as

modular forms, their values are controlled by the =
parameter. As a result, the atmospheric angle is tightly
correlated with the imaginary part of the modulus =,
see Fig. 2.

We now proceed to flesh out the results for the Normal
and Inverted Ordering (NO and 10) of neutrino masses. As
of the current date, both options are experimentally open,
but the JUNO experiment is expected to begin collecting
data soon, and is projected to resolve the hierarchy to the
3 — 40 level over a 6-year period [71]. In what follows, we
will use the results of the AHEP global fit [63,64] by
imposing the 2D 1o or 36 constraints for the mixing angles
0;;. Let us also point out that the measurement of the CP
violating phase §¢p is not as robust as the mixing angles
one, as reflected by the slight tension between Nova [72]
and T2K [73]. For that reason, in order to reflect the lack of
consensus in the measurements of §-p, in our analysis we
will allow it to be in its 5S¢ or 3¢ allowed ranges.

55F

30 Allowed range
10 Allowed range

@ Normal Ordering

1 @ Inverted Ordering

1.1 12 13 14 15 16
Im(7)

FIG. 2. The model predicts a tight correlation between the
imaginary part of the modulus 7 and the atmospheric angle 8,3 in
both orderings. The experimental bands correspond to the NO case
and are very similar for the IO case. The model points (blue and red
for NO and IO, respectively) satisfy 0;; €36 and o¢p € So.

035016-4



NEUTRINO MASS SUM RULES FROM MODULAR ... PHYS. REV. D 109, 035016 (2024)

30 Allowed range
20 Allowed range
M 10 Allowed range
W 6; €30, 6cpe 50

® 6je10,6cpel30

8.2 8.4 8.6 8.8
013(°) 023(°)

FIG. 3. Model predictions in the NO case. In both panels, the blue dots satisfy all the 2D 3¢ mixing angles correlations, while the CP
violation phase d¢p is in its 5o region. The green dots instead have the mixing angles inside their 16 regions and dp in their 36 ones. See
text for details. Left panel: correlation between 0,3 and 6,3. This correlation implies an lower bound on 6,3 > 8.36°, which may be
contested in the future run of T2K [73]. Right panel: correlation between 6,3 and 6.p. This correlation may also be probed by future
experiments like Dune [74].

A. NO B. 10

In the normal ordering of neutrino masses we have Similarly, in the inverted ordering of neutrino masses, we
my > m, > my, as well as Am3; > 0. We impose all the  have m, > m; > ms, as well as Am3, < 0. Unlike in the
mixing angles and mass squared differences to be inside  NO case, here the mixing angles 6,5, 6,5 and 0,5 are nearly
their 2D 3¢ regions, but for the sake of representation we let  uncorrelated. However, 0,; has an upper bound of
dcp 1n its So regions. It is important to note that it is  g,. < 46.8°. Since oscillation experiments seem to prefer
possible to obtain the mass squared differences and mixing 0 upper octant, this prediction may be ruled out by Dune
angles inside their respective 1o regions, while at the same ;. 11 hear future [74]. Moreover, 63 and 5.p feature a very

tme fSCP can be in the 2 or 3 ! eg10n..Th1.s behav19 rean be sharp correlation, which can also be tested by Dune [74].
seen in Fig. 3. The main neutrino oscillation predictions of . . R
This behavior can be seen in Fig. 4.

the model in the NO case are (a) 6,3 > 8.36°, which will be . . o -

ut to test in the next run of T2K [73] (b) a correlation The main neutrino oscillations predictions of the model
Eetween 0, and 0,5, which may be resolved by a in the IO case are (a) 0,3 < 46.5" and (b) a sharp correlation
combination of T2K and Dune [73.74], and (c) A corre- between 6,3 and §cp. If the hints that 0,5 lie in the upper
lation between O« and § which’ maiy be falsified by octant get confirmed, the available parameter space of this
Dune [74] 23 cr scenario will be greatly restricted.

