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We perform a global analysis of a vectorlike extension of the Standard Model, which also features
additional doublet and singlet scalars. The usual Yukawa interactions are forbidden in this setup by an extra
U(1) global symmetry and the masses of the second and third family quarks and leptons are generated
via the mixing with the vectorlike sector. We identify three best-fit benchmark scenarios which satisfy the
constraints imposed by the stability of the scalar potential, the perturbativity of the coupling constants, the
measurement of the muon anomalous magnetic moment and the nonobservation of the flavor violating tau
decays. We show that dominant contributions to the muon (g − 2) originate in this model from the charged
Higgs/neutral lepton one-loop diagrams, thus correcting an inaccurate statement than can be found in the
literature. We also perform a detailed LHC analysis of the benchmark scenarios. We investigate the
experimental constraints stemming from direct searches for vectorlike quarks, vectorlike leptons, and
exotic scalars. While we show that the model is not currently tested by any collider experiment, we point
out that decays of a heavy Higgs boson into two tau leptons may offer a smoking gun signature for the
model verification in upcoming runs at the LHC.
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I. INTRODUCTION

The origin of the flavor structure of the Standard Model
(SM), i.e. the observed hierarchy between fermion masses
and mixing angles of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, is one of the greatest mysteries of particle
physics that still lacks a convincing and commonly
accepted explanation. A number of new physics (NP) ideas
have been put forward in recent decades to address the
flavor puzzle, among which the Froggatt-Nielsen (FN)
mechanism [1] and extra dimensions [2–4] are those that
admittedly received the most attention and applications.
The underlying concept is to introduce a new quantity that
in some sense would be “larger” than the electroweak
symmetry breaking (EWSB) scale. This could be the

vacuum expectation value (vev) of a flavon field, or a
distance of a fermion field from the infrared brane. Such a
hierarchy of scales can be then translated into a hierarchy of
masses and mixing angles of the SM quarks and leptons. A
similar idea gave rise to the famous seesaw mechanism of
neutrino mass generation [5–11], where tiny values of the
SM neutrino masses arise as a result of suppression of the
EWSB scale by a very large Majorana mass.
In Ref. [12] a FN-inspired model was proposed to

explain the observed masses and mixing patterns of the
SM fermions. The SM Yukawa interactions are forbidden
in this setup by an extra abelian symmetry Uð1ÞX, which
could be either global or local. The particle content of the
model corresponds to the two-Higgs-doublet model
(2HDM) extended by a full family of vectorlike (VL)
fermions charged under Uð1ÞX, and one Uð1ÞX-breaking
singlet scalar which plays the role of a FN flavon. The large
third-family Yukawa couplings are then effectively gen-
erated via mixing of the SM quarks and leptons with the
SUð2ÞL doublet VL fermions, while the Yukawa couplings
of the second family emerge from a seesawlike construc-
tion, mediated by the heavy VL SUð2ÞL singlets.
The rich structure of the model introduced in Ref. [12]

makes it a perfect framework for providing a combined
explanation both for the flavor pattern of the SM and for the
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miscellaneous anomalies which emerged in recent years in
collider experiments. In this context, lepton-flavor violating
anomalies in the rare semileptonic decays of the B mesons
were analyzed in Refs. [12,13], Z-mediated flavor changing
neutral currents in Ref. [14], and a deviation from the SM
prediction in the measured value of the anomalous mag-
netic moment of muon in Refs. [13,15]. In the latter study,
in which the extra Uð1ÞX symmetry was assumed to be
global, five benchmark points were identified that could
account for the muon (g − 2) anomaly and, at the same
time, give rise to the mass and mixing patterns of the SM
fermions. The scenarios pinpointed in Ref. [15] were
characterized by relatively low (∼200 GeV) masses of
the VL lepton doublets and large (∼10) quartic couplings
of the scalar potential, which may indicate a loss of
perturbativity at scales very close to the typical scale set
by the masses of the NP particles in the analyzed model.
In this study, we reassess the findings of Ref. [15]

improving and extending its analysis in several different
directions. Firstly, we thoroughly discuss the impact of the
most recent bounds from direct NP searches at the Large
Hadron Collider (LHC) on the allowed parameter space of
the model, a topic which was not addressed in detail in
Refs. [13–15]. While we show that the model is not
currently tested by any collider experiment, we point out
that decays of a heavy Higgs boson into two tau leptons
may offer a smoking gun signature for the detection of the
model in the upcoming runs of the LHC.
Second, we demonstrate that the quartic and Yukawa

couplings of the model are subject to strong constraints
from their renormalization group (RG) running. In
Ref. [15] it was required that all the dimensionless
parameters of the Lagrangian remain perturbative (in a
loose sense of being smaller than

ffiffiffiffiffiffi
4π

p
for the gauge/

Yukawa and smaller than 4π for the scalar potential
couplings) at the characteristic energy scale of the model.
We argue that such a simplistic implementation of the
perturbativity bounds should be taken with a grain of salt.
The breakdown of perturbativity usually calls for an
extension of the theoretical setup by extra degrees of
freedom in order to cure pathological behavior of the
running couplings, or/and for an inclusion of nonperturba-
tive effects (like bound-state formation). If any of those
arose at the scale specific to the original NP model, they
would most likely affect its phenomenological predictions.
Therefore, it is more correct to apply the perturbativity
bounds to the running couplings evaluated at an energy
scale which is high enough that the phenomenology of the
specific NP model can be trusted. Once this improvement
had been implemented in our study, we discovered that all
the benchmark points found previously in Ref. [15] were
disfavored.
Last but not least, we refine the derivation of the stability

conditions for the scalar potential which in Refs. [13,15]
was simplified to the 2HDM case by integrating out the

singlet flavon field. In the current work we derive all the
relevant stability conditions in the full three-scalar setup,
obtaining additional constraints on the quartic couplings.
With all the improvements in place, we identify three

benchmark scenarios that satisfy our theoretical and experi-
mental requirements. While these best-fit points emerge
from a random numerical scan, they present features that
are generic for the model in study. Most importantly, we
point out that a charged Higgs/heavy neutrino loop is a
dominant contribution to the muon (g − 2) anomaly. This
results from the fact that the competing neutral scalar/heavy
charged lepton contributions are governed by the same
Yukawa coupling that determines the tree-level muon mass
and is thus required to be small. Once more, this finding is
qualitatively different from the conclusions obtained in
Refs. [13,15], where only the charged lepton loops were
considered.
The structure of the paper is the following. In Sec. II we

briefly review the field content of the model. We also show
how the SM fermion masses and the CKM matrix are
generated in this framework. Section III is dedicated to the
scalar sector of the theory. Tree-level scalar masses in the
alignment limit are presented, as well as three-field potential
stability conditions. Experimental constraints from the
flavor physics observables (muon (g − 2), rare τ decays,
CKM anomaly) are examined in Sec. IV. In Sec. V we
discuss the RG flow of the model couplings and we derive
the corresponding perturbativity bounds. Section VI com-
prises the numerical analysis of the model. We discuss the
setup of our numerical scan and we identify three bench-
mark scenarios that satisfy all the theoretical and pheno-
menological constraints. In Sec. VII we present a detailed
analysis of the LHC searches that may test the parameter
space of the model.We summarize our findings in Sec. VIII.
Appendices feature, respectively, explicit forms of the
fermion (Appendix A) and scalar (Appendix B) mass
matrices, derivation of the bounded-from-below constraints
(Appendix C), and the RG equations (Appendix D).

II. GENERATION OF FERMION
MASSES AND MIXING

We begin our study by reviewing the structure and the
main properties of the model introduced in Ref. [12]. In the
following, we focus mostly on these features of the model
which play a pivotal role in the subsequent phenomeno-
logical analysis. Technical details of the model, including
the analytical diagonalization of the fermion mass matrices
and the derivation of the interaction vertices in the mass
basis, can be found in Refs. [12–15].
The particle content of the model is summarized in

Table I. The SM fermion sector, collectively denoted as ψ i
(ψ i ¼ QiL; uiR; diR; LiL; eiR and i ¼ 1, 2, 3 stands for a
generation index) is extended by one full family of VL
fermions, indicated collectively as ðψ4; ψ̃4Þ. We adopt the
convention of using the left-chiral two-component Weyl
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spinors, therefore the subscripts L, R indicate the names of
the fermions, not the chiralities. The scalar sector contains,
besides the usual SUð2ÞL Higgs doublet dubbed as Hu, an
extra scalar doublet Hd and a scalar singlet ϕ. Note that all
the NP particles and the Higgs doublet Hu are charged
under an extra global gauge symmetry Uð1ÞX, while the SM
fermions are Uð1ÞX singlets. As a result, the ordinary SM
Yukawa interactions are forbidden.
All the renormalizable Yukawa interactions between the

SM and NP fermions which are allowed by the extended
gauge symmetry can be schematically written as:

LYukawa
ren ¼ yψi4ψ iLHψ4R þ yψ4jψ4LHψ jR þ xψi4ψ iLϕψ̃4R

þ xψ4jψ̃4Lϕψ jR þMψ
4ψ4Lψ̃4R

þMψ̃
4 ψ̃4Lψ4R þ H:c:; ð1Þ

where H is either Hu or Hd and Mψ
4 (Mψ̃

4 ) denotes the VL
doublet (singlet) mass parameter. Note that with the Uð1ÞX
charges given in Table I the scalar Hu only couples to the
up-type quarks, while Hd to the down-type quarks and
charged leptons, reminiscent of the 2HDM Type-II model.

A. Hierarchy of masses

Once the neutral components of the scalar fields develop
their vevs, the 5 × 5 fermions mass matrices are generated.
Since their upper 3 × 3 blocks contain only zeros (we recall
that the SM Yukawa couplings are forbidden by the Uð1ÞX
symmetry), one has the freedom to rotate the first three
families. It can easily be shown [12] that this allows one to
choose a flavor basis in which the fermion mass matrices
acquire the following form:

Mψ ¼

0
BBBBBBBBB@

ψ1R ψ2R ψ3R ψ4R ψ̃4R

ψ1L 0 0 0 ðyψ14hH0iÞ 0

ψ2L 0 0 0 yψ24hH0i 0

ψ3L 0 0 0 yψ34hH0i xψ34hϕi
ψ4L 0 0 yψ43hH0i 0 Mψ

4

ψ̃4L 0 xψ42hϕi xψ43hϕi Mψ̃
4 0

1
CCCCCCCCCA
:

ð2Þ

In the above, the term in parentheses assumes a nonzero
value in the mass matrix of the down-type quarks, while it

is zero for the up-type quarks and charged leptons. The
exact forms of the matrices Mu, Md, and Me are
presented in Appendix A.
In order to calculate the masses of the physical quarks

and leptons, the 5 × 5 matrices of Eq. (2) need to be
diagonalized. Due to a large number of free parameters in
the Yukawa sector one may expect that the resulting
functional dependence of the eigenvalues of Mψ on the

couplings yψi4; y
ψ
43; x

ψ
4i; x

ψ
34 and the masses Mψðψ̃Þ

4 is highly
nontrivial. It turns out, however, that it is not necessarily the
case and that simplified expressions for the fermion masses
can be derived. Denoting the scalar vevs as

hH0
ui¼vu=

ffiffiffi
2

p
; hH0

di¼vd=
ffiffiffi
2

p
; hϕi¼vϕ=

ffiffiffi
2

p
ð3Þ

and defining tan β ¼ vu=vd, the masses of the third and
second family quarks and leptons are approximately given
by (see also Ref. [12] for a related derivation)

mt≈
1ffiffiffi
2

p yu43x
Q
34vϕvuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxQ34vϕÞ2þ2ðMQ
4 Þ2

q ; mc≈
yu24x

u
42vϕvu
2Mu

4

ð4Þ

mb≈
1ffiffiffi
2

p yd43x
Q
34vϕvdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxQ34vϕÞ2þ2ðMQ
4 Þ2

q ; ms≈
yd24x

d
42vϕvd
2Md

4

ð5Þ

mτ≈
1ffiffiffi
2

p ye43x
L
34vϕvdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxL34vϕÞ2þ2ðML
4 Þ2

q ; mμ≈
ye24x

e
42vϕvd
2Me

4

: ð6Þ

While Eqs. (4)–(6) allow determination of the SM fermion
masses with an accuracy within a factor of 2–3 only, they
can be used to gain intuition of which NP Yukawa
couplings play a dominant role in establishing the correct
masses of particular fermions. For example, large xQ34 and
yu43 are expected to fit mt, while yu24 ≪ 1 or xu42 ≪ 1 would
be required to suppress the charm mass. Similarly, large yd43
is needed to generate mb ¼ 4.18 GeV. Additionally, in
order to obtain the correct value of the top quark mass, the
singlet scalar vev vϕ should be of the same order as the VL

mass parameter MQ
4 . Note, however, that in our pheno-

menological analysis we always perform the numerical
diagonalization of the mass matrices (A2), (A5), and (A8).

TABLE I. The particle content of the NP model considered in this study.

Field QiL uiR diR LiL eiR Q4L u4R d4R L4L e4R ν4R Q̃4R ũ4L d̃4L L̃4R ẽ4L ν̃4L ϕ Hu Hd

SUð3ÞC 3 3̄ 3̄ 1 1 3 3̄ 3̄ 1 1 1 3̄ 3 3 1 1 1 1 1 1
SUð2ÞL 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2

Uð1ÞY 1
6

− 2
3

1
3

− 1
2

1 1
6

− 2
3

1
3

− 1
2

1 0 − 1
6

2
3

− 1
3

1
2

−1 0 0 1
2

− 1
2

Uð1ÞX 0 0 0 0 0 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 −1 −1
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One important observation which can be deduced from
Eqs. (4) and (5) is that the ratio of the top and bottom
masses, mt=mb ≈ 34, puts relevant constraints on the
allowed parameter space of the model. In fact, we have

mt

mb
≈
yu43
yd43

tan β: ð7Þ

The relation (7) leads to two distinct classes of solutions.
In the first one, with both the Yukawa couplings of order
one, tan β ∼Oð10Þ is required. In the other one, with

tan β ∼Oð1Þ, a large hierarchy between the up and down
sector couplings, yd43 ≪ yu43, must be imposed.
The masses of VL fermions are given, to a very good

approximation, by the corresponding VL mass parameters
with small contributions stemming from their mixing with
the second and the third family,

MU1
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMQ

4 Þ2 þ
1

2
ðvϕxQ34Þ2 −

ðMQ
4 y

u
43vuÞ2

ðxQ34vϕÞ2 þ 2ðMQ
4 Þ2

s
ð8Þ

MU2
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMu

4Þ2 þ
1

2
ðvϕxu43Þ2 þ

1

2
ðvϕxu42Þ2 þ

2ðMu
4y

u
43vuÞ2

2ðMu
4Þ2 þ ðvϕxu43Þ2 þ ðvϕxu42Þ2

s
ð9Þ

MD1
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMQ

4 Þ2 þ
1

2
ðvϕxQ34Þ2

r
;

MD2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMd

4Þ2 þ
1

2
ðvϕxd43Þ2 þ

1

2
ðvϕxd42Þ2

r
ð10Þ

ME1
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðML

4 Þ2 þ
1

2
ðvϕxL34Þ2

r
;

ME2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMe

4Þ2 þ
1

2
ðvϕxe43Þ2 þ

1

2
ðvϕxe42Þ2

r
: ð11Þ

In the neutrino sector, the corresponding mass matrix is
7 × 7 and its explicit form can be found in Eq. (A12). The
resulting masses of the heavy neutrinos read

MN1
¼MN2

≈Mν
4; MN3

¼MN4
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðML

4 Þ2þ
1

2
ðvϕxL34Þ2

r
:

ð12Þ

By comparing Eq. (12) with Eq. (11), we can pinpoint two
generic features of the model considered in this study:
heavy neutrinos N1;2 are the lightest VL leptons in the
spectrum, while the pairN3;4 is mass-degenerate (at the tree
level) with the charged VL lepton E1. We will later see that
this mass pattern has important consequences for the
resulting phenomenology.
As a final remark, let us notice that one complete VL

family allows us to give masses to the second and third
family of the SM fermions only. To generate the masses for
the first family as well, one extra VL family is required (for
an example of such a construction, see Ref. [15]). Since
such an extension would only increase the number of free
parameters in the model without affecting any phenom-
enological findings, in this study we limit ourselves to its
most economical version.

