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Modular symmetries offer a dynamic approach to understanding the flavor structure of leptonic mixing.
Using the modular A4 flavor symmetry integrated in a type-II seesaw, we propose a simple and
minimalistic model that restricts the neutrino oscillation parameter space and, most importantly, introduces
a sum rule in the physical neutrino masses. When combined with the mass squared differences observed in
neutrino oscillations, this sum rule determines the absolute neutrino mass scale. This has significant
implications for cosmology, neutrinoless double beta decay experiments, and direct neutrino mass
measurements. In particular, the model predicts

P
i mi ≈ 0.1 eV for both normal and inverted ordering, and

thus can be fully probed by the current generation of cosmological probes in the upcoming years.
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I. INTRODUCTION

More than two decades after the discovery of neutrino
oscillations, the origin of their masses and mixing param-
eters is still not well understood. This challenge, known as
the “leptonic flavor puzzle,” stands as a central topic in both
theoretical and experimental research. There are now
several theoretical approaches and proposals in the liter-
ature, aimed at understanding the leptonic mass and mixing
pattern. One of the most popular approach is to use new
symmetries, often taken as non-Abelian discrete groups,
called “flavor symmetries,” to obtain a deeper understand-
ing of the leptonic flavor puzzle. The flavor symmetries
often lead to predictions for the neutrino mixing angles and
phases, which can be then tested in various experiments,
particularly in neutrino oscillations.
Another interesting consequence of flavor symmetries is

occurrences of neutrino mass “sum rules.” In their usual
form these are relations between the complex eigenvalues
of the neutrino mass matrix, which in turn can be read
as a constraint on the physical neutrino masses and the
Majorana phases, thus restricting, for example, the neu-
trinoless double beta decay (0νee) parameter space. This
approach enables a complementary path to neutrino oscil-
lation experiments as a way to distinguish between given

flavor models, as detailed in [1–3] and the references
within.
A further development which has recently gained con-

siderable attention is to promote the flavor symmetry to a
modular symmetry, first achieved in [4]. In the modular
symmetry approach all the Yukawa couplings are promoted
to modular forms that transform nontrivially under the
modular group. This approach leads to the prediction of the
lepton and/or quark mixing angles. Several studies, since
2017’s initial paper, then have been performed. They
include A4 modular symmetry based works [5–26], S4

modular symmetry based works [27–35], A5 modular
symmetry based works [36–39], application of modular
symmetries to quark and lepton sectors [17,22,40–42],
modular symmetries in the context of theories of the grand
unification [5,23,35], modular symmetry based Dirac
neutrino mass models [10,34], (generalized) CP symmetry
and modular invariance [29,38,43–46], nonfine-tuned
explanations of fermion mass hierarchies in modular-
invariant models [40,47–51], modulus stabilization [52],
S3 modular symmetry based [46,53–55], eclectic flavor
symmetry based [41,51], leptonic sum rules with modular
symmetries [56], W-mass anomaly related modular sym-
metries [55], modular symmetry models based on extra
dimensional extensions and compactifications of the modu-
lar space [57], and the strong CP problem related to
modular invariance [42].
In this work we aim to use the powerful framework

of the modular symmetries to obtain a stronger version of
the traditional sum rules, where a relation is obtained for
the singular values of the mass matrix, i.e., the physical
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neutrino masses, instead of the complex eigenvalues as
in [56]. Once the measured mass squared differences
constraints are applied, the absolute neutrino mass scale
is fixed. We derive this sum rule in a particular UV
complete model in which the neutrino masses come from
a type-II seesaw [58–61] with the Yukawas transforming as
modular forms under A4 modular symmetry. The model is
simple and elegant with a SUð2ÞL triplet Δ and modulus τ
being the only superfields added beyond the minimal
supersymmetric Standard Model (MSSM). Yet our model
is highly predictive where along with the sum rules we also
obtain predictions for the leptonic mixing angles and CP
phases and analyze their implications for various running
and upcoming experiments.
This paper is organized as follows. In Sec. II we present

the field content of the model and their gauge and modular
transformation rules. In Sec. III we show the consequences
of the strongest prediction of the model, the neutrino mass
sum rule, in neutrinoless double beta decay experiments,
cosmology and KATRIN. In Sec. IV we flesh out the
predictions of the model in neutrino oscillation experiments
for both normal and inverted ordering. Finally we conclude
in Sec. V.