50+ <

~
B

=
;

48}

30 Allowed range
> o 37 20 Allowed range
S 46 S 2T

W 10 Allowed range

) B 6j€30, 6cpe 50
441 5z :

4 ' ® O, 613 € 10; 63 6cpe 30
42} / |
. . i . s . i ; i i
8.2 8.4 8.6 8.8 42 44 46 48 50
643(°) 623(°)

FIG. 4. Model predictions in the IO case. In both panels, the red dots satisfy all the 2D 3¢ mixing angles correlations, while the CP
violation phase d¢p is in its 5o region. The dark green dots instead have the mixing angles 6;, and 6,5 inside their 1o regions, while §-p
and 0,3 are in their 36 ones. See text for details. Left panel: ;3 vs 6,3. The model predicts an upper bound on 6,3 < 46.8°, which may be
ruled out by future neutrino oscillation experiments. Right panel: Sharp correlation between 6,3 and 5-p, which may be probed by future
experiments like Dune [74].
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V. CONCLUSIONS

We have presented a minimal extension of the MSSM
based on a modular A, symmetry which substantially
restricts the number of parameters in the flavor space. The
BSM fields and symmetries ingredients of the model are
justa SU(2), triplet A and modulus 7, which gives rise to
neutrino masses via a type-Il seesaw mechanism. As a
result the model is remarkably predictive. If neutrino
masses follow the normal ordering, the model requires
0,3 > 8.36° as well as the correlation between 6,3 and §.p
showed in Fig. 3. If instead, they are arranged in the
inverted ordering the predictions are 6,3 < 46.8° and an
even stronger correlation between 6,3 and dc-p shown in
Fig. 4. The combination of current and future neutrino
oscillation experiments will reduce the parameter space
even further and will potentially rule out the inverted
ordering case.

Most importantly, the neutrino mass structure leads to
a sum rule for the physical neutrino masses. Combined
with neutrino oscillation data this sum rule fixes the
absolute neutrino mass scale. The upcoming cosmologi-
cal probes such as the Euclid mission, the CMB-S4 and
SPT-3G experiments, whose first datasets are expected
soon, will be able to fully test this sum rule, see
Egs. (6a) and (6b). Furthermore, the nEXO experiment
will explore part of the relevant parameter space, see
Fig. 1. On the other hand, the m¢!" value predicted by
the sum rules is below KATRIN’s experimental sensi-
tivity, hence any observation in this experiment will rule
out the model.
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APPENDIX A: DIAGONALIZATION OF MASS
MATRICES AND PARAMETRIZATION
OF UNITARY MATRICES

The mass matrices in Egs. (3) and (4) are diagonalized as
follows

UM, U = diag(m,, m,, my)
U;MfV = diag(m,,m,,m,)
Up = ULU,
where U, is the lepton mixing matrix which parametrizes

the interaction between the W boson and the leptons
and is probed by neutrino oscillation experiments. In the

symmetric parametrization [58,75] a general unitary matrix
can be written as

Uiep = P(61,6,,53) Up3(023,$23)U13(013,13) U12(612,612),

where P(68;,6,,83) is a diagonal matrix of unphysical
phases and the U;; are complex rotations in the ij plane,
as for example,

1 0 0

U3 (623, ¢p23) = | O
0 - sin 923 €i¢23

cos 6,3 sin @30

cos 053

The phases ¢, and ¢ 3 are relevant for Ovee decay,
while the combination d-p = 13 — 12 — ¢h23 is the usual
Dirac CP phase measured in neutrino oscillations. The
primary contribution to the Ovee decay process is the
exchange of light neutrinos. The effective mass |m,,|,
which determines the decay rate, is given in the symmetric
parametrization [58,75] as

