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We determine the fine-tuning of the Yukawa couplings of supersymmetric QCD, discretized on a lattice.
We use perturbation theory at one-loop level. The modified minimal subtraction scheme (MS) is employed;
by its definition, this scheme requires perturbative calculations, in the continuum and/or on the lattice. On
the lattice, we utilize the Wilson formulation for gluon, quark, and gluino fields; for squark fields we use
naive discretization. The sheer difficulties of this study lie in the fact that different components of squark
fields mix among themselves at the quantum level and the action’s symmetries, such as parity and charge
conjugation, allow an additional Yukawa coupling. Consequently, for an appropriate fine-tuning of the
Yukawa terms, these mixings must be taken into account in the renormalization conditions. All Green’s
functions and renormalization factors are analytic expressions depending on the number of colors, Nc, the
number of flavors, Nf, and the gauge parameter, α, which are left unspecified. Knowledge of these
renormalization factors is necessary in order to relate numerical results, coming from nonperturbative
studies, to the renormalized, “physical” Green’s functions of the theory.
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I. INTRODUCTION

Over the past decades, supersymmetry (SUSY) has been
considered a prime candidate for resolving a number of
open problems related to the Standard Model (SM), such as
the candidates to explain the nature of dark matter [1], the
unification of the electromagnetic, weak and strong forces
suggested by the Grand Unified Theory (GUT) [2,3], and
the hierarchy problem [3]. Unbroken SUSY dictates equal
fermionic and bosonic degrees of freedom within super-
multiplets. However, SUSY particles have remained
elusive [4], necessitating the nonperturbative study of the
SUSY breaking mechanism [5,6]. Supersymmetric models
of strongly coupled theories are a very promising models
for new physics Beyond the SM and lattice investigations
of supersymmetric extensions of QCD are becoming within
reach. However, there are several well-known obstacles
arising from the breaking of SUSY in a regularized theory
on the lattice [7], including the necessity for fine-tuning of
the theory’s bare Lagrangian [8–10].

An additional significant incentive for delving into
nonperturbative explorations of supersymmetric theories
stems from theoretical conjectures concerning confinement
mechanisms and their connections to gauge/gravity duality.
These have their foundations in the enhanced symmetries
of supersymmetric gauge theories and it would be interest-
ing to extend and relate them to QCD or Yang-Mills theory.
This requires more general insights into the nonperturbative
regime of supersymmetric theories. Numerical lattice
simulations would be an ideal nonperturbative first-
principles tool to investigate gauge theories with SUSY.
However, it is unavoidable to break SUSY in any nontrivial
theory on the lattice. In general, fine-tuning is required to
restore supersymmetry in the continuum limit (see, e.g.,
Ref. [11]), which can be guided by signals provided by
the SUSY Ward identities [12,13]. The analysis of SUSY
Ward identities requires the renormalization of the super-
current [14], which can mix due to broken supersymmetry
with other operators of the same or lower dimension.
Even though lattice breaks N ¼ 1 supersymmetry explic-
itly [15], it is the best method at present to obtain
quantitative results. There are also other theories with
extended supersymmetry [16–18], which preserve some
supercharges on the lattice; however, in this work we focus
on N ¼ 1 supersymmetric QCD (SQCD) which is more
realistic in the sense that it is directly related to extensions
of the SM.
The gauge invariance of the lattice SQCD action dictates

that some of the action’s interaction terms will share
the same coupling constant, g (gauge coupling). This is
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particularly applicable to the kinematic terms containing
covariant derivatives, resulting in gluons coupling with
quarks, squarks, gluinos, and other gluons, all governed by
the same gauge coupling constant. The Yukawa interactions
involving quarks, squarks, and gluinos, as well as the four-
squark interactions, have the potential to feature distinct
couplings, at the quantum level. Furthermore, new terms
may also emerge, necessitating careful fine-tuning on the
lattice. By exploiting the symmetries of the Wilson lattice
action, we can predict these potentially novel interaction
terms. However, with the actual computation we can
understand if they will arise at the quantum level, and
more importantly we can determine their renormalizations
to certain perturbative order.
In this article, we present one-loop perturbative results

regarding the renormalization of the Yukawa couplings,
which are obtained by using the standard N ¼ 1 super-
symmetric extension of QCDwith the gauge group SUðNcÞ
and Nf flavors in the fundamental representation. After
presenting the basics of the computation setup (Sec. II), we
start with a discussion of the renormalization of the Yukawa
couplings (Sec. III) both in dimensional and lattice regu-
larizations. We utilize the MS renormalization scheme
and we determine the renormalization factors to one-loop
order. Finally, outlook and future plans are briefly outlined
(Sec. IV). We also provide an Appendix that elaborates the
Majorana nature of the gluino field within the functional
integral framework.

II. FORMULATION AND
COMPUTATIONAL SETUP

In this section we shortly introduce the computational
setup of our study, along with the notation used in the
paper. We give the definitions for the symmetries of
the action as well as the transformation properties of the
Yukawa terms. These symmetries allow an additional linear
combination of “Yukawa-type” operators, which can in
principle appear at the quantum level. In addition, we
provide the Feynman diagrams for the calculation of the
three-point (3-pt) Green’s functions which we must com-
pute in order to extract the renormalization of the Yukawa
couplings. Several prescriptions for defining γ5 in D
dimensions [19] are also presented in the end of this
section. Since MS renormalized Green’s functions are
computed in dimensional regularization (DR) we have
also introduced the continuum action of SQCD. In DR the
regulator, ϵ, is defined by D≡ 4 − 2ϵ; in the lattice
regularization (LR) the lattice spacing, a, serves as regu-
lator for the UV divergences.
In the Wess-Zumino (WZ) gauge, the SQCD action

contains the following fields; the gluon together with the
gluino; and for each quark flavor, a Dirac fermion (quark)
and two components of squarks. Although the action of
SQCD used in this calculation can be found in the
literature, e.g., in Refs. [20,21], for completeness’ sake
we present it here; in the continuum and in Minkowski
space, the action of SQCD is1

SSQCD ¼
Z

d4x

�
−
1

4
uαμνuμνα þ

i
2
λ̄αγμDμλ

α −DμA
†
þDμAþ −DμA−DμA†

− þ iψ̄γμDμψ

− i
ffiffiffi
2

p
gðA†

þλ̄αTαPþψ − ψ̄P−λ
αTαAþ þ A−λ̄

αTαP−ψ − ψ̄PþλαTαA†
−Þ

−
1

2
g2ðA†

þTαAþ − A−TαA†
−Þ2 þmðψ̄ψ −mA†

þAþ −mA−A†
−Þ
�
; ð1Þ

where ψ (A�) is the quark field (squark field components),
uμ ¼ uαμTα (λ ¼ λαTα) is the gluon (gluino) field; Tα are
the generators of the SUðNcÞ gauge group and P� ¼
ð1� γ5Þ=2 are projectors. Quarks and squarks should
also be assigned with color indices in the fundamental
representation of the gauge group SUðNcÞ, whereas
gluons and gluinos carry an α index which is a color
index in the adjoint representation of the gauge group.