II. MODEL

In this section we discuss the model framework based
on the finite modular group Γ3 ≃A4. Neutrino masses
and mixing will be generated from a type-II seesaw
mechanism. Within our model framework, we assign the
leptonic superfields Li and Ec

i to be triplet (3) and singlets
ð1; 10; 100Þ under A4 respectively, with weights of −3 and
−1. The Higgs doubletsHu andHd are trivial singlets (1) of
A4 with weight 0. To accommodate the type-II seesaw
mechanism we include a SUð2ÞL triplet Δ, which is also a
trivial singlet (1) of A4 with weight 0. The charge assign-
ment of the superfields and their weights are summarized in
Tab. I. The detailed discussion of modular symmetry and its
transformation laws are given in Appendix B. A field ϕðIÞ
transforms under the modular transformation of Eq. (1), as

ϕðIÞ → ðcτ þ dÞ−kIρðIÞðγÞϕðIÞ; ð1Þ

where −kI represents the modular weight and ρðIÞðγÞ
signifies an unitary representation matrix of γ ∈Γð2Þ.
Under these symmetries the superpotential of our model

is given as follows:

W ¼ α1ðYeLÞ1Ec
1Hd þ α2ðYeLÞ100Ec

2Hd

þ α3ðYeLÞ10Ec
3Hd þ αðYν;1ðLLÞ3SÞ1Δ

þ βðYν;2ðLLÞ3SÞ1Δþ μHuHd þ μΔHdHdΔ ð2Þ

Neutrino masses come at the tree level from the terms
Yν;iLLΔ. It is important to note that the Yukawa couplings
Yν;i have a weight of 6, which is determined by the weights
of L (weight 3) and Δ (weight 0) involved. Here, we are
exploiting the fact that for modular A4, at weight 6, there
are two types of triplets denoted as 3a and 3b (given in
Appendix B). Hence, we have two terms, αYν;1LLΔ and
βYν;2LLΔ for neutrino sector superpotential. In the Eq. (2),
charged lepton Yukawa ðYeÞ and neutrino sector Yukawas
ðYν;1;Yν;2Þ are triplets of A4 with weight 4 and 6
respectively, as given in Table II. Note that Yukawas which
have trivial transformation as modular forms are not added.
The explicit form of the Yukawas in terms of Dedekind eta-
function ηðτÞ of modulus τ and its derivative η0ðτÞ is
provided in App. B. Owing to the minimal particle content
of the model and the constraints imposed by the modular
symmetry, the form of the leptonic mass matrices is
restricted as we discuss next.

A. Neutrino and charged lepton mass matrix

For the charged lepton sector the mass matrix is given by

Ml ¼ vH

0
BBB@

Yð4Þ
3;1 Yð4Þ

3;2 Yð4Þ
3;3

Yð4Þ
3;3 Yð4Þ

3;1 Yð4Þ
3;2

Yð4Þ
3;2 Yð4Þ

3;3 Yð4Þ
3;1

1
CCCA
0
B@

α1 0 0

0 α2 0

0 0 α3

1
CA: ð3Þ

On the other hand, the neutrino mass matrix is given by

Mν ¼ vΔ

0
B@

2Y1 −Y3 −Y2

� 2Y2 −Y1

� � 2Y3

1
CA ð4Þ

TABLE I. The charge assignments of the superfields under
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ A4, where −k is modular
weight.

Fields SUð3Þc SUð2ÞL Uð1ÞY Γ3 ≃A4 −k

Li 1 2 − 1
2

3 −3
Ec
i 1 1 1 1; 10; 100 −1

Hu 1 2 1
2

1 0
Hd 1 2 − 1

2
1 0

Δ 1 3 1 1 0

TABLE II. Modular transformations of Yukawa couplings and
their weights.

Yukawas Γ3 ≃A4 k

Ye ¼ Yð4Þ
3

3 4

Yν;1 ¼ Yð6Þ
3a

3 6

Yν;2 ¼ Yð6Þ
3b

3 6
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where Yi ≡ αY(6)
3a;i þ βY(6)

3b;iwith i∈ f1; 2; 3g, vΔ is the VEV
of superfield Δ and ð�Þ represents the symmetric part of
neutrino mass matrix. Details of the diagonalization of the
matrices in Eq. (3) and (4) are shown in Appendix A. The
neutrino mass matrix features the interesting neutrino mass
ordering independent sum rule

mheaviest ¼
1

2

X
i

mi; ð5Þ

where mi; i ¼ 1, 2, 3 are the three physical masses of the
neutrinos and mheaviest is the heaviest out of the three light
neutrinos. Note that, being a type-II seesaw mechanism,
there are no heavy sterile neutrinos. This sum rule was
pointed out in [62] in an unrelated setup and can be shown by
explicitly computing the invariants Trðm†mÞ and
Trðm†mm†mÞ. The explicit derivation is shown in
Appendix C. This sum rule can be tested in different
currently running and upcoming experiments. We now
explore the consequences of this sum rule in Sec. III.