B. CKM mixing matrix

The full5 × 5mixingmatrix takes the following form [14]:

Vmixing ¼ Vu
L:diagð1; 1; 1; 1; 0Þ:Vd†

L ð13Þ

where Vu
L and Vd

L are the left-handed mixing matrices of
Eqs. (A6) and (A9) which diagonalize the up- and down-
type quark mass matricesMu andMd. The zero element of
thematrix (13) indicates the fact that the singlet VL quarks do
not interact with the SM gauge bosons W�. Following
the strategy of Ref. [14] and working under the assumption
that vu;d=M

Q;u;d
4 ≪ 1, we can approximate the 3 × 3 CKM

matrix as

V3×3
CKM ≈

0
B@

1 − x2ud=2 xud xudxd
−xud 1 − x2ud=2 xd − xu
−xuxud xu − xd 1

1
CA; ð14Þ

where

xd ¼
yd24x

d
43M

Q
4

yd43x
Q
34M

d
4

; xu ¼
yu24x

u
43M

Q
4

yu43x
Q
34M

u
4

; xud ¼
yd14
yd24

: ð15Þ

Based on the conclusions from Sec. II A one expects
xu; xd ≪ 1. Note also that:

(i) The element Vus of the CKM matrix is given by
yd14=y

d
24 in our model. The presence of a nonzero

coupling yd14 is thus crucial to generate the Cabibbo
angle of the right size. We also expect yd14 ≈ 0.22yd24.

(ii) The correct value of the element Vud is generated
automatically once the Cabibbo angle is set.

(iii) To reproduce the correct value of the element Vub,
one needs xd ≈ 0.017. It then follows that xu ≈
−0.023 is required in order to fit the element Vcb
(it also implies xu43 of order one).
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(iv) The only element of the CKM matrix that cannot be
accurately reproduced is Vtd.

To analzye this issue more quantitatively, it is convenient
to rewrite the CKM matrix (14) in terms of the Wolfenstein
parameters [16]. Defining, for example,

xd¼Aλ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þρ2

q
; xu¼Aλ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þρ2

q
−1
�
; xud¼

xuxd
λ

;

ð16Þ

one obtains

jV3×3
CKMj¼

0
BB@

1− λ2=2 λ Aλ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þρ2

p
λ 1− λ2=2 Aλ2

Aλ3ð1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þρ2

p
Þ Aλ2 1

1
CCA

þ Oðλ4Þ: ð17Þ

Plugging the Wolfenstein parameters extracted from the
global fit [17] into Eq. (17) and comparing it with the
experimental determination of the CKM matrix elements
reported in Ref. [17], one can estimate to what extent the
measured structure of the CKM matrix can be reproduced
in our model. One obtains

jVexp
CKMj − jV3×3

CKMj
δjVexp

CKMj
¼

0
B@

0 0 0

0 0.04 0

8.88 0.23 0.01

1
CA: ð18Þ

It results from Eq. (18) that in the framework of our
model we may not be able to correctly reproduce
all the elements of the CKM matrix (this observation
will be later confirmed by our numerical scan).1 Once
more, this issue could be solved by introducing an extra
VL family.
To conclude this section, we would like to stress again

that the approximation adopted in the foregoing discussion
hinges on the assumption of the specific mass hierarchy
in the NP sector, which may not be entirely fulfilled.
Therefore, in the phenomenological analysis we will be
always calculating all the elements of the CKM matrix
numerically.

III. SCALAR POTENTIAL CONSTRAINTS

In this section, we discuss the constraints stemming from
the scalar potential of the model. In particular, we define the
alignment limit of the SM-like Higgs boson, we derive the
conditions for the scalar potential to be bounded from
below in the presence of three independent scalar fields,
and we verify whether the electroweak (EW) vacuum is
stable.

A. Scalar masses in the alignment limit

In the interaction basis, the most generic renormalizable
scalar potential of the model defined in Table I takes the
form [15]:

V ¼ μ2uðH†
uHuÞ þ μ2dðH†

dHdÞ þ μ2ϕðϕ�ϕÞ − 1

2
μ2sbðϕ2 þ ϕ�2Þ

þ 1

2
λ1ðH†

uHuÞ2 þ
1

2
λ2ðH†

dHdÞ2 þ λ3ðH†
uHuÞðH†

dHdÞ þ λ4ðH†
uHdÞðH†

dHuÞ

−
1

2
λ5ðϵijHi

uH
j
dϕ

2 þ H:c:Þ þ 1

2
λ6ðϕ�ϕÞ2 þ λ7ðϕ�ϕÞðH†

uHuÞ þ λ8ðϕ�ϕÞðH†
dHdÞ; ð19Þ

where μ2u;d;ϕ are dimensionful mass parameters, λ1;2;…;8 denote dimensionless quartic coupling constants, and μ2sb is an
extra mass term which softly violates the global Uð1ÞX symmetry. The main reason to introduce the latter is to prevent a
massless Goldstone boson of the spontaneously broken Uð1ÞX to appear in the spectrum. As we will see below, the soft-
breaking term does not affect the CP-even and the charged scalar masses since it only enters the mass matrix of the
pseudoscalars.
Expanding the fields Hu, Hd, and ϕ around their vacuum states,

Hu ¼
 

Hþ
u

1ffiffi
2

p ðvu þ ReH0
u þ iImH0

uÞ

!
; Hd ¼

 
1ffiffi
2

p ðvd þ ReH0
d þ iImH0

dÞ
H−

d

!
;

ϕ ¼ 1ffiffiffi
2

p ðvϕ þ Reϕþ iImϕÞ; ð20Þ

1Note that modifying the definitions of the parameters xu, xd and xud in Eq. (16), one could be able to fit better the element Vtd, but at
the price of losing the accuracy in reproducing Vcb.
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where the vevs are defined in Eq. (3), one can use the
minimization conditions for the scalar potential (19) to
express the dimensionful mass parameters in terms of the
quartic couplings and the vevs,

μ2u ¼ −
1

2
ðλ1v2u þ λ3v2d þ λ7v2ϕÞ −

1

4
λ5

�
vd
vu

�
v2ϕ;

μ2d ¼ −
1

2
ðλ2v2d þ λ3v2u þ λ8v2ϕÞ −

1

4
λ5

�
vu
vd

�
v2ϕ;

μ2ϕ ¼ −
1

2
ðλ6v2ϕ þ λ5vdvu þ λ7v2u þ λ8v2dÞ þ μ2sb: ð21Þ

One must have

μ2u < 0; μ2d < 0; μ2ϕ < 0 ð22Þ

in order to generate the nonzero vevs for all the scalar
fields.
The explicit forms of the scalar mass matrices derived

from the potential (19) are collected in Appendix B. The
real parts of the scalar fields, ReH0

u, ReH0
d, and Reϕ,

account for three CP-even Higgs bosons. The correspond-
ing mass matrix M2

CP-even [see Eq. (B1)] can be diagon-
alized with a mixing matrix Rh defined in Eq. (B2). The
masses of three physical neutral scalars, h1, h2, and h3,
correspond to the eigenvalues of M2

CP-even,

diagfM2
h1
;M2

h2
;M2

h3
g ¼ RhðM2

CP-evenÞRT
h : ð23Þ

In the following, we will want to identify the SM Higgs
boson with the lightest neutral scalar h1. To this end, we
choose to work in the so-called alignment limit, defined
as a set of constraints on the quartic couplings λi under
which h1 features the same tree-level couplings with the
SM particles as the SMHiggs. We show in Appendix B that
this assumption requires

λ8 cos2 β þ λ7 sin2 β þ λ5 sin β cos β ¼ 0 ð24Þ

λ2 cos2 β − λ1 sin2 β − λ3ðcos2 β − sin2 βÞ ¼ 0; ð25Þ

where the equality imposes a perfect alignment condition.
The masses of the CP-even scalars in the alignment limit
read

M2
h1

¼ v2ðλ1 sin2 β þ λ3 cos2 βÞ ð26Þ

M2
h2

¼ λ6v2ϕ −
1

8 sin β cos β

�
B23 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2

23 þ B2
23

q �
ð27Þ

M2
h3

¼ λ6v2ϕ −
1

8 sin β cos β

�
B23 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2

23 þ B2
23

q �
; ð28Þ

with A23 and B23 defined in Eqs. (B12) and (B13),

respectively, and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
¼ 246 GeV.

The CP-odd scalar mass matrix in the basis
ðImH0

u; ImH0
d; ImϕÞ, M2

CP−odd, is defined in Eq. (B14).
After the diagonalization, the physical CP-odd spectrum
consists of one massless Goldstone boson and two massive
pseudoscalars, a1 and a2,

diagf0;M2
a1 ;M

2
a2g ¼ RaðM2

CP−oddÞRT
a ; ð29Þ

with the masses given by

M2
a1 ¼ −

λ5
2 sin 2β

ðv2 sin2 2β þ v2ϕÞ ð30Þ

M2
a2 ¼ 2μ2sb: ð31Þ

Note that λ5 < 0 and μ2sb > 0 are required to guarantee the
positivity of M2

a1 and M2
a2 .

Finally, the charged scalar mass matrix in the basis
ðH�

u ; H�
d Þ, M2

Charged, is defined in Eq. (B15). After the
diagonalization with a mixing matrix Rβ, one is left with a
massless charged Goldstone boson and a charged Higgs
boson,

diagf0;M2
h�g ¼ RβðM2

ChargedÞRT
β : ð32Þ

The corresponding mass reads in this case

M2
h� ¼ λ4v2

2
−

λ5v2ϕ
2 sin 2β

: ð33Þ

As a closing remark, let us notice that the alignment
condition (25) indicates

λ2 ¼ λ3 þ tan2 βðλ1 − λ3Þ: ð34Þ

In order to preserve the perturbativity of λ2 (more on this in
Sec. V), the term in parentheses needs to be fine-tuned with
a precision Oð1=tan2 βÞ or better, effectively fixing λ3 ≈ λ1
with the same accuracy. On the other hand, Eq. (26) implies
that we can identify λ1 with the quartic coupling of the SM,
λ1 ¼ 0.258, as long as tan β ≳ 3. Similarly, the alignment
condition (24) gives

λ8 ¼ − tan βðλ7 tan β þ λ5Þ: ð35Þ

Perturbativity of λ8 then requires λ7 ∼Oð1=tan2 βÞ and
λ5 ∼Oð1=tan βÞ.

B. Bounded-from-below limits

To guarantee that the minimum around which we expand
the scalar potential (19) is physically meaningful, we must
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ensure that the potential is bounded from below, which
means that it cannot tend to negative infinity along any
direction in the field space. This requirement puts addi-
tional restrictions on the allowed values of the couplings λi.
To derive the “bounded-from-below” constraints, one
should analyze all possible directions along which the
scalar fieldsHu,Hd, and ϕ can flow toward arbitrarily large
values. The details of our derivation are presented in
Appendix C. Here we summarize our findings in the form
of inequality conditions which need to be satisfied by the
quartic couplings of the potential (19):

λ8 þ
ffiffiffiffiffiffiffiffiffi
λ2λ6

p
> 0

λ7 þ
ffiffiffiffiffiffiffiffiffi
λ1λ6

p
> 0

λ3 þ
ffiffiffiffiffiffiffiffiffi
λ2λ1

p
> 0

λ3 þ λ4 þ
ffiffiffiffiffiffiffiffiffi
λ2λ1

p
> 0

−
1

4

ðReλ5Þ2 þ ðImλ5Þ2
λa

þ λ4 > 0

4λ2b − ðReλ5Þ2 þ Reλ5Imλ5 > 0

4λ2b − ðImλ5Þ2 þ Reλ5Imλ5 > 0 ð36Þ

where λa¼ 3
2
λ6þλ3

λ6ffiffiffiffiffiffi
λ1λ2

p þλ7
ffiffiffi
λ6
λ1

q
þλ8

ffiffiffi
λ6
λ2

q
and λb¼

ffiffiffiffiffiffiffiffiffi
λaλ4

p
.

Since in this study we do not investigate the CP violation,
we assume that all the parameters of the lagrangian are real,
indicating Imλ5 ¼ 0. Note also that several novel condi-
tions with respect to the findings of Refs. [13,15] are
identified in Eq. (36).

C. Vacuum stability

In theories which feature an extended scalar sector, the
scalar potential can easily develop more than one local
minimum. As a result, the theory may tunnel from one
minimum to another. In principle, color and charge break-
ing minima deeper than the EWSB minimum of Eq. (3) can
arise in our model (see, e.g., [18]). Moreover, several
charge and color conserving minima can coexist, in which

case we do not know a priori which of them corresponds to
the desired EWSB minimum.
The strong vacuum stability condition for the scalar

potential requires that the EWSB vacuum corresponds to a
global minimum. In such a case the potential is said to be
stable. If, on the other hand, the EWSB minimum is a local
minimum but the tunneling time to a true global minimum
exceeds the age of the Universe, the potential is said to be
metastable. In this study we employ the publicly available
numerical package Vevacious++ [19] (the C++ version of [20])
to find all tree- and one-loop level minima of the scalar
potential defined in Eq. (19) and to calculate the tunneling
time from the EWSB minimum to the deepest mini-
mum found.

IV. FLAVOR PHYSICS CONSTRAINTS

In this section, we review additional constraints which
may affect the allowed parameter space of the analyzed
model. These extra restrictions come from the experimental
measurements of several flavor observables, including the
anomalous magnetic moment of the muon, the lepton flavor
violating decays of the tau lepton, and the elements of the
CKMmatrix. We discuss them in the following one by one.

