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A major result of the effective string theory (EST) description of confinement is the so-called “low-
energy universality”, which states that the first few terms of the large distance expansion of any EST are
universal and coincide with those of the Nambu-Goto action. Going beyond this approximation is one of
the most interesting open problems in the EST. In the higher-order terms beyond Nambu-Goto several
important pieces of physical information are encoded, which could improve our understanding of the
physical mechanisms behind confinement and of the physical degrees of freedoms which originate the EST.
In this paper we evaluate numerically the first two of these corrections in the case of the three-dimensional
gauge Ising model. The first of them turns out to be negative; γ3 ¼ −0.00048ð4Þ, similar (but not equal) to
the one recently measured in the SUð2Þ Yang-Mills theory in three dimensions and compatible with the
bootstrap bound γ3 ≥ − 1
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I. INTRODUCTION

One of the most promising approaches to understand
and model the nonperturbative behavior of confining
Yang-Mills theories is the effective string theory (EST)
description in which the confining flux tube joining
together a quark-antiquark pair is modeled as a thin
vibrating string [1–5].
Recently, there has been a lot of progress in this context.

In particular it has been realized that the EST enjoys the so-
called “low-energy universality” [6–13] which states that,
due to the peculiar features of the string action and to the
symmetry constraints imposed by the Poincaré invariance
in the target space, the first few terms of its large distance
expansion are fixed and are thus universal. This implies that
the EST is much more predictive than typical effective
models and in fact its predictions have been be successfully
compared in the past few years with lot of results on
the interquark potential from Monte Carlo simulations in
lattice gauge theories (LGTs) (for recent reviews see for
instance [13–15]).
At the same time it was recently realized that the

simplest, Lorentz invariant, EST which is the well-known
Nambu-Goto model [1,2] is an exactly integrable, irrel-
evant, perturbation of the bidimensional free Gaussian
model [10], driven by the TT̄ operator of the D − 2 free

bosons1 [16] which represent the transverse degree of
freedom of the string. This observation stimulated lot of
interesting results even beyond the original application to
Yang-Mills theories [17–24]. In particular they are at the
basis of a S-matrix bootstrap approach which can be used to
constrain the EST action even beyond the Nambu-Goto
approximation [25,26].
Indeed, it is by now clear that the Nambu-Goto action

should be considered only as a first-order approximation of
the actual EST describing the nonperturbative behavior of
the Yang-Mills theories. Going beyond this approximation
is one of the most interesting open problems in this context.
In the higher-order terms beyond Nambu-Goto several
important pieces of physical information are encoded.
Their study could be of great importance to understand
the physical mechanisms behind confinement or the physi-
cal degrees of freedoms which originate the EST.
In particular, it is only by looking at these higher-order

terms that one may hope to find signatures, in the confining
string, of the gauge group of the underlying LGT. For this
reason there is an increasing interest in exploring these
corrections in different LGTs [27]. In this respect the three-
dimensional gauge Ising model that we shall study in this
paper is a perfect laboratory to address this issue because,
thanks to the duality transformation with the 3D Ising
model, one can use innovative, powerful, algorithms to
estimate these corrections. Moreover, its gauge symmetry is
very different from standard SUðNÞ gauge groups and
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1We shall denote in the following with D the number of
spacetime dimensions of the target LGT and with d≡D − 1 the
number of spacelike directions.
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allows to test, for instance, which is the effect of the discrete
vs continuous gauge symmetries on the confining string.
A final important reason is that the scaling function of the
string tension, which will play a central role in the
following, is known (thanks again to duality) with very
high precision.
Due to the low-energyuniversality these corrections appear

at a very high order in the large distance expansion and their
evaluation is a delicate task. One must reach very precise
estimates of the ground state energy of the string for a wide
rangeof distances and, possibly, for a fewdifferent values ofβ
to test the correct scaling behavior. For these reasons we
decided to evaluate themwith two different approaches, using
different algorithms (hierarchical Metropolis in one case and
Swendsen-Wang in the other) choosing different observables
(the ground-state energy of the string in one case and its width
in the other) and looking for an overall agreement of the final
results between the two methods.
We were able to detect the first two corrections beyond