_ 2 2 2 2 2 0
[mee| = E Ugimi| = [eiycism + syczemy
i
+ sty (A1)
where ¢;; = cos6;;, s;; =sin0;; represent the mixing

angles, m; are the neutrino masses, and ¢;,, ¢3 are the
CP-violating phases. Our model’s predictions for the
Ovee decay are illustrated in the right panel of Fig. 1 in
the main text, plotting |m,,| against the lightest neutrino
mass, Miighes;> Which corresponds to m; in the NO case
and to mj in the 1O case. The light blue and red regions
correspond to the 3¢ allowed ranges for normal ordering
(NO) and inverted ordering (IO) scenarios, respectively.
The dark blue and red regions represent our model’s
predictions for the NO and IO scenarios, respectively.
As depicted in Fig. 1, our model confines the predicted
|m,,| to a narrow range for both NO and IO scenarios,
which is attributable to the specific values of the mixing
angles, neutrino masses, and Majorana phases con-
strained by our model. In particular, the width of each
model band is restricted by the combination of the sum
rule and the measured mass squared differences, which
sets a narrow range for myjgpes in €ach ordering. On the
other hand, the correlations between mixing parameters
in the model, most importantly the Majorana phases ¢,
and ¢q3, also limit the height of the model region, which
would cover the entirety of the light colored region for a
given value of mygpes if they were free inside the
experimental 3¢ ranges. See Figs. 5 and 6, which
highlight the tight relation between the Majorana phases
and 7 in NO and IO, respectively.

Furthermore, the gray shaded region along the hori-
zontal axis in Fig. 1 represents the Planck collaboration’s
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FIG. 5.
scenario.

Correlation of Majorana phases with Im(z) in the NO

constraint on Y, m; translated into a constraint on
Miightest TOr the NO case [65]. For clarity, this constraint
is not depicted for the IO scenario, but see the main text
for further details. Note that the model prediction of
>";m; is very similar for both orderings, around 0.1 eV.
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FIG. 6. Correlation of Majorana phases with Im(z) in the IO
scenario.

The gray shaded area on the vertical axis indicates the
upper limit on |m,,| from the KamLAND-ZEN experi-
ment [69], while the dashed green line shows the future
sensitivity expected from the nEXO experiment [76].

APPENDIX B: A; MULTIPLICATION RULE
AND MODULAR YUKAWA CONSTRUCTION

Ay symmetry: A4 is an even permutation group of four
objects. It is also the symmetry group of a regular
tetrahedron. It has 4!/2 = 12 elements and can be gen-
erated by two generators S and T obeying the relations:

S2=T=(ST)’ =1.

The group has four irreducible representations, a trivial
singlet 1, two nontrivial singlet 1’, 1”, and a triplet 3. The
product rules for the singlets and triplet are
Il=1=I'®1", 'l =1",
33=101"® 1" &35 3,.

1// ® 1// — 1/.
(B1)
where, 34) denotes the symmetric (and antisymmetric)

combination. In the complex basis where 7" is a diagonal
matrix, we have,

| -1 2 1 0 0
5:5 2 -1 2 1, T=|0 o 0
2 -1 0 0 ?

where o is the cubic root of unity. Given two triplets a =
(ay,as,az) and b = (by, by, b3), their product decomposes
following Eq. (B1) and they are expressed as:

(ab)l = albl + (lzb3 + (13b2
(Clb)l/ = a3b3 + ale + a2bl
(ab)l// = asz + Cl3b] + Cl]b3

2a1b1 - a2b3 - a3b2

(ab),, = %

2a3b3 - a1b2 - a2b1
2d2b2 - Cl3b1 - a1b3

a,bsz — azb,
(ab)3A = | a1by — ayb, (B2)
azby —a, by

Modular framework: Here we summarize modular
symmetry framework in context of 4, symmetry. The
modular group T is the group of linear fractional trans-
formations y which acts on the complex variable 7 linked to
the upper-half complex plane as follows:

(B3)
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where, a,b,c,d€Z and ad —bc =1, Im[z] > 0. The
modular group is isomorphic to the transformation
PSL(2,7Z) = SL(2,Z)/{Z,-TI}, and it is generated by
two elements S and T satisfying

=1, (ST} =1.