The definitions of the covariant derivatives and of the gluon
field tensor are

DμAþ ¼ ∂μAþ þ iguαμTαAþ;

DμA†
− ¼ ∂μA†

− þ iguαμTαA†
−;

DμA− ¼ ∂μA− − igA−Tαuαμ;

DμA
†
þ ¼ ∂μA

†
þ − igA†

þTαuαμ;

Dμψ ¼ ∂μψ þ iguαμTαψ ;

Dμλ ¼ ∂μλþ ig½uμ; λ�;
uμν ¼ ∂μuν − ∂νuμ þ ig½uμ; uν�: ð2Þ

1Note that matter fields are in the fundamental representation
of the gauge group, as in ordinary QCD; also, in the interest of
studying the simplest manifestly renormalizable supersymmetric
extension of QCD, we have not included any additional super-
potential terms in the SQCD Lagrangian, Eq. (1).
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The parts of the continuum and lattice SQCD actions that are
associated with the quark and the squark fields [Eqs. (1) and
(6), respectively] involve a summation over flavor indices2;
these flavor indices are implicit within our expressions.
The above action in Eq. (1) is invariant under

these supersymmetric transformations with a Majorana
Grassmann parameter ξ:

δξAþ ¼ −
ffiffiffi
2

p
ξ̄Pþψ ;

δξA− ¼ −
ffiffiffi
2

p
ψ̄Pþξ;

δξðPþψÞ ¼ i
ffiffiffi
2

p
ðDμAþÞPþγμξ −

ffiffiffi
2

p
mPþξA†

−;

δξðP−ψÞ ¼ i
ffiffiffi
2

p
ðDμA−Þ†P−γ

μξ −
ffiffiffi
2

p
mAþP−ξ;

δξuαμ ¼ −iξ̄γμλα;

δξλ
α ¼ 1

4
uαμν½γμ; γν�ξ − igγ5ξðA†

þTαAþ − A−TαA†
−Þ:

ð3Þ

As in the case with the quantization of ordinary gauge
theories, additional infinities will appear upon functionally
integrating over gauge orbits. The standard remedy is to
introduce a gauge-fixing term in the Lagrangian, along with
a compensating Faddeev-Popov ghost term. The resulting
Lagrangian, though no longer gauge invariant, is still
invariant under Becchi-Rouet-Stora-Tyutin transforma-
tions. This procedure of gauge fixing guarantees that
Green’s functions of gauge invariant objects will be gauge
independent to all orders in perturbation theory. We use the
ordinary gauge fixing term and ghost contribution arising
from the Faddeev-Popov gauge fixing procedure,

SGF ¼ 1

α

Z
d4xTrð∂μuμÞ2; ð4Þ

where α is the gauge parameter [α ¼ 1ð0Þ corresponds to
Feynman (Landau) gauge], and

SGhost¼−2
Z

d4xTrðc̄∂μDμcÞ; Dμc¼∂μc− ig½uμ;c�; ð5Þ

where the ghost field, c, is a Grassmann scalar which
transforms in the adjoint representation of the gauge group.
This gauge fixing term breaks supersymmetry. However,
given that the renormalized theory does not depend on
the choice of a gauge fixing term, and given that both
dimensional and lattice regularizations violate SUSY at
intermediate steps, one may choose this standard covariant
gauge fixing term.
In Refs. [22] and [23], the first lattice perturbative

computations in the context of SQCD were presented;
apart from the Yukawa and the quartic couplings [24,25],
we have extracted the renormalization of all parameters
and fields appearing in Eq. (6) using Wilson gluons and
fermions. The results in references [22,23] will find further
use in the present work.
From this point on, we switch to Euclidean space. In our

lattice calculation, we extend Wilson’s formulation of the
QCD action, to encompass SUSY partner fields as well. In
this standard discretization quarks, squarks, and gluinos
live on the lattice sites, and gluons live on the links of the
lattice: UμðxÞ ¼ eigaT

αuαμðxþaμ̂=2Þ; α is a color index in the
adjoint representation of the gauge group. This formulation
leaves no SUSY generators intact, and it also breaks chiral
symmetry; hence, the need for fine-tuning will arise in
numerical simulations of SQCD. For Wilson-type quarks
and gluinos, the Euclidean action SL

SQCD on the lattice
becomes,

SL
SQCD ¼ a4

X
x

�
Nc

g2
X
μ;ν

�
1 −

1

Nc
TrUμν

�
þ
X
μ

Trðλ̄γμDμλÞ − a
r
2
Trðλ̄D2λÞ þ

X
μ

ðDμA
†
þDμAþ þDμA−DμA†

− þ ψ̄γμDμψÞ

− a
r
2
ψ̄D2ψ þ i

ffiffiffi
2

p
gðA†

þλ̄αTαPþψ − ψ̄P−λ
αTαAþ þ A−λ̄

αTαP−ψ − ψ̄PþλαTαA†
−Þ

þ 1

2
g2ðA†

þTαAþ − A−TαA†
−Þ2 −mðψ̄ψ −mA†

þAþ −mA−A†
−Þ
�
; ð6Þ

where UμνðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ, and
a summation over flavors is understood in the last three
lines of Eq. (6). The 4-vector x is restricted to the values
x ¼ na, with n being an integer 4-vector. The terms

proportional to the Wilson parameter, r, eliminate the
problem of fermion doubling, at the expense of breaking
chiral invariance. In the limit a → 0 the lattice action
reproduces the continuum (Euclidean) one. As we will
describe below, the bare coupling for the Yukawa terms
[gluino-squark-quark terms in the second line of Eq. (6)]
need not coincide with the gauge coupling g; this require-
ment will be imposed on the respective renormalized value.