Nambu-Goto which are described, as we shall see below, by
the two parameters γ3 and γ5 [25]. The value of
γ3 ¼ −0.00048ð4Þ agrees with the S-matrix bound found
in [25] and is similar, but slightly more negative than the
value γ3jSUð2Þ ¼ −0.00037ð6Þ found in [27] for the SUð2Þ
LGT in (2þ 1) dimensions. The second correction is very
small γ5 ¼ 3.0ð4Þ × 10−7 but not compatible with zero and
its inclusion in the fit turned out to be mandatory to reach
reasonable values of the reduced χ2. These values represent
the first step toward a systematic study of γ3 in LGTs.
This paper is organized as follows. In the Sec. II we shall

define the problem and set the notations, then in Sec. III we
shall recall a few basic results of the effective string theory
of confinement. In Sec. IV we shall present the 3D gauge
Ising model and discuss its properties. Then, in Secs. Vand
VI, we shall discuss the two approaches that we used to
evaluate γ3 and γ5 and present the main steps of the data
analysis. Finally the last section is devoted to a summary of
the results and a few concluding remarks.

II. GENERAL SETTING AND NOTATIONS

In the following we shall be mainly interested in finite
temperature LGTs, which can be realized by imposing
periodic boundary conditions in the time direction for the
bosonic field (and antiperiodic for fermionic ones). In a
finite temperature setting the compactified “time” direction
does not have any longer the meaning of time (recall that
we are describing a system at equilibrium in the canonical
ensemble) but its size Nt is instead a measure of the inverse
temperature of the system. Thus, a lattice of size Nsa in the
spatial directions and Nta in the timelike direction repre-
sents the regularized version of a system of finite volume
V ¼ ðNsaÞd at a finite temperature T ¼ 1=ðNtaÞ. In the
following we shall set the lattice spacing to a ¼ 1, and
systematically neglect it.

In a finite temperature setting one can define a new class
of topologically nontrivial observables which are gauge
invariant thanks to the periodic boundary conditions in the
time direction; the Polyakov loops. If we define the link
dynamical variables of the gauge model as Uμðx⃗; zÞ [where
μ denotes the direction of the link and ðx⃗; zÞ its coordinates
in the lattice], we may define the Polyakov loop Pðx⃗Þ as
follows:

Pðx⃗Þ ¼ Tr
YNt

z¼1

Utðx⃗; zÞ: ð1Þ

In a pure LGT the Polyakov loop acquires a nonzero
expectation value in the deconfined phase and is thus an
order parameter of the finite temperature deconfinement
transition.
The value βcðNtÞ of this deconfinement transition in a

lattice of size Nt ¼ 1=T can be used to define a new
physical observable Tc which is obtained by inverting
βcðNtÞ. We obtain in this way, for each value of β, the
lattice size in the time direction [which we shall call in
the following Nt;cðβÞ] at which the model undergoes the
deconfinement transition and from this the critical tempera-
ture TcðβÞ≡ 1=Nt;cðβÞ as a function of β. We shall use this
quantity to set the scale of our simulations.
In the following we shall be mainly interested in

correlators of Polyakov loops:

GðR;NtÞ≡ hPðxÞP†ðxþ RÞiNt
; ð2Þ

where R is the distance between the two Polyakov loops
and the subscript Nt in the expectation value reminds that
the correlator was evaluated on a lattice at temperature
T ¼ 1=Nt. GðR;NtÞ can be used to define a finite tempera-
ture version of the interquark potential:

VðR; TÞ ¼ −
1

Nt
log hPðxÞP†ðxþ RÞiNt

: ð3Þ

In the confining phase we expect, for large values of R, a
linearly rising behavior for VðR;NtÞ, which implies the
following behavior for the correlator:

hPðxÞP†ðxþ RÞiNt
∼ e−E0ðTÞNtR: ð4Þ

From Eq. (4) we may extract the ground state energy E0ðTÞ
of the confining flux tube joining the quark-antiquark pair.
E0ðTÞ depends on the temperature of the model and
vanishes at the deconfinement transition. The finite temper-
ature behavior of E0ðTÞ will play a major role in the rest of
the paper. It is interesting to notice that the observable (2)
has the topology of a cylinder whose circumference is fixed
by the (inverse) temperature Nt and the length by the
interquark distance R.
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III. EFFECTIVE STRING THEORY

A. The Nambu-Goto action

The behavior of the flux tube in a confining LGT is well-
described by the effective string theory which models the
flux tube as a thin vibrating string and allows to evaluate the
contribution to the Polyakov-loop correlator of the quan-
tum fluctuations of this flux tube.
The simplest possible EST fulfilling the constraints

imposed by the Lorentz invariance in the target space is
the Nambu-Goto action [1,2] defined as follows:

SNG ¼ σ0

Z
Σ
d2ξ

ffiffiffi
g

p
; ð5Þ

where g≡ det gαβ and

gαβ ¼ ∂αXμ∂βXμ ð6Þ

is the metric induced on the reference world-sheet surface Σ
by the mapping XμðξÞ of the world sheet in the target space,
and ξ≡ ðξ0; ξ1Þ denote the world sheet coordinates. This
term has a simple geometric interpretation; it measures the
area of the surface spanned by the string in the target space
and has only one free parameter2 which is the string
tension σ0.
In order to perform calculations with the Nambu-Goto

action one has first to fix its reparametrization invariance.
The standard choice is the so-called “physical gauge”. In
this gauge the two world sheet coordinates are identified
with the longitudinal degrees of freedom of the string,
ξ0 ¼ X0, ξ1 ¼ X1, so that the string action can be expressed
as a function only of the (D − 2) degrees of freedom
corresponding to the transverse displacements, Xi, with
i ¼ 2;…; ðD − 1Þ which are assumed to be single-valued
functions of the world sheet coordinates. We shall comment
below on the problems of this gauge fixing choice.
With this gauge choice the determinant of the metric can

be written as

g ¼ 1þ ∂0Xi∂0Xi þ ∂1Xi∂1Xi

þ ∂0Xi∂0Xi
∂1Xj∂1Xj − ð∂0Xi∂1XiÞ2 ð7Þ

and the Nambu-Goto action can then be written as a low-
energy expansion in the number of derivatives of the
transverse degrees of freedom of the string which, by a
suitable redefinition of the fields, can be rephrased as a
large distance expansion,

S ¼ Scl þ
σ0
2

Z
d2ξ

�
∂αXi · ∂αXi þ � � ��: ð8Þ

The first term of this expansion is exactly the gaussian
action, i.e. a two-dimensional conformal field theory (CFT)
ofD − 2 free bosons which represent the transverse degrees
of freedom of the string, and the remaining terms combine
themselves so as to give an exactly integrable, irrelevant
perturbation of this CFT [10], driven by the TT̄ operator of
the D − 2 free bosons [16].
Thanks to this exact integrability, the partition function

of the model can be written explicitly [7,28]. For the
Polyakov-loop correlator in which we are interested here,3

the expression in D space-time dimensions is, using the
notations of [7,28],

hPðxÞP†ðxþ RÞiNt
¼ σ

4−D
2

0

Nt

π

X∞
n¼0

wn

�
En

2R

�1
2
ðD−3Þ

× K1
2
ðD−3ÞðEnRÞ; ð9Þ

where K1
2
ðD−3Þ is the modified Bessel function of order D−3

2
,

R denotes, as above, the distance between the two Polyakov
loops, Nt the size of the lattice in the compactified
direction, wn is the multiplicity of the closed string states
which propagate from one Polyakov loop to the other, and
En their energies:

En ¼ σ0Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8π

σ0N2
t

�
−

1

24
ðD − 2Þ þ n

�s
: ð10Þ

At large distances, the correlator is dominated by the
lowest state

E0 ¼ σ0Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

πðD − 2Þ
3σ0N2

t

s
; ð11Þ

whose multiplicity is w0 ¼ 1 and the Polyakov-loop
correlator, neglecting irrelevant constants, reduces to

hPðxÞP†ðxþ RÞiNt
∼ σ

4−D
2

0 Nt

�
E0

R

�1
2
ðD−3Þ

K1
2
ðD−3ÞðE0RÞ

ð12Þ

which, in the D ¼ 3 case in which we are interested
simplifies to

hPðxÞP†ðxþ RÞiNt
∼ Nt

ffiffiffiffiffi
σ0

p
K0ðE0RÞ ð13Þ

with
2We shall denote in the following the string tension with the

index 0 to avoid confusion with the spin variables of the Ising
model.

3Similar expressions can be obtained also for the other relevant
geometries: the Wilson loop [29] and the interface [30].
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E0 ¼ σ0Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

π

3σ0N2
t

r
: ð14Þ

Thanks to the exponential term in the asymptotic
expansion of the Bessel function,

K0ðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

�
1 −

1

8z
þ 9

128z2
þOðz−3Þ

�
ð15Þ

we find at large distance, as expected, a linearly rising
behavior of the interquark potential controlled by the
ground state energy E0. On top of this we have a set of
subleading corrections, encoded in the asymptotic expan-
sion of K0, which represent a specific, unique, signature of
the Nambu-Goto action and must be taken into account
when fitting the results of Monte Carlo simulations.
An important side consequence of this result is that we

can extract from the tachyonic singularity of E0 an estimate
for the critical temperature Tc;NG measured in units of the
square root of the string tension

ffiffiffiffiffi
σ0

p
[31,32] which is, for

generic values of D,

Tc;NGffiffiffiffiffi
σ0

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

πðD − 2Þ

s
ð16Þ

and corresponds to the value of the ratio Tc;NGffiffiffiffi
σ0

p for which the

ground-state energy E0 vanishes. Using this result we can
rewrite the ground state energy as

E0ðTÞjNG ¼ σ0
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2

T2
c;NG

s
; ð17Þ

where we use the notation jNG to stress the fact that this is
only the Nambu-Goto estimate for the ground state energy
of the string, which we may expect to be modified by other
terms in the EST action.
The estimate quoted above for the critical temperature

turns out to be in remarkable (but not exact!) agreement
with the results obtained from Monte Carlo simulations,
both for non-Abelian LGTs and for the three-dimensional
gauge Ising model. However, the remaining small devia-
tions of Tc;NG from the Monte Carlo results, together with
the fact that the Nambu-Goto EST predicts [as can be seen
looking at Eq. (17)] a deconfinement transition of the
second order, with a mean field value for the critical index
(which is in disagreement with the Monte Carlo results for
all known LGTs) suggest that the Nambu-Goto action
cannot be the end of the story and that some correcting
terms beyond Nambu-Goto should be present in the EST.

B. Beyond Nambu-Goto

It is by now clear that in the actual EST of the confining
string the Nambu-Goto action is only the first term of an

infinite series of contributions. Indeed, there are several
reasons why the Nambu-Goto action is unsatisfactory and
must be completed with some higher-order correction.
Besides the above mentioned disagreement at the decon-
finement transition, a major problem of the Nambu-Goto
action is that it is, so to speak, too universal. It predicts the
same behavior for all LGTs, with no dependence on the
gauge group. Moreover, it is well-known that the physical
gauge fixing discussed above is anomalous and it is widely
expected that this anomaly could be cured by higher-order
terms in the EST action.
The requirement of Poincarè invariance in the target

space strongly constrains the terms which can be included
in the EST beyond Nambu Goto [6–13]. In D ¼ 3 the first
few allowed terms can be written as follows:

SEST ¼
Z
Σ
d2ξ

ffiffiffi
g

p �
σ0 þ γ1Rþ γ2K2 þ γ3K4…

�
; ð18Þ

where the γi are new coupling constants, R denotes the
Ricci scalar constructed from the induced metric, and K is
the extrinsic curvature, defined as K ¼ ΔðgÞX, with

ΔðgÞ ¼ 1ffiffiffiffiffiffiðgÞp ∂a

� ffiffiffiffiffiffi
ðgÞ

p
gab∂b

� ð19Þ

the Laplacian in the space with metric gαβ. In principle the
new coupling constants γi, should be fixed, as we do for σ0,
by comparing with experiments (or more likely, with
computer simulations).
However this process is simplified by the observation that

K2 vanishes on shell and that the term proportional toR is a
topological invariant in two dimensions. Since in the long-
string limit in which we are interested one does not expect
topology-changing fluctuations, both these terms can be
neglected and the first nontrivial contribution appears only at
higher orders [13]. This result is known as “low-energy
universality” [10] and strongly constrains the form of the
EST. It implies that the first correction beyond the Nambu-
Goto action can only appear at the order 1=R7 (or 1=N7

t in the
finite temperature setting in which we are interested in this
paper). This explains why the Nambu-Goto model has been
so successful over these last forty years to describe the
infrared behavior of confining gauge theories despite its
simplicity and why the deconfinement temperature pre-
dicted by Nambu-Goto is so close to the one obtained in
Monte Carlo simulations. At the same time this explains
why identifying these corrections is so difficult and only in
the last few years it was possible to unambiguously detect
them in Monte Carlo simulations [19,27,33–35].
The first nonvanishing term γ3K4 is only the first of an

infinite sequence of terms, obtained combining higher-
order curvature invariants. It turns out that the best way to
organize these terms is to study the 2 → 2 scattering
amplitude of the string excitations [10]. It can be shown
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that in D ¼ 3 this S-matrix S ¼ e2iδ can be written in a
particularly simple and elegant form:

2δðsÞ ¼ s
4
þ γ3s3 þ γ5s5 þ γ7s7 þ iγ8s8 þOðs9Þ; ð20Þ

where the first term s=4 leads to the energy spectrum of the
Nambu-Goto action, the fact that the term proportional to s2

is missing is the way in which the low energy universality is
realized in this S-matrix approach and the next nontrivial
term is exactly the S-matrix description of theK4 correction
mentioned above.
By using the analyticity properties of this S-matrix and

requiring the UV completion of the underlying theory it is
possible to obtain a set of important results on the ground-
state energy of the string [10,25]:

(i) γ8 is not a new independent parameter but it is
proportional to γ23;

(ii) Both the 1=N7
t and the 1=N9

t terms are controlled
only by γ3 and the next independent parameter γ5
only appears at the order 1=N11

t ;
(iii) It is possible to set bounds on these parameters. In

particular, defining

γ̃n ¼ γn þ ð−1Þðnþ1Þ=2 1

n23n−1

one finds [25]

γ̃3 ≥ 0

γ̃5 ≥ 4γ̃23 −
1

64
γ̃3

γ̃7 ≥
γ̃25
γ̃3

þ 1

4096
γ̃3 þ

1

64
γ̃5 −

1

16
γ̃23 ð21Þ

which implies in particular

γ3 ≥ −
1

768
: ð22Þ

From the S-matrix, by using the so-called thermo-
dynamic Bethe ansatz one can obtain [25] the following
expression for the nonuniversal corrections up to the order
1=N11

t :

E0ðNtÞ ¼ σ0Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

π

3σ0N2
t

r
−

32π6γ3
225σ30N

7
t

−
64π7γ3
675σ40N

9
t
−

2π8γ3
45

þ 32768π10γ5
3969

σ50N
11
t

: ð23Þ

This is the expression which we shall compare with the
results of our simulations.