Representing S and T as

0 1 1 1
S = , T= ,
-1 0 0 1
then they correspond to the following transformations,

St ——, T:t—->7+1.

T
The group SL(2,Z)=T(1)=T contains a series of
infinite normal subgroups I'(N),(N =1,2,3,...) and
defined as

(¢ )=(o 1Jomam)

Definition of ['(2) =T'(2)/{Z,—Z} for N = 2. Since — T
is not associated with I'(N) for N > 2 case, one can have
['(N) = I'(N), which are infinite normal subgroups of "
known as principal congruence subgroups. The quotient
groups I'y = I'/T'(N) are called finite modular groups. The
condition of TV = T is applied to these finite groups [y.
For small N (<5), the groups I'y are isomorphic to
permutation groups [77]. Namely, I’ =~ S3, I'; @Ay, [y ~
Sy and I's ~ As.

Modular forms f(z) of weight k and level N are
holomorphic functions of the complex variable 7z and its
transformation under the group I'(N) is given as follows:

flrm=(errarso. v=(1")erm,

where k is even and non-negative. Modular forms of weight
k and level N constitute a finite-dimensional linear space.
Within this space, it is possible to find a basis where a
multiplet of modular forms f;(z) undergoes transforma-
tions following a unitary representation p of the finite
group I'y:
filre) = (ct+d)p;(r)fi(z), r€L(N),

A field ¢! transforms as given in Eq. (1).The scalar fields
kinetic terms are given as follows

Z |a/4¢(1)|2
(=it +i7)k’

1

which does not change under the modular transformation,
and eventually, the overall factor is absorbed by the field
redefinition.

Thus, the Lagrangian should be invariant under the
modular symmetry. Our model is based on A4, (N = 3)
modular group. The modular forms of the Yukawa coupling
Y® = (y,,y,,y3) with weight 2, which transforms as a
triplet of 4, can be expressed in terms of Dedekind eta-
function #(z) and its derivative [4]:

o (nG) w5 n (5D 279 (37
"0 (ﬂ@ TaE) TuED) T 06 )
i (1B) wzn’(%) 6077’(%)
y2(7) = — (n(%) + D + n(%))’
A CAC IR AG w I G »)
S <n<§>+ TETRRTEE ) (B4

The expression of Dedekind eta-function 7(z) is given by:
) =g [[(1-g".  g=e
n=1

In the form of g-expansion, the modular Yukawa of
Eq. (B4) can be expressed as:

yi(t) =14 12 +36¢> + 12¢° + - --
y2(7) = =6¢'3(1 + 7+ 84 +--)
y3(t) = —18¢*3(1 +2q + 5¢* + - - ).

From the g-expansion we have the following constraint for
modular Yukawa couplings:

¥3 +2y1y; = 0. (BS)

Higher modular weight Yukawa couplings can be con-
structed from weight 2 Yukawa (Y®) using the A,
multiplication rule. For modular weight k = 4, we have
the following Yukawa couplings:

4
Y = (02 = vy, 33 = 1y Y3 = y13)

4
Y\ = y2 4 2y,
)

V=V 2y

4
Yﬁ//) =¥+ 2153

At modular weight k = 6, the Yukawa couplings are
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6
)=y 33 03 =3y

Y3a (

= (33 + 2y1y2y3. Y31 + 291y2. ¥3va + 2v31)

Y(

+ 215253, Y1y2 + 2933, ¥1y3 + 23)2)

Y3C (V3 + 2y1y2y3. Y33 + 293y1, 31 + 2y1y3)

Due to the constraint mentioned in Eq. (B5), we see that
Y(li‘,) =0and Y gi) = 0. In general, the dimensions (d;) of
modular forms of the level 3 and weight k is k + 1 [4,57].

