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Restricted Boltzmann machines (RBMs) are well-known tools used in machine learning to learn
probability distribution functions from data. We analyze RBMs with scalar fields on the nodes from the
perspective of lattice field theory. Starting with the simplest case of Gaussian fields, we show that the RBM
acts as an ultraviolet regulator, with the cutoff determined by either the number of hidden nodes or a model
mass parameter. We verify these ideas in the scalar field case, where the target distribution is known, and
explore implications for cases where it is not known using the MNIST dataset. We also demonstrate that
infrared modes are learnt quickest.
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I. INTRODUCTION

In recent years machine learning (ML) has gained
tremendous popularity in the physical sciences [1]. In
theoretical nuclear and high-energy physics, ML is applied
to a wide range of problems, see e.g. the reviews [2,3]. In
lattice field theory (LFT), there are applications to all aspects
of LFT computations [4], with the development of normal-
izing flows to generate field configurations a particularly
active area of research [5,6]. From a theoretical perspective,
it is of interest to explore synergies between ML on the one
hand and statistical physics and LFT on the other hand, as
many ML problems can be studied using the tools of the
latter, see e.g. Ref. [7]. The connection between neural
networks, Markov random fields and (Euclidean) lattice field
theory have indeed not gone unnoticed, leading to the
notions of quantum field-theoretic machine learning
(QFT/ML) [8] and neural network/QFT correspondence
[9,10]. Further exploration of this connection may be fruitful
in both directions, providing potential insights relevant to
both the ML and the LFT/QFT communities.
In this paper, we take a step in this direction by

considering one of the simplest generative ML models,
the restricted Boltzmann machine (RBM) [11,12]. We

analyze the RBM with continuous fields as degrees of
freedom from the perspective of a Euclidean LFTand give a
complete understanding in the case of Gaussian fields. We
verify our analytical insights using simple scalar field
theories in one and two dimensions, for which the target
distribution is known, and also the Modified National
Institute of Standards and Technology database (MNIST)
dataset, to demonstrate that our findings are indeed relevant
for typical ML datasets without known target distributions.
We are in particular interested in the choice of “architec-
ture,” which admittedly is quite straightforward for an
RBM, namely the number of hidden nodes as well as the
choice of certain hyperparameters. Our main conclusion is
that the scalar field RBM acts as an ultraviolet regulator,
with the cutoff determined by either the number of hidden
nodes or a model mass parameter. We will make clear what
this implies for the MNIST data set, but note here already
that in QFT language the MNIST dataset is ultraviolet
divergent and infrared safe.
The paper is organized as follows. In Sec. II we introduce

scalar field RBMs from the perspective of LFT and give
some exact solutions for the Gaussian case. The standard
equations to train an RBM are summarized in Sec. III. In
Sec. IV we analyze these equations analytically and work
out some simple examples in detail. The findings of this
section will be further explored in the two following
sections. First, we consider as target theories free scalar
fields in one and two dimensions in Sec. V, for which the
target distribution is known. In Sec. VI we validate our
findings for a dataset with an unknown distribution, namely
the MNIST dataset. Options to add interactions are dis-
cussed in Sec. VII. A summary is given in the final section.
Appendix A contains some more details on the algorithm
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employed, while in Appendix B the Kullback-Leibler
divergence is evaluated in the Gaussian case.

II. SCALAR FIELDS ON A BIPARTITE GRAPH

RBMs are defined on a bipartite graph, consisting of
one visible layer (with Nv nodes) and one hidden layer
(with Nh nodes), see Fig. 1. Importantly, there are no
connections within each layer, only between the two
layers. The degrees of freedom living on the nodes can
be discrete, as in an Ising model, continuous or mixed;
Ref. [13] is a useful review.
In this section, we consider an RBM from the viewpoint

of lattice field theory. We consider continuous fields and
denote these as ϕi (i ¼ 1;…; Nv) for the visible layer and
ha (a ¼ 1;…; Nh) for the hidden layer. The layers are
coupled via bilinear terms and involve the Nv × Nh weight
matrix W, as

ϕTWh ¼
XNv

i¼1

XNh

a¼1

ϕiWiaha: ð1Þ

The aim is to describe a probability distribution pðϕÞ on the
visible layer, constructed by integrating over the hidden
nodes in the joint probability distribution pðϕ; hÞ, as
follows:

pðϕÞ¼
Z

Dhpðϕ;hÞ; pðϕ;hÞ¼ expð−Sðϕ;hÞÞ
Z

; ð2Þ

where we have denoted the “energy” in the exponential as
an action (following LFT notation) and the partition
function reads

Z ¼
Z

DϕDh expð−Sðϕ; hÞÞ: ð3Þ

The integrals are over all nodes,

Z
Dϕ ¼

YNv

i¼1

Z
∞

−∞
dϕi;

Z
Dh ¼

YNh

a¼1

Z
∞

−∞
dha: ð4Þ

Due to the absence of intralayer connections, the action
takes a simple form in general:

Sðϕ; hÞ ¼ VϕðϕÞ þ VhðhÞ − ϕTWh; ð5Þ

where the two potentials can be any function (as long as the
integrals are well defined) and be node dependent, i.e.,

VϕðϕÞ ¼
X
i

VðϕÞ
i ðϕiÞ; VhðhÞ ¼

X
a

VðhÞ
a ðhaÞ: ð6Þ

Since there is no coupling between nodes within a layer,
there is no “kinetic” or nearest-neighbor term; these are
only generated via the coupling to the other layer.
To proceed, a natural starting point is to consider

quadratic potentials, i.e., free fields (we discuss interactions
in Sec. VII). We hence consider as action,

Sðϕ; hÞ ¼
X
i

1

2
μ2ϕ2

i þ
X
a

1

2σ2h
ðha − ηaÞ2 −

X
i;a

ϕiWiaha;

¼ 1

2
μ2ϕTϕþ 1

2σ2h
ðh − ηÞTðh − ηÞ − ϕTWh: ð7Þ

A few comments are in order. We have denoted the
prefactor as a mass term (μ2) in the case of ϕ and as a
variance (1=σ2h) in the case of h; this is inessential, but
emphasizes that the model on the visible layer is ulti-
mately the one we are interested in. Both μ2 and σ2h are
independent of the node; this is sufficient, as node
dependence can be introduced via the weight matrix W,
as we will see shortly. Finally, a source (or bias) ηa is
introduced in the hidden layer but not in the visible layer;
again this is sufficient, as a nonzero bias breaks both
symmetries, h → −h, ϕ → −ϕ.
Integrating out the hidden nodes then leads to the

following distribution on the visible layer,

pðϕÞ ¼
Z

Dhpðϕ; hÞ;

¼ 1

Z
exp

�
−
1

2
ϕTKϕþ ϕTJ

�
; ð8Þ

with

K ≡ μ211 − σ2hWWT; J ≡Wη; ð9Þ

and where Z now reads

Z ¼
Z

Dϕ exp

�
−
1

2
ϕTKϕþ ϕTJ

�
: ð10Þ

We note therefore that the distribution on the visible
layer resembles a generating function for a scalar field
theory, with the possibility of all-to-all bilinear interactions
between the fields via the nonlocal kernel K, and the bias

N

i=1 i= i=2

a= a= a=1 2 h

Nv

FIG. 1. Bipartite graph, with Nv (Nh) nodes in the visible
(hidden) layer.
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resulting in a source term J coupled to ϕ. The connected
two-point function or propagator is given by

hϕiϕji − hϕiihϕji ¼ K−1
ij : ð11Þ

The hidden layer has provided auxiliary degrees of freedom
to establish correlations between the visible nodes.
To continue the discussion we now assume the target

probability distribution ptargetðϕÞ is known and Gaussian,
such that we can solve the RBM explicitly, i.e., we give
explicit expressions for the weight matrixW and the bias η.
We denote the target kernel as Kϕ and consider the
symmetric case (ϕ→−ϕ, η¼J¼0) for simplicity. Since
Kϕ is a real and symmetric matrix, it can be diagonalized;
for the theory to exist, all its eigenvalues are assumed to be
semipositive. The RBM is then solved by equating the two
kernels, Kϕ ¼ K, i.e.,