III. TESTS OF THE SUM RULE

The sum rule in Eq. (5) can be rewritten in an ordering-
dependent way and, after imposing the mass squared
differences, the neutrino masses become fixed. If we for
now ignore the < 3% experimental errors in Δm2

ij we get

NO∶

m3¼m1þm2

Δm2
21¼7.5×10−5 eV2; Δm2

31¼2.55×10−3 eV2

m1¼0.0282 eV; m2¼0.0295 eV; m3¼0.0578 eV

IO∶

m2¼m1þm3

Δm2
21¼7.5×10−5 eV2; Δm2

31¼−2.45×10−3 eV2

m3¼7.5×10−4 eV; m1¼0.049 eV; m2¼0.050 eV

where NO (IO) refers to the normal (inverted) mass
ordering of the neutrinos. The Δm2

ij quoted above are
the current global best fit values taken from Ref. [63,64].
This result has important consequences for a number of

experiments. Cosmological observations are sensitive to the
sum of neutrino masses which if we allow Δm2

21 and Δm2
31

to vary inside their 3σ regions, are predicted by our sum
rule with great precisionX

i

mNO
i ∈ ½0.1138; 0.1176� eV; ð6aÞ

X
i

mIO
i ∈ ½0.1007; 0.1041� eV: ð6bÞ

These values are compatible with the Planck 2018
results [65]. Its successor, the Euclid mission, which was
launched in July 2023, will probe the sum of neutrino
masses with unprecedented precision, targeting a range ofP

i mi ¼ 0.03–0.06 eV [66], and similarly the ground-
based microwave background experiments CMB-S4 [67]
and SPT-3G [68] will also be able to rule out the sum rule.
As such, the sum rule’s validity will be under rigorous
examination in the imminent future.
Another important consequence appears in neutrinoless

double beta decay experiments. The main model contri-
bution to this process comes from the exchange of light
neutrinos. In this case, the total rate is proportional to jmeej,
defined in Eq. (A1) which is also tightly predicted in our
setup. Not only the neutrino masses are nearly fixed, but
additionally the Majorana phases are not free but highly
correlated between each other and the other oscillation
parameters. This is shown for both cases in Fig. 1.
Finally, KATRIN directly measures the effective mass of

the electron neutrino defined as [70]

meff
νe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jUeij2m2
i

r
; ð7aÞ

meff
νe <0.8 eV; 90%CLð2023Þ; ð7bÞ

meff
νe <0.2 eV; 90%CLð2025 expected sensitivityÞ ð7cÞ

If the mixing parameters are taken to their best fit values,
the sum rule predicts

NO∶ meff
νe ¼ 0.028 eV; ð8aÞ

IO∶ meff
νe ¼ 0.049 eV: ð8bÞ

Therefore, if KATRIN measures the neutrino mass during
its current run the model would be ruled out.

IV. NEUTRINO OSCILLATIONS
PREDICTIONS

Apart from the sum rule predictions, the model can also
fit the mixing parameters in spite of the limited number of
parameters that form the neutrino and charged lepton
matrices of Eqs. (3) and (4). Before delving into the
predictions of the mixing parameters let us do a parameter
count. In principle the system depends on 6 complex
parameters: the modulus τ, the neutrino sector free param-
eters α and β and the 3 charged lepton sector free
parameters αi. Additionally, the neutrino mass scale is
given by the VEVof the triplet vΔ as in the type-II seesaw
model while the charged lepton mass scale is given by the
VEV of the Higgs doublet, like in the MSSM. However,
without loss of generality, some considerations which will
simplify the computation are in order.
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(i) In the neutrino sector we can factor out β. Then the
global factor will instead be vΔβ and its phase will
be unphysical. Inside the neutrino matrix we are left
with a dependence on α=β which we parametrize
as α=β ¼ rExpðiΘÞ.

(ii) In the charged lepton sector we can rotate the
unphysical phases of the αi by redefining the
right-handed fields. Therefore we can take the αi
to be real without loss of generality.

(iii) For a given value of τ we can solve the values of αi
that will lead to the correct charged lepton masses. In
order to do so we can solve the invariant equations in
Eq. (9). This leads to 6 different solutions in the αi.