A. Muon anomalous magnetic moment

The discrepancy between the SM prediction [21–42] and
the experimental measurement of the anomalous magnetic
moment of the muon has been confirmed separately by the
Brookhaven National Laboratory [43] and the Fermilab
experimental groups [44,45], giving rise to the combined
5.1σ anomaly2:

Δaμ ¼ aexpμ − aSMμ ¼ ð2.49� 0.48Þ × 10−9: ð37Þ

In a generic NP model which features heavy scalars ϕi
and fermions ψ j coupled to the SM muons via the Yukawa-

type interactions yijLϕiψ̄ jPLμ and yijRϕiψ̄ jPRμ (where
PL;R ¼ ð1 ∓ γ5Þ=2 are the usual projection operators), a
well-known one-loop contribution to the muon anomalous
magnetic moment reads

Δaμ ¼
X
i;j

�
−

m2
μ

16π2M2
ϕi

ðjyijL j2 þ jyijR j2Þ
�
QjF 1ðxijÞ −QiG1ðxijÞ

	
−

mμMψj

16π2M2
ϕi

ReðyijLyij�R Þ�QjF 2ðxijÞ −QiG2ðxijÞ
	


; ð38Þ

where Mϕi
is the physical mass of a heavy scalar, Mψ j

is the physical mass of a heavy fermion, xij ¼ M2
ψj
=M2

ϕi
, and the

electric charges of ϕi and ψ j are related as Qi þQj ¼ −1. The loop functions are defined in the following way:

2The SM value of the muon anomalous magnetic moment giving rise to the discrepancy of 5.1σ is based on the data-driven
determination of the hadronic vacuum polarization contributions to aSMμ . However, recent lattice QCD calculations of the same quantity
consistently point toward a significantly higher value [46–54], which would result in reduction of the muon (g − 2) anomaly down to
1.5σ [55].
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F 1ðxÞ ¼
1

6ð1 − xÞ4 ð2þ 3x − 6x2 þ x3 þ 6x ln xÞ

F 2ðxÞ ¼
1

ð1 − xÞ3 ð−3þ 4x − x2 − 2 ln xÞ

G1ðxÞ ¼
1

6ð1 − xÞ4 ð1 − 6xþ 3x2 þ 2x3 − 6x2 ln xÞ

G2ðxÞ ¼
1

ð1 − xÞ3 ð1 − x2 þ 2x ln xÞ: ð39Þ

The first addend in Eq. (38) captures the loop chirality-
conserving contributions to Δaμ. These are known to be
generically too small to account for the anomaly (37) when
the most recent LHC bounds on the NP masses are taken
into account [56,57]. We will thus focus on the second
addend in Eq. (38), which corresponds to the loop chirality-
flipping contributions to Δaμ.
In the framework of the model defined in Table I, two

classes of contributions to the anomalous magnetic moment
of the muon can arise, induced by one-loop diagrams with
an exchange of neutral (pseudo)scalars and charged VL
leptons, as shown in Fig. 1(a), or charged scalars and
neutral VL leptons, as shown in Fig. 1(b). In the first case,
the chirality-flipping contributions to Δaμ read

ΔaEh0μ ≈
1

16π2
X2
j¼1

X3
i¼1

�
mμMEj

M2
h0i

ReðcLc�RÞEj;h0iF 2ðM2
Ej
=M2

h0i
Þ
�

ð40Þ

for the CP-even scalars and

ΔaEaμ ≈
1

16π2
X2
j¼1

X2
i¼1

�
mμMEj

M2
ai

ReðcLc�RÞEj;aiF 2ðM2
Ej
=M2

aiÞ
�

ð41Þ

for the CP-odd scalars. The one-loop contributions to Δaμ
from the neutral leptons and charged scalars are given by

ΔaNh�
μ ≈−

1

16π2
X4
j¼1

�
mμMNj

M2
h�

ReðcLc�RÞNj;h�G2ðM2
Nj
=M2

h�Þ
�
:

ð42Þ

The parameters cL=R denote the effective couplings
arising from the muon-(pseudo)scalar-VL fermion vertices
in the mass basis. They depend on the lepton Yukawa
couplings of Eqs. (1) and (A11), as well as on the elements
of the mixing matrices Rh [Eq. (23)], Ra [Eq. (29)], and
Ve
L=R [Eq. (A3)]. The explicit forms of cL=R are rather

complex and we refrain from showing them here. Note,
however, that in our numerical analysis we are going to
compute all the contributions to Δaμ with the numerical
package SPheno [58,59].

B. Lepton flavor violating decays

Due to the nonzero mixing between the second and the
third generation of fermions, charged lepton flavor violat-
ing processes may occur. The τ → μγ decay receives
contributions from the one-loop diagrams analogous to
those of Δaμ. The corresponding branching ratio (BR) is
given by [60]

BRðτ → μγÞ ¼ αemm3
τ

4Γτ

X
i;j


jAij
L j2 þ jAij

R j2
�
; ð43Þ

where Γτ ¼ 2.3 × 10−12 [17] indicates the total decay width
of the tau, αem is the fine structure constant, and the decay
amplitude Aij

L reads

Aij
L ¼ 1

32π2M2
ϕi

n
mτðyijτ;Lyij�μ;LÞ

�
QjF 1ðxijÞ −QiG1ðxijÞ

	
þMψj

ðyijτ;Lyij�μ;RÞ½QjF 2ðxijÞ −QiG2ðxijÞ
	o

: ð44Þ

The corresponding amplitude Aij
R is obtained from Eq. (44)

by replacing L ↔ R. Just like it was in the Δaμ case, the

FIG. 1. The one-loop chirality-flipping contributions to Δaμ mediated by (a) a neutral (pseudo)scalar/charged lepton exchange, and
(b) a charged scalar/neutral lepton exchange.
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main contribution to BRðτ → μγÞ originates from the
second addend in Eq. (44). The current experimental 90%
confidence level (C.L.) upper bound on BRðτ → μγÞ
from the Belle collaboration reads [61]:

BRðτ → μγÞexp < 4.2 × 10−8: ð45Þ

The τ → 3μ decay can proceed through the one-loop
penguin and box diagrams. The latter are subdominant in
our model as they do not receive the chiral enhancement.
The corresponding formulas for the penguin-diagram BRs
are lengthy and not particularly enlightening. They can be
found, for example, in Eq. (37) of Ref. [60]. The 90% C.L.
upper bound on BRðτ → 3μÞ by the Belle collaboration
reads [62]:

BRðτ → 3μÞexp < 2.1 × 10−8: ð46Þ

C. CKM anomaly

Among the experimental puzzles which are not
explained by the SM we should also mention various
tensions between three different determinations of the
Cabibbo angle. This observable can be extracted from
the short distance radiative corrections to the β decay, from
the experimental data on kaon decays, and from the lattice
calculations [63–66]. All these measurements are in tension
with each other, giving rise to two interesting anomalies.
The first anomaly is related to the violation of the CKM

matrix unitarity when one compares the values of jVudj and
jVusj resulting from the β decay and from the kaon decays.
The second anomaly originates from two different mea-
surements of jVusj: from the semileptonic K → πlν and the
leptonic K → μν decay, respectively.
The experimental upper bound on the CKM deviation

from the unitarity reads [17]

ΔCKM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

ud − V2
us − V2

ub

q
< 0.04: ð47Þ

To explain the anomaly of Eq. (47), one can consider
extensions of the SM in which the fermion sector is
enlarged by VL quarks mixing at the tree level with the
SM quarks [64,67–70] and leptons [71,72]. In such a
setting deviations from the unitarity of the three-
dimensional CKM matrix can arise quite naturally. Since
the model defined in Table I contains all the necessary
ingredients to account for the CKM anomaly, we include it
in our list of constraints.

V. PERTURBATIVITY CONSTRAINTS

The model defined in Table I is intended as a phenom-
enological scenario which correctly describes the physics
around the energy scale determined by the typical masses in
the NP sector. Nevertheless, it is important to understand

what is the range of validity of such a model or, in other
words, what is the energy scale at which the model cannot
be trusted anymore and should be embedded in some more
fundamental UV completion. While such a “cutoff” scale
lacks a truly rigorous definition, one can try to estimate it
by simply requiring that whatever extra degrees of freedom
emerge in the theory above this scale to make the model
UV complete, they do not affect its phenomenological
predictions.
As an example, let us consider the muon anomalous

magnetic moment operator, which in the low-energy
effective field theory (EFT) reads

e
2mμ

Δaμðμ̄σμνFμνμÞ≡ C
Λ
ðμ̄σμνFμνμÞ: ð48Þ

Here Λ is a cut-off scale of the examined EFT while C
denotes a generic Wilson coefficient. Note that since
the operator in Eq. (48) is chirality flipping, it is more
convenient to define C ¼ C̃mμ=Λ. One can now derive
from Eq. (48) rough estimates of the energy scale asso-
ciated with a hypothetical NP contributing to Δaμ at
different loop orders,

tree level∶ C̃ ≈ 1; Λ ≈ 3000 GeV ð49Þ

1 loop∶ C̃ ≈ 1=16π2; Λ ≈ 230 GeV ð50Þ

2 loop∶ C̃ ≈ ð1=16π2Þ2; Λ ≈ 20 GeV ð51Þ

and so on.
Going beyond the EFT approximation, let us investigate

a one-loop chirality flipping contribution to Δaμ like the
one in Eq. (38). Assuming that it arises from an unspecified
UV completion of our model above the scale Λ, it can be
estimated by the corresponding UV mass mΛ and the UV
Yukawa couplings yL=RðΛÞ as

ΔaΛμ ∼
1

16π2
mμv

m2
Λ
yLðΛÞyRðΛÞ: ð52Þ

By demanding that the new contribution (52) does not shift
our phenomenological predictions for Δaμ by more than
3σ, we can derive a lower bound on the UV mass,

mΛ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yLðΛÞyRðΛÞ

p
15 TeV: ð53Þ

For the Yukawa couplings at the upper edge of perturba-
tivity, yLðΛÞ ¼ yRðΛÞ ¼

ffiffiffiffiffiffi
4π

p
, Eq. (53) translates into a

conservative estimation of the scale of validity of our
phenomenological model,

mΛ ≳ 50 TeV: ð54Þ
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In other words, the model cannot be UV completed
below mΛ.
An immediate consequence of Eq. (54) is that the

commonly employed perturbativity bounds, which read
≲ ffiffiffiffiffiffi

4π
p

for the gauge/Yukawa and ≲4π for the quartic
couplings, need to be imposed on the running parameters of
the model evaluated at the scale Λ rather than on the bare
couplings of the lagrangian (as it was done, for example,
in Ref. [15]).
To implement the RG-based perturbativity constraints,

we follow the RG flow of all the coupling constants from
the scale μ0 ¼ 1.5 TeV, which is a proxy for the NP scale
in our model, to Λ ¼ 50 TeV. The one-loop RG equations
(RGEs) were computed using the publicly available
numerical code SARAH [73,74] and are summarized in
Appendix D. Due to a large number of Yukawa and quartic
interactions in our model, it is not possible to perform the
perturbativity analysis in a generic way as the RGEs are
nonlinear differential equations that cannot be solved
analytically. On the other hand, the perturbativity bounds
are expected to be relevant only for those couplings whose
values must be of order 1 (or larger) for phenomenological
reasons. This observation allows us to reduce the RGE
system and to simplify the analysis.
In the Yukawa sector, the couplings of interest are xQ34,

yu43, y
u
34 and x

u
43 (see Sec. II for the discussion). We find that

the modulus of their value cannot exceed 1.4 at μ0 if they
are to remain perturbative up to 50 TeV. This conclusion is
derived under the assumption that all the other couplings
(but two) are set to 1 at the initial scale μ0. The two
exceptions are yd14 and ye24 (expected to be much smaller
than 1 as the Yukawas of the second generation), whose
values at μ0 are set to 0.7.
In the scalar sector, the perturbativity bounds are

presumably most relevant for the couplings λ1, λ6 and
λ7, whose RGEs feature a power-four dependence on the
large Yukawa couplings yu43, x

u
43 and xQ34 (cf. Eqs. (D5),

(D10), and (D11), respectively). In Fig. 2 we illustrate the
RG running of λ1, λ6 and λ7 for a randomly chosen
benchmark point which satisfies all the constraints dis-
cussed in Secs. II and III. The running of all the remaining
quartic couplings is very slow in the considered energy
range and does not pose any danger from the point of view
of their perturbativity. Once the whole system is analyzed
with the alignment conditions (24) and (25) in place, it
turns out that the perturbativity requires the modulus of the
quartic couplings to be smaller than 2. A straightforward
consequence of this result is that all the benchmark points
found previously in Ref. [15] are disfavored.
Finally, let us comment on another constraint which may

arise in our model, the so called perturbative unitarity.
Although the S-matrix for a scattering process must be
unitary in the full theory, it may happen that at some order
in the perturbative expansion the unitarity is violated,
signaling the breakdown of the expansion. This is usually

related to some of the couplings becoming too large. The
perturbative unitarity translates into conditions for the
partial wave amplitudes, which have to be smaller than
1=2. To examine such constraints in our model we
use SPheno, which computes the maximal eigenvalue of a
2 → 2 scattering matrix at the tree-level. On the other hand,
since we already require all the quartic couplings to remain
perturbative up to the energy scale of 50 TeV, we may
suspect that the perturbative unitarity bounds are automati-
cally satisfied. As we will see in the next section, this is
indeed the case.

VI. NUMERICAL ANALYSIS AND
BENCHMARK SCENARIOS

In this section we perform a global numerical analysis of
the model. We begin by discussing the employed scanning
methodology, the definition of the chi-square (χ2) statistics
and the initial ranges for all the model’s parameters. Next,
we present three best-fit benchmark scenarios which arise
from the minimization of the χ2 function. Finally, we
provide a discussion of some experimental signatures that
these benchmark scenarios could produce.