Kϕ ¼ μ211 − σ2hWWT; ð12Þ

which implies

WWT ¼ 1

σ2h
ðμ211 − KϕÞ≡K: ð13Þ

Since WWT is semipositive, we find conditions on the
parameter μ2, namely

μ2=σ2h ≥ max ½eigenvaluesðWWTÞ�;
μ2 ≥ max ½eigenvaluesðKϕÞ�: ð14Þ

Consider now the case that Nh ¼ Nv. It is then easy to find
some solutions for W, given that the rhs of Eq. (13) is
symmetric and positive:
(1) The rhs of Eq. (13) can be decomposed in a

Cholesky decomposition, K ¼ LLT , where L is a
lower triangular matrix with real and positive diago-
nal entries. The solution is then simply W ¼ L.
The triangular structure means that hidden node a
connects to visible nodes with a ≤ i only.

(2) The rhs of Eq. (13) can be diagonalized via an
orthogonal transformation,

K ¼ ODOT ¼ O
ffiffiffiffi
D

p
OTO

ffiffiffiffi
D

p
OT; ð15Þ

yielding the symmetric solution

W ¼ WT ¼ O
ffiffiffiffi
D

p
OT: ð16Þ

Hence we have found two explicit solutions. Additional
solutions are found from either of the above by a right
multiplication of W by an orthogonal transformation,
rotating the hidden nodes,

W → WOT
R; h → ORh; OT

ROR ¼ 11; ð17Þ
since OR drops out of the combination WWT .
We conclude therefore that an infinite number of

solutions is present. These can be constrained by imposing
further conditions on W, as in the first two cases above.
We will discuss this degeneracy further below.
Next, we may consider the case where Nh < Nv. From

Eq. (13) it is clear that the accuracy of reproducing the
target distribution depends on the ranks of the matrices
involved. We find

rankðWWTÞ ≤ min ðNv; NhÞ; rankðKÞ ≤ Nv: ð18Þ
Only when the ranks are equal will the target distribution be
reproducible; this is particularly relevant when choosing
Nh ≪ Nv. Below we will consider in detail what happens
of either of the two conditions found so far, i.e., Eq. (14)
and rankðWWTÞ ¼ rankðKÞ is not valid.

III. TRAINING RBM PARAMETERS

The exact solutions above are only useful when the target
model is a known Gaussian model and Nh ¼ Nv. In
general, the target distribution is not known and one has
to learn from a finite dataset. The training of the model is
then done by maximizing the log-likelihood function
LðθjϕÞ. The learnable parameters are collectively indicated
as θ ¼ fW; η; μ2g. Note that we will consider the case of
unbroken symmetry and hence the bias is taken to be zero
throughout, ηa ¼ 0. We are hence concerned with deter-
mining the weight matrix W and the mass parameter μ2.
The model distribution is given by Eq. (8), with J ¼ 0.

Given data consisting of Nconf configurations, labeled as
ϕðdÞ; d ¼ 1;…; Nconf , the log-likelihood function of the
model is written as

LðϕjθÞ ¼ 1

Nconf

XNconf

d¼1

logpmodelðϕðdÞ; θÞ;

¼ −
1

Nconf

XNconf

d¼1

�
1

2
ϕðdÞTKϕðdÞ þ lnZ

�
: ð19Þ

This log-likelihood function can be optimized with gradient
ascent algorithms, where the gradient is taken with respect
to the coupling matrix W and the mass parameter μ2.
Explicitly,

∂L
∂Wia

¼ 1

Nconf

X
d

X
j

σ2hϕ
ðdÞ
i Wajϕ

ðdÞ
j −

X
j

σ2hhϕiWajϕjimodel;

¼σ2h
X
j

�
1

Nconf

X
d

ϕðdÞ
i Wajϕ

ðdÞ
j −hϕiWajϕjimodel

�

¼σ2h
X
j

ðCtarget
ij −Cmodel

ij ÞWja; ð20Þ
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where the two-point correlation matrices for the data (i.e.,
the target) and the model are given, respectively, by

Ctarget
ij ¼ 1

Nconf

XNconf

d¼1

ϕðdÞ
i ϕðdÞ

j ¼ hϕiϕjitarget ≡ K−1
ϕij;

Cmodel
ij ¼ hϕiϕjimodel ¼ K−1

ij : ð21Þ

Similarly, for μ2 one finds

∂L
∂μ2

¼ −
1

2

X
i

ðhϕ2
i itarget − hϕ2

i imodelÞ: ð22Þ

When all the data is available, one is able to evaluate the
two-point function by summing over configurations before
training the RBM. This would yield the target two-point
function, computed via the data. In the numerical imple-
mentations below, we will analyze the properties of this
two-point function further, since the matrix sizes are such
that this is feasible. Alternatively, we may consider the case
where the target distribution ptargetðϕÞ is known and the
correlation matrix Ctarget

ij of the target theory is obtainable.
In that case, there is no need to use data but one can use the
correlation function directly. It should be noted that in
general the correlation matrix Ctarget

ij is not directly acces-
sible due to computational complexity, even if the analyti-
cal form of the target distribution is known.
If the target distribution is known, then the same

equations can also be derived by extremizing the
Kullback-Leibler (KL) divergence,

KLðptargetjjpmodelÞ ¼
Z

DϕptargetðϕÞ log
ptargetðϕÞ

pmodelðϕ; θÞ
;

ð23Þ

keeping in mind that only the model distribution depends
on the learnable parameters θ. With the distribution given
by Eq. (8) and the θ dependence contained in the kernel K
only (recall that J ¼ 0), extremizing with respect to θ
then yields

∂

∂θ
KLðptargetjjpmodelÞ

¼ 1

2

�
ϕT ∂K

∂θ
ϕ

�
target

−
1

2

�
ϕT ∂K

∂θ
ϕ

�
model

; ð24Þ

which yields the same equations for W and μ2 as above,
but with the opposite sign, as the KL divergence is
minimized.
In actual applications, the gradients are used in a

discretized update of the form

θnþ1 ¼ θn þ ηn
∂L
∂θ

; ð25Þ

where ηn is the, possibly time-dependent, learning rate.
Details of the commonly used persistent contrastive diver-
gence algorithm and time-dependent learning rate can be
found in Appendix A.