2A double summation over flavors is implicit in the 4-squark
term of the action [last line of Eqs. (1) and (6)].
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The definitions of the covariant derivatives are as follows:

DμλðxÞ≡ 1

2a
½UμðxÞλðxþ aμ̂ÞU†

μðxÞ − U†
μðx − aμ̂Þλðx − aμ̂ÞUμðx − aμ̂Þ�; ð7Þ

D2λðxÞ≡ 1

a2
X
μ

½UμðxÞλðxþ aμ̂ÞU†
μðxÞ − 2λðxÞ þ U†

μðx − aμ̂Þλðx − aμ̂ÞUμðx − aμ̂Þ�; ð8Þ

DμψðxÞ≡ 1

2a
½UμðxÞψðxþ aμ̂Þ − U†

μðx − aμ̂Þψðx − aμ̂Þ�; ð9Þ

D2ψðxÞ≡ 1

a2
X
μ

½UμðxÞψðxþ aμ̂Þ − 2ψðxÞ þU†
μðx − aμ̂Þψðx − aμ̂Þ�; ð10Þ

DμAþðxÞ≡ 1

a
½UμðxÞAþðxþ aμ̂Þ − AþðxÞ�; ð11Þ

DμA
†
þðxÞ≡ 1

a
½A†

þðxþ aμ̂ÞU†
μðxÞ − A†

þðxÞ�; ð12Þ

DμA−ðxÞ≡ 1

a
½A−ðxþ aμ̂ÞU†

μðxÞ − A−ðxÞ�; ð13Þ

DμA†
−ðxÞ≡ 1

a
½UμðxÞA†

−ðxþ aμ̂Þ − A†
−ðxÞ�: ð14Þ

In Eqs. (11)–(14) in order to avoid a “doubling” problem for squarks we do not use the symmetric derivative; note, however,
that the symmetries of the action are the same for both types of derivatives.
In perturbation theory, it is necessary to introduce a discrete version of the gauge-fixing term into the action. This term is

expressed in terms of the gauge field, uμðxÞ,

SLGF ¼ 1

2α
a2
X
x

X
μ

Trðuμðxþ aμ̂=2Þ − uμðx − aμ̂=2ÞÞ2: ð15Þ

In addition, covariant gauge fixing produces the following action for the ghost fields c and c̄,

SLGhost ¼ 2a2
X
x

X
μ

Tr

�
ðc̄ðxþ aμ̂Þ − c̄ðxÞÞ

�
cðxþ aμ̂Þ − cðxÞ þ ig½uμðxþ aμ̂=2Þ; cðxÞ�

þ 1

2
ig½uμðxþ aμ̂=2Þ; cðxþ aμ̂Þ − cðxÞ� − 1

12
g2½uμðxþ aμ̂=2Þ; ½uμðxþ aμ̂=2Þ; cðxþ aμ̂Þ − cðxÞ��

��
þOðg3Þ:

ð16Þ

These two terms must be added to the action, in order to
avoid divergences from the integration over gauge orbits;
they are the same as in the nonsupersymmetric case.
Furthermore, an additional term must be added to the
action, Eq. (6), in order to account for the Jacobian in
the change of integration variables, Uμ → uμ. This term is
the standard “measure” term SLM in the action and, to lowest
order in g, it reads,

SLM ¼ g2Nc

12
a2
X
x

X
μ

Trðuμðxþ aμ̂=2ÞÞ2 þOðg4Þ: ð17Þ

In our previous works [26–28], we studied the
mixing of certain composite operators upon renormal-
ization. The symmetries of the action play a crucial role
to identify the candidate mixing operators. Similarly, in
this work, we examine the transformation properties of
Yukawa-type operators (gauge-invariant operators of
dimension-four, composed of one gluino, one quark,
and one squark field) under both parity P and charge
conjugation C, and we have determined which specific
linear combinations of them remain unchanged. All
potential Yukawa terms and their transformation proper-
ties are detailed in Table I.
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The symmetries of the lattice action and their definitions
are presented below.

P∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

U0ðxÞ→U0ðxPÞ; UkðxÞ→U†
kðxP−ak̂Þ; k¼1;2;3

ψðxÞ→ γ0ψðxPÞ
ψ̄ðxÞ→ ψ̄ðxPÞγ0
λαðxÞ→ γ0λ

αðxPÞ
λ̄αðxÞ→ λ̄αðxPÞγ0
A�ðxÞ→A†∓ðxPÞ
A†
�ðxÞ→A∓ðxPÞ;

ð18Þ

where xP ¼ ð−x; x0Þ.

C∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

UμðxÞ → U⋆
μ ðxÞ; μ ¼ 0; 1; 2; 3

ψðxÞ → −Cψ̄ðxÞT
ψ̄ðxÞ → ψðxÞTC†

λðxÞ → Cλ̄ðxÞT
λ̄ðxÞ → −λðxÞTC†

A�ðxÞ → A∓ðxÞ
A†
�ðxÞ → A†∓ðxÞ;

ð19Þ

where T means transpose [also in the SUðNcÞ generators
implicit in the gluino fields]. The matrix C satisfies
ðCγμÞT ¼ Cγμ, CT ¼ −C, and C†C ¼ 1. In four dimen-
sions, in a standard basis for γ matrices, in which γ0, γ2 (γ1,
γ3) are symmetric (antisymmetric), C ¼ −iγ0γ2. Note that
all operators considered in Table I are flavor singlets.
The transformation properties of the Yukawa terms, as

shown in Table I, allow two distinct linear combinations of
Yukawa-type operators:

Y1 ≡ A†
þλ̄Pþψ − ψ̄P−λAþ þ A−λ̄P−ψ − ψ̄PþλA†

−; ð20Þ

Y2 ≡ A†
þλ̄P−ψ − ψ̄PþλAþ þ A−λ̄Pþψ − ψ̄P−λA†

−: ð21Þ

The first combination aligns with the third line of Eq. (6).
However, at the quantum level, the second combination
may emerge, having a potentially different Yukawa cou-
pling. All terms within each of the combinations in
Eqs. (20) and (21) are multiplied by a Yukawa coupling,
denoted as gY1

and gY2
, respectively. In the classical

continuum limit, gY1
corresponds to g, while gY2

vanishes.
Further symmetries of the continuum action, at the

classical level, are R and χ. The Uð1ÞR symmetry, R,
rotates the quark and gluino fields in opposite direction,

R∶

8>>>>><
>>>>>:

ψðxÞ → eiθγ5ψðxÞ
ψ̄ðxÞ → ψ̄ðxÞeiθγ5
λðxÞ → e−iθγ5λðxÞ
λ̄ðxÞ → λ̄ðxÞe−iθγ5 ;

ð22Þ

R-symmetry does not commute with the SUSY trans-
formation. The Uð1ÞA symmetry, χ, rotates the squark and
the quark fields in the same direction as follows:

χ∶

8>>>>><
>>>>>:

ψðxÞ → eiθ
0γ5ψðxÞ

ψ̄ðxÞ → ψ̄ðxÞeiθ0γ5
A�ðxÞ → eiθ

0
A�ðxÞ

A†
�ðxÞ → e−iθ

0
A†
�ðxÞ:

ð23Þ

Both Yukawa terms commute with R. However the quark
mass terms do not. Thus, if we insist on a theory with
massive quarks, R is not a symmetry. χ leaves invariant
each of the four constituents of the Yukawa term [Eq. (20)],
but it changes the constituents of the “mirror” Yukawa term
(i.e., a term with all Pþ and P− interchanged) by phases
e2iθ

0
and e−2iθ

0
.