A. Scanning methodology

In Table II we summarize the scanning ranges for
all the parameters of the model. These include the
quartic couplings and the soft-breaking term of the scalar
potential (19), the nonzero Yukawa couplings and the mass
parameters of the Lagrangian (1), the vev of the singlet
scalar, and tan β.
In the scalar sector the alignment conditions (24)

and (25) are imposed, leading to the limited scanning
ranges for λ3, λ5 and λ7 [cf. Eqs. (34) and (35)]. For all the

FIG. 2. The RG running of the quartic couplings λ1, λ6 and λ7
for a randomly chosen benchmark point which satisfies all the
constraints discussed in Secs. II and III. The renormalization
scale μ ranges from 1.5 TeV to 1000 TeV. μ0 ¼ 1.5 TeV is a
reference scale. We do not show the RG evolution of other quartic
and Yukawa couplings as it is very slow in the considered energy
range.
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other quartic couplings the perturbativity bounds discussed
in Sec. Vare enforced. Similarly, the Yukawa couplings are
scanned in the ranges consistent with their RGE perturba-
tivity constraints. Finally, small values of some of the
neutrino coupling constants are necessary to generate tiny
masses for the SM neutrinos.
A tentative lower bound of 1200 GeV is imposed on the

VL quark mass parameters. This is a rough (and
conservative) approximation of the constraints from the
direct NP searches at the LHC, which will be discussed in
more details in Sec. VII A. The scanning range for vϕ then
follows from the requirement of reproducing the correct
mass of the top quark, as discussed in Sec. II A. Similarly,
we adopt 200 GeV lower bounds on the VL lepton mass
parameters in order to be roughly consistent with the
corresponding LHC constraints, which we examine in
Sec. VII B. Finally, the range for μ2sb was chosen to make
sure that the mass of the associated CP-odd state

[cf. Eq. (31)] is not excluded by the current experimental
searches [17].
The experimental constraints employed in our numerical

scan are listed in Table III. The central values and the
experimental errors for the quark and lepton masses and
for the CKM matrix elements are quoted after the PDG
report [17]. Since the uncertainties for mμ and mτ are very
small, rendering the fitting procedure numerically chal-
lenging, we adopt an error of 10% for these two observ-
ables. The experimental constraints from the flavor physics
were discussed in Sec. IV.
We construct the χ2-statistic function as

χ2 ¼
X
i

ðOmodel
i −Ocen

i Þ2
ðOerr

i Þ2 ; ð55Þ

where Omodel
i indicates the value of an observable calcu-

lated in our model, Ocen
i is the central value of its

TABLE II. Scanning ranges for the input parameters of the model defined in Table I. The alignment limit (cf. Sec. III), the RGE
perturbativity constraints (cf. Sec. V) and a tentative lower bound on the VL mass parameters (see the text) are imposed. In the Yukawa
sector only the nonzero couplings are shown. Dimensionful quantities are given in GeV and GeV2.

Scalar sector

tan β [2, 50] vϕ [1000, 1500] μ2sb ½4; 64� × 104 λ2 ½−2.0;þ2.0� λ3 [0.24, 0.28]
λ4 ½−2.0;þ2.0� λ5 ½−0.2; 0.0� λ6 ½−2.0;þ2.0� λ7 ½−0.01;þ0.01� λ8 ½−1.0;þ1.0�

Lepton sector

ye24 ½−0.7;þ0.7� ye43 ½−1.0;þ1.0� yν14 ½−1.0;þ1.0� × 10−10 y0ν14 ½−1.0;þ1.0� Me
4 �½200; 1000�

ye34 ½−1.0;þ1.0� xe42 ½−1.0;þ1.0� yν24 ½−1.0;þ1.0� × 10−10 y0ν24 ½−1.0;þ1.0� Mν
4 �½200; 1000�

xL34 ½−1.0;þ1.0� xe43 ½−1.0;þ1.0� yν34 ½−1.0;þ1.0� × 10−10 y0ν34 ½−1.0;þ1.0� ML
4

�½200; 1000�

Quark sector

yu24 ½−1.0;þ1.0� yu43 ½−1.4;þ1.4� yd14 ½−0.7;þ0.7� yd43 ½−1.0;þ1.0� Md
4

�½1200; 4000�
yu34 ½−1.4;þ1.4� xu42 ½−1.0;þ1.0� yd24 ½−1.0;þ1.0� xd42 ½−1.0;þ1.0� Mu

4 �½1200; 4000�
xQ34 ½−1.0;þ1.0� xu43 ½−1.4;þ1.4� yd34 ½−1.0;þ1.0� xd43 ½−1.0;þ1.0� MQ

4
�½1200; 4000�

TABLE III. The experimental measurements which we employ in our numerical scan. Masses are in GeV.

Measurement Central value Experimental error Measurement Central value Experimental error

mμ 0.10566 10% jVudj 0.97370 0.00014
mτ 1.77686 10% jVusj 0.22450 0.00080
mc 1.270 0.020 jVubj 0.00382 0.00024
ms 0.0934 0.0034 jVcdj 0.22100 0.00400
mb 4.18 0.02 jVcsj 0.98700 0.01100
mt 172.76 0.30 jVcbj 0.04100 0.00140
Δaμ 2.49 × 10−9 0.48 × 10−9 jVtdj 0.00800 0.00030

jVtsj 0.03880 0.00110
jVtbj 1.01300 0.03000

Measurement Upper bound
BRðτ → μγÞ < 4.2 × 10−8

BRðτ → 3μÞ < 2.1 × 10−8

ΔCKM < 0.04
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experimental measurement, Oerr
i is the corresponding

experimental error, and the sum runs over all the measured
observables listed in Table III. The upper bounds, corre-
sponding to the last three rows of Table III, are not included
in the χ2 function, but applied as hard-cuts instead (a point
in the parameter space is rejected if such a condition is not
satisfied).
To minimize the χ2 function, we adopt the following

strategy. First, we perform an initial scan of the parameter
space consistent with Table II. As a result, we obtain a seed
which is then used to minimize the χ2 function by iterating
a random walk algorithm with an adaptive step function.
The step function is chosen such that at each iteration all
input parameters are updated by less than κ%, and κ reduces
with an exponential decay law throughout the minimization
procedure. During each iteration, we discard all the points
that do not satisfy the upper bounds on ΔCKM, BRðτ → μγÞ

and BRðτ → 3μÞ, as well as the boundedness constraints on
the scalar potential given in Eq. (36) and the perturbative
unitarity. Moreover, we investigate the vacuum stability
with Vevacious++ [19] and we keep only those points whose
vacuum is identified as “stable.”

B. Benchmark scenarios

In Table IV we present input parameters for three best-fit
benchmark scenarios identified by performing the numeri-
cal scan discussed in Sec. VI A. The corresponding mass
spectra are summarized in Table V while the breakdown of
individual contributions to the χ2 function is shown in
Table VI.
In general, the three benchmark scenarios demonstrate

quite similar features, both in terms of the input parameters
and of the resulting NP spectra. This is largely due to the
fact that we aim at reproducing masses and mixings of the

TABLE IV. Input parameters for three best-fit benchmark scenarios. Dimensionful quantities are given in GeV
and GeV2.

Scalar sector

BP1 BP2 BP3 BP1 BP2 BP3

tan β 13 8 12 λ1 0.258 0.258 0.258
vu 245.3 244.3 245.2 λ2 0.514 0.153 0.623
vd 18.9 30.5 20.4 λ3 0.257 0.260 0.256
vϕ 1015 1077 1012 λ4 0.552 0.304 0.167
μ2u −7.8 × 103 −6.6 × 103 −7.6 × 103 λ5 −0.039 −0.072 −0.061
μ2d −8.2 × 103 −8.6 × 104 −3.4 × 104 λ6 0.370 0.487 0.663
μ2ϕ −4.9 × 104 −9.4 × 104 −2.3 × 105 λ7 0.001 0.002 0.002

μ2sb 1.4 × 105 1.9 × 105 1.1 × 105 λ8 0.254 0.423 0.417

Quark sector Lepton sector

BP1 BP2 BP3 BP1 BP2 BP3

yu24 −0.051 −0.049 0.050 ye24 0.028 −0.015 0.022
yu34 −0.980 1.185 −1.024 ye34 −0.895 0.612 0.790
xQ34 0.924 −0.842 −0.877 xL34 0.616 −0.729 0.724
yu43 1.382 1.093 −1.337 ye43 −0.223 0.144 −0.191
xu42 0.550 0.821 −0.595 xe42 0.156 0.165 0.188
xu43 1.286 1.261 1.263 xe43 −0.168 0.228 −0.205
yd14 −0.022 0.035 0.026 yν14 −2 × 10−11 5 × 10−11 3 × 10−11

yd24 0.096 0.151 −0.113 yν24 3 × 10−11 8 × 10−12 6 × 10−11

yd34 −0.684 0.274 0.267 yν34 −5 × 10−11 9 × 10−11 9 × 10−11

yd43 −0.672 −0.489 0.656 y0ν14 −0.824 −0.674 −0.674
xd42 −0.371 −0.110 0.225 y0ν24 −0.895 −0.874 −0.896
xd43 −0.160 0.072 −0.127 y0ν34 0.701 0.744 −0.812

Mass parameters

BP1 BP2 BP3 BP1 BP2 BP3

Mu
4 −1317 1405 1334 Me

4 −517 −575 533
Md

4
−3644 3068 −2882 Mν

4 204 −212 217

MQ
4

−1384 1443 1322 ML
4

−206 −222 −202
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SM fermions and this, as we discussed in Sec. II, puts
strong constraints on (some of) the model’s parameters.
Let us first notice that the masses of all the SM fermions

of the third and second generation can be fitted very
precisely. Each individual contribution to the χ2 function
is smaller than 0.7, with an exception of ms in BP1, in
which case we have χ2b ¼ 1.6. We can also observe that, as
we anticipated in Sec. II, the Yukawa couplings which link
the VL sector with the SM fermions of the third generation

are in general larger than those associated with the second
generation.
On theother hand, fitting theCKMmatrix is a little bitmore

tricky and the bulk of the total χ2 stems from this very sector.
As anticipated in Sec. II B, the main contribution to the χ2

function is given by the element jVtdj, with the corresponding
χ2Vtd

ranging from 16 for BP1 to 25 for BP3. Smaller yet still
relevant contributions come from the entries jVubj and jVtsj.
Finally, an order 10 contribution to the χ2 function from the
element jVusj is mainly due to a very small experimental error
associated with this particular observable. All other elements
of the CKM matrix are fitted within their 1σ experimental
ranges. As an illustration, we present below the full 5 × 5
CKM matrix for the benchmark scenario BP1,

jVCKMjðBP1Þ ¼

0
BBBBBB@

0.97394 0.22679 0.00298 1.4 × 10−7 0.00008

0.22671 0.97301 0.04296 0.00003 0.00042

0.00681 0.04236 0.99821 0.00968 0.00221

0.00054 0.00270 0.02853 0.86532 0.00114

0.00082 0.00390 0.02996 0.50113 0.00076

1
CCCCCCA
: ð56Þ

The two remaining best-fit points follow the same pattern.
Incidentally, note that the CKM anomaly is Oð10−4Þ in our
setup, well below the experimental upper bound of
Eq. (47).
Interestingly, in all three cases each quartic (Yukawa)

coupling remains smaller than 4π (
ffiffiffiffiffiffi
4π

p
) up to 1000 TeV.

We can therefore conclude that the validity range of our
model extends well beyond the putative scale of 50 TeV.

We also checked that the maximal eigenvalue of the
scattering matrix computed by SPheno is Oð10−2Þ for all
the benchmark scenarios, indicating that the perturbative
unitarity bound is satisfied as well.
Masses of the NP leptons are determined, to a large

extent, by correctly fitting the experimental value of Δaμ
(an overall contribution from this observable to the total χ2

function does not exceed 0.7 in all the benchmark

TABLE V. Mass spectra for three best-fit benchmark scenarios.
All masses are in GeV.

SM fermions

BP1 BP2 BP3 BP1 BP2 BP3

mc 1.262 1.282 1.259 mμ 0.110 0.110 0.110
mt 172.7 172.8 172.6 mτ 1.864 1.756 1.765
ms 0.089 0.093 0.091 mν2 ½10−10� 4.659 6.587 0.252
mb 4.169 4.196 4.175 mν3 ½10−10� 8.253 18.38 20.95

NP fermions

Quark sector Lepton sector

BP1 BP2 BP3 BP1 BP2 BP3

MU1
1495 1561 1440 ME1

487 596 554
MU2

1708 1842 1704 ME2
543 615 570

MD1
1534 1579 1464 MN1;2

205 214 218
MD2

3655 3070 2888 MN3;4
488 598 556

Scalars

BP1 BP2 BP3 BP1 BP2 BP3

Mh1 125 125 125 Ma1 362 411 433
Mh2 362 412 435 Ma2 532 614 469
Mh3 617 752 824 Mh� 384 423 440

TABLE VI. Breakdown of the χ2 contributions from various
observables implemented in the χ2 function of Eq. (55). The
CKM contributions which are smaller than 3 are not shown. χ2Q,
χ2L, and χ2V indicate total χ2 contributions from the quark masses,
lepton masses, and the CKM matrix elements, respectively. χ2TOT
stands for the total χ2 function of each best-fit scenario.

Quarks masses CKM elements

BP1 BP2 BP3 BP1 BP2 BP3

χ2c 0.154 0.360 0.280 χ2Vus
8.225 8.290 5.986

χ2t 0.022 0.018 0.119 χ2Vub
12.33 10.36 9.327

χ2s 1.569 0.014 0.450 χ2Vtd
15.69 18.30 24.58

χ2b 0.330 0.640 0.052 χ2Vts
10.45 9.796 6.559

χ2Q 2.075 1.031 0.901 χ2V 55.45 55.26 55.92

Charged leptons masses Δaμ

χ2μ 0.210 0.170 0.207 χ2Δaμ 0.328 0.657 0.375

χ2τ 0.241 0.014 0.004 Total
χ2L 0.451 0.183 0.211 χ2TOT 58.30 57.31 57.41
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scenarios). Contributions to Δaμ from the individual one-
loop diagrams of Fig. 1 are summarized in Table VII. We
present separately fractions of Δaμ generated by the
charged scalars h� and the neutral leptons N1;2;3;4, by
the CP-odd scalars a1;2 and the charged leptons E1;2, and
by the CP-even scalars h1;2;3 and the charged leptons E1;2.
We also show the sum of all the contributions of a given
type, indicated by a subscript “tot.”
We observe that the largest contributions to Δaμ arise

from the charged scalar/heavy neutrino loops. We thus
disprove the conclusions of Refs. [13,15] where it was
assumed that the charged lepton loops were the only NP
contributions to muon (g − 2) present in the model. As we
show in our analysis, all possible one-loop diagrams
contributing to Δaμ should be treated at equal footing
and none of them should be discarded a priori.
Even more interestingly, the observed dominance of the

heavy neutrino contributions to the anomalous magnetic
moment of the muon seems to be a generic feature of the
model which does not pertain exclusively to the identified
benchmark scenarios. The charged scalar/heavy neutrino
loops are determined, among other parameters, by combi-
nations of the y0ν couplings which are not constrained by
any SM masses and mixing and thus can become relatively
large. Contrarily, the same Yukawa coupling is responsible
for the generation of the neutral (pseudo)scalar/charged
lepton loops and for the correct tree-level mass of the muon.
It is thus required to be small and the corresponding
contributions to Δaμ are suppressed. Additionally, one
also observes cancellations between the individual contri-
butions to Δaμ stemming from the (pseudo)scalar diagrams
with different VL leptons, which is a known and common
feature of many NP models with VL fermions (see,
e.g., [75,76] for a discussion).
It is worth to comment on how our results would change

if the lattice-based determination of the SM value of

the muon anomalous magnetic moment [46–54] was
employed. This would require the discrepancy of Eq. (37)
to be reduced to [55]

Δaμ ¼ ð1.07� 0.70Þ × 10−9; ð57Þ

imposing a 2σ upper bound on the size of the overall
NP contribution to Δaμ. Since, as discussed in the
previous paragraph, the dominant contributions from
the charged scalar/heavy neutrino loops are driven by
the—otherwise unconstrained—y0ν couplings, the upper
bound can be easily satisfied for each of the BPs listed
in Table IV without affecting other predictions of the
model.
Finally, we should mention the size of the BRs for the

lepton flavor violating decays τ → μγ and τ → 3μ in our
model, which are of the order ð3 − 4Þ × 10−8 for the former
and ð6 − 9Þ × 10−10 for the latter. Given that in the future
the Belle-II collaboration is expected to improve their
current exclusion bounds by an order of magnitude or
more [77,78], it may turn out that the tau leptonic decays
offer the best experimental way of verifying the predictions
of the NP model analyzed in this study.