jDetðMlÞj ¼ mτmμme ð9aÞ

TrðM†
lMlÞ ¼ m2

τ þm2
μ þm2

e ð9bÞ

TrðM†
lMlM

†
lMlÞ ¼ m4

τ þm4
μ þm4

e ð9cÞ

wheremi; i ¼ e, μ, τ are the physical masses of the charged
leptons. Therefore, the neutrino sector is determined by
only 5 real parameters ðReðτÞ; ImðτÞ; r;Θ; vΔβÞ with the
charged lepton masses already fixed to their observed
values. In exchange we will obtain predictions for 9
fundamental parameters: 3 mixing angles θij, 3CP violat-
ing phases ϕij and 3 neutrino masses. Alternatively, we can
rearrange these parameters into 8 directly measurable
observables: θij, δCP, jmeej, Δm2

ij and
P

i mi. On top of
the naive parameter counting the model automatically
features the neutrino mass sum rule shown in Sec. III,
which in turn fixes the absolute neutrino mass scale. It is
therefore a very predictive setup as we will show explicitly
in Secs. IVA, IV B.
Before proceeding further let us also point out the

importance of the modular symmetry in constraining the
mixing angles. Since the Yukawas now transform as

modular forms, their values are controlled by the τ
parameter. As a result, the atmospheric angle is tightly
correlated with the imaginary part of the modulus τ,
see Fig. 2.
We now proceed to flesh out the results for the Normal

and Inverted Ordering (NO and IO) of neutrino masses. As
of the current date, both options are experimentally open,
but the JUNO experiment is expected to begin collecting
data soon, and is projected to resolve the hierarchy to the
3 − 4σ level over a 6-year period [71]. In what follows, we
will use the results of the AHEP global fit [63,64] by
imposing the 2D 1σ or 3σ constraints for the mixing angles
θij. Let us also point out that the measurement of the CP
violating phase δCP is not as robust as the mixing angles
one, as reflected by the slight tension between Nova [72]
and T2K [73]. For that reason, in order to reflect the lack of
consensus in the measurements of δCP, in our analysis we
will allow it to be in its 5σ or 3σ allowed ranges.

FIG. 1. Neutrinoless double beta decay predictions for both NO (blue) and IO (red). Left panel: correlation between Majorana phases.
Right panel: the combination of the sum rule, the measured mass squared differences and the correlation of the Majorana phases lead to a
very precise prediction for 0νee. The KamLAND-ZEN experiment constraints the value of jmeej [69] while cosmology can constraint
the sum of neutrino masses [65] and thus, in conjunction with the neutrino oscillation results, the mass of the lightest neutrino. The
Planck limits shown are for the NO case.

FIG. 2. The model predicts a tight correlation between the
imaginary part of the modulus τ and the atmospheric angle θ23 in
both orderings. The experimental bands correspond to theNO case
and are very similar for the IO case. Themodel points (blue and red
for NO and IO, respectively) satisfy θij ∈ 3σ and δCP ∈ 5σ.
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A. NO

In the normal ordering of neutrino masses we have
m3 > m2 > m1, as well as Δm2

31 > 0. We impose all the
mixing angles and mass squared differences to be inside
their 2D 3σ regions, but for the sake of representation we let
δCP in its 5σ regions. It is important to note that it is
possible to obtain the mass squared differences and mixing
angles inside their respective 1σ regions, while at the same
time δCP can be in the 2 or 3σ region. This behavior can be
seen in Fig. 3. The main neutrino oscillation predictions of
the model in the NO case are (a) θ13 > 8.36°, which will be
put to test in the next run of T2K [73] (b) a correlation
between θ13 and θ23, which may be resolved by a
combination of T2K and Dune [73,74], and (c) A corre-
lation between θ23 and δCP which may be falsified by
Dune [74].

B. IO

Similarly, in the inverted ordering of neutrino masses, we
have m2 > m1 > m3, as well as Δm2

31 < 0. Unlike in the
NO case, here the mixing angles θ12, θ13 and θ23 are nearly
uncorrelated. However, θ23 has an upper bound of
θ23 < 46.8°. Since oscillation experiments seem to prefer
the upper octant, this prediction may be ruled out by Dune
in the near future [74]. Moreover, θ23 and δCP feature a very
sharp correlation, which can also be tested by Dune [74].
This behavior can be seen in Fig. 4.
The main neutrino oscillations predictions of the model

in the IO case are (a) θ23 < 46.8° and (b) a sharp correlation
between θ23 and δCP. If the hints that θ23 lie in the upper
octant get confirmed, the available parameter space of this
scenario will be greatly restricted.

FIG. 3. Model predictions in the NO case. In both panels, the blue dots satisfy all the 2D 3σ mixing angles correlations, while the CP
violation phase δCP is in its 5σ region. The green dots instead have the mixing angles inside their 1σ regions and δCP in their 3σ ones. See
text for details. Left panel: correlation between θ13 and θ23. This correlation implies an lower bound on θ13 > 8.36°, which may be
contested in the future run of T2K [73]. Right panel: correlation between θ23 and δCP. This correlation may also be probed by future
experiments like Dune [74].