IV. SEMIANALYTICAL SOLUTION

A. Singular value decomposition

Before solving the RBM numerically, we aim to gain
analytical insight in the update equations using a singular
decomposition for the weight matrix in the continuous
time limit [13].
The update equations for the weight matrix W and the

mass term μ2, in the continuous time limit, read [see
Eqs. (20)–(22)],

Ẇ ¼ σ2h½K−1
ϕ − K−1�W; ð26Þ

μ̇2 ¼ −
1

2
trK−1

ϕ þ 1

2
trK−1; ð27Þ

with the two-point functions (or propagators)

Kϕ
−1
ij ¼ hϕiϕjitarget; trK−1

ϕ ¼
XNv

i¼1

hϕiϕiitarget; ð28Þ

K−1
ij ¼ hϕiϕjimodel; trK−1 ¼

XNv

i¼1

hϕiϕiimodel: ð29Þ

Recall that hϕii ¼ 0. The dot denotes the time derivative.
We remind the reader that both K and Kϕ are symmetric
Nv × Nv matrices and that the weight matrix W is of
size Nv × Nh. We assume Nh ≤ Nv. The RBM (model)
kernel is

K ¼ μ211 − σ2hWWT; ð30Þ

where σ2h is the variance of the hidden nodes.
We use the singular value decomposition to write W as

W¼UΞVT; UUT ¼11Nv×Nv
; VVT ¼11Nh×Nh

; ð31Þ

where U is an orthogonal Nv × Nv matrix, V is an
orthogonal Nh × Nh matrix, and Ξ is the rectangular
Nv × Nh matrix with the (ordered) singular values ξa
(a ¼ 1;…; Nh) on the diagonal. The RBM kernel then
takes the form

K ¼ μ211 − σ2hUΞΞTUT;

¼ U½μ211 − σ2hΞΞT �UT ≡UDKUT; ð32Þ
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with the diagonal matrix

DK ¼ diagðμ2 − σ2hξ
2
1;μ

2 − σ2hξ
2
2;…;μ2 − σ2hξ

2
Nh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nh

;μ2;…;μ2|fflfflfflfflffl{zfflfflfflfflffl}
Nv−Nh

Þ:

ð33Þ

Note that the existence of the model requires that μ2 >
σ2hξ

2
1, with ξ1 the largest singular value ofW. Equation (33)

demonstrates that only the first Nh eigenvalues can poten-
tially be learnt, with the remaining Nv − Nh eigenvalues
frozen at the higher scale μ2.
The symmetric target kernel Kϕ and the corresponding

two-point functionK−1
ϕ can be diagonalized via an orthogo-

nal transformation as

Kϕ¼OϕDϕOT
ϕ; K−1

ϕ ¼OϕD−1
ϕ OT

ϕ; OϕOT
ϕ¼11Nv×Nv

;

ð34Þ

where the eigenvalues of Kϕ are assumed to be posi-
tive again.
The rhs of Eq. (26) can now be written as

σ2h½K−1
ϕ − K−1�W ¼ Uσ2h½UTOϕD−1

ϕ OT
ϕU −D−1

K �ΞVT:

ð35Þ

The term within the brackets will be encountered frequently
below and hence we honor it with a new symbol,

Λ≡ UTOϕD−1
ϕ OT

ϕU −D−1
K ¼ ΛT: ð36Þ

The evolution equation for W can then be compactly
written as

Ẇ ¼ σ2hUΛΞVT; ẆT ¼ σ2hVΞTΛUT: ð37Þ

We note that Λ drives the evolution in the learning process:
it vanishes when the basis on the visible layer is aligned
with the basis for the data ðU → OϕÞ and the eigenvalues,
or widths of the Gaussians, are correctly determined
(DK → Dϕ). One may note that Λ does not depend on
V, which acts on the hidden nodes, resulting in the
degeneracy discussed in Sec. II: any rotation of the hidden
nodes leaves the solution on the visible layer invariant and
the learning stops when Λ → 0, irrespective of what V is.

B. Learning dynamics

Having defined the needed quantities, we are now in a
position to determine the learning dynamics of W in detail,
i.e., the evolution of U, V, and the singular values Ξ.
We consider separately

WWT ¼ UΞΞTUT; WTW ¼ VΞTΞVT: ð38Þ

Taking the derivative of the first product gives

d
dt
ðWWTÞ¼ U̇ΞΞTUTþUΞΞTU̇TþU

d
dt
ðΞΞTÞUT: ð39Þ

On the other hand, Eq. (37) gives

d
dt

WWT ¼ ẆWT þWẆT;

¼ σ2hUΛΞΞTUT þ σ2hUΞΞTΛUT: ð40Þ

Conjugating both equations with UT and U then yields

UTU̇ΞΞT þ ΞΞTU̇TU þ d
dt

ðΞΞTÞ ¼ σ2hΛΞΞT þ σ2hΞΞTΛ:

ð41Þ

Since UTU̇ ¼ −U̇TU is skew symmetric (due to U being
orthogonal) and ΞΞT is diagonal, it is easy to see that

UTU̇ΞΞT þ ΞΞTU̇TU ¼ UTU̇ΞΞT − ΞΞTUTU̇ ð42Þ

is a symmetric matrix with zeroes on the diagonal.
Equation (41) then decomposes into one equation for the
diagonal elements, determining the singular values, and
one for the off-diagonal ones, determining U, namely

d
dt

ðΞΞTÞ ¼ σ2hΛdΞΞT þ σ2hΞΞTΛd ¼ 2σ2hΛdΞΞT; ð43Þ

UTU̇ΞΞT−ΞΞTUTU̇¼σ2hðΛ−ΛdÞΞΞTþσ2hΞΞTðΛ−ΛdÞ;
ð44Þ

where

Λd ¼ diagðΛÞ: ð45Þ

Repeating the same analysis for WTW gives nearly iden-
tical equations in the Nh × Nh subspace, namely

d
dt

ðΞTΞÞ ¼ 2σ2hΞTΛdΞ; ð46Þ

VTV̇ΞTΞ − ΞTΞVTV̇ ¼ 2σ2hΞTðΛ − ΛdÞΞ: ð47Þ

Note that

ΞΞT ¼ diagðξ21; ξ22;…; ξ2Nh
; 0;…; 0Þ; ð48Þ

ΞTΞ ¼ diagðξ21; ξ22;…; ξ2Nh
Þ: ð49Þ

The equations for ΞΞT and ΞTΞ yield identical equations
for the Nh singular values.
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The equation for μ2 finally reads, in this notation,

μ̇2 ¼ −
1

2
trΛ ¼ −

1

2
trΛd: ð50Þ

Keeping μ2 fixed, it is easy to see that σ2h can be absorbed in
the time parameter (t̃ ¼ tσ2h) and the singular values, see
Eq. (33); hence it does not add any freedom to the model.
When μ2 is learnt as well, its time evolution will depend
on σ2h, after rescaling time as t → t̃.
As noted, V does not appear in the driving termΛ. Hence

V simply follows the evolution, until Λ − Λd → 0, see
Eq. (46). For square matrices, Nh ¼ Nv, this redundancy
can be removed by choosing W to be symmetric (V ¼ U)
or by enforcing W to be of the lower (or upper) triangular
form (Cholesky decomposition of WWT), see Sec. II.

C. Simple examples

1. Nv =Nh = 2

The simple example of two visible and two hidden
nodes can be worked out in detail. We will note a number
of characteristics which remain relevant also for larger
systems.
First we note that U, V, and Oϕ are all 2 × 2 rotation

matrices; we denote the angles as θU, θV , and θ0,
respectively. Then one notes that

UTU̇ ¼ θ̇U

�
0 −1
1 0

�
; ð51Þ

and the same for VTV̇, with θ̇V . Finally, the combination
OT

ϕU is a rotation over an angle Δθ ¼ θU − θ0.
We denote the two eigenvalues of the target kernel Kϕ

with κ1;2 and of the RBM kernel K with λ1;2 ¼ μ2 − σ2hξ
2
1;2.