Thus the continuum action is classically invariant sep-
arately under χ and R (for massless quarks), or under
χ ×R (where the phases in χ and R are chosen to be
opposite, so that quarks are left unchanged) for massive
quarks. The lattice action with Ginsparg-Wilson (GW),
even in the presence of Wilson quarks and/or a quark mass,
will also be classically invariant under χ ×R (with oppo-
site phases: θ ¼ −θ0); it is interesting to study how this
symmetry will develop an anomaly in the quantum level.
The structure of counterterms on the lattice becomes
simpler if both GW gluinos and GW quarks is employed.
Even in such a case, terms proportional to the tree-level
Green’s functions of the mirror Yukawa will appear in
lattice Green’s functions, just as they do in DR Green’s
functions, as a consequence of the anomalous symmetries;
however, these terms will coincide in the bare lattice and
continuum Green’s functions, and no further lattice coun-
terterms [such as our Eq. (64)] will be required. Another
interesting feature of the SQCD action which can be
investigated on the lattice, making use of GW gluinos
and massless GW quarks, is the conservation of an

TABLE I. Gluino-squark-quark dimension-4 operators which
are gauge invariant and flavor singlet. All matter fields carry an
implicit flavor index.

Operators C P

A†
þλ̄Pþψ −ψ̄PþλA†

− A−λ̄P−ψ
ψ̄P−λAþ −A−λ̄P−ψ ψ̄PþλA†

−
A−λ̄P−ψ −ψ̄P−λAþ A†

þλ̄Pþψ
ψ̄PþλA†

− −A†
þλ̄Pþψ ψ̄P−λAþ

A†
þλ̄P−ψ −ψ̄P−λA†

− A−λ̄Pþψ
ψ̄PþλAþ −A−λ̄Pþψ ψ̄P−λA†

−
A−λ̄Pþψ −ψ̄PþλAþ A†

þλ̄P−ψ
ψ̄P−λA†

− −A†
þλ̄P−ψ ψ̄PþλAþ
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anomaly-free combination of χ ×R, taking into account
the values of the parametersNc andNf [29] which enter the
phases of χ and R.
In our investigation, we compute perturbatively the

relevant three-point Green’s functions with external gluino,
quark and squark fields, using both the DR and the LR
regularizations. Each Green’s function which contributes to
the one-loop expression of the Yukawa couplings, consists
of three Feynman diagrams shown in Fig. 1. The renorm-
alizations of fundamental fields and the gauge coupling
are a prerequisite for the renormalization of the Yukawa
coupling, since renormalization conditions in 3-pt-vertex
corrections (with external gluino, quark, and squark fields)
involve these quantities. More specifically, combining the
results for the bare Green’s functions on the lattice with the
renormalized Green’s functions (obtained in MS via DR),
and using the renormalization factors for the gluino, quark,
squark fields as well as the renormalization of the gauge
coupling, we extract the renormalization and counterterms
of the Yukawa couplings appropriate to the lattice regu-
larization and the MS renormalization scheme.
Before we turn our attention to the calculation, notice that

there exist several prescriptions [30] for defining γ5
in D dimensions, such as the naive dimensional regulariza-
tion (NDR) [31], the ‘t Hooft-Veltman (HV) [32], theDRED
[33] and theDREZ prescriptions (see, e.g., Ref. [34]). These
prescriptions are linked via finite conversion relations [35].
In our calculation, we apply the NDR and HV prescriptions.
The latter does not violate Ward identities involving pseu-
doscalar and axial-vector operators in D dimensions [31].
The Dirac matrices, γμ, are Hermitian in D-dimensional
Euclidean space and satisfy the following relations:

ημνημν ¼ D; fγμ; γνg ¼ 2δμν1: ð24Þ
In NDR, the definition of γ5 satisfies,

fγ5; γμg ¼ 0; ∀ μ; ð25Þ
whereas in HV it satisfies,

fγ5;γμg¼0; μ¼1;2;3;4; ½γ5;γμ�¼0; μ>4: ð26Þ

NDR is known to be an inconsistent regularization; in
particular, a calculation of the triangle diagram does not
reproduce the axial anomaly, leading to the incorrect result
that the axial current is conserved. Thus, our use of NDRwill
serve only to highlight its effect on Green’s functions such as
Eqs. (36)–(41), pointing out how some opposite chirality
terms are absent in NDR. Our end results [see Eqs. (63)
and (64)] will employ the HV prescription (chv ¼ 1).

III. RENORMALIZATION OF THE
YUKAWA COUPLINGS

In this section, we present our one-loop results for the
bare 3-pt Green’s functions and the renormalization factors
of the Yukawa couplings in the MS scheme, using both
dimensional (DR) and lattice (LR) regularizations. For the
renormalization of gY1

and gY2
, we impose renormalization

conditions which result in the cancellation of divergences
of the corresponding bare 3-pt amputated Green’s functions
with external gluino-squark-quark fields. The application
of the renormalization factors on the bare Green’s functions
leads to the renormalized Green’s functions, which are
independent of the regulator (ϵ in DR, a in LR).
Given that we are interested in the MS renormalization of

the Yukawa couplings, and that MS is a mass-independent
renormalization scheme, we are free to treat all particles (in
particular, quarks and squarks) as massless. In our forth-
comingpaper [36], regarding the quartic (4-squark) couplings
in SQCD, we choose instead to treat quarks and squarks as
massive, in order to avoid the emergence of spurious infrared
divergences. A mass-independent scheme allows us to make
use of techniques for evaluating Feynman diagrams which
have been developed to very high perturbative order (see,
e.g., [37–42]). Still perturbative calculations become exceed-
ingly complicated on the lattice, and consequently, calcu-
lations beyond two loops are practically unfeasible.
The calculation of the amputated tree-level Green’s

functions is straightforward and their expressions are3

FIG. 1. One-loop Feynman diagrams leading to the fine-tuning of gY1
and gY2

. Awavy (solid) line represents gluons (quarks). A dotted
(dashed) line corresponds to squarks (gluinos). In the above diagrams the directions of the arrows on the external lines depend on the
particular Green’s function under study. An arrow entering (exiting) a vertex denotes a λ;ψ ; Aþ; A†

− (λ̄; ψ̄ ; A†
þ; A−) field. Squark lines

could be further marked with a þð−Þ sign, to denote an AþðA−Þ field.

3Note that the indices coming from the color in fundamental
representation and the Dirac indices are left implicit. On the
contrary, the color in the adjoint representation is shown explicitly.
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hλα1ðq1ÞAþðq3Þψ̄ðq2Þitree

¼ −
i
2
gY1

ð2πÞ4δðq1 − q2 þ q3Þð1þ γ5ÞTα1=
ffiffiffi
2

p
; ð27Þ

hψðq2ÞA†
þðq3Þλ̄α1ðq1Þitree

¼ i
2
gY1

ð2πÞ4δðq1 − q2 þ q3Þð1 − γ5ÞTα1=
ffiffiffi
2

p
; ð28Þ

hλα1ðq1ÞA†
−ðq3Þψ̄ðq2Þitree

¼ −
i
2
gY1

ð2πÞ4δðq1 − q2 þ q3Þð1 − γ5ÞTα1=
ffiffiffi
2

p
; ð29Þ

hψðq2ÞA−ðq3Þλ̄α1ðq1Þitree

¼ i
2
gY1

ð2πÞ4δðq1 − q2 þ q3Þð1þ γ5ÞTα1=
ffiffiffi
2

p
; ð30Þ

where our conventions for Fourier transformations are

ψ̃ðqÞ ¼
Z

d4xe−iq·xψðxÞ; ð31Þ

Ã�ðqÞ ¼
Z

d4xe∓iq·xA�ðxÞ; ð32Þ

ũμðqÞ ¼
Z

d4xe−iq·xuμðxÞ; ð33Þ

λ̃ðqÞ ¼
Z

d4xe−iq·xλðxÞ. ð34Þ

The procedure of calculating the renormalization in the
MS scheme entails performing first the perturbative cal-
culations of the Green’s function inDR; this is unavoidable
by the very nature of the MS scheme. The comparison with
the same Green’s functions calculated in LR will lead to the
lattice renormalizations in the MS scheme.
The calculations presented in this paper could ideally be

performed using generic external momenta. However, for
convenience of computation, we are free to make appro-
priate choices of these momenta; the resulting renormal-
ization factors will not be affected at all. By inspection of
the propagators and vertices in the diagrams of Fig. 1, we
conclude that no superficial infrared divergences will be
generated, if any one of the three external momenta is set to
zero; in what follows, we calculate the corresponding
diagrams by setting to zero only one of these momenta.
The choice of the external momenta for Green’s functions
will not affect their pole parts in DR or their logarithmic
dependence on the lattice spacing in LR. Therefore, the
three choices for each 3-pt Green’s function will provide a
useful consistency check.
There are, in total, four different gluino-squark-quark

Green’s functions, depending on whether the external
squark field is Aþ=A

†
þ=A−=A†

−. We present first the four
Green’s functions for the three choices of external
momentum in DR. To avoid heavy notation we have
omitted Dirac/flavor/color indices4 on the Green’s func-
tions of Eqs. (35)–(40).

hλα1ð0ÞAþðq3Þψ̄ðq2ÞiDR;1 loop ¼ −hψðq2ÞA−ðq3Þλ̄α1ð0ÞiDR;1 loop

¼ −ið2πÞ4δðq2 − q3Þ
gY1

g2

16π2
1

4
ffiffiffi
2

p
Nc

Tα1

�
−3ð1þ γ5Þ þ ðð1þ αÞð1þ γ5Þ þ 8γ5chvÞN2

c

þ ð1þ γ5Þð−αþ ð3þ 2αÞN2
cÞ
�
1

ϵ
þ log

�
μ̄2

q22

���
; ð35Þ

hλα1ðq1ÞAþðq3Þψ̄ð0ÞiDR;1 loop

¼ −hψð0ÞA−ðq3Þλ̄α1ðq1ÞiDR;1 loop

¼ −ið2πÞ4δðq1 þ q3Þ
gY1

g2

16π2
1

4
ffiffiffi
2

p
Nc

Tα1

�
ðð4þ αÞð1þ γ5Þ þ 8γ5chvÞN2

c þ ð1þ γ5Þð−αþ ð3þ 2αÞN2
cÞ
�
1

ϵ
þ log

�
μ̄2

q21

���
;

ð36Þ

4The color indices in the adjoint representation are shown explicitly.
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hλα1ðq1ÞAþð0Þψ̄ðq2ÞiDR;1 loop ¼ −hψðq2ÞA−ð0Þλ̄α1ðq1ÞiDR;1 loop

¼ −ið2πÞ4δðq1 − q2Þ
gY1

g2

16π2
1

4
ffiffiffi
2

p
Nc

Tα1

�
−αð1þ γ5Þ þ ðð4þ 3αÞð1þ γ5Þ þ 8γ5chvÞN2

c

þ ð1þ γ5Þð−αþ ð3þ 2αÞN2
cÞ
�
1

ϵ
þ log

�
μ̄2

q21

���
; ð37Þ

hψðq2ÞA†
þðq3Þλ̄α1ð0ÞiDR;1 loop ¼ −hλα1ð0ÞA†

−ðq3Þψ̄ðq2ÞiDR;1 loop

¼ −ið2πÞ4δðq2 − q3Þ
gY1

g2

16π2
1

4
ffiffiffi
2

p
Nc

Tα1

�
3ð1 − γ5Þ − ðð1þ αÞð1 − γ5Þ − 8γ5chvÞN2

c

− ð1 − γ5Þð−αþ ð3þ 2αÞN2
cÞ
�
1

ϵ
þ log

�
μ̄2

q22

���
; ð38Þ

hψð0ÞA†
þðq3Þλ̄α1ðq1ÞiDR;1 loop ¼ −hλα1ðq1ÞA†

−ðq3Þψ̄ð0ÞiDR;1 loop

¼ −ið2πÞ4δðq1 þ q3Þ
gY1

g2

16π2
1

4
ffiffiffi
2

p
Nc

Tα1

�
ð−ð4þ αÞð1 − γ5ÞN2

c þ 8γ5chvÞN2
c

− ð1 − γ5Þð−αþ ð3þ 2αÞN2
cÞ
�
1

ϵ
þ log

�
μ̄2

q21

���
; ð39Þ

hψðq2ÞA†
þð0Þλ̄α1ðq1ÞiDR;1 loop ¼ −hλα1ðq1ÞA†

−ð0Þψ̄ðq2ÞiDR;1 loop

¼ −ið2πÞ4δðq1 − q2Þ
gY1

g2

16π2
1

4
ffiffiffi
2

p
Nc

Tα1

�
αð1 − γ5Þ þ ð−ð4þ 3αÞð1 − γ5Þ þ 8γ5chvÞN2

c

− ð1 − γ5Þð−αþ ð3þ 2αÞN2
cÞ
�
1

ϵ
þ log

�
μ̄2

q21

���
: ð40Þ

where chv ¼ 0ð1Þ for the NDR (HV) prescription [22] of γ5.
The pole parts do not depend on chv. Further, in the NDR
prescription, all one-loop bare Green’s functions are
proportional to the tree-level ones. The above one-loop
Green’s functions indeed confirm that the pole parts are the
same for different choices of the external momenta and that
they are proportional to the tree-level value. InHV, the fact
that the first quantum corrections (one-loop) of these
Green’s functions have finite parts which are not propor-
tional to their tree-level counterparts [i.e., in addition to
terms with (1� γ5), they contain also terms with (1 ∓ γ5)],
is a consequence of the chiral anomaly; the same finite parts
will necessarily appear also in LR. The need for introduc-
ing appropriate counterterms, which connect MS renor-
malized Green’s functions to SUSY invariant Green’s
functions, is indicated by the supersymmetric Ward iden-
tities [43]. The value of the coefficients multiplying these
counterterms requires a purely continuum calculation,
including Eqs. (35)–(40); the same coefficients can be
applied to the renormalization functions extracted in LR.
The appearance of such counterterms, which are crucial
to restore all SUSY relations among couplings, was

extensively discussed within the algebraic renormalization
approach to SUSY theories [44,45].
Note that the terms in Eqs. (35)–(40) involving multi-

plication by chvγ5 can be equivalently expressed as:
1
2
chvðð1þ γ5Þ − ð1 − γ5ÞÞ. Terms with reversed chirality

account for the mirror Yukawa interactions; given that they
are pole free, they will have no effect on a straightforward
MS renormalization. However, if one opts for a renorm-
alization scheme in which these terms are absent, one must
add a finite Y2 counterterm to the action of the form,

Lct
Y2
≡ i

ffiffiffi
2

p
gY2

Y2; where∶ gY2
¼2g3Ncchv=ð16π2ÞþOðg5Þ:

ð41Þ

This term, as well as Eqs. (35)–(40), become relevant in our
lattice calculations as they contribute to finite fine-tuning
terms in the lattice action.
The difference between the renormalized Green’s func-

tions and the corresponding Green’s functions regularized
on the lattice allows us to deduce the one-loop lattice
renormalizations factors. The renormalization factors of
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the fields and the gauge coupling constant can be found in
Ref. [22]. For the sake of completeness we present their
definition here,

ψ ≡ ψB ¼ Z−1=2
ψ ψR; ð42Þ

uμ ≡ uBμ ¼ Z−1=2
u uRμ ; ð43Þ

λ≡ λB ¼ Z−1=2
λ λR; ð44Þ

c≡ cB ¼ Z−1=2
c cR; ð45Þ

g≡ gB ¼ Z−1
g μϵgR; ð46Þ

where B stands for the bare and R for renormalized
quantities and μ is an arbitrary scale with dimensions of
inverse length. For one-loop calculations, the distinction
between gR and gB is inessential in many cases; we will
simply use g in those cases. The Yukawa coupling is
renormalized as follows:

gY1
≡ gBY1

¼ Z−1
Y1
Z−1
g μϵgR; ð47Þ

where at the lowest perturbative order ZgZY1
¼ 1, and the

renormalized Yukawa coupling coincides with the gauge
coupling.
InDR, we are interested in getting rid of the pole parts in

bare continuum Green’s functions; this requires not only
the renormalization factors of the fields and of the gauge
coupling, Zg, but also a further factor ZY1

for the bare
Yukawa coupling. Note also that the components of the
squark fields may mix at the quantum level, via a 2 × 2
mixing matrix (ZA). We define the renormalization mixing
matrix for the squark fields as follows:

�
ARþ
AR†
−

�
¼ ðZ1=2

A Þ
�

ABþ
AB†
−

�
: ð48Þ

In Ref. [22] we found that in the DR and MS scheme this
2 × 2 mixing matrix is diagonal. On the lattice, this matrix
is nondiagonal, leading to a mixing of the components Aþ
and A− with A†

− and A†
þ, respectively. Consequently, the

renormalization conditions on the lattice become more
intricate. In this paper we focus on the MS scheme, using
both DR and LR regularizations. Given that SUSY is
broken by either regulator and that SUSY-noninvariant
gauge fixing is employed, it is anticipated that a nontrivial
fine-tuning for the Yukawa coupling will be necessary.
Taking as an example the Green’s function in DR with

external squark field Aþ, the renormalization condition up
to g2 will be given by

hλðq1ÞAþðq3Þψ̄ðq2ÞijMS

¼ Z−1=2
ψ Z−1=2

λ ðZ−1=2
A Þþþhλðq1ÞAþðq3Þψ̄ðq2Þijbare: ð49Þ

All appearances of coupling constants in the right-hand
side of Eq. (49) must be expressed in terms of their
renormalized values, via Eqs. (46)–(47). The left-hand side
of Eq. (49) is just the MS (free of pole parts) renormalized
Green’s function. Similar to Eq. (49), the other renormal-
ization conditions which involve the external squark fields
A†
þ; A−; A†

− are understood. The renormalization factors
Z ¼ 1þOðg2Þ and mixing coefficients z ¼ Oðg2Þ should
more properly be denoted as ZX;Y and zX;Y , where X is the
regularization and Y the renormalization scheme.
For the sake of clarity and comprehensiveness, the

updated expressions for the renormalization factors of
the fields and of the gauge coupling in DR which are
involved in the right-hand side of Eq. (49) are5

ZDR;MS
ψ ¼ 1þ g2CF

16π2
1

ϵ
ð1þ αÞ; ð50Þ

ZDR;MS
A� ¼ 1þ g2CF

16π2
1

ϵ
ð−1þ αÞ; ð51Þ

ZDR;MS
λ ¼ 1þ g2

16π2
1

ϵ
ðαNc þ NfÞ; ð52Þ

ZDR;MS
g ¼ 1þ g2

16π2
1

ϵ

�
3

2
Nc −

1

2
Nf

�
; ð53Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir

operator in the fundamental representation. The expres-
sions in Eqs. (50)–(53) take carefully into account the effect
of the Majorana nature of gluinos in the functional integral.
In the Appendix, we provide a more comprehensive
discussion and treatment of the gluino field; in particular,
we focus on the effect of Yukawa terms in SQCD, which
are clearly absent in pure SUSY Yang-Mills.
Substituting Eqs. (50)–(53) in Eq. (49), and by virtue of

the fact that the counterterm Eq. (41) contains no pole parts,

we extract the value of ZDR;MS
Y1

; this value is the same for all
gluino-squark-quark Green’s functions and for all choices
of the external momenta which we have considered,

ZDR;MS
Y1

¼ 1þOðg4Þ: ð54Þ

Equation (54) means that, at the quantum-level, the renorm-
alization of the Yukawa coupling in DR is not affected by
one-loop corrections. This observation has important impli-
cations for our understanding of the renormalization scheme
in SQCD. It shows also that the corresponding renormaliza-
tion on the lattice will be finite. Although, the mirror Yukawa

5The expressions for Zψ ; ZA� ; Zλ, and Zg [Eqs. (50)–(53),
Eqs. (57)–(60)] appeared also in Ref. [22]; however, a factor of
1=2was missing in diagrams involving open internal gluino lines.
For a more detailed explanation, see the Appendix.
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term does not appear in MS renormalization using DR,
a finite admixture of this term will arise in MS on the lattice.
We expect that the MS renormalization factors of gauge
invariant quantities will turn out to be gauge-independent

also on the lattice, as was the case of ZDR;MS
Y1

.
We now turn to the lattice regularization. As emphasized

earlier, even though the renormalization of the squark fields
in the MS scheme and in DR is diagonal, on the lattice it is
not; the mixing between the squark components ðAþ; A†

−Þ
[and, similarly, (A†

þ, A−)] appears on the lattice through the
2 × 2 symmetric matrix ZA, whose nondiagonal matrix
elements are nonzero. The renormalization conditions are
not as simple as is shown in Eq. (49); instead, they involve
the following pairs of Green’s functions:

hλðq1ÞAþðq3Þψ̄ðq2Þi with hλðq1ÞA†
−ðq3Þψ̄ðq2Þi;

hψðq2ÞA†
þðq3Þλ̄ðq1Þi with hψðq2ÞA−ðq3Þλ̄ðq1Þi: ð55Þ

The appearance of the mirror Yukawa coupling, gY2
, is

another feature of the use of Wilson gluinos, which
increases the degree of difficulty on the lattice. The
χ ×R symmetry is broken by using Wilson discretization
and thus lattice bare Green’s functions are not invariant
under χ ×R at the quantum level. This difficulty may be
avoided with chirality preserving actions, but the

implementation of these actions in numerical simulations
is very time consuming.
Thus, in the calculation of bare Green’s functions on the

lattice, one-loop spurious contributions will arise, which
will need to be removed by introducing mirror Yukawa
counterterms in the action. The renormalization condition
is the following:

hλðq1ÞAþðq3Þψ̄ðq2ÞijMS

¼ Z−1=2
ψ Z−1=2

λ hλðq1ÞððZ−1=2
A ÞþþAþðq3Þ

þ ðZ−1=2
A Þþ−A

†
−ðq3ÞÞψ̄ðq2Þijbare: ð56Þ

It is understood that the bare couplings on the right-hand
side of this equation must be converted into the corre-
sponding renormalized ones, making use of Zg and ZY1

; a
mirror Yukawa term also contributes, with a coupling
constant gY2

which will be determined in what follows.
Equation (56) consists of two types of contributions with
opposite chiralities; matching each of these to the MS
expressions found in DR, Eqs. (35)–(37), amounts to two
separate conditions, which will be used to determine the
two unknowns ZY1

and gY2
. Analogous equations hold for

the other gluino-squark-quark Green’s functions and may
be calculated for consistency checks.
To offer a self-contained presentation, we revisit a

collection of lattice results outlined in Ref. [22],

ZLR;M̄S
ψ ¼ 1þ g2CF

16π2
ð−16.7235þ 3.7920α − ð1þ αÞ log ða2μ̄2ÞÞ; ð57Þ

ðZ1=2
A ÞLR;M̄S ¼ 1 −

g2CF

16π2

�
½16.9216 − 3.7920α − ð1 − αÞ log ða2μ̄2Þ�

�
1 0

0 1

�
− 0.1623

�
0 1

1 0

��
; ð58Þ

ZLR;MS
λ ¼ 1 −

g2

16π2
½Ncð16.6444 − 3.7920αþ 2α log ða2μ̄2ÞÞ þ Nfð0.07907þ 2 log ða2μ̄2ÞÞ�; ð59Þ

ZLR;M̄S
g ¼ 1þ g2

16π2

�
−9.8696

1

Nc
þ Nc

�
12.8904 −

3

2
log ða2μ̄2Þ

�
− Nf

�
0.4811 −

1

2
logða2μ̄2Þ

��
: ð60Þ

The lattice 3-pt Green’s functions involve the same Feynman diagrams as in Fig. 1. At first perturbative order, Oðg2Þ,
Eq. (56) and its counterparts involve only the difference between the one-loop MS-renormalized and bare lattice Green’s
functions. Having checked that alternative choices of the external momenta give the same results for these differences, we
present them only for zero gluino momentum. Additionally, we should mention that the errors on our lattice expressions are
smaller than the last shown digit and the Wilson parameter, r was set to its default value, r ¼ 1,

hλα1ð0ÞAþðq3Þψ̄ðq2ÞiMS;1 loop − hλα1ð0ÞAþðq3Þψ̄ðq2ÞiLR;1 loop

¼ −hψðq2ÞA−ðq3Þλ̄α1ð0ÞiMS;1 loop þ hψðq2ÞA−ðq3Þλ̄α1ð0ÞiLR;1 loop

¼ ið2πÞ4δðq2 − q3Þ
gY1

g2

16π2
1

8
ffiffiffi
2

p
Nc

Tα1 × ½−3.7920αð1þ γ5Þ þ ð−3.6920þ 5.9510γ5 þ 7.5840αð1þ γ5Þ − 8γ5chvÞN2
c

þ ð1þ γ5Þðα − ð3þ 2αÞN2
cÞ log ða2μ̄2Þ�; ð61Þ
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hψðq2ÞA†
þðq3Þλ̄α1ð0ÞiMS;1 loop − hψðq2ÞA†

þðq3Þλ̄α1ð0ÞiLR;1 loop

¼ −hλα1ð0ÞA†
−ðq3Þψ̄ðq2ÞiMS;1 loop þ hλα1ð0ÞA†

−ðq3Þψ̄ðq2ÞiLR;1 loop

¼ ið2πÞ4δðq2 − q3Þ
gY1

g2

16π2
1

8
ffiffiffi
2

p
Nc

Tα1 × ½3.79201αð1 − γ5Þ þ ð3.6920þ 5.9510γ5 − 7.5840αð1 − γ5Þ − 8γ5chvÞN2
c

þ ð1 − γ5Þð−αþ ð3þ 2αÞN2
cÞ log ða2μ̄2Þ�: ð62Þ

As expected, the above expressions are momentum inde-
pendent, and they are linear combinations of the tree-level
expressions stemming from the Yukawa vertex and its
mirror; also, all corresponding decimal coefficients
between Eqs. (69) and (70) coincide, and we have checked
that they are the same for any other choice of external
momenta, as they should. Thus, we are led to a unique

result for ZY
LR;MS and also for gY2

LR;MS. By combining the
lattice expressions with the MS-renormalized Green’s
functions calculated in the continuum [see Eq. (56)], we
find for the renormalization factors:

ZY1

LR;MS

¼ 1þ g2

16π2

�
1.45833

Nc
þ 2.40768Nc þ 0.520616Nf

�
;

ð63Þ

gY2

LR;MS ¼ g3

16π2

�
−0.040580

Nc
þ 0.45134Nc

�
: ð64Þ

We note that the above factors are gauge independent in the
MS scheme, as expected from the principles of renormal-
ization and gauge invariance. Furthermore, the multiplica-

tive renormalization ZLR;MS
Y1

and the coefficient gLR;MS
Y2

of
the mirror Yukawa counterterm are finite as one can predict
from the continuum calculation. These findings shed light
on the fine-tunings for the lattice SQCD action. They
suggest that while the renormalization process in MS is
well-behaved on the lattice, it still exhibits an intriguing

connection with the mirror Yukawa term through gLR;MS
Y2

.

IV. OUTLOOK: FUTURE PLANS

In this work we calculate 3-pt Green’s functions with
external elementary fields for the SQCD action in the Wess-
Zumino gauge. In particular, we perform one-loop calcu-
lations for a complete set of 3-pt Green’s functions with
external gluino, quark and squark fields, employing Wilson
fermions and gluons. To extract the fine-tunings of Yukawa
couplings in the MS scheme, we compute the relevant
Green’s functions in two regularizations: dimensional and
lattice. The lattice calculations are the crux of this work;
and the continuum calculations serve as a necessary

ingredient, allowing us to relate our lattice results to the
MS scheme.
With the perturbative renormalization of the Yukawa

couplings we make a step forward on the completion of
all renormalizations (fields, masses, couplings) in the
Wilson formulation [22,23]. The results of this work will
be particularly relevant for the setup and the calibration of
lattice numerical simulations of SQCD. In the coming
years, it is expected that simulations of supersymmetric
theories will become ever more feasible and precise.
A followup calculation regards the quartic couplings

(4-squark interactions). The symmetries allow five quartic
couplings [43], which must be also appropriately fine-tuned
on the lattice. This is a natural extension of our work and
the calculation of their quantum corrections is currently
underway [24].
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APPENDIX: THE PATH INTEGRAL
OVER THE GLUINO FIELD

To elucidate the Majorana nature of the gluino field
within the functional integral, and the way to properly
address it in the calculation of Feynman diagrams, we first
reformulate the action from Eq. (1) to express it in
exclusively in terms of λ, rather than λ̄. We proceed in a
way analogous to Ref. [46], but we now take into account
the additional complication brought about by the Yukawa
terms. By applying the Majorana condition [ðλ̄αÞT ¼ Cλα],
the part of the action which contains gluino fields has the
general form,

Sgluino ¼ λ̄Dλþ Āλþ λ̄B ¼ λTMλþ ðĀþ B0Þλ; ðA1Þ

where M ≡ CD. The first term represents both the kinetic
energy of the gluino and the interaction with the gluon
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field. The subsequent terms correspond to the Yukawa
interactions,

Ā ¼ i
ffiffiffi
2

p
gð−ψ̄P−TαAþ − ψ̄PþTαA†

−Þ;
B ¼ i

ffiffiffi
2

p
gðA†

þTαPþψ þ A−TαP−ψÞ; ðA2Þ

where B0 ¼ −BTC and B0T ¼ CB. Therefore, the path
integral reads,

Z½J� ¼
Z

DUothere−Sother
Z

Dλe−λ
TMλ−ðĀþB0Þλ−Jλ; ðA3Þ

where J is an external source, Uother stands for all of the
fields in the theory except gluino fields, and Sother denotes
the action part devoid of gluinos. In order to integrate out
the gluino field, we implement the following standard
change of variables,

λ0T ≡ λT þ 1

2
ðJ þ Āþ B0ÞM: ðA4Þ

This leads to

Z½J�¼
Z

DUothere−Sother
Z

Dλ0e−λ0TMλ0−1
4
ðĀþB0þJÞM−1ðĀþB0þJÞT

¼
Z

DUothere−SotherPf½M�e−1
4
ðĀþB0þJÞM−1ðĀþB0þJÞT ;

ðA5Þ

where Pf½M� is the Pfaffian of the antisymmetric matrixM.
In the absence of Yukawa terms, and in case one is
interested only in Green’s functions without external
gluinos (so that one can set J ¼ 0 from the start), the
exponential in Eq. (A5) becomes trivial and the only
remnant of gluinos is the Pfaffian; in those cases, the only
effect of the gluinos’ Majorana nature is the well-known
factor of 1=2 for every closed gluino loop, due to the fact
that Pf½M� ¼ det½M�1=2. Note that we do not assume that J,
Ā, and B are Majorana spinors. Let us examine the
exponent appearing in Eq. (A5),

−S0 ≡ −
1

4
ðĀþ B0 þ JÞM−1ðĀþ B0 þ JÞT: ðA6Þ

When we compute Green’s functions without external
gluinos, we can set J ¼ 0 and thus, S0 can be written as

−S0jJ¼0 ¼ −
1

4
ðĀþ B0ÞM−1ðĀþ B0ÞT

¼ −
1

4
ðĀM−1ĀT þ B0M−1B0T

þ ĀM−1CB − BTCM−1ĀTÞ

¼ −
1

4
ðĀM−1ĀT þ B0M−1B0T þ 2ĀD−1BÞ: ðA7Þ

Green’s functions with one external gluino field can be
generated via functional differentiation with respect to the
gluino source J [cf. Eqs. (A3) and (A6)],

λðxÞ∶e−S0 →−
d
dJx

e−S
0
			
J¼0

¼ 1

2
D−1

x;yC−1ðĀþB0ÞTy e−S0
			
J¼0

:

ðA8Þ

The above expression gives rise to all three diagrams of
Fig. 1; the diagrams are redrawn in Fig. 2 with a shaded
area indicating the contribution of the “effective vertex”
1=2 D−1C−1ðĀþ B0ÞT appearing in Eq. (A8) (note that D
contains contributions with zero or more gluons). We note
also the factor of 1=2 present in Eq. (A8); it is similar to the
factor accompanying closed gluino loops, even though it
does not stem from the Pfaffian.
In order to compute Green’s functions with two external

gluinos, for example λðxÞλðyÞ, we have to consider the
following second derivative with respect to the external
source J:

λðxÞλðyÞ∶e−S0 →
�
−

d
dJx

��
−

d
dJy

�
e−S

0 jJ¼0: ðA9Þ

Gluon fields contained in the matrices M−1 and D−1 of
Eqs. (A7) and (A8), can be extracted via a series expansion

FIG. 2. Redrawn one-loop Feynman diagrams with a shaded area indicating the contribution of the “effective vertex” appearing in
Eq. (A8).
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in g; thus, one gluon field emerges by calculating the
quantity g ∂

∂g ðM−1Þjg¼0,

g
∂

∂g
ðM−1Þ

			
g¼0

¼ −M−1
�
g
∂M
∂g

�
M−1

			
g¼0

; ðA10Þ

where g ∂M
∂g is the normal vertex with two gluino fields and

one gluon field. Similarly, extraction of two gluon fields
follows from:

1

2
g2

∂
2

∂g2
ðM−1Þ

			
g¼0

¼ −
1

2
g2

∂

∂g

�
M−1 ∂M

∂g
M−1

�				
g¼0

¼ g2M−1
�
∂M
∂g

�
M−1

�
∂M
∂g

�
M−1

			
g¼0

−
1

2
g2M−1 ∂

2M
∂g2

M−1: ðA11Þ

The term with ∂
2M
∂g2 appears only on the lattice.
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