FIG. 4. Model predictions in the IO case. In both panels, the red dots satisfy all the 2D 3σ mixing angles correlations, while the CP
violation phase δCP is in its 5σ region. The dark green dots instead have the mixing angles θ12 and θ13 inside their 1σ regions, while δCP
and θ23 are in their 3σ ones. See text for details. Left panel: θ13 vs θ23. The model predicts an upper bound on θ23 < 46.8°, which may be
ruled out by future neutrino oscillation experiments. Right panel: Sharp correlation between θ23 and δCP, which may be probed by future
experiments like Dune [74].
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V. CONCLUSIONS

We have presented a minimal extension of the MSSM
based on a modular A4 symmetry which substantially
restricts the number of parameters in the flavor space. The
BSM fields and symmetries ingredients of the model are
just a SUð2ÞL triplet Δ and modulus τ, which gives rise to
neutrino masses via a type-II seesaw mechanism. As a
result the model is remarkably predictive. If neutrino
masses follow the normal ordering, the model requires
θ13 > 8.36° as well as the correlation between θ23 and δCP
showed in Fig. 3. If instead, they are arranged in the
inverted ordering the predictions are θ23 < 46.8° and an
even stronger correlation between θ23 and δCP shown in
Fig. 4. The combination of current and future neutrino
oscillation experiments will reduce the parameter space
even further and will potentially rule out the inverted
ordering case.
Most importantly, the neutrino mass structure leads to

a sum rule for the physical neutrino masses. Combined
with neutrino oscillation data this sum rule fixes the
absolute neutrino mass scale. The upcoming cosmologi-
cal probes such as the Euclid mission, the CMB-S4 and
SPT-3G experiments, whose first datasets are expected
soon, will be able to fully test this sum rule, see
Eqs. (6a) and (6b). Furthermore, the nEXO experiment
will explore part of the relevant parameter space, see
Fig. 1. On the other hand, the meff

νe value predicted by
the sum rules is below KATRIN’s experimental sensi-
tivity, hence any observation in this experiment will rule
out the model.
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APPENDIX A: DIAGONALIZATION OF MASS
MATRICES AND PARAMETRIZATION

OF UNITARY MATRICES

The mass matrices in Eqs. (3) and (4) are diagonalized as
follows

UT
νMνU ¼ diagðm1; m2; m3Þ

U†
lMlV ¼ diagðme;mμ; mτÞ
Ulep ¼ U†

lUν

where Ulep is the lepton mixing matrix which parametrizes
the interaction between the W boson and the leptons
and is probed by neutrino oscillation experiments. In the

symmetric parametrization [58,75] a general unitary matrix
can be written as

Ulep¼Pðδ1;δ2;δ3ÞU23ðθ23;ϕ23ÞU13ðθ13;ϕ13ÞU12ðθ12;ϕ12Þ;

where Pðδ1; δ2; δ3Þ is a diagonal matrix of unphysical
phases and the Uij are complex rotations in the ij plane,
as for example,

U23ðθ23;ϕ23Þ ¼

0
B@

1 0 0

0 cos θ23 sin θ23e−iϕ23

0 − sin θ23eiϕ23 cos θ23

1
CA:

The phases ϕ12 and ϕ13 are relevant for 0νee decay,
while the combination δCP ¼ ϕ13 − ϕ12 − ϕ23 is the usual
Dirac CP phase measured in neutrino oscillations. The
primary contribution to the 0νee decay process is the
exchange of light neutrinos. The effective mass jmeej,
which determines the decay rate, is given in the symmetric
parametrization [58,75] as

jmeej ¼
����X

i

U2
eimi

���� ¼ jc212c213m1 þ s212c
2
13e

2iϕ12m2

þ s213e
2iϕ13m3j; ðA1Þ

where cij ¼ cos θij, sij ¼ sin θij represent the mixing
angles, mi are the neutrino masses, and ϕ12, ϕ13 are the
CP-violating phases. Our model’s predictions for the
0νee decay are illustrated in the right panel of Fig. 1 in
the main text, plotting jmeej against the lightest neutrino
mass, mlightest, which corresponds to m1 in the NO case
and to m3 in the IO case. The light blue and red regions
correspond to the 3σ allowed ranges for normal ordering
(NO) and inverted ordering (IO) scenarios, respectively.
The dark blue and red regions represent our model’s
predictions for the NO and IO scenarios, respectively.
As depicted in Fig. 1, our model confines the predicted
jmeej to a narrow range for both NO and IO scenarios,
which is attributable to the specific values of the mixing
angles, neutrino masses, and Majorana phases con-
strained by our model. In particular, the width of each
model band is restricted by the combination of the sum
rule and the measured mass squared differences, which
sets a narrow range for mlightest in each ordering. On the
other hand, the correlations between mixing parameters
in the model, most importantly the Majorana phases ϕ12

and ϕ13, also limit the height of the model region, which
would cover the entirety of the light colored region for a
given value of mlightest if they were free inside the
experimental 3σ ranges. See Figs. 5 and 6, which
highlight the tight relation between the Majorana phases
and τ in NO and IO, respectively.
Furthermore, the gray shaded region along the hori-

zontal axis in Fig. 1 represents the Planck collaboration’s
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constraint on
P

i mi translated into a constraint on
mlightest for the NO case [65]. For clarity, this constraint
is not depicted for the IO scenario, but see the main text
for further details. Note that the model prediction ofP

i mi is very similar for both orderings, around 0.1 eV.