The representations for different weights are shown in
Tab. IIL

APPENDIX C: PROOF OF SUM RULE

We can write the neutrino mass invariants in terms of
=Y [P+ Y2+ |5

Tr(M]M,) = 612
Te(M{M,MM,) = 18r*

Therefore, we find 1Tr(M{M,)> =
which in turn implies

Te(M;M,M}M,),

5(m%+m%+m§)2:m‘l‘er‘z‘erg‘

We can solve one of the masses, for example for m;

m3 = (m; £ my)? (C1)

And after imposing that the masses are positive we find a
unique solution for each ordering

mg‘lo—mlo—km

mlz0 = mlo+m

NO NO

myO > m)O > m}

10 10
m, >m1 > my

Or alternatively, adding the heaviest of the masses in both
sides

(€C2)

1
Mpeayiest — E E m;
i

Since we know the mass squared difference of neutrino
masses this sum rule leads to a definite prediction of the
neutrino mass scale.

TABLE III. A, representations for different weight k.
Weight (k) dy A, representations
2 3 3

4 5 3+1+71

6 7 3+3+1

8 9 3+3+14+1+17
10 11 3434+34+1+71

APPENDIX D: A SCALAR MASS AND pu,

Starting with Eq. (2) the scalar potential can be obtained
from

V:VF+VD

. 1
= F*F. _ DeD¢
22

o1
= WiW' 432 (@ 19 (1)

where V§ and V|, stand for F and D potential contributions,
respectively. W' = % ¢ stands for superfields from Tab. I
of the main text, g,’s are the gauge coupling constants, and
T%’s are the generators of the gauge symmetries.

For the sake of simplicity, to obtain the A scalar and
Higgs masses we assume R—parity conservation and
focus on R—parity even, electrically neutral, and real
scalars. The corresponding mass matrix elements are
given as

3
mi g, = 1+ 20+ g1 S vi (D2a)

u

2
B9
Mip, = 12+ <2IMA Tt 81> 3v5 +2uzvi.  (D2b)

mis = (291 > ) 3v3 + 24305, (D2¢)
2 Ua
My = RS (D24d)
v
= upia \/‘% (D2e)
vy,
My o = 2U5040a + Hps —= 7 (D2f)

in the (A9, hY, A®) basis. In the limit yy — 0 we recover
MSSM scenario, where v, — 0, and all mixing terms in
Eq. (D2) become zero. Hence, if yp - 0 H, and H,
generate masses for up and down quark and lepton sectors,
respectively. Furthermore,
vi+0h =0 =

(246 GeV)?, (D3a)

= tan(f),

Vg

(D3b)

are defined as usual. The potential minimization equations
are given as

v
oh,

=0-12+ (26 +4})

v2 VD
3 V2ups 2 4=0, (D4a)
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oV V2
—— =02 + (1643 + 295 +g7)
oh, 8
VA,
+ 26308 + V2ups 2 = =0, (D4b)
d
44 —0 2 142 ”2A 212 12
oD — (95 + 91)74' HAVg
Valy
A

Taking pua <1, due to seesaw-II scenario, vy K v, 4
is obtained via v3 & —v2upav,v,/ (26} + 65/2). To sat-
isfy the A scalar mass experimental constraint, the
SUSY soft breaking term for A scalar must dominate the

mass contribution to it, m3 ~my . + O(1 GeV)*~
O(1 TeV)?. As a result, the A scalar mass dominantly
depends on the value of the SUSY soft breaking term
mi’soﬁ, assuming the case of u, <1 for seesaw-II pur-
poses. Finally, the mass square of A under aforementioned
conditions, v} & —v/2upav,v,/ (29} + ¢3/2) approxima-
tion, as well as taking into account that g3(my,) = 0.2136,
g5(my) = 0.4210, and using Eq. (D2) (including the soft
SUSY breaking term) is given as

2
My R MG o + (29% + %) 30} + 23 v

~ mZA,soft + 22}2 + Q’l’tzAng’ (DS)
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