C. The boundary corrections problem
and how to deal with it

It is clear from the previous section that measuring the γi
coeffcients on the lattice is a highly nontrivial task. In
particular it is essentially impossible in the standard “zero
temperature” scenario, in which the contribution of the
effective string to the interquark potential manifests itself as
an expansion in powers of 1=R and the corrections in which
we are interested, which appear in this expansion at the
order 1=R7, are shadowed by the boundary corrections
which are proportional to 1=R4 [11,36–39].
There are in principle two ways to avoid this problem:
(i) The first is to study observables without boundaries.

This can be done for Abelian gauge models using
duality and looking at the finite size effects of the
interface free energy (choosing interfaces with
periodic boundary conditions) [40,41]. In the case
of the Ising model this approach was recently
discussed in [42] where it was shown that correc-
tions beyond Nambu-Goto certainly exist in the
gauge Ising model and are rather large. However,
it turned out to be difficult to quantify these
corrections, most probably due to the interactions
between nearby interfaces.4

(ii) The second is to study the model in the finite
temperature regime (just below the deconfinement
transition) in the limit of very large separation of the
two Polyakov loops ðR ≫ NtÞ. It can be shown that
in this regime the boundary corrections become
subleading and can be neglected [15,43]. Moreover,
this is exactly the limit discussed in the previous
section, in which the results obtained with the
S-matrix approach and TBA hold. Thus, by choos-
ing this geometry in our simulations we shall be able
to make immediate contact with Eq. (23), with no
interference from the boundary terms and extract
from the data reliable estimates for the γi coefficents.
This was the approach recently used to study these
corrections in the SUð2Þ gauge model in three
dimensions in [27].

Once the geometry of the observables in which we are
interested is fixed, the remaining task is to obtain estimates
for these observables precise enough to detect and quantify
the tiny corrections in which we are interested. In this
geometry this requires studying the system at large inter-
quark distances and standard algorithms are affected by an

4The way in which these interfaces are generated in the (dual)
gauge Ising model is by fixing antiperiodic boundary conditions
in the transverse direction. This procedure generates an odd
number of interfaces. This ensamble is usually studied assuming
that they are far apart and do not interact, but when looking at
very asymmetric geometries (which are needed in order to detect
higher-order corrections) the width of these interfaces grows
linearly and negelecting interactions is most likely a too strong
approximation.

ISING STRING BEYOND THE NAMBU-GOTO ACTION PHYS. REV. D 109, 034520 (2024)

034520-5



exponentially decreasing signal to noise ratio in this limit.
The main advantage of studying Abelian models is that,
thanks to duality, it is possible to avoid this limitation and to
study (using for instance nonlocal cluster algorithms as
in [44] or the so-called “snake algorithm” [45]) Polyakov
loops correlators at any interquark distance Rwith the same
signal to noise ratio. This is the main reason behind the
choice of the Ising model as a laboratory to study the EST.
There is indeed a long track record of applications of this

kind of methods to the 3D gauge Ising model to study
subtle features of EST. In particular, in [44,46–48] which
may be considered as precursors of the present work, the
1=R3 correction to the interquark potential was precisely
measured for the first time and shown to be exactly the one
predicted by the Nambu-Goto action (in agreement with the
low-energy universality). Later the same approach was
adopted for the 3D Uð1Þ model in [49] and allowed to
unambiguously detect corrections to the Nambu-Goto
actions as the continuum limit was approached.
In Sec. V we discuss the result of a study performed with

the same snake algorithm used in [46,47]. This algorithm
allowed us to obtain a first estimate of γ3 which however
turned out to be affected by a rather large statistical
uncertainty. In order to improve this uncertainty and to
test the robustness of the result we decided to evaluate the
same quantity with a completely different method, which
was proposed a few years ago in [50] and that we describe
in detail in Sec. VI.
This second estimate agrees within the errors with the

previous one, is more precise and allows to quantify with
rather good precision even the next to leading correction γ5.
The agreement between the two estimates strongly supports
the reliability of our analysis.
In the following sections we shall first describe the main

features of the 3D gauge Ising model and then discuss the
two approaches that we used to evaluate the γi coefficients.

IV. THE 3D GAUGE ISING MODEL

The three-dimensional gauge Ising model (also known as
Z2 gauge model) was proposed over fifty years ago by
Wegner [51] as a tool for understanding the properties of
lattice models with gauge symmetries. This model exhibits
a local Z2 symmetry, which is realized by the choice of
σl ∈ f1;−1g as the dynamical Z2 link variables. The
plaquette action, derived from the familiar Wilson action,
is tailored specifically for the case of Z2 link variables and
can be defined as follows:

ZgaugeðβÞ ¼
X

fσl¼�1g
exp ð−βSZ2

Þ: ð24Þ

The action SZ2
is a sum over all the plaquettes of a cubic

lattice,

SZ2
¼ −

X
□

σ□; σ□ ¼ σl1σl2σl3σl4 : ð25Þ

Despite its apparent simplicity the 3D Gauge Ising
Model shares with more complex LGTs several important
properties. It is characterized by a confining string with a
nontrivial spectrum of string excitations [52,53] and has a
glueball spectrum very similar to the one of more complex
3D LGTs [54]. For these reasons it is a perfect laboratory to
test, with high precision, nontrivial properties of the
confining strings in LGTs.
This model is known to have a bulk (i.e. at zero temper-

ature) deconfinement transition at βc ¼ 0.76141330ð6Þ
(this value is obtained via duality from the critical temper-
ature of the 3D Ising model quoted in [55], see below). For
values of the coupling β < βc the model is in the confining
phase, while for β > βc it is deconfined. The transition at
β ¼ βc is of second order and, due to the duality relation (see
below), it belongs to the same universality class of the
standard magnetization transition of the 3D Ising model.
This model also possesses an (infinite-order) “roughening
transition” at βr ¼ 0.47542ð1Þ [56] (in the confined phase),
which separates the strong coupling regime (for β < βr)
from the so-called “rough phase” (for βr < β < βc).
In the following we shall be interested in the behavior of

the model in the confining phase, in the scaling region
near the critical point. In particular we shall study the model
at three different values of the coupling constant β (see
Table I), for which the (finite) deconfinement temperature
is known with high precision [57] so as to be able to
precisely set the scale for the distances between Polyakov
loops and for the lattice size in the time direction (i.e. the
inverse of the finite temperature of the model). These values
are all located in the rough phase and close enough to βc so
as to be within the scaling region.
The major reason of interest of this model is that it is

related to the ordinary three-dimensional Ising spin model
by an exact duality mapping à laKramers andWannier (see
Ref. [58] for a general review on duality transformations):

ZgaugeðβÞ ∝ Zspinðβ̃Þ; with β̃ ¼ −
1

2
log ½tanhðβÞ�; ð26Þ

TABLE I. Some information on the three values of β, listed in
the first column, which we chose for the simulations. In the
second column we report the corresponding values of β̃ for the
(dual) 3D Ising model. In the last three columns we report
respectively the (inverse of) the deconfinement temperature, the
string tension (taken from Ref. [41]) and the value of α [see below
for the definition of αðβÞ and its evaluation from the scaling
function of the model].

β β̃ Nt;c σ α

0.751800 0.226104 8 0.0105255(11) 0.4576(4)
0.756427 0.223951 12 0.0046384(26) 0.3887(3)
0.758266 0.223101 16 0.0026043(53) 0.3464(2)
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where the Ising spin model is defined by the usual action,

Zspin ¼
X
fsig

exp

�
β̃
X
hi;ji

sisj

�
; ð27Þ

where, as usual, the si ∈ f1;−1g are Z2 spin variables, the i
and j indices denote the sites of the dual lattice, the notationP

hi;ji means that spin variables interact with their nearest-
neighbors only and

P
fsig denotes the sum over spin

configurations.
The critical temperature of the model is known

with remarkable precision βc ¼ 0.22165462ð2Þ [55], more-
over thanks to the recent advances in the bootstrap
approach [59,60] also the critical indices of the two relevant
operators, the magnetization M and the energy ϵ, are
known with high precision: ΔM ¼ 0.5181489ð10Þ and
Δϵ ¼ 1.412625ð10Þ respectively [59,60]. From Δϵ we
can extract the critical index ν ¼ 1

3−Δϵ
¼ 0.6299708….

Thanks to duality this is the same critical index which
drives the critical behavior of the string tension in the 3D
gauge Ising model. More precisely σðβÞ ∼ σcðβc − βÞ2ν.
We shall further discuss the scaling behavior of the string
tension in the Appendix.
The main reason of interest of this mapping is that a

similar construction can be performed also in presence of
external source terms for the gauge model (for instance, a
pair of Polyakov loops). This can be easily realized by
introducing sets of topological defects in the spin system.
As a result, it is possible to show [46] that, for instance, the
Polyakov-loop correlator in which we are interested is
mapped into the partition function of the spin system with
antiferromagnetic coupling on a well-defined set of links,

GðrÞ≡ hPðxÞP†ðxþ RÞiNt
¼ Zspin;QQ̄ðR;NtÞ

Zspin
ð28Þ

with

Zspin;QQ̄ðR;NtÞ ¼
X
fsig

exp

�
β̃
X
hi;ji

Jhi;jisisj

�
; ð29Þ

where the value of the Jhi;ji coupling is þ1 everywhere,
except on a set of bonds, which pierce a surface (in the
direct lattice) having the source worldlines as its boundary;
for such a set of bonds, Jhi;ji ¼ −1.
Similar mappings can be constructed essentially for any

observable of interest in the gauge model, from Wilson
loops to glueball correlators.5

Both the numerical algorithms that we shall use in the
following exploit this duality of the model, simulating the
Ising spin system, and measuring (the first algorithm) ratios
of partition functions associated with different stacks of
defects (which we shall use to express the expectation
values of Polyakov loops pairs in the original gauge model)
or expectation values of spins in presence of the defect
surface (the second algorithm).
A particularly useful advantage of numerical simulations

in the dual setting is the fact that this method overcomes the
problem of exponential signal-to-noise ratio decay, which
is usually found when studying the interquark potential
VðrÞ at larger and larger distances.
Another important feature is that, thanks to duality,

the values of the Polyakov-loop correlators that we obtain
in this way are not affected by corrections due to the
periodic boundary conditions in the spacelike directions.
This greatly simplifies the study of these correlators (no
additional terms must be included in the fits to keep
into account these corrections) and allow to study the
system for (relatively) small lattice size in the spacelike
directions.
We perfomed simulations for the three values of β quoted

in Table I; β ¼ 0.751800, 0.756427, 0.758266 which were
chosen because for these values the deconfinement temper-
ature is known with very high precision and coincides with
1=Tc ¼ Lc ¼ 8, 12, 16, respectively [57].

V. ANALYSIS WITH THE SNAKE ALGORITHM

The first method that we used to estimate γ3 is the
Ising implementation of the snake algorithm [45]
discussed in detail in [46]. The main feature of the
algorithm is the hierarchical organization of the updates.
In our particular implementation we chose five sublattice
levels with size f6; 13; 17; 21; 24g lattice spacings
respectively.
We studied the first two values of β reported in Table I

corresponding to a deconfinement temperature of Nt;c ¼ 8

and Nt;c ¼ 12, respectively. Details on the simulations are
reported in Table II. For each β we studied seven values of
Nt just above the critical value Nt;c (i.e. just below the
deconfinement temperature). Then for each value of Nt we
simulated eight different values of R as reported in the
table. The value of the lattice size in the space