This yields the driving term,

Λ¼

0
B@

1
κ1
cos2Δθþ 1

κ2
sin2Δθ− 1

λ1

�
1
κ2
− 1

κ1

	
cosΔθsinΔθ�

1
κ2
− 1

κ1

	
cosΔθsinΔθ 1

κ2
cos2Δθþ 1

κ1
sin2Δθ− 1

λ2

1
CA:

ð52Þ

Putting everything together then gives the following
equations:

ξ̇1 ¼ σ2h

�
1

κ1
cos2Δθ þ 1

κ2
sin2Δθ −

1

μ2 − σ2hξ
2
1

�
ξ1; ð53Þ

ξ̇2 ¼ σ2h

�
1

κ2
cos2Δθ þ 1

κ1
sin2Δθ −

1

μ2 − σ2hξ
2
2

�
ξ2; ð54Þ

and

Δ̇θ ¼ σ2h
ξ21 þ ξ22
ξ21 − ξ22

ρ; ð55Þ

θ̇V ¼ 2σ2h
ξ1ξ2

ξ21 − ξ22
ρ; ð56Þ

μ̇2 ¼ 1

2

�
1

μ2 − σ2hξ
2
1

þ 1

μ2 − σ2hξ
2
2

−
1

κ1
−

1

κ2

�
; ð57Þ

where

ρ ¼
�
1

κ2
−

1

κ1

�
cosΔθ sinΔθ: ð58Þ

These equations have several fixed points. The difference
of angles is given by Δθ ¼ 0; π=2. Which of these is
selected depends on which eigenvalue κ1;2 is smaller.
Note that the SVD decomposition orders the singular
values, ξ1 > ξ2. The equations have fixed points at σ2hξ

2
1;2 ¼

μ2 − κ1;2 and at ξ21;2 ¼ 0. We consider first the case of
fixed μ2. The actual realization depends on the ordering of
κ1;2 and μ2. We find

μ2 > κ2 > κ1∶ Δθ ¼ 0;

μ2 − σ2hξ
2
1 ¼ κ1; μ2 − σ2hξ

2
2 ¼ κ2; ð59Þ

μ2 > κ1 > κ2∶ Δθ ¼ π=2;

μ2 − σ2hξ
2
1 ¼ κ2; μ2 − σ2hξ

2
2 ¼ κ1: ð60Þ

(The fixed points at ξ21;2 ¼ 0 are unstable.) This is illus-
trated in Fig. 2 (top row). In this case, both eigenvalues are
learnt correctly. If μ2 is smaller than an eigenvalue, then it
cannot be reproduced and is replaced by μ2,

κ2>μ2> κ1∶Δθ¼0; μ2−σ2hξ
2
1¼ κ1; ξ2¼0; ð61Þ

κ1>μ2> κ2∶Δθ¼π=2; μ2−σ2hξ
2
1¼ κ2; ξ2¼0; ð62Þ

see Fig. 2 (middle row). In this case, only the smallest
eigenvalue is learnt, while the other one evolves to μ2 [see
also Eq. (32)].
In case μ2 is smaller than all eigenvalues, μ2 < κ1;2, the

eigenmodes cannot be reproduced and are replaced by μ2,
with ξ1 ¼ ξ2 ¼ 0. Finally, we remark again that θV simply
evolves until ρ → 0, but it does not influence the learning of
the other parameters.
The actual eigenvalues may not be known, and one may

choose μ2 to be too low, as in the second example above.
This can be evaded by learning μ2 itself, using Eq. (57). The
system is now overparametrized, with ξ1;2 and μ2 being
learnt to reproduce κ1;2. In this case one finds that the
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eigenvalues are reproduced, irrespective of the initial value
of μ2, see Fig. 2 (bottom row). Note that one of the singular
values decreases since μ2 itself increases towards the largest
eigenvalue.

2. Approach to the fixed point

To understand the evolution towards the fixed point,
a simple linearization suffices. We consider the case of
fixed μ2. Taking concretely case (59) above, we expand
about the fixed point and write

σ2hξ
2
i ¼ μ2 − κi þ xi; ðΔθÞ2 ¼ 0þ y: ð63Þ

Expanding Eqs. (53)–(55) in xi and y and absorbing σ2h in
the time parameter (denoting the derivative with respect to
t̃ ¼ σ2ht with a prime) then yields the linearized equations

x01 ¼ −2ðμ2 − κ1Þ


x1
κ21

þ
�
1

κ1
−

1

κ2

�
y
�
; ð64Þ

x02 ¼ −2ðμ2 − κ2Þ


x2
κ22

þ
�
1

κ2
−

1

κ1

�
y

�
; ð65Þ

y0 ¼ −2
2μ2 − κ1 − κ2

κ1κ2
y: ð66Þ

We hence find exponential convergence, controlled by the
relaxation rates

γi ¼
μ2 − κi
κ2i

; γΔθ ¼
κ1
κ2

γ1 þ
κ2
κ1

γ2: ð67Þ

The angleΔθðt̃Þ relaxeswith γΔθ, whereas the singular values
ξiðt̃Þ decay with minðγi; γΔθÞ. Interestingly, the relaxation
rates are set by the difference between the RBM mass
parameter μ2 and the eigenvalues κi in the spectrum.
Irrespective of the actual values of μ2 and the eigenvalues
κi, the mode corresponding to the higher eigenvalue relaxes
the slowest. We hence conclude the following:
(1) infrared modes, i.e., those corresponding to the

smallest eigenvalues will converge faster, this can
indeed be observed in Fig. 2 (top row);

(2) increasing the value of μ2 will lead to more rapid
convergence for all modes. This will be explored
below in more realistic cases.

FIG. 2. Top row: learning evolution for the case μ2 > κ2 > κ1, specifically κ1 ¼ 0.2, κ2 ¼ 0.4, μ2 ¼ 1, of the singular values (left),
eigenvalues (middle), and angles (right). Middle row: as above, for the case κ1 > μ2 > κ2, specifically κ1 ¼ 0.7, κ2 ¼ 0.2, μ2 ¼ 0.4.
Bottom row: as above, including a time dependent μ2 (right), for the case κ2 > μ2 > κ1, specifically κ1 ¼ 0.2, κ2 ¼ 0.7, μ2ð0Þ ¼ 0.4. In
all cases, σ2h ¼ 1.
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3. Nv = 2, Nh = 1

The case of one hidden node serves to demonstrate
what happens when Nh < Nv. It is particularly simple as V
is replaced by v ¼ 1 and we only need to consider one
angle and one singular value, determined by the following
equations:

ξ̇1 ¼ σ2h

�
1

κ1
cos2Δθ þ 1

κ2
sin2Δθ −

1

μ2 − σ2hξ
2
1

�
ξ1 ð68Þ

and

Δ̇θ ¼ σ2hρ; ð69Þ

μ̇2 ¼ 1

2

�
1

μ2 − σ2hξ
2
1

þ 1

μ2
−

1

κ1
−

1

κ2

�
; ð70Þ

where

ρ ¼ ρ̃ cosΔθ sinΔθ; ρ̃ ¼
�
1

κ2
−

1

κ1

�
: ð71Þ

The equation for the angle is now decoupled and can be
solved, as

tan ½ΔθðtÞ� ¼ tan ½Δθð0Þ�eσ2hρ̃t; ð72Þ

such that

κ2 > κ1 ⇔ ρ̃ < 0 ⇔ lim
t→∞

ΔθðtÞ ¼ 0; ð73Þ

κ2 < κ1 ⇔ ρ̃ > 0 ⇔ lim
t→∞

ΔθðtÞ ¼ π

2
: ð74Þ

Using this in Eq. (68) confirms that the smallest eigenvalue
of Kϕ is reproduced (for constant μ2). If μ2 is learnt as well,
then Eq. (70) ensures it becomes equal to the largest of the
two eigenvalues.
To summarize, we note the following observations: if

either the number of hidden nodes or the mass parameter μ2

is chosen too small, the infrared part of the spectrum
(lowest eigenvalue) is reproduced, while the ultraviolet part
(highest eigenvalue) evolves to μ2; making μ2 a learnable
parameter yields one more degree of freedom to correctly
reproduce the next eigenvalue; infrared modes are learnt
quicker than ultraviolet modes. These observations for the
simple case considered here remain relevant for more
interesting systems, as we will demonstrate now.