The gray shaded area on the vertical axis indicates the
upper limit on jmeej from the KamLAND-ZEN experi-
ment [69], while the dashed green line shows the future
sensitivity expected from the nEXO experiment [76].

APPENDIX B: A4 MULTIPLICATION RULE
AND MODULAR YUKAWA CONSTRUCTION

A4 symmetry: A4 is an even permutation group of four
objects. It is also the symmetry group of a regular
tetrahedron. It has 4!=2 ¼ 12 elements and can be gen-
erated by two generators S and T obeying the relations:

S2 ¼ T3 ¼ ðSTÞ3 ¼ I :

The group has four irreducible representations, a trivial
singlet 1, two nontrivial singlet 10, 100, and a triplet 3. The
product rules for the singlets and triplet are

1 ⊗ 1 ¼ 1 ¼ 10 ⊗ 100; 10 ⊗ 10 ¼ 100; 100 ⊗ 100 ¼ 10:

3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3S ⊕ 3A: ðB1Þ

where, 3SðAÞ denotes the symmetric (and antisymmetric)
combination. In the complex basis where T is a diagonal
matrix, we have,

S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA; T ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA:

where ω is the cubic root of unity. Given two triplets a ¼
ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ, their product decomposes
following Eq. (B1) and they are expressed as:

ðabÞ1 ¼ a1b1 þ a2b3 þ a3b2

ðabÞ10 ¼ a3b3 þ a1b2 þ a2b1

ðabÞ100 ¼ a2b2 þ a3b1 þ a1b3

ðabÞ3S ¼
1ffiffiffi
3

p

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a3b1 − a1b3

1
CA

ðabÞ3A ¼

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA ðB2Þ

Modular framework: Here we summarize modular
symmetry framework in context of A4 symmetry. The
modular group Γ̄ is the group of linear fractional trans-
formations γ which acts on the complex variable τ linked to
the upper-half complex plane as follows:

τ → γτ ¼ aτ þ b
cτ þ d

ðB3Þ

FIG. 5. Correlation of Majorana phases with ImðτÞ in the NO
scenario.

FIG. 6. Correlation of Majorana phases with ImðτÞ in the IO
scenario.
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where, a; b; c; d∈Z and ad − bc ¼ 1, Im½τ� > 0. The
modular group is isomorphic to the transformation
PSLð2;ZÞ ¼ SLð2;ZÞ=fI ;−Ig, and it is generated by
two elements S and T satisfying

S2 ¼ I ; ðSTÞ3 ¼ I :

Representing S and T as

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
;

then they correspond to the following transformations,

S∶τ → −
1

τ
; T∶τ → τ þ 1:

The group SLð2;ZÞ ¼ Γð1Þ≡ Γ contains a series of
infinite normal subgroups ΓðNÞ; ðN ¼ 1; 2; 3;…Þ and
defined as

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ;

�
a b

c d

�
¼
�
1 0

0 1

�
ðmod NÞ

�

Definition of Γ̄ð2Þ≡ Γð2Þ=fI ;−Ig for N ¼ 2. Since − I
is not associated with ΓðNÞ for N > 2 case, one can have
Γ̄ðNÞ ¼ ΓðNÞ, which are infinite normal subgroups of Γ̄
known as principal congruence subgroups. The quotient
groups ΓN ≡ Γ̄=Γ̄ðNÞ are called finite modular groups. The
condition of TN ¼ I is applied to these finite groups ΓN .
For small N (≤ 5), the groups ΓN are isomorphic to
permutation groups [77]. Namely, Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃
S4 and Γ5 ≃ A5.
Modular forms fðτÞ of weight k and level N are

holomorphic functions of the complex variable τ and its
transformation under the group ΓðNÞ is given as follows:

fðγτÞ¼ ðcτþdÞkfðτÞ; γ¼
�
a b

c d

�
∈ΓðNÞ;

where k is even and non-negative. Modular forms of weight
k and level N constitute a finite-dimensional linear space.
Within this space, it is possible to find a basis where a
multiplet of modular forms fiðτÞ undergoes transforma-
tions following a unitary representation ρ of the finite
group ΓN :

fiðγτÞ¼ ðcτþdÞkρijðγÞfjðτÞ; γ∈ΓðNÞ;