VII. LHC STUDY OF THE BENCHMARK
SCENARIOS

In this section we confront the benchmark scenarios
identified in Sec. VI with the null results of the direct NP
searches at the LHC. We analyze, one by one, the
constraints originating from considering the production
of VL quarks, VL leptons, and exotic scalars.

A. Vectorlike quarks

The VL quarks (VLQs) can be copiously produced at the
LHC, either in pairs through the strong interactions or

TABLE VII. Contributions to Δaμ from the individual one-loop diagrams shown in Fig. 1. The subscript “tot”
indicates the sum of all the contributions of a given type.

Contributions to Δaμ × 109

Charged scalars CP-even scalars

Loop BP1 BP2 BP3 Loop BP1 BP2 BP3

h�; N1;2 −1.076 −0.792 −0.942 h1, E1 −0.003 −0.001 −0.009
h�; N3;4 3.300 2.898 3.153 h1, E2 0.003 0.001 0.009
h�; Ntot 2.225 2.106 2.211 h2, E1 −0.409 −0.520 −0.969

CP-odd scalars h2, E2 0.437 0.548 0.994
a1, E1 0.425 0.528 0.938 h3, E1 0.018 0.115 0.076
a1, E2 −0.544 −0.611 −1.529 h3, E2 −0.017 −0.127 −0.076
a2, E1 −0.033 −0.135 −0.071 h; Etot 0.032 0.027 0.025
a2, E2 0.110 0.196 0.621 Total
a; Etot −0.015 −0.023 −0.041 Δaμ 2.215 2.101 2.196
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singly through an exchange of the EW gauge bosons. In the
former case, the dominant production channels at the
leading order are gluon fusion and quark-antiquark anni-
hilation, whose production cross sections depend on the
VLQ mass and its SUð3ÞC quantum numbers only (see
Refs. [79,80] for analytical formulas). Therefore, the
experimental lower bounds on VLQ masses are expected
to be, to a large extent, model independent, bearing only a
slight dependence on the relative strength of the individual
VLQ decay channels.
The most recent analysis from ATLAS, based on the data

from proton–proton collisions at a centre-of-mass energy offfiffiffi
s

p ¼ 13 TeV, corresponding to an integrated luminosity
of 139 fb−1 [81], considered the pair production of VL top
partners T and VL bottom partners B with the decay
channels T → Zt; ht;Wb and B → Zb; hb;Wt and with
large missing transverse momentum. The corresponding
Feyman diagrams are depicted in Fig. 3. The strongest
95% C.L. lower bounds on the VLQ mass derived in
Ref. [81] read

MT=B > 1.41 TeV ð58Þ

for the EW doublets3 and

MT > 1.26 TeV; MB > 1.33 TeV ð59Þ

for the EW singlets.4 The analogous results from CMS can
be found in Ref. [82]. Similarly, by assuming that at least
one of the VLQs decays into a Z boson with the
BR ¼ 100%, the 13 TeV ATLAS search [83] obtained
even stronger bounds,

MT > 1.60 TeV; MB > 1.42 TeV: ð60Þ

At first glance it may seem that all our benchmark
scenarios are consistent with the VLQ exclusion bounds.
On the other hand, in the model considered in this study the
couplings of the physical heavy quarks U1;2 and D1;2 with
the third-generation SM quarks and the EW gauge (Higgs)
bosons are generated via tree-level mixing after the EWand
Uð1ÞX symmetries are spontaneously broken (cf. Sec. II
and Appendix A). Since there is a priori no reason for the
resulting BRs to correspond to any of the benchmark cases
considered by ATLAS and CMS in their analyses (exotic
decays to the charged Higgs are possible, for example), we
need to reexamine the experimental results in the frame-
work of our model.
To this end, we calculate with MadGraph5 MC@NLO [84]

the cross sections for the pair production of U1, U2, D1

and D2. The results are presented in Table VIII. By
comparing these numbers with the observed experimental
95% C.L. upper bounds on the signal cross section from
Ref. [81] (to give an example, σexp95%ðpp → T̄TÞ ¼ 4 ×
10−3 pb for MVLQ ¼ 1.5 TeV) we conclude that our
benchmark scenarios are indeed not excluded by the
current LHC searches for the VLQs, irrespectively of
the actual sizes of their BRs.
It is instructive to investigate the prospects of testing

our model in future runs at the LHC. The total cross
section for the VLQ pair production, followed by a decay
into the third generation quarks and the EW gauge/Higgs
bosons, can be expressed using the narrow width approxi-
mation (NWA) as

σ̃ðpp → Q̄Q → ff̄VVÞ
≈ σðpp → QQ̄ÞBRðQ → fVÞBRðQ̄ → f̄VÞ; ð61Þ

where Q ¼ U1;2; D1;2, f ¼ t, b and V ¼ W;Z; h1. Under
the assumption that BRðQ → fVÞ ¼ BRðQ → h1t=bÞ þ
BRðQ → Zt=bÞ þ BRðQ → Wb=tÞ ¼ 1, the cross sec-
tion (61) reduces to the signal cross section constrained
by the experimental collaborations, σexp95% ≈ σðpp → QQ̄Þ.
If, on the other hand, the three BRs do not sum to one, we
expect the resulting exclusion bounds to be weaker than
the bounds reported by ATLAS and CMS.

FIG. 3. Pair production of the VLQs T and B via the gluon fusion at the LHC considered by the ATLAS collaboration in Ref. [81].

3For the VLQmass larger than 800 GeV this indicates BRðT →
ZtÞ ¼ BRðT → htÞ ¼ 50% and BRðB → WtÞ ¼ 100% [81].

4For the VLQ mass larger than 800 GeV this indicates
BRðT→ZtÞ¼25%, BRðT→htÞ¼25%, BRðT → WbÞ ¼ 50%,
BRðB → ZbÞ ¼ 25%, BRðB → hbÞ ¼ 25% and BRðB → WtÞ ¼
50% [81].
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The lightest VLQ in our model, U1, is characterized by the following BRs:

BP1∶ BRðU1 → h1tÞ ¼ 0.188; BRðU1 → ZtÞ ¼ 0.146; BRðU1 → WbÞ ¼ 0.040

BP2∶ BRðU1 → h1tÞ ¼ 0.135; BRðU1 → ZtÞ ¼ 0.101; BRðU1 → WbÞ ¼ 0.044

BP3∶ BRðU1 → h1tÞ ¼ 0.209; BRðU1 → ZtÞ ¼ 0.165; BRðU1 → WbÞ ¼ 0.037 ð62Þ

with the resulting cross sections σ̃BP1 ¼ 1.8 × 10−4 pb, σ̃BP2 ¼ 7.0 × 10−5 pb and σ̃BP3 ¼ 3.0 × 10−4 pb. The second-to-
the-lightest VLQ, D1, has

BP1∶ BRðD1 → h1bÞ ¼ 0.001; BRðD1 → ZbÞ ¼ 0.001; BRðD1 → WtÞ ¼ 0.375

BP2∶ BRðD1 → h1bÞ ¼ 0.001; BRðD1 → ZbÞ ¼ 0.001; BRðD1 → WtÞ ¼ 0.221

BP3∶ BRðD1 → h1bÞ ¼ 0.001; BRðD1 → ZbÞ ¼ 0.001; BRðD1 → WtÞ ¼ 0.387 ð63Þ

with σ̃BP1 ¼ 1.4 × 10−4 pb, σ̃BP2 ¼ 4.1 × 10−5 pb and
σ̃BP3 ¼ 2.4 × 10−4 pb. We can thus conclude that in order
to probe theVLmasses featured by our benchmark scenarios,
at least one order of magnitude enhancement of the exper-
imental sensitivity in the VLQ searches is required.
Finally, we analyze the possibility of testing the model

via processes in which the VLQs are produced one at the
time. The single VL T quark production was analyzed by
ATLAS in Refs. [85–87], while the single VL B quark
production in Ref. [88]. The corresponding Feynman
diagrams are shown in Fig. 4. The 95% C.L. experimental
upper bounds on the relevant signal cross sections are of the
order ð10−2–10−1Þ pb.
We calculated the cross sections for the VLQ single

productions of our three benchmark points using the NWA.
The hadronic cross sections were obtained with MadGraph5

MC@NLO and the BRs with SPheno. We found that the cross
section for a single production of the VLQs U1 is

Oð10−5Þ pb, while for D1 it amounts to Oð10−7Þ pb. We
can thus conclude that in our model the single production is
a less promising search strategy than the pair production.
This was to be expected as the single production is in
general less competitive than the pair production for the
Yukawa couplings smaller than 1, see, e.g., [89,90].

B. Vectorlike leptons

At the tree level, the VL leptons (VLLs) are pair
produced at the LHC via the Drell-Yan processes. The
corresponding cross sections for our three benchmark
scenarios are collected in Table IX. The analysis of all
the possible experimental signatures is in this case much
more involved than for the VLQs as the lepton decay BRs
strongly depend on the presence in the spectrum of the
exotic scalars lighter than the VLLs. The following mass
hierarchies are observed:

TABLE VIII. Cross sections (in pb) for the pair production of the VLQs for our three benchmark scenarios. Masses are in GeV.

MU1
σðpp → U1U1Þ MU2

σðpp → U2U2Þ MD1
σðpp → D1D1Þ MD2

σðpp → D2D2Þ
BP1 1495 1.3 × 10−3 1708 3.9 × 10−4 1534 1.0 × 10−3 3655 4.5 × 10−9

BP2 1561 8.9 × 10−4 1842 1.9 × 10−4 1579 8.1 × 10−4 3070 1.6 × 10−7

BP3 1440 1.8 × 10−3 1704 4.0 × 10−4 1464 1.6 × 10−3 2888 5.0 × 10−7

FIG. 4. Single production of the VLQs T and B via the EW gauge boson exchange at the LHC, as considered by the ATLAS
collaboration in Refs. [85–87] for T and in Ref. [88] for B.
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BP1∶ MN1;2
< Mh2 ;Ma1 ;Mh� < ME1

;MN3;4
< Ma2 < ME2

< Mh3

BP2∶ MN1;2
< Mh2 ;Ma1 ;Mh� < ME1

;MN3;4
< Ma2 < ME2

< Mh3

BP3∶ MN1;2
< Mh2 ;Ma1 ;Mh� < Ma2 < ME1

;MN3;4
< ME2

< Mh3 : ð64Þ

In all the cases the lightest VLLs, neutrinos N1;2, originate
predominantly from the SUð2ÞL singlets and their produc-
tion cross section at the LHC is suppressed, Oð10−5Þ pb.
The second-to-the-lightest VLLs, E1 and heavy neutrinos

N3;4, come from the same SUð2ÞL doublets and are almost
degenerate in mass. Therefore, three production channels
should be considered simultaneously: pp → Z=γ → E1Ē1,
pp → Z=γ → N3;4N3;4 and pp → W� → E1N3;4. The
dominant branching ratios for the subsequent decays of E1

andN3;4, evaluatedwith SPheno, are collected in TableX. In all
three cases the VLLs decay predominantly to the SMmuons,
which is a direct consequence of the fact that we imposeΔaμ
as a constraint in our likelihood function and the largish
muon-lepton-scalar Yukawa couplings are preferred.
A closer look at Table X reveals that the relative

strengths of various VLL decay channels are, to some
extent, scenario dependent. Moreover, the final experimen-
tal signatures hinge on the subsequent decay channels of
the scalar particles, which are also pretty complex (we
discuss it in more details in Sec. VII C). As an example,
let us consider a process pp → E1Ē1 → μμ̄a1a1 for the
benchmark scenario BP1. The lightest pseudoscalar can
decay in this case either to a bb̄ pair (with the BR of 28%)
or to νN1;2 (with the BR of 69%). The decay of the heavy
neutrinos then proceeds as N1;2 → e�=μ�W� with the BR
of 56%, or N1;2 → νZ with the BR of 28%. We can thus
expect the following distinctive experimental signatures

emerging from the pp → E1Ē1 → μμ̄a1a1 process:
(a) 2 muonsþ ðbÞ-jets, (b) multileptonsþmissing energy,
(c) multileptonsþ jetsþmissing energy, with the total
signal cross section reduced with respect to the production
cross section reported in Table IX by the product of the
subsequent BRs.
To make the things even worse, there are not many LHC

analysis that would explicitly look for the VLLs. The only
dedicated ATLAS search, based on the 139 fb−1 of data
from the 13 TeV run [91], looks for the VLLs coupled
predominantly to taus. The analogous CMS analysis based
on the 77.4 fb−1 of data can be found in Ref. [92]. The
decay chains considered by the two collaborations are
shown in Fig. 5. In both cases, the total cross sections for
the VLL production can be probed down to 10−3 pb (of
course, the actual value is mass dependent).
In our model all three benchmark scenarios feature very

low BRs for E1 and N3;4 decaying to taus, which do not
exceed 10%.We can thus expect a strong suppression of the
resulting signal with respect to the experimental analysis.
Indeed, using theNWA the total cross section for the process
considered in Refs. [91,92] can be written as follows:

σðpp→ τ−τþl−lþqq̄Þ
≈ σðpp→E1Ē1ÞBRðE1→ τ−l−lþÞBRðĒ1→ τþqq̄Þ

þσðpp→E1N3;4ÞBRðE1→ τ−l−lþÞBRðN3;4→ τþqq̄Þ:
ð65Þ

Combining the cross sections from Table IX with the
relevant BRs calculated with SPheno, we obtain

BP1∶ σðpp → τ−τþl−lþqq̄Þ ¼ 8.3 × 10−7 pb

BP2∶ σðpp → τ−τþl−lþqq̄Þ ¼ 8.1 × 10−6 pb

BP3∶ σðpp → τ−τþl−lþqq̄Þ ¼ 5.3 × 10−7 pb: ð66Þ

If we now compare the predictions of Eq. (66) with the
corresponding experimental 95% C.L. exclusion cross

TABLE IX. Cross sections (in pb) for the pair production of the VLLs for our three benchmark scenarios. Masses
are in GeV.

ME2
σðpp → Ē2E2Þ ME1

σðpp → Ē1E1Þ MN3;4
σðpp → N3;4N3;4Þ σðpp → E1N3;4Þ

BP1 543 1.5 × 10−3 487 5.7 × 10−3 488 2.7 × 10−5 3.6 × 10−3

BP2 615 8.0 × 10−4 596 1.8 × 10−3 598 8.5 × 10−6 1.2 × 10−3

BP3 570 1.2 × 10−3 554 2.8 × 10−3 556 2.8 × 10−5 1.8 × 10−3

TABLE X. Dominant BRs for the decays of E1 and N3;4.