V. LEARNING GAUSSIAN DISTRIBUTIONS

We continue with the case for which the target distri-
bution is known and Gaussian, namely free scalar fields
discretized on a lattice in one and two dimensions. The
continuum action reads, in n Euclidean dimensions,

SðϕÞ ¼
Z

dnx
1

2
ð∂μϕ∂μϕþm2ϕ2Þ: ð75Þ

The simplest lattice-discretized equivalent is, on a one-
dimensional lattice with Nv nodes and with periodic
boundary conditions,

SðϕÞ ¼ 1

2

XNv

i;j¼1

ϕiK
ϕ
ijϕj; ð76Þ

where

Kϕ
ij ¼ ð2þm2Þδij − δi;jþ1 − δi;j−1: ð77Þ

We use “lattice units,” a ¼ 1, throughout. The spectrum
of the target kernel Kϕ is easy to compute analytically
and reads

κk ¼ m2 þ p2
lat;k ¼ m2 þ 2 − 2 cos

�
2πk
Nv

�
; ð78Þ

with −Nv=2 < k ≤ Nv=2. Each eigenvalue is doubly
degenerate, except the minimum (k ¼ 0; κmin ¼ m2) and
the maximal (k ¼ Nv=2; κmax ¼ m2 þ 4) ones. Referring
back to Sec. II, the exact spectrum can only be learnt when
Nh ¼ Nv and when the RBM mass parameter

μ2 > κmax ¼ m2 þ 4: ð79Þ

Since the target theory is known, we can train the model
directly from the correlation matrix of the target theory
without the need for pregenerated training data. Then each
term of the gradient is estimated by persistent contrastive
divergence (PCD) to train the RBM, see Appendix A
for details. The scalar field mass parameter is chosen as
m2 ¼ 4 and the variance on the hidden layer equals σ2h ¼ 1

throughout.

A. Initialization with an exact solution

We start with the case of a constant RBMmass parameter
μ2 ¼ 9 > κmax ¼ 8, with Nv ¼ Nh ¼ 10. To test the
numerical code, we may initialize the weight matrix W
according to one of the exact solutions found in Sec. II: the
Cholesky (lower triangular) solution and the symmetric
solution. The results are shown in Figs. 3 and 4. Here and
throughout we denote the exact eigenvalues of the target
distribution with κα (α ¼ 1;…; Nv) and the eigenvalues of
the model kernel K with λα ¼ μ2 − σ2hξ

2
α. We will refer to

these as the RBM eigenvalues. The latter depends on the
training stage, indicated by epochs, see Appendix A. As
can be seen in Figs. 3 and 4 (left), the RBM eigenvalues are
correctly initialized for both choices and fluctuate around
the correct values during training.
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To indicate the size of the fluctuations, we do the
following. In the Cholesky case, we consider separately
the L2 norm of the lower triangular elements, of the upper
triangular elements (which are initialized at zero) and of
the elements on the diagonal. We then standard normalize
these to compare the amplitudes of the fluctuations, see
Fig. 3 (right). We observe that the sum of each part
fluctuates around the average value during training, whose
size is set by the initial value, demonstrating the stability
of the PCD updates.
For the symmetric initialization, we show the L2 norms

of the symmetric and asymmetric parts, Wsym ¼
ðW þWTÞ=2, Wasym ¼ ðW −WTÞ=2. Since the initial
coupling matrix W is symmetric, we expect the norm of
the asymmetric part to remain significantly smaller during
training. This can indeed be seen in Fig. 4 (right), where we
show the evolution after standard normalization. The norm
of the symmetric part of the coupling matrix is six orders
of magnitude larger than that of the asymmetric part.
As with the Cholesky initialization, we observe that the
overall structure of the coupling matrix is approximately
preserved. Note there is no reason for it to be exactly
preserved, as this is neither imposed nor required.

B. Initialization with a random coupling matrix

In practical applications, the coupling matrix W is not
initialized at an exact solution, but with random entries,
drawn e.g. from a Gaussian distribution. In Fig. 5 we show
the results obtained with elements of W sampled from a
normal distribution N ð0; 0.1Þ. Other parameters are as
above within particular Nh ¼ Nv and μ2 > κmax; hence
there are no obstructions to learning the target distribution
exactly. This can indeed be seen in Fig. 5, where both the
eigenvalues (left) and the action density (right) are seen
to match. For the latter, configurations are generated using
the trained RBM; the same number of Monte Carlo
(Metropolis) generated configurations are shown, using
binning to remove autocorrelations. The analytical result
follows from the equipartition. It is noted that possible
instabilities, due to λα turning negative either initially or
during the learning stage, are not encountered with this
initialization. If they are encountered, then they can be
avoided by tuning the width of the initial coupling matrix
and learning rate.
Since the elements ofW are initially relatively small, the

corresponding singular values ξα are small as well and the
RBM eigenvalues λα ¼ μ2 − σ2hξ

2
α are close to μ2 initially.

FIG. 4. Left: as in Fig. 3, for the symmetric initialization. Right: standardized L2 norm of symmetric and asymmetric parts of the
coupling matrix. The latter remains small during updates.

FIG. 3. Cholesky initialization. Left: evolution of RBM eigenvalues λα during training. Note that adjacent eigenvalues are colored
alternatively. Exact eigenvalues κα are shown with horizontal dashed lines and the RBM mass parameter μ2 with the horizontal full line.
After the Cholesky initialization, the RBM eigenvalues fluctuate around the correct values. Right: the L2 norm of each part of the
coupling matrix, diagonal (D), upper (U) triangular, and lower (L) triangular. Values are standardized, with x̄ (σ) the mean value
(standard deviation) along the training interval. Each part fluctuates around its average value.
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They quickly evolve to the target values κα. The order in
which the modes are learnt (or thermalized) can be under-
stood easily. Referring back to Sec. IV, we consider
Eq. (43) for the singular values and Eq. (36) for the driving
term. Assuming we are on the correct eigenbasis, the latter
reduces to

Λ ¼ Λd ¼ D−1
ϕ −D−1

K ¼ diagð1=κα − 1=λαÞ; ð80Þ

where λα ¼ μ2 − σ2hξ
2
α. Equation (43) then becomes [13]

d
dt

ξ2α ¼ 2σ2h

�
1

κα
−

1

μ2 − σ2hξ
2
α

�
ξ2α: ð81Þ

Note that this equation was encountered before (in a
general basis) for Nv ¼ Nh ¼ 2, see Eqs. (53), (54).
During the initial stages, the term within the brackets is
negative and largest for the smallest eigenvalues. Hence the
corresponding singular values evolve quickest. At late
times, one may linearize around the fixed point. In Sec. IV
we demonstrated for Nv ¼ 2 nodes that the convergence in
the linearized regime is exponentially fast and that the rate
of convergence is set by γα ¼ ðμ2 − καÞ=κ2α. Hence the most
infrared modes equilibrate fastest and the ultraviolet modes
slowest. These aspects are demonstrated in Fig. 6, where
we have shown the evolution of both the singular values
(left) and the eigenvalues (right) during the initial stages of

the training (the largest singular values correspond to the
smallest eigenvalues). We note the similarity with the case
of Nv ¼ 2 modes in Sec. IV, see in particular Fig. 2
(top row).
So far we have kept the RBM mass parameter μ2 fixed.