A field ϕðIÞ transforms as given in Eq. (1).The scalar fields
kinetic terms are given as follows

X
I

j∂μϕðIÞj2
ð−iτ þ iτ̄ÞkI ;

which does not change under the modular transformation,
and eventually, the overall factor is absorbed by the field
redefinition.
Thus, the Lagrangian should be invariant under the

modular symmetry. Our model is based on A4 (N ¼ 3)
modular group. The modular forms of the Yukawa coupling
Yð2Þ ¼ ðy1; y2; y3Þ with weight 2, which transforms as a
triplet of A4 can be expressed in terms of Dedekind eta-
function ηðτÞ and its derivative [4]:

y1ðτÞ ¼
i
2π

 
η0ðτ

3
Þ

ηðτ
3
Þ þ

η0ðτþ1
3
Þ

ηðτþ1
3
Þ þ

η0ðτþ2
3
Þ

ηðτþ2
3
Þ −

27η0ð3τÞ
ηð3τÞ

!
;

y2ðτÞ ¼
−i
π

 
η0ðτ

3
Þ

ηðτ
3
Þ þ ω2

η0ðτþ1
3
Þ

ηðτþ1
3
Þ þ ω

η0ðτþ2
3
Þ

ηðτþ2
3
Þ

!
;

y3ðτÞ ¼
−i
π

 
η0ðτ

3
Þ

ηðτ
3
Þ þ ω

η0ðτþ1
3
Þ

ηðτþ1
3
Þ þ ω2

η0ðτþ2
3
Þ

ηðτþ2
3
Þ

!
: ðB4Þ

The expression of Dedekind eta-function ηðτÞ is given by:

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q≡ ei2πτ:

In the form of q-expansion, the modular Yukawa of
Eq. (B4) can be expressed as:

y1ðτÞ ¼ 1þ 12qþ 36q2 þ 12q3 þ � � �
y2ðτÞ ¼ −6q1=3ð1þ 7qþ 8q2 þ � � �Þ
y3ðτÞ ¼ −18q2=3ð1þ 2qþ 5q2 þ � � �Þ:

From the q-expansion we have the following constraint for
modular Yukawa couplings:

y22 þ 2y1y3 ¼ 0: ðB5Þ

Higher modular weight Yukawa couplings can be con-
structed from weight 2 Yukawa (Yð2Þ) using the A4

multiplication rule. For modular weight k ¼ 4, we have
the following Yukawa couplings:

Yð4Þ
3 ¼ ðy21 − y2y3; y23 − y1y2; y22 − y1y3Þ

Yð4Þ
1 ¼ y21 þ 2y2y3

Yð4Þ
10 ¼ y23 þ 2y1y2

Yð4Þ
100 ¼ y22 þ 2y1y3

At modular weight k ¼ 6, the Yukawa couplings are
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Yð6Þ
1 ¼ y31 þ y32 þ y33 − 3y1y2y3

Yð6Þ
3a ¼ ðy31 þ 2y1y2y3; y21y2 þ 2y22y3; y

2
1y3 þ 2y23y2Þ

Yð6Þ
3b ¼ ðy33 þ 2y1y2y3; y23y1 þ 2y21y2; y

2
3y2 þ 2y22y1Þ

Yð6Þ
3c ¼ ðy32 þ 2y1y2y3; y22y3 þ 2y23y1; y

2
2y1 þ 2y21y3Þ

Due to the constraint mentioned in Eq. (B5), we see that

Yð4Þ
100 ¼ 0 and Yð6Þ

3c ¼ 0. In general, the dimensions (dk) of
modular forms of the level 3 and weight k is kþ 1 [4,57].
The representations for different weights are shown in
Tab. III.

APPENDIX C: PROOF OF SUM RULE

We can write the neutrino mass invariants in terms of
r2 ≡ jY1j2 þ jY2j2 þ jY3j2

TrðM†
νMνÞ ¼ 6r2

TrðM†
νMνM

†
νMνÞ ¼ 18r4

Therefore, we find 1
2
TrðM†

νMνÞ2 ¼ TrðM†
νMνM

†
νMνÞ,

which in turn implies

1

2
ðm2

1 þm2
2 þm2

3Þ2 ¼ m4
1 þm4

2 þm4
3

We can solve one of the masses, for example for m3

m2
3 ¼ ðm1 �m2Þ2 ðC1Þ

And after imposing that the masses are positive we find a
unique solution for each ordering

mNO
3 ¼ mNO

1 þmNO
2 ; mNO

3 > mNO
2 > mNO

1

mIO
2 ¼ mIO

1 þmIO
3 ; mIO

2 > mIO
1 > mIO

3

Or alternatively, adding the heaviest of the masses in both
sides

mheaviest ¼
1

2

X
i

mi ðC2Þ

Since we know the mass squared difference of neutrino
masses this sum rule leads to a definite prediction of the
neutrino mass scale.