BR BP1 BR BP2 BR BP3

E1 → μa1 37% E1 → μa1 23% E1 → μa1 21%
E1 → μh2 37% E1 → μh2 24% E1 → μh2 25%

E1 → N1;2W� 26% E1 → τa1 11%

BR BP1 BR BP2 BR BP3

N3;4 → μh� 70% N3;4 → μh� 51% N3;4 → μh� 56%
N3;4 → N1;2Z 12%
N3;4 → N1;2h1 11%
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sections from Ref. [91], we can conclude that the bench-
mark scenarios identified in Sec. VI are not excluded
by the dedicated LHC searches for the VLLs.5 Moreover,
it may also be challenging to test the VLL sector of our
model in future runs at the LHC, if no dedicated exper-
imental strategies for the muon final state signatures are
proposed.

C. Exotic scalars

Finally, we investigate the possibility of testing the
predictions of our model via the LHC searches in the
scalar sector. There is a plethora of experimental analyses,
both by ATLAS and CMS, that look for the non-SM Higgs
bosons (see Ref. [94] for a recent review in the framework
of the 2HDM). At the same time, in our benchmark
scenarios the exotic scalars can decay through a variety
of channels (the dominant BRs, obtained with SPheno, are
collected in Table XI).
To facilitate the analysis, we use the publicly available

code HiggsTools [95], a toolbox for evaluating bounds from
the direct searches for the exotic scalar particles at LEP and
the LHC, whose database contains 258 different limits. We
find that all our benchmark scenarios are tagged as
“allowed” by HiggsTools.
It is instructive to take a closer look at the output of

HiggsTools, as it indicates which searches are most sensitive
to the spectra featured by our best-fit scenarios. This is
quantified by a parameter called “observed ratio”, Robs,
which is the ratio of the predicted cross section and the
experimental limit at the 95% C.L. The point in the
parameter space is excluded if Robs > 1. We observe that
the highest values of Robs (0.6 for BP1 and BP3, 0.14 for
BP2) are reached for the h2 → τþτ− and a1 → τþτ− decays
constrained by the ATLAS 139 fb−1 analysis [96], despite
very low decay BRs in this channel.

To investigate it in more details, we calculated the
a1=h2 → τþτ− cross sections with MadGraph5 MC@NLO.
The results are reported in the last three columns of
Table XII. These are to be compared with the 95% C.L.
experimental lower bounds on the cross section reported
in the third column of Table XII. We find a very good
agreement with the output of HiggsTools in terms of the
parameterRobs, thus confirming that the decays of the exotic
scalars into taus are going to be the most promising way of
testing the predictions of the model at the LHC.
In Table XII we also present other decay channels of a1

and h2 that feature the high sensitivity. While the current
experimental bounds on those searches are weaker that
those relative to the τ−τþ final state, they may offer
complementary signatures of the model in future LHC runs.
Incidentally, note that the BRs for the decays of h2 and

a1 to the EW gauge bosons, γγ, ZZ and WW, are Oð10−8Þ
and Oð10−9Þ, respectively, which is orders of magnitude
below the current experimental bounds.
Finally, let us comment on the possibility of testing the

a1=h2 → tþt− decay through the measurement of an
effective coupling ga1=h2tt. This scenario was investigated
by CMS in Ref. [104]. Comparing the values of the ga1=h2tt
coupling evaluated with SPheno (0.084 for BP2, 0.096

FIG. 5. Pair production of the VLLs E1 and N3;4 at the LHC, as considered by the ATLAS [91] and CMS [92] collaborations.

TABLE XI. Dominant BRs (> 5%) for the decays of the exotic
scalars.

Process BP1 BP2 BP3

a1 → νN1;2 69% 82% 72%
a1 → b̄b 28% 14% 25%
a2 → t̄t 73% 73% 36%
a2 → b̄b 15%
a2 → νN1;2 46%

h2 → νN1;2 69% 84% 72%
h2 → b̄b 28% 14% 25%
h3 → t̄t 50% 43% 34%
h3 → τ̄E1 10% 9% 20%

h� → μ̄N1;2 41% 51% 48%
h� → ēN1;2 34% 30% 26%
h� → b̄t 19% 13% 19%

5In principle, some of the SUSY searches looking for the
chargino/neutralino production, e.g., Ref. [93], analyze signa-
tures that could be generated in our model. However, the resulting
cross section for such a process is way too low to allow the
derivation of any constraints.
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for BP3) with the experimental 95% C.L. upper bounds
(0.80 for BP2 and 0.70 for BP3)6 we conclude that no
additional constraint on our model arises from this par-
ticular search.

VIII. CONCLUSIONS

In this study, we performed a global analysis of an
extension of the SM which contains one full family of VL
fermions, an extra SUð2ÞL scalar doublet and an SUð2ÞL
scalar singlet. It also features a Uð1ÞX global symmetry
spontaneously broken by the singlet scalar vev. This scenario
was originally proposed in Ref. [12] to generate themasses of
the third and the second family of the SM fermions, as well as
to account correctly for their mixing patterns.
In our analysis we confronted the model with the

experimental bounds from the flavor physics observables,
which include the anomalousmagneticmoment of themuon
and the rare decays of the tau lepton. Additionally, themodel
was subjected to the theoretical constraints stemming from
the stability of the scalar potential and from the perturba-
tivity of the renormalized couplings. Importantly, we
revisited and corrected the bounded-from-below and the
alignment limits, which in the context of the same model
were previously discussed in Refs. [13,15]. In particular, we
showed that additional constraints on the quartic couplings
arise if the full three-scalar potential is considered.
We also argued that the perturbativity bounds should not
be imposed on the low-scale parameters of the lagrangian
but on the running couplings evaluated at the renormaliza-
tion scale which sets an upper limit of the model’s validity.
These RG-based perturbativity conditions require the
low-scale scalar couplings to be smaller than 2 and the
Yukawa couplings smaller than 1.5.
With all the constraints in place, we performed a

numerical scan of the model’s parameter space and we

identified three benchmark scenarios that satisfied all
the theoretical and experimental requirements. One dis-
tinctive feature of these solutions is that the charged scalar/
heavy neutrino loops provide dominant contributions to the
observable Δaμ. This finding is qualitatively different from
the conclusions obtained in Refs. [13,15] where only the
charged lepton loops were considered. We would like to
emphasize that the dominance of the heavy neutrino
contribution to Δaμ is a generic characteristic of the model
and not a mere artifact of the specific benchmark scenarios.
The main reason behind this feature is that the same
coupling which generates the neutral scalar/charged lepton
loops is also responsible for the correct tree-level mass of
the muon and thus it is required to be small.
WealsoperformedadetailedLHCanalysisofourthreebest-

fit scenarios. We investigated the experimental constraints
stemming fromthedirect searches forVLQs,VLLsandexotic
scalars.Wefoundthatnoneofthecurrentlyavailableexclusion
bounds can test the spectra featured by the benchmark
scenarios. This provides a proof of concept that the model
in study is feasible as an explanation of both the SM masses
and mixings and of the relevant experimental phenomena.
Regarding future prospects for experimental verification

of the model, several observations can be made. Firstly,
both charged and neutral VLLs decay predominantly to
muons in our framework. On the other hand, all currently
available LHC analyses focus on taus in the final state, for
which the cross sections obtained in our model are several
orders of magnitude below the experimental sensitivity.
Therefore, we would like to encourage the experimental
collaborations to provide dedicated analyses of the VLLs
coupled to the second family of the SM fermions. Such a
study would not only allow to test the predictions of our
model, but it would prove very useful in any phenomeno-
logical research that aims at explaining the muon (g − 2)
anomaly in a NP framework with VLLs.
Second, the experimental searches for VLQs can become a

fruitful testing ground for ourmodel already in the current run
of the LHC. The cross sections for the pair production of

TABLE XII. An overview of the LHC scalar searches which present the highest sensitivity to the benchmark scenarios identified in
Sec. VI. The columns show, respectively, the decay channel, the experimental analyses investigating this channel, the experimental
95% C.L. upper bound on the cross section for the mass corresponding to the mass of the scalar in a benchmark scenario, the actual cross
section calculated in the benchmark scenario.

Channel Experiment σexp95% (BP1, BP2, BP3) σBP1 σBP2 σBP3

a1=h2 → τþτ− CMS [97] 0.060 0.030 0.020
0.037 0.004 0.011ATLAS [96] 0.050 0.020 0.016

a1=h2 → μþμ− CMS [98] 0.007 0.006 0.005
1.3 × 10−4 1.4 × 10−5 4.4 × 10−5ATLAS [99] 0.009 0.004 0.003

a1=h2 → bþb− CMS [100] 6.0 3.5 3.0
0.554 0.061 0.061ATLAS [101] � � � � � � � � �

h� → t̄b CMS [102] 0.40 0.30 0.25
7.6 × 10−3 2.1 × 10−3 4.5 × 10−3ATLAS [103] 0.45 0.30 0.25

6The CMS analysis [104] does not cover the scalar masses
below 400 GeV.
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VLQs featured by the benchmark scenarios are one order of
magnitude smaller than the current experimental upper
bounds and should be in reach of the dedicated VLQs
searches based on the larger data samples.
Finally, we observed that the most constraining decay

channel for the exotic scalars is a1=h2 → τþτ−, for which
the ratio of the predicted to the experimental cross sections
is close to 1. It may thus provide complementary signatures
of our model in future runs at the LHC.
However, the ultimate verification of the NP scenario

considered in this study may come from the flavor physics.
The Belle-II collaboration plans on improving, by at least
one order of magnitude, their experimental bounds on the
rare leptonic decays of the tau lepton. As the corresponding
branching ratios featured by our three benchmark scenarios
are very close to the current 90% C.L. exclusion limits, the
rare decays could be the first experimental signatures to be
tested.
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APPENDIX A: FERMION MASS MATRICES

1. Charged leptons

The mass matrix for the charged leptons, Me, can be
derived from Eq. (1) after identifying the generic fermions
ψ with the corresponding lepton fields from Table I and the
generic scalar H with Hd. One thus has

ψ iR ¼ eiR; ψ iL ¼ LiL; ψ4R ¼ e4R;

ψ4L ¼ L4L; ψ̃4R ¼ L̃4R; ψ̃4L ¼ ẽ4L ðA1Þ

with the following components of the SUð2ÞL doublets:
LiL¼ðνiL;eiLÞT , L4L ¼ ðν4L; e4LÞT and L̃4R ¼ ðν̃4R; ẽ4RÞT .
As a result, the mass matrix reads

Me ¼

0
BBBBBBBBB@

e1R e2R e3R e4R ẽ4R
e1L 0 0 0 0 0

e2L 0 0 0 ye24
vdffiffi
2

p 0

e3L 0 0 0 ye34
vdffiffi
2

p −xL34
vϕffiffi
2

p

e4L 0 0 ye43
vdffiffi
2

p 0 −ML
4

ẽ4L 0 xe42
vϕffiffi
2

p xe43
vϕffiffi
2

p Me
4 0

1
CCCCCCCCCA
;

ðA2Þ

where ML
4 (Me

4) denotes the mass of the VL lepton doublet
(singlet) and xL34 ≡ xe34. To facilitate the comparison with
the corresponding mass matrix defined in SARAH, we adopt
the sign convention used in the code. Note, however, that
such a choice does not affect the conclusions drawn in our
study as we allow all the Yukawa couplings and all the VL
mass parameters to assumeboth positive and negativevalues
in our numerical scan.
The 5 × 5 charged lepton mass matrix Me can be

diagonalized by means of two unitary transformations
Ve
L and Ve

R,

Ve
LMeV

e†
R ¼ diagð0; mμ; mτ;ME1

;ME2
Þ: ðA3Þ

In Sec. II the approximate expressions for the eigenvalues
mμ andmτ were provided in Eq. (6), whereas the analogous
formulas for the eigenvalues ME1

and ME2
were given in

Eq. (11). While those equations are very useful to get a
general idea on which lagrangian parameters are relevant
for generating the physical charged lepton masses, in our
numerical analysis we diagonalize all the fermion mass
matrices numerically, employing the SPheno code generated
by SARAH.

2. Up-type quarks

In analogy to the charged lepton sector, the mass
matrix for the up-type quarks, Mu, can be derived from
Eq. (1) after taking H ¼ Hu and making the following
identification:

ψ iR ¼ uiR; ψ iL ¼ QiL; ψ4R ¼ u4R;

ψ4L ¼ Q4L; ψ̃4R ¼ Q̃4R; ψ̃4L ¼ ũ4L: ðA4Þ

In Eq. (A4) the SUð2ÞL doublets have the following
components: QiL ¼ ðuiL; diLÞT , Q4L ¼ ðu4L; d4LÞT and
Q̃4R ¼ ðũ4R; d̃4RÞT . The corresponding mass matrix with
the SARAH sign convention reads

Mu ¼

0
BBBBBBBBB@

u1R u2R u3R u4R ũ4R
u1L 0 0 0 0 0

u2L 0 0 0 −yu24
vuffiffi
2

p 0

u3L 0 0 0 −yu34
vuffiffi
2

p xQ34
vϕffiffi
2

p

u4L 0 0 −yu43
vuffiffi
2

p 0 −MQ
4

ũ4L 0 xu42
vϕffiffi
2

p xu43
vϕffiffi
2

p Mu
4 0

1
CCCCCCCCCA
;

ðA5Þ

with xQ34 ≡ xu34. The up-type quark mass matrix Mu

can be diagonalized via the mixing matrices Vu
L and

Vu
R as

Vu
LMuV

u†
R ¼ diagð0; mc;mt;MU1

;MU2
Þ: ðA6Þ
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The approximate expressions for the eigenvaluesmc andmt
can be found in Eq. (4), and for the eigenvalues MU1

and
MU2

in Eqs. (8) and (9), respectively.

3. Down-type quarks

The down-type quark Lagrangian can be obtained from
the generic Lagrangian (1) by taking H ¼ Hd and making
the following replacements of the fermion fields,

ψ iR ¼ diR; ψ iL ¼ QiL; ψ4R ¼ d4R;

ψ4L ¼ Q4L; ψ̃4R ¼ Q̃4R; ψ̃4L ¼ d̃4L: ðA7Þ

The corresponding down-type quark mass matrix with the
SARAH sign convention reads

Md ¼

0
BBBBBBBBB@

d1R d2R d3R d4R d̃4R
d1L 0 0 0 yd14

vdffiffi
2

p 0

d2L 0 0 0 yd24
vdffiffi
2

p 0

d3L 0 0 0 yd34
vdffiffi
2

p −xQ34
vϕffiffi
2

p

d4L 0 0 yd43
vdffiffi
2

p 0 MQ
4

d̃4L 0 xd42
vϕffiffi
2

p xd43
vϕffiffi
2

p Md
4 0

1
CCCCCCCCCA
:

ðA8Þ
Note that, unlike in the case of the up-type quarks
and charged leptons, it is impossible to rotate away the
(1,4) element of the matrix Md. The reason is that the
mixing between the SM doublets Q1L andQ2L has already
been used in the up-quark sector to rotate away the
corresponding entry of Mu [12]. As a result, the
Yukawa coupling yd14 is present in Md. The down-type
quark mass matrix can be diagonalized by the unitary
matrices Vd

L and Vd
R,

Vd
LMdV

d†
R ¼ diagð0; ms; mb;MD1

;MD2
Þ: ðA9Þ

The approximate formulas for the eigenvalues ms and mb
can be found in Eq. (5), and for the eigenvalues MD1

and
MD2

in Eq. (10).
Incidentally, the presence of the matrix element yd14vd

has important consequences for the phenomenology of the
model defined in Table I. As it was discussed in Sec. II, the
first generation of the SM fermions remains massless if
only one complete VL family is added to the spectrum. On
the other hand, the mixing of the d quark with the strange
and bottom quarks is mediated by yd14vd. As a result, the full
CKM matrix can be generated in this setup and one needs
to include its elements in the global fit.