However, it can also be treated as a learnable parameter
using Eq. (22). This is particularly useful if details of the
target spectrum are not known. It provides then an addi-
tional degree of freedom. In Fig. 7, the initial RBM
mass parameter is initialized below κmax. It subsequently
increases to match the largest eigenvalue, see Fig. 7 (left).
Since the system is overparametrized, one of the singular
values remains at the initial value, see Fig. 7 (right). Note
the different timescale for equilibration compared to the
case with a constant μ2, as it takes time for μ2 to find the
correct value.
Up to now, we considered a scalar field in one dimension

only. The generalization to higher dimensions is interesting
since the RBM does not know about the dimensionality
a priori, with the Nv visible nodes only connecting to the
hidden nodes. We consider here two dimensions, using an
Nx × Ny lattice. The eigenvalues of the target kernel are

κk ¼ m2 þ p2
lat;k;

¼ m2 þ 4 − 2 cos

�
2πkx
Nx

�
− 2 cos

�
2πky
Ny

�
; ð82Þ

FIG. 5. Left: evolution of RBM eigenvalues λα during training, starting from a random coupling matrix W. Presentation as in Fig. 3
(left). Right: histogram density of action density from Monte Carlo generated and RBM generated samples.

FIG. 6. Convergence of the singular values ξα (left) and the eigenvalues λα (right) for the system of Fig. 5. Infrared modes are learnt the
quickest.
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with −Nx;y=2 < kx;y ≤ Nx;y=2. In this case, there is a larger
degeneracy of eigenvalues. The RBM has Nv ¼ Nx × Ny

visible nodes. The dimensionality has to be learnt and
encoded in the coupling matrix W. The (target) kernel
and two-point functions are ðNx × NyÞ × ðNx × NyÞ-
dimensional tensors. This two-dimensional structure can
be flattened in a one-dimensional representation, where the
kinetic term is decomposed into a tensor product of two
one-dimensional Laplacian operators,

Kϕ;2d ¼ m211þ Δ2d;

¼ m211Nx×Nx
⊗ 11Ny×Ny

þ Δ1d ⊗ 11Ny×Ny

þ 11Nx×Nx
⊗ Δ1d; ð83Þ

where in the last expression⊗ is the Kronecker product and
the sizes of the identity matrices are given explicitly.
Figure 8 shows an example of a flattened scalar field

kernel for the two-dimensional case with Nx ¼ Ny ¼ 4.
Importantly, the spectrum of the flattened kernel and
the original kernel are identical, since the boundary con-
ditions are encoded correctly. The tensor product decom-
position (83) allows one to see this explicitly.
In Fig. 9 (left), we show the evolution of the

RBM eigenvalues. The RBM mass parameter is
μ2 ¼ 16 > κmax ¼ 12. There should be four degenerate
eigenvalues at 6 and 10, and six degenerate ones at 8. Yet it
appears the eigenvalues only lie within a band close to the
expected value. This is due to the fact that to obtain these
results we have used a fixed learning rate (time step), which
prevents the system from reaching high precision. This can
be remedied by introducing an epoch dependent learning
rate. This is explored in Appendix A. We multiply the
learning rate by a factor close to one, r ¼ 0.99, after a given
number of epochs, Nrate

epoch ¼ 128. The virtue of having a
diminished learning rate in the later stages is that it allows

FIG. 7. Left: evolution of the RBM eigenvalues and mass parameter μ2, with the latter initialized below κmax. Right: evolution of the
singular values. Since the system is overparametrized, one of the singular values remains at the initial value.

FIG. 8. Flattened kernel for a two-dimensional scalar field
theory on a lattice with Nx × Ny ¼ 4 × 4 sites and m2 ¼ 4. Each
site has four nearest neighbors.

FIG. 9. Evolution of the eigenvalues in the two-dimensional case during training, with constant μ2 ¼ 16 and Nv ¼ Nh ¼ 16, using a
fixed (left) and a diminishing (right) learning rate.
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the model to be finely trained, with less statistical fluctua-
tions. The result is shown in Fig. 9 (right), where we indeed
observe precise agreement with the target spectrum.

C. Ultraviolet regularization
by the RBM mass parameter

Up to now, we have considered the ideal “architecture,”
namely Nh ¼ Nv and μ2 > κmax, for which Gaussian
distributions can be learnt exactly, as we have demon-
strated. In practice, one often chooses Nh < Nv and the
maximum eigenvalue may not be known. Here we deter-
mine what this implies.
We start with the case where Nh ¼ Nv, but with μ2 fixed

and less than κmax. We refer to Eq. (81) for the evolution of
the singular values in the eigenbasis. Take μ2 < κα. In this
case, the term inside the brackets is always negative and the
only solution is ξα ¼ 0. The corresponding eigenvalue is
then λα ¼ μ2. When μ2 > κα, the solution is given by the
fixed point, σ2hξ

2
α ¼ μ2 − κα, and λα ¼ μ2 − σ2hξ

2
α. We hence

conclude that the infrared part of the spectrum, with
κα < μ2, can be learnt, whereas the ultraviolet part, with
κα > μ2, cannot be learnt. Instead, the RBM eigenvalues
take the value of the cutoff, μ2 [14].

This is demonstrated in Fig. 10 for a one-dimensional
scalar field theory with Nv ¼ Nh ¼ 10 nodes. As the
condition for exact training is violated, the RBM model
can no longer faithfully reproduce the target data and
distribution. The impact of this depends on the importance
of the ultraviolet modes, as we will see below for the
MNIST dataset.

D. Ultraviolet regularization by the number
of hidden nodes

Next, we consider the case with Nh < Nv. This is
straightforward, as there are only Nh singular values,
leading to the RBM eigenvalues

λα ¼
�
μ2 − σ2hξ

2
α 1 ≤ α ≤ Nh

μ2 Nh < α ≤ Nv

; ð84Þ

see e.g. Eq. (33). Again we note that the infrared part of the
spectrum can be reproduced, whereas the ultraviolet part is
fixed at μ2, irrespective of the actual value of the target
eigenvalue.
This is shown in Fig. 11 for the one-dimensional case with

Nv ¼ 10 and Nh ¼ 9, 8, 7, 6. Note that all eigenvalues,

FIG. 10. Regularization by RBM mass parameter μ2: evolution of the eigenvalues in the one-dimensional scalar field theory. Only the
infrared part of the spectrum is reproduced.
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except the minimal and maximal ones, are doubly degen-
erate. Hence in the case of Nh ¼ 8 and 6, one of the
degenerate eigenvalues remains and one is removed.
Finally, in Fig. 12 we give two examples in the two-

dimensional scalar theory, using μ2 ¼ 9 < κmax on the left
and Nh ¼ 8 < Nv ¼ 16 on the right.

VI. MNIST DATASET

It is important to ask whether the considerations above
are also relevant for realistic datasets commonly used in
ML. We consider the MNIST dataset [15], consisting of
60,000 28 × 28 images of digits. Hence Nv ¼ 784, sub-
stantially larger than what we have considered so far.

FIG. 11. As above, but with regularization by the number of hidden nodes Nh.

FIG. 12. Regularization by the RBM mass parameter μ2 ¼ 9 (left) and by the number of hidden modes Nh ¼ 8 (right) in the two-
dimensional scalar field theory with Nx × Ny ¼ 4 × 4.
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Unlike in the case of scalar fields, the probability
distribution function is not known. However, we may still
obtain the correlation matrix hϕiϕji by summing over the
60,000 realizations. The MNIST (target) kernel is then
given by its inverse,

KMNIST ¼ hϕiϕji−1MNIST: ð85Þ

The eigenvalues of the correlation matrix are the inverse
of the eigenvalues of the kernels discussed so far and we
hence denote them as 1=κα. The 784 eigenvalues are
shown in Fig. 13. Many eigenvalues are close to zero. In
the language of the previous sections, these correspond
to the ultraviolet part of the spectrum of the quadratic
kernel and hence the MNIST dataset can be said to be
ultraviolet divergent. The values of the ten largest
eigenvalues of the correlation matrix are listed explicitly
on the right. These correspond to the infrared part of the
spectrum of the quadratic kernel. Since these are finite,

the MNIST dataset is infrared safe. This terminology
reflects the ordering of the eigenvalues κα encoding
the quadratic correlations in the MNIST data, from
small (infrared) to large (ultraviolet). As in the two-
dimensional scalar case, the eigenvalues do not depend
on the flattening of the indices.
We will now train the scalar field RBM on the MNIST

dataset, starting with Nh ¼ Nv and a fixed RBM mass
parameter μ2 ¼ 100. The result is shown in Fig. 14 (left).
As before, the horizontal dashed black lines are the target
eigenvalues, obtained from the MNIST correlation matrix.
The blue lines are the RBM eigenvalues. The initial values
are close to μ2 and hence they become smaller during the
learning stage. As above the infrared part of the spectrum
is learnt quickest. This is further illustrated in Fig. 14
(right), where the evolution during the final 60,000
epochs are shown (out of one million). The smallest
eigenvalues agree with the target values but the larger
ones have essentially stopped learning before reaching
the correct value, due to the reduced learning rate. We
note that the RBM mass parameter μ2 ¼ 100 regulates the
number of modes here. In fact, there are 289 modes below
the cutoff set by μ2. Hence the number of hidden modes,
Nh ¼ 784, can be reduced without a loss of quality.
We come back to this below.
Without knowledge of the target spectrum, the (constant)

value for μ2 may be chosen to be on the small side; as is
obvious in Fig. 14 (left), there are many eigenvalues above
μ2 ¼ 100. This can be remedied by promoting μ2 to a
learnable parameter. This is demonstrated in Fig. 15, where
μ2 increases such that the target spectrum can be better
learnt. The learning dynamics employs a diminishing
learning rate, see Appendix A, which slows down the
increase of μ2 but also hinders the learning of the spectrum
beyond the infrared modes. As stated, larger eigenvalues

FIG. 13. Eigenvalues of the correlation matrix hϕiϕji of the
MNIST dataset. Note that many eigenvalues are close to zero.
The values of the ten largest eigenvalues are indicated.

FIG. 14. Left: evolution of the eigenvalues for the MNIST dataset with fixed RBM mass parameter μ2 ¼ 100, and Nv ¼ Nh ¼ 784.
Right: evolution during the last few training epochs. The lowest eigenvalues have already matched their target values but the higher
modes are still being trained, albeit at a very small learning rate.
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give smaller contributions to the update equations, leading
a slower learning.
As in the scalar field case, we can regularize the MNIST

data by choosingNh < Nv. In this case, the number ofmodes
that can be learnt depends on the number of modes in the
spectrum with an eigenvalue less than μ2, and the number of
hidden nodes. Figure 16 shows the quality of regenerated
images after one passes forward and backward through the
trained RBM. Using the fixed RBM mass parameter μ2 ¼
100 limits the maximal number of modes to be included to
Nmax

modes ¼ 289, the number of modes with an eigenvalue less
than μ2. We observe that one needs at least around 64 hidden
nodes to have an acceptable generation,which is considerably
smaller than the maximal possible number. This illustrates
that the ultraviolet part of the spectrum can be ignored.
To give a more quantitative measure of the quality of

regeneration, we have computed the data-averaged KL
divergence for the trained model,

KLðpdatajjpmodelÞ

¼ −
1

Nconf

XNconf

d¼1

logpmodelðϕðdÞ; θ�Þ þ cst

¼ 1

Nconf

XNconf

d¼1

1

2
ϕðdÞTKϕðdÞ þ logZmodel þ cst; ð86Þ

where the constant “cst” term is independent of the model
distribution. The result is shown in Fig. 17. We indeed
observe the KL divergence between the target distribution
and the model distribution starts to increase as more
modes are excluded. Adding modes beyond the cutoff
imposed by the choice of μ2 does not increase the quality,
as expected. As concluded “by eye” above, around
64–100 hidden nodes are required for a reasonable
quality of regeneration.

FIG. 15. As above, but with a learnable RBM mass parameter μ2.

FIG. 16. Quality of regenerated images with different numbers of hidden nodes. As the number of hidden nodes decreases, the
regeneration quality decreases.
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VII. INTERACTIONS

Strictly speaking, the Gaussian-Gaussian RBM can only
be exact if the target distribution is Gaussian as well. To go
beyond this, one needs to introduce interactions. There are
(at least) two ways of doing so. Motivated by the notion of
QFT-ML [8], one may add local interactions via potentials
defined on nodes, see Eqs. (5), (6). A simple choice would
be to add a λϕ4 term to each node on the visible layer since
such systems are well understood and allow one to study
e.g. spontaneous symmetry breaking in the context of
the learning process. Of course, sampling the hidden layer
requires a more costly sampling method than for the
Gaussian case.
One may also change the nature of the hidden nodes

from continuous to discrete, taking e.g. ha ¼ �1. This
leads to the Gaussian-Bernoulli RBM (see e.g. Ref. [13]),
with the distribution and action

pðϕ; hÞ ¼ 1

Z
expð−Sðϕ; hÞÞ; ð87Þ

Sðϕ; hÞ ¼ VϕðϕÞ −
X
i;a

ϕiWiaha þ
X
a

ηaha; ð88Þ

where

Z ¼
Z

Dϕ
YNh

a¼1

X
ha¼�1

expð−Sðϕ; hÞÞ: ð89Þ

This gives the following induced distribution on the
visible layer,

pðϕÞ ¼ 1

Z
expð−SðϕÞÞ; ð90Þ

with the effective action

SðϕÞ ¼ VϕðϕÞ −
X
a

ln ð2 coshðψaÞÞ; ð91Þ

where ψa ¼
P

i ϕiWia − ηa. A formal expansion in ψa
then yields, up to a constant, the effective action on the
visible layer,

SðϕÞ ¼ VϕðϕÞ −
X
a

ln

�
1þ

X∞
n¼1

ψ2n
a

ð2nÞ!
�
;

¼ VϕðϕÞ þ
X
a

X∞
n¼1

ð−1Þn cn
ð2nÞ!ψ

2n
a ; ð92Þ

with easily determined coefficients cn. This is a highly
nonlocal action.
To make the connection with the previous sections, it is

straightforward to see that the quadratic (n ¼ 1, c1 ¼ 1)
term yields the same structure as above,

−
X
a

1

2
ψ2
a ¼ −

1

2
ϕTWWTϕ −

1

2
ηTηþ ϕTWη; ð93Þ

which, when combined with the RBM mass parameter
μ2 on the visible layer, gives the same kernel,
K¼μ211−WWT , and source, J ¼ Wη.
Quartic interactions are generated at the next order.

Taking for simplicity ηa ¼ 0, such that only even terms
in ϕi are present, one finds the n ¼ 2 term (c2 ¼ 2),

X
a

1

12
ψ4
a ¼

1

12

X
ijkl

λijklϕiϕjϕkϕl; ð94Þ

with the coupling

λijkl ¼
X
a

WiaWjaWkaWla: ð95Þ

This is indeed a quartic term but with an a priori highly
nonlocal coupling, generated by the all-to-all coupling
to the hidden layer. From a QFT perspective, it would
be of interest to study such a theory, which we post-
pone to the future.

VIII. CONCLUSION

In this paper, we have studied scalar field restricted
Boltzmann machines from the perspective of lattice field
theory. The Gaussian-Gaussian case can be understood
completely. We have demonstrated, using analytical work
and numerical experiments, that the scalar field RBM is an
ultraviolet regulator, regulating the ultraviolet part of the
spectrum of the quadratic operator of the target theory. This
is also the case when the target probability distribution is
not known, such as in the MNIST case, but where the
spectrum can be extracted from the data-averaged corre-
lation matrix. The cutoff is determined by the choice of the

FIG. 17. Data-averaged KL divergence for the trained RBM, as
a function of the number of hidden nodes Nh (on a logarithmic
scale) at fixed μ2 ¼ 100. For this value of μ2, the maximal
number of modes included is Nmax

modes ¼ 289 and hence increasing
Nh above this value does not lead to additional improvement.
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RBM mass parameter or the number of hidden nodes. This
provides a clear answer to generally difficult questions on
the choice of ML “architecture,” namely what are the
consequences of choosing a particular setup. At least in this
simple case the answer is straightforward and concerns
the (in)sensitivity of the generative power of the RBM to
the ultraviolet modes compared to the infrared modes.
We have also shown that infrared modes are learnt the

quickest. This is of interest for models which suffer from
critical slowing down, for which infrared modes are usually
hard to handle. Indeed, many ML (inspired) generative
approaches have surprisingly short autocorrelation times,
which is worth exploring further.
As an outlook, we note that in the final section, we have

indicated two ways to go beyond the Gaussian-Gaussian
case. The QFT-ML approach, in which local potentials
are added to nodes on e.g. the visible layer, is convenient
for LFT practitioners since the resulting models are well
understood. Replacing the continuous hidden degrees of
freedom with binary ones (Gaussian-Bernoulli RBM) yields
models of a very different character, involving highly non-
local interaction terms to all orders. It would be of interest to
understand these constructions further using QFT methods.

The data generated for this manuscript and simulation
code are available from Ref. [16].
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APPENDIX A: DETAILS OF THE ALGORITHM

The training equations for the RBM parameters θ read,
schematically,

θnþ1 ¼ θn þ ηn
∂L
∂θ

;

∂L
∂θ

¼ −
1

2

�
ϕT ∂K

∂θ
ϕ

�
target

þ 1

2

�
ϕT ∂K

∂θ
ϕ

�
model

; ðA1Þ

where ηn is the learning rate. The first term on the rhs can be
easily computed from the given data or target theory. The
second term needs to be sampled from the model distri-
bution, which is nontrivial. In most cases, this term is
approximated by generating a Markov chain and truncating
it after k steps, where k is empirically chosen. This is
known as Contrastive Divergence (CD) [17]. For standard
CD updates, the Markov chain is initialized from the input
data and then the successive chains are sampled by Gibbs

sampling. A more efficient update algorithm is Persistent
Contrastive Divergence (PCD) [18] and is used in this
paper. PCD initializes the Markov chain from the last state
of the most recent update. Since this last state of the
previous chain is already closer to the representative of the
model distribution, the newMarkov chain is initialized with
a nearly thermalized state and only requires a small number
of updates.
Alongside PCD, the gradient for each epoch is esti-

mated by averaging over a minibatch. In the case of
MNIST data, the training was done by using an effective
correlation matrix obtained from the given dataset. Then
512 parallel PCD Markov chains were generated to form a
minibatch. For the scalar field theory case, the training
was done by directly using the analytical form of the
kernel matrix of the target distribution without predefined
training data. Then for each training epoch, 128 parallel
PCD Markov chains were generated to be averaged and
used to estimate the gradient.
The learning rate can be set to change during the

training. For instance, one may multiply the learning rate
by a factor of r after every Nrate

epoch epochs (e.g. r ¼ 0.99,
Nrate

epoch ¼ 128),

ηn ¼ rηn−1 if mod ðn;Nrate
epochÞ ¼ 0: ðA2Þ

Hence the learning rate becomes smaller as more epochs
have passed. The virtue of having a small learning rate
during the later part of the training is that it allows the
model to be finely trained and that it reduces statistical
fluctuations.
The effect of learning rate decay is shown in Fig. 18.

Two models are trained with the same hyperparameters and
initialization except for the learning rate decay parameters r
andNrate

epoch. The first model shown in Fig. 18 (left) is trained
without learning rate decay. Fluctuation of the eigenvalues
due to statistical noise remains. In contrast, the second
model, shown in Fig. 18 (right), uses learning rate decay
with r ¼ 0.99, Nrate

epoch ¼ 128. Statistical fluctuations die off
in the end, leading to a precise result.
However, the values of r and Nrate

epoch should be chosen in
a delicate manner. If the decay rate r is too large, then the
learning rate decreases too fast and the model freezes
before it reaches the target destination. For example, in
Fig. 19, the training flow of the scalar field RBM with the
trainable mass parameter and r ¼ 0.99, Nrate

epoch ¼ 128 is
shown (compare with Fig. 7). The model does not suffer
when it is learning infrared modes, which are learnt
quickest, but it fails to learn the highest mode of the target
kernel. The model parameter freezes out before it reaches
the target. One can decide the learning rate decay param-
eters by observing the regenerated samples and measuring
the goodness of those. Since the ultraviolet modes are less
relevant compared to the infrared ones, one can accept a
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truncation of the higher modes provided a target goodness
is achieved. One can also employ an adaptive learning
rate decay.
We have also looked at employing momentum optimi-

zation and L2 regularization of the coupling matrix but have
found no need for these.

APPENDIX B: KULLBACK-LEIBLER
DIVERGENCE

For completeness, we evaluate here the KL divergence in
the case that both the target theory and the model are
Gaussian, without linear terms. This allows us to compare it
with the log-likelihood in the main text. We consider the
KL divergence,

KLðpjjqÞ ¼
Z

DϕpðϕÞ log pðϕÞ
qðϕ; θ�Þ ; ðB1Þ

with pðϕÞ the target distribution and qðϕ; θ�Þ the trained
distribution (hence the asterisk on θ). We assume the

learning process has found the correct eigenbasis, such
that the distributions are

pðϕÞ ¼ 1

Zp
e−

1
2

P
i
aiϕ2

i ; Zp ¼
Y
i

Z
dϕie−

1
2
aiϕ2

i ; ðB2Þ

qðϕ;θ�Þ¼ 1

Zq
e−

1
2

P
i
biϕ2

i ; Zq¼
Y
i

Z
dϕie−

1
2
biϕ2

i ; ðB3Þ

where all eigenvalues ai; bi > 0. To make the connection
with the scalar theory with Nh < Nv in Sec. V, we note that
i ¼ 1;…; Nv, and that after training,

bi ¼
�
κi i ≤ Nh

μ2 i > Nh
: ðB4Þ

It is then straightforward to evaluate the KL divergence.
In particular,

log
pðϕÞ

qðϕ; θ�Þ ¼ −
1

2

X
i

ðai − biÞϕ2
i − log

Zp

Zq
; ðB5Þ

with

log
Zp

Zq
¼ 1

2

X
i

log
bi
ai
: ðB6Þ

Putting everything together, one finds

KLðpjjqÞ ¼ 1

2

X
i

�
−1þ bi

ai
− log

bi
ai

�
≥ 0: ðB7Þ

Each term is non-negative, and KLðpjjqÞ ≥ 0, as it should
be. The equality is achieved only when each eigenvalue
is correctly determined. For the scalar theory in Sec. V,
this becomes

KLðpjjqÞ ¼ 1

2

XNv

i¼Nhþ1

�
−1þ μ2

κi
− log

μ2

κi

�
: ðB8Þ

FIG. 18. Scalar field RBM trained without (left) and with (right) learning rate decay, using r ¼ 0.99, Nrate
epoch ¼ 128, and a fixed RBM

mass parameter μ2 ¼ 9.

FIG. 19. Scalar field RBM with trainable RBM mass parameter
μ2 and learning rate decay as above. The model parameters are
frozen before the RBM mass parameter reaches the (expected)
largest eigenvalue of the target kernel.
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