APPENDIX D: Δ SCALAR MASS AND μΔ

Starting with Eq. (2) the scalar potential can be obtained
from

V ¼ VF þ VD

¼ F�iFi þ
1

2

X
a

DaDa

¼ W�
i W

i þ 1

2

X
a

g2aðϕ†TaϕÞ2; ðD1Þ

where VF and VD stand for F and D potential contributions,
respectively. Wi ¼ δW

δϕi
, ϕ stands for superfields from Tab. I

of the main text, ga’s are the gauge coupling constants, and
Ta’s are the generators of the gauge symmetries.
For the sake of simplicity, to obtain the Δ scalar and

Higgs masses we assume R—parity conservation and
focus on R—parity even, electrically neutral, and real
scalars. The corresponding mass matrix elements are
given as

m2
huhu

¼ μ2 þ ð2g22 þ g21Þ
3

8
v2u; ðD2aÞ

m2
hdhd

¼ μ2 þ
�
2μ2Δ þ g22

4
þ g21

8

�
3v2d þ 2μ2Δv

2
Δ; ðD2bÞ

m2
ΔΔ ¼

�
2g21 þ

g22
2

�
3v2Δ þ 2μ2Δv

2
d; ðD2cÞ

m2
huhd

¼ μμΔ
vΔffiffiffi
2

p ; ðD2dÞ

m2
huΔ ¼ μμΔ

vdffiffiffi
2

p ; ðD2eÞ

m2
hdΔ ¼ 2μ2ΔvdvΔ þ μμΔ

vuffiffiffi
2

p ; ðD2fÞ

in the ðh0u; h0d;Δ0Þ basis. In the limit μΔ → 0 we recover
MSSM scenario, where vΔ → 0, and all mixing terms in
Eq. (D2) become zero. Hence, if μΔ → 0 Hu and Hd
generate masses for up and down quark and lepton sectors,
respectively. Furthermore,

v2u þ v2d ¼ v2 ¼ ð246 GeVÞ2; ðD3aÞ
vu
vd

¼ tanðβÞ; ðD3bÞ

are defined as usual. The potential minimization equations
are given as

∂V
∂hu

¼ 0→ μ2þð2g22þg21Þ
v2u
8
þ

ffiffiffi
2

p
μμΔ

vΔvd
vu

¼ 0; ðD4aÞ

TABLE III. A4 representations for different weight k.

Weight (k) dk A4 representations

2 3 3
4 5 3þ 1þ 10
6 7 3þ 3þ 1
8 9 3þ 3þ 1þ 10 þ 100
10 11 3þ 3þ 3þ 1þ 10
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∂V
∂hd

¼ 0 → μ2 þ ð16μ2Δ þ 2g22 þ g21Þ
v2d
8

þ 2μ2Δv
2
Δ þ

ffiffiffi
2

p
μμΔ

vΔvu
vd

¼ 0; ðD4bÞ

∂V
∂Δ0

R
¼ 0 → ðg22 þ 4g21Þ

v2Δ
2

þ 2μ2Δv
2
d

þ
ffiffiffi
2

p
μμΔ

vdvu
vΔ

¼ 0: ðD4cÞ

Taking μΔ ≪ 1, due to seesaw-II scenario, vΔ ≪ vu;d
is obtained via v3Δ ≈ −

ffiffiffi
2

p
μμΔvuvd=ð2g21 þ g22=2Þ. To sat-

isfy the Δ scalar mass experimental constraint, the
SUSY soft breaking term for Δ scalar must dominate the

mass contribution to it, m2
Δ ≈m2

Δ;soft þOð1 GeVÞ2≈
Oð1 TeVÞ2. As a result, the Δ scalar mass dominantly
depends on the value of the SUSY soft breaking term
m2

Δ;soft, assuming the case of μΔ ≪ 1 for seesaw-II pur-
poses. Finally, the mass square of Δ under aforementioned
conditions, v3Δ ≈ −

ffiffiffi
2

p
μμΔvuvd=ð2g21 þ g22=2Þ approxima-

tion, as well as taking into account that g21ðmWÞ ¼ 0.2136,
g22ðmWÞ ¼ 0.4210, and using Eq. (D2) (including the soft
SUSY breaking term) is given as

m2
Δ ≈m2

Δ;soft þ
�
2g21 þ

g22
2

�
3v2Δ þ 2μ2Δv

2
d

≈m2
Δ;soft þ 2v2Δ þ 2μ2Δv

2
d: ðD5Þ
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