4. Neutrino sector

Finally, we discuss the neutrino mass matrix which
emerges from the particle content given in Table I. The
corresponding Lagrangian can be deduced from Eq. (1)
after the following identification:

ψ iL ¼ LiL; ψ4R ¼ ν4R; ψ4L ¼ L4L;

ψ̃4R ¼ L̃4R; ψ̃4L ¼ ν̃4L; H ¼ Hu; ðA10Þ

where the SUð2ÞL doublets LiL, L4L, and L̃4R are defined in
Sec. A 1. Note that since there is no νiR field in our model,
the couplings yν4j and x

ν
4j vanish. On the other hand, the VL

neutrino ν4R is a singlet under the SM gauge symmetry, so
an extra term with H�

d replacing Hu arises. In the end, the
neutrino Lagrangian reads:

LYukawa
ren;ν ¼ yνi4LiLHuν4R þ xLi4LiLϕL̃4R þ y0νi4LiLH�

dν̃4L

þML
4L4LL̃4R þMν

4ν̃4Lν4R þ H:c: ðA11Þ

Equation (A11) defines a mixed Majorana-Dirac neutrino
sector, which after the EWSB gives rise to a 7 × 7Majorana
neutrino mass matrix

Mν ¼

0
BBBBBBBBBBBBBBB@

ν1L ν2L ν3L ν4L ν4R ν̃4L ν̃4R

ν1L 0 0 0 0 −yν14
vuffiffi
2

p y0ν14
vdffiffi
2

p 0

ν2L 0 0 0 0 −yν24
vuffiffi
2

p y0ν24
vdffiffi
2

p 0

ν3L 0 0 0 0 −yν34
vuffiffi
2

p y0ν34
vdffiffi
2

p xL34
vϕffiffi
2

p

ν4L 0 0 0 0 0 0 ML
4

ν4R −yν14
vuffiffi
2

p −yν24
vuffiffi
2

p −yν34
vuffiffi
2

p 0 0 Mν
4 0

ν̃4L y0ν14
vdffiffi
2

p y0ν24
vdffiffi
2

p y0ν34
vdffiffi
2

p 0 Mν
4 0 0

ν̃4R 0 0 xL34
vϕffiffi
2

p ML
4 0 0 0

1
CCCCCCCCCCCCCCCA

; ðA12Þ

where once again we chose to work with the SARAH sign convention.
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The neutrino mass matrix is symmetric, it can thus be
diagonalized via an orthogonal mixing matrix Vν,

VνMνVν† ¼ diagð0; mν2 ; mν3 ;MN1
;MN2

;MN3
;MN4

Þ:
ðA13Þ

APPENDIX B: SCALAR MASS MATRICES

In this Appendix we collect the explicit formulas for the
scalar mass matrices derived from the scalar potential (19)
under the spontaneous symmetry breaking conditions (3).
The CP-even scalar mass matrix in the basis

ðReH0
u;ReH0

d;ReϕÞ evaluated at the vacuum reads

M2
CP-even¼

0
BBB@

λ1v2u−λ5
vdv2ϕ
4vu

λ3vuvdþλ5
v2ϕ
4

λ7vuvϕþλ5
vdvϕ
2

λ3vuvdþλ5
v2ϕ
4

λ2v2d−λ5
vuv2ϕ
4vd

λ8vdvϕþλ5
vuvϕ
2

λ7vuvϕþλ5
vdvϕ
2

λ8vdvϕþλ5
vuvϕ
2

λ6v2ϕ

1
CCCA: ðB1Þ

The matrix (B1) can be diagonalized by an orthogonal
matrix Rh parameterized with three mixing angles. We will
denote them as α12 for the ðHu;HdÞ mixing, α13 for the
ðHu;ϕÞ mixing, and α23 for the ðHd;ϕÞ mixing. In this
parametrization, the mixing matrix Rh is given by

Rh ¼

0
B@

c12c13 s12c13 s13
−s12c23−c12s13s23 c12c23− s12s13s23 c13s23
s12s23−c12s13c23 −c12s23− s12s13c23 c13c23

1
CA;

ðB2Þ

with the standard notation sij ¼ sin αij and cij ¼ cos αij.
The elements of the matrix Rh determine the couplings

of the physical Higgs bosons with the SM particles. It is
convenient to define a reduced coupling as the ratio
between the coupling of the physical Higgs scalar hi
and the corresponding coupling of the SM Higgs,

chiXX ¼ ghiXX
ghSMXX

; ðB3Þ

where X stands for the SM fermions and gauge bosons. For
the model defined in Table I, the reduced couplings to
quarks and charged leptons are given by

chitt ¼
ðRhÞi1
sin β

; chibb ¼
ðRhÞi2
cos β

chiττ ¼
ðRhÞi2
cos β

;

ðB4Þ

while the reduced couplings to the EW gauge bosons
read

chiZZ ¼ chiWW ¼ ðRhÞi1 sin β þ ðRhÞi2 cos β: ðB5Þ

In this study we choose to work in the alignment limit,
which is defined as a set of constraints on the quartic
couplings λi under which the lightest CP-even scalar h1 has
the same tree-level couplings with the SM particles as the

SM Higgs. This means that the reduced couplings to
fermions should be very close to 1,

cos α12 cos α13
sin β

≈ 1;
sin α12 cos α13

cos β
≈ 1: ðB6Þ

It can be easily verify that Eq. (B6) leads to the following
conditions on the CP-even scalars mixing angles,

α12 þ β ¼ π

2
þ nπ; α13 ¼ 2nπ; with n ¼ 0; 1; 2…

ðB7Þ

indicating no mixing between the doublet Hu and the
singlet ϕ. In this setting, the two SUð2ÞL scalar doublets
mix with the mixing angle π

2
− β, while the doublet Hd

mixes with the singlet ϕ with the mixing angle α23. The
CP-even scalars mixing matrix thus reduces to

Ralignment
h ¼

0
B@

sβ cβ 0

−cβc23 sβc23 s23
cβs23 −sβs23 c23

1
CA

¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA×

0
B@

sβ cβ 0

−cβ sβ 0

0 0 1

1
CA: ðB8Þ

The alignment conditions (B6) translates into the nontrivial
relations between the scalar potential couplings,

λ8c2β þ λ7s2β þ λ5sβcβ ¼ 0 ðB9Þ

λ2c2β − λ1s2β − λ3ðc2β − s2βÞ ¼ 0: ðB10Þ

One can also express the mixing angle α23 in terms of the
parameters of the scalar potential,
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cosð2α23Þ¼−
B23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A2
23þB2

23

p ; sinð2α23Þ¼−
A23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A2
23þB2

23

p ;

ðB11Þ

where we define

A23 ¼ 2vvϕsβðcβλ5 þ 2λ7sβÞ ðB12Þ

B23 ¼ λ5v2ϕ þ 4sβcβðλ6v2ϕ − ðλ1 − λ3Þv2s2βÞ: ðB13Þ

The CP-odd mass matrix in the basis
ðImH0

u; ImH0
d; ImϕÞ reads

M2
CP−odd ¼ −λ5

0
BBBBB@

vdv2ϕ
4vu

v2ϕ
4

vdvϕ
2

v2ϕ
4

vuv2ϕ
4vd

vuvϕ
2

vdvϕ
2

vuvϕ
2

vuvd − 2
μ2sb
λ5

1
CCCCCA: ðB14Þ

Finally, the charged scalar mass matrix is given by

M2
Charged ¼

0
B@ λ4

v2d
2
− λ5

vdv2ϕ
4vu

λ4
vuvd
2

− λ5
v2ϕ
4

λ4
vuvd
2

− λ5
v2ϕ
4

λ4
v2u
2
− λ5

vuv2ϕ
4vd

1
CA: ðB15Þ

APPENDIX C: DERIVATION OF THE
BOUNDED-FROM-BELOW CONDITIONS

In this Appendix, we derive the scalar potential bounded-
from-below conditions shown in Eq. (36). In doing so, we
follow the approach of Ref. [105] and we extend it to the
three-field case.
In order to determine the shape of the scalar potential

(19) in the limit of the large fields, it is enough to
investigate the behavior of the quartic terms,

V4 ¼
1

2
λ1ðH†

uHuÞ2 þ
1

2
λ2ðH†

dHdÞ2 þ λ3ðH†
uHuÞðH†

dHdÞ þ λ4ðH†
uHdÞðH†

dHuÞ

−
1

2
λ5ðϵijHi

uH
j
dϕ

2 þ H:c:Þ þ 1

2
λ6ðϕ�ϕÞ2 þ λ7ðϕ�ϕÞðH†

uHuÞ þ λ8ðϕ�ϕÞðH†
dHdÞ: ðC1Þ

It is convenient to parametrize each quartic term in the
following way,

a ¼ H†
uHu

b ¼ H†
dHd

c ¼ ϕ�ϕ

d ¼ ReH†
uHd

e ¼ ImH†
uHd

f ¼ ReϵijHi
uH

j
dϕ

2

g ¼ ImϵijHi
uH

j
dϕ

2: ðC2Þ

To make our results more general, we allow λ5 to be
complex. Note that a, b, c ≥ 0 by definition, and

ab ≥ d2 þ e2

abc2 ≥ f2 þ g2 ≥ 2fg: ðC3Þ

In terms of the new parameters, the scalar potential (C1)
can be rewritten as

V4 ¼
1

4


 ffiffiffiffiffi
λ1

p
a −

ffiffiffiffiffi
λ2

p
b
�
2 þ

�
1

2

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
þ λ3

�
ab

þ 1

4


 ffiffiffiffiffi
λ1

p
a −

ffiffiffiffiffi
λ6

p
c
�
2 þ

�
1

2

ffiffiffiffiffiffiffiffiffi
λ1λ6

p
þ λ7

�
ac

þ 1

4


 ffiffiffiffiffi
λ2

p
b −

ffiffiffiffiffi
λ6

p
c
�
2 þ

�
1

2

ffiffiffiffiffiffiffiffiffi
λ2λ6

p
þ λ8

�
bc

þ λ4ðd2 þ e2Þ − ðReλ5f − Imλ5gÞ: ðC4Þ

We are now ready to analyze the asymptotic behavior of
the potential (C4) in different field directions.

1. a= 0

The parameters d, e, f, g automatically vanish, see
Eq. (C3), and the global potential reduces to

V4ða ¼ d ¼ e ¼ f ¼ g ¼ 0Þ

¼ 1

2


 ffiffiffiffiffi
λ2

p
b −

ffiffiffiffiffi
λ6

p
c
�
2 þ 
λ8 þ ffiffiffiffiffiffiffiffiffi

λ2λ6
p �

bc; ðC5Þ

giving rise to the condition
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λ8 þ
ffiffiffiffiffiffiffiffiffi
λ2λ6

p
> 0: ðC6Þ

2. b= 0

In analogy to the previous case, one obtains

V4ðb ¼ d ¼ e ¼ f ¼ g ¼ 0Þ

¼ 1

2


 ffiffiffiffiffi
λ1

p
a −

ffiffiffiffiffi
λ6

p
c
�
2 þ 
λ7 þ ffiffiffiffiffiffiffiffiffi

λ1λ6
p �

ac; ðC7Þ

which gives

λ7 þ
ffiffiffiffiffiffiffiffiffi
λ1λ6

p
> 0: ðC8Þ

3. c= 0

This time, only the parameters f and g vanish and the
reduced scalar potential reads

V4ðc ¼ f ¼ g ¼ 0Þ ¼ 1

2


 ffiffiffiffiffi
λ1

p
a −

ffiffiffiffiffi
λ2

p
b
�
2

þ 
λ3 þ ffiffiffiffiffiffiffiffiffi
λ1λ2

p �
abþ λ4ðd2 þ e2Þ:

ðC9Þ

In order to determine the fate of the scalar potential V4 at
the large field values, we need to analyze additional
directions in the field space. We first choose a direction

along which a ¼
ffiffiffi
λ2
λ1

q
b and d ¼ e ¼ 0. Inserting these

expressions into Eq. (C9), we arrive to the following
condition

λ3 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ðC10Þ

Choosing another direction, a ¼
ffiffiffi
λ2
λ1

q
b and ab ¼ d2 þ e2,

we obtain

λ3 þ λ4 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ðC11Þ

4. a=
ffiffiffiffi
λ6
λ1

q
c, b=

ffiffiffiffi
λ6
λ2

q
c

Under this assumption the scalar potential (C4)
reduces to

V4 ¼ λac2 þ λ4ðd2 þ e2Þ − ðReλ5f − Imλ5gÞ; ðC12Þ

where one defines

λa ¼
3

2
λ6 þ λ3

λ6ffiffiffiffiffiffiffiffiffi
λ1λ2

p þ λ7
λ6
λ1

þ λ8
λ6
λ2

: ðC13Þ

From Eq. (C3) one has

c2 ≥
f2 þ g2

d2 þ e2
; ðC14Þ

leading to

V4≥ λa
f2þg2

d2þe2
þλ4ðd2þe2Þ−ðReλ5f− Imλ05;gÞ: ðC15Þ

The right-handed side (rhs) of Eq. (C15) can now be
rewritten as

rhs¼
�
f−

Reλ5
c1

�
2

þ
�
gþ Imλ5

c1

�
2

−
1

4c1


ðReλ5Þ2þðImλ5Þ2
�þλ4ðd2þe2Þ; ðC16Þ

where

c1 ¼
λa

d2 þ e2
: ðC17Þ

Choosing an additional direction in the field space, f ¼ Reλ5
c1

and g ¼ − Imλ5
c1

, we can derive the following condition,

−
1

4

ðReλ5Þ2 þ ðImλ5Þ2
λa

þ λ4 > 0: ðC18Þ

Finally, let us rewrite the rhs of Eq. (C15) in yet another
way,

rhs ¼
� ffiffiffiffiffi

c2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ e2

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4ðd2 þ e2Þ

q �
2

þ 2
ffiffiffiffiffiffiffiffiffi
c2λ4

p
− ðReλ5f − Imλ5gÞ; ðC19Þ

where

c2 ¼ λaðf2 þ g2Þ; λb ¼
ffiffiffiffiffiffiffiffiffi
λaλ4

p
: ðC20Þ

Analyzing the quartic potential along the directionffiffiffiffiffi
c2

p ¼ ffiffiffiffiffi
λ4

p ðd2 þ f2Þ, we obtain

V4 ≥


4λ2b − ðReλ5Þ2 þ Reλ5Imλ5

�
f2

þ 
4λ2b − ðImλ5Þ2 þ Reλ5Imλ5
�
g2; ðC21Þ

leading straightforwardly to the last two conditions,

4λ2b − ðReλ5Þ2 þ Reλ5Imλ5 > 0

4λ2b − ðImλ5Þ2 þ Reλ5Imλ5 > 0: ðC22Þ
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APPENDIX D: RENORMALIZATION GROUP EQUATIONS

In this Appendix, we collect the one-loop RGEs of our model computed with SARAH [73,74]. We denote

βðXÞ≡ μ
dX
dμ

≡ 1

16π2
βð1ÞðXÞ: ðD1Þ

βð1Þðg1Þ ¼
103g31
15

ðD2Þ

βð1Þðg2Þ ¼ −
g32
3

ðD3Þ

βð1Þðg3Þ ¼ −
13g33
3

ðD4Þ

βð1Þðλ1Þ ¼ −
9

5
g21λ1 − 9g22λ1 þ

27g41
100

þ 9g42
4

þ 9

10
g21g

2
2 þ 12λ21 þ 4λ23 þ 2λ24 þ 2λ27 þ 4λ3λ4

þ 12λ1ðyu43Þ2 þ 12λ1
�ðyu24Þ2 þ ðyu34Þ2

	
− 12ðyu43Þ4 − 12

�ðyu24Þ2 þ ðyu34Þ2
	
2

þ 4λ1
�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2

	
− 4
�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2

	
2 ðD5Þ

βð1Þðλ2Þ ¼ −
9

5
g21λ2 − 9g22λ2 þ

27g41
100

þ 9g42
4

þ 9

10
g21g

2
2 þ 12λ22 þ 4λ23 þ 2λ24 þ 2λ28 þ 4λ3λ4

þ 12λ2ðyd43Þ2 þ 12λ2
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	
− 12ðyd43Þ4 − 12

�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2
	
2

þ 4λ2ðye43Þ2 þ 4λ2
�ðye24Þ2 þ ðye34Þ2

	
− 4ðye43Þ4 − 4

�ðye24Þ2 þ ðye34Þ2
	
2

þ 4λ2
�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2

	
− 4
�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2

	
2 ðD6Þ

βð1Þðλ3Þ ¼ −
9

5
g21λ3 − 9g22λ3 þ

27g41
100

þ 9g42
4

þ 9

10
g21g

2
2 þ 4λ23 þ 2λ24 þ λ25 þ 6λ1λ3 þ 6λ2λ3 þ 2λ1λ4

þ 2λ2λ4 þ 2λ7λ8 þ 6λ3ðyd43Þ2 þ 6λ3
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	þ 2λ3
�ðye24Þ2 þ ðye34Þ2

	
þ 2λ3ðye43Þ2 þ 6λ3ðyu43Þ2 þ 6λ3

�ðyu24Þ2 þ ðyu34Þ2
	þ 2λ3

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	

− 4
�
xν14y

ν
14 þ xν24y

ν
24 þ xν34y

ν
34

	
2 þ 2λ3

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	 ðD7Þ

βð1Þðλ4Þ ¼ −
9

5
g21λ4 − 9g22λ4 −

9

5
g21g

2
2 þ 4λ24 − λ25 þ 2λ1λ4 þ 2λ2λ4 þ 8λ3λ4 þ 6λ4ðyu43Þ2 þ 6λ4ðyd43Þ2

þ 6λ4
�ðyu24Þ2 þ ðyu34Þ2

	
− 12ðyd43Þ2ðyu43Þ2 − 12

�
yd24y

u
24 þ yd34y

u
34

	
2 þ 6λ4

�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2
	

þ 2λ4ðye43Þ2 þ 2λ4
�ðye24Þ2 þ ðye34Þ2

	
− 4
�
ye24y

ν
24 þ ye34y

ν
34

	
2 þ 2λ4

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	

þ 4
�
xν14y

ν
14 þ xν24y

ν
24 þ xν34y

ν
34

	
2 þ 2λ4

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	 ðD8Þ

βð1Þðλ5Þ ¼ λ5

�
−

9

20
g21 −

9

4
g22 þ λ3 − λ4 þ λ6 þ 2λ7 þ 2λ8 þ 6ðxQ34Þ2 þ 3

�ðxu42Þ2 þ ðxu43Þ2
	

þ 3

2
ðyu43Þ2 þ

3

2

�ðyu24Þ2 þ ðyu34Þ2
	þ 3

�ðxd42Þ2 þ ðxd43Þ2
	þ 3

2
ðyd43Þ2 þ

3

2

�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2
	

þ 2ðxL34Þ2 þ
�ðxe42Þ2 þ ðxe43Þ2

	þ 1

2
ðye43Þ2 þ

1

2

�ðye24Þ2 þ ðye34Þ2
	þ 1

2

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	

þ 1

2

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	
 ðD9Þ
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βð1Þðλ6Þ ¼ 2λ25 þ 10λ26 þ 4λ27 þ 4λ28 þ 24λ6ðxQ34Þ2 − 24ðxQ34Þ4 þ 12λ6
�ðxu42Þ2 þ ðxu43Þ2

	
− 12

�ðxu42Þ2 þ ðxu43Þ2
	
2 þ 12λ6

�ðxd42Þ2 þ ðxd43Þ2
	
− 12

�ðxd42Þ2 þ ðxd43Þ2
	
2

þ 8λ6ðxL34Þ2 − 8ðxL34Þ4 þ 4λ6
�ðxe42Þ2 þ ðxe43Þ2

	
− 4
�ðxe42Þ2 þ ðxe43Þ2

	
2 ðD10Þ

βð1Þðλ7Þ ¼ −
9

10
g21λ7 −

9

2
g22λ7 þ 2λ25 þ 4λ27 þ 6λ1λ7 þ 4λ6λ7 þ 4λ3λ8 þ 2λ4λ8

− 12ðxQ34Þ2ðyu34Þ2 þ 12λ7ðxQ34Þ2 þ 6λ7
�ðxu42Þ2 þ ðxu43Þ2

	
− 12ðxu43Þ2ðyu43Þ2 þ 6λ7ðyu43Þ2

þ 6λ7
�ðyu24Þ2 þ ðyu34Þ2

	þ 6λ7
�ðxd42Þ2 þ ðxd43Þ2

	þ 4λ7ðxL34Þ2 − 4ðxL34Þ2ðyν34Þ2
þ 2λ7

�ðxe42Þ2 þ ðxe43Þ2
	þ 2λ7

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	 ðD11Þ

βð1Þðλ8Þ ¼ −
9

10
g21λ8 −

9

2
g22λ8 þ 2λ25 þ 4λ28 þ 4λ3λ7 þ 2λ4λ7 þ 6λ2λ8 þ 4λ6λ8 − 12ðyd34Þ2ðxQ34Þ2 þ 12λ8ðxQ34Þ2

þ 6λ8
�ðxu42Þ2 þ ðxu43Þ2

	þ 6λ8
�ðxd42Þ2 þ ðxd43Þ2

	
− 12ðxd43Þ2ðyd43Þ2 þ 6λ8ðyd43Þ2 þ 6λ8

�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2
	

þ 4λ8ðxL34Þ2 − 4ðxL34Þ2ðye34Þ2 − 4ðxL34Þ2ðxν34Þ2 þ 2λ8
�ðxe42Þ2 þ ðxe43Þ2

	
− 4ðxe43Þ2ðye43Þ2 þ 2λ8ðye43Þ2

þ 2λ8
�ðye24Þ2 þ ðye34Þ2

	þ 2λ8
�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2

	
ðD12Þ

βð1Þðyd43Þ ¼ −
1

4
g21y

d
43 −

9

4
g22y

d
43 − 8g23y

d
43 þ yd43

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	þ 1

2
ðxd43Þ2yd43 þ

1

2
yd43ðyu43Þ2

þ 3yd43
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	þ yd43
�ðye24Þ2 þ ðye34Þ2

	þ yd43ðye43Þ2 þ
9

2
ðyd43Þ3 ðD13Þ

βð1Þðyd14Þ ¼ −
1

4
g21y

d
14 −

9

4
g22y

d
14 − 8g23y

d
14 þ yd14

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	

þ 9

2
yd14
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	þ yd14
�ðye24Þ2 þ ðye34Þ2

	þ 3yd14ðyd43Þ2 þ yd14ðye43Þ2 ðD14Þ

βð1Þðyd24Þ ¼ −
1

4
g21y

d
24 −

9

4
g22y

d
24 − 8g23y

d
24 þ yd24

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	

þ 9

2
yd24
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	þ yd24
�ðye24Þ2 þ ðye34Þ2

	þ 1

2
yd24ðyu24Þ2

þ 3yd24ðyd43Þ2 þ yd24ðye43Þ2 þ
1

2
yu24y

d
34y

u
34 ðD15Þ

βð1Þðyd34Þ ¼ −
1

4
g21y

d
34 −

9

4
g22y

d
34 − 8g23y

d
34 þ yd34

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	þ 1

2
ðxQ34Þ2yd34

þ 9

2
yd34
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	þ 1

2
yd24y

u
24y

u
34 þ yd34

�ðye24Þ2 þ ðye34Þ2
	

þ 1

2
yd34ðyu34Þ2 þ 3yd34ðyd43Þ2 þ yd34ðye43Þ2 ðD16Þ

βð1Þðyu43Þ ¼ −
17

20
g21y

u
43 −

9

4
g22y

u
43 − 8g23y

u
43 þ

1

2
ðxu43Þ2yu43 þ yu43

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	

þ 3yu43
�ðyu24Þ2 þ ðyu34Þ2

	þ 1

2
ðyd43Þ2yu43 þ

9

2
ðyu43Þ3 ðD17Þ

βð1Þðyu24Þ ¼ −
17

20
g21y

u
24 −

9

4
g22y

u
24 − 8g23y

u
24 þ yu24

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	þ 1

2
ðyd24Þ2yu24

þ 1

2
yd24y

d
34y

u
34 þ

9

2
yu24
�ðyu24Þ2 þ ðyu34Þ2

	þ 3yu24ðyu43Þ2 ðD18Þ
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βð1Þðyu34Þ ¼ −
17

20
g21y

u
34 −

9

4
g22y

u
34 − 8g23y

u
34 þ

1

2
ðxQ34Þ2yu34 þ yu34

�ðyν14Þ2 þ ðyν24Þ2 þ ðyν34Þ2
	

þ 1

2
yd24y

u
24y

d
34 þ

9

2
yu34
�ðyu24Þ2 þ ðyu34Þ2

	þ 1

2
ðyd34Þ2yu34 þ 3yu34ðyu43Þ2 ðD19Þ

βð1Þðxd42Þ ¼ −
2

5
g21x

d
42 − 8g23x

d
42 þ 2ðxL34Þ2xd42 þ 6ðxQ34Þ2xd42 þ xd42ðxe42Þ2 þ 3xd42

�ðxu42Þ2 þ ðxu43Þ2
	

þ 4xd42
�ðxd42Þ2 þ ðxd43Þ2

	þ xd42ðxe43Þ2 ðD20Þ

βð1Þðxd43Þ ¼ −
2

5
g21x

d
43 − 8g23x

d
43 þ 2ðxL34Þ2xd43 þ 6ðxQ34Þ2xd43 þ 4xd43

�ðxd42Þ2 þ ðxd43Þ2
	þ ðxe42Þ2xd43

þ 3xd43
�ðxu42Þ2 þ ðxu43Þ2

	þ xd43ðxe43Þ2 þ xd43ðyd43Þ2 ðD21Þ

βð1ÞðxQ34Þ ¼ −
1

10
g21x

Q
34 −

9

2
g22x

Q
34 − 8g23x

Q
34 þ 2ðxL34Þ2xQ34 þ 3xQ34

�ðxd42Þ2 þ xd43Þ2
	þ xQ34ðxe42Þ2

þ 3xQ34
�ðxu42Þ2 þ ðxu43Þ2

	þ xQ34ðxe43Þ2 þ
1

2
xQ34ðyd34Þ2 þ

1

2
xQ34ðyu34Þ2 þ 7ðxQ34Þ3 ðD22Þ

βð1Þðxu42Þ ¼ −
8

5
g21x

u
42 − 8g23x

u
42 þ 2ðxL34Þ2xu42 þ 6ðxQ34Þ2xu42 þ 3xu42

�ðxd42Þ2 þ ðxd43Þ2
	

þ xu42ðxe42Þ2 þ xu42ðxe43Þ2 þ 4xu42
�ðxu42Þ2 þ ðxu43Þ2

	 ðD23Þ

βð1Þðxu43Þ ¼ −
8

5
g21x

u
43 − 8g23x

u
43 þ 2ðxL34Þ2xu43 þ 6ðxQ34Þ2xu43 þ 3xu43

�ðxd42Þ2 þ ðxd43Þ2
	

þ ðxe42Þ2xu43 þ 4xu43
�ðxu42Þ2 þ ðxu43Þ2

	þ ðxe43Þ2xu43 þ xu43ðyu43Þ2 ðD24Þ

βð1Þðye24Þ ¼ −
9

4
g21y

e
24 −

9

4
g22y

e
24 þ ye24

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	
−
3

2
xν24x

ν
34y

e
34 −

3

2
ðxν24Þ2ye24

þ 1

2
ye24ðyν24Þ2 þ 3ye24

�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2
	þ 5

2
ye24
�ðye24Þ2 þ ðye34Þ2

	
þ 3ye24ðyd43Þ2 þ ye24ðye43Þ2 þ

1

2
yν24y

e
34y

ν
34 ðD25Þ

βð1Þðye34Þ ¼ −
9

4
g21y

e
34 −

9

4
g22y

e
34 þ ye34

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	
−
3

2
xν24x

ν
34y

e
24 −

3

2
ðxν34Þ2ye34

þ 1

2
xL34x

Q
34y

e
34 þ 3ye34

�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2
	þ 1

2
ye24y

ν
24y

ν
34 þ

5

2
ye34
�ðye24Þ2 þ ðye34Þ2

	
þ 1

2
ye34ðyν34Þ2 þ 3ye34ðyd43Þ2 þ ye34ðye43Þ2 ðD26Þ

βð1Þðye43Þ ¼ −
9

4
g21y

e
43 −

9

4
g22y

e
43 þ ye43

�ðxν14Þ2 þ ðxν24Þ2 þ ðxν34Þ2
	þ 1

2
ðxe43Þ2ye43 þ ye43

�ðye24Þ2 þ ðye34Þ2
	

þ 3ye43
�ðyd14Þ2 þ ðyd24Þ2 þ ðyd34Þ2

	þ 3ðyd43Þ2ye43 þ
5

2
ðye43Þ3 ðD27Þ

βð1Þðyν14Þ ¼ −
9

20
g21y

ν
14 −

9

4
g22y

ν
14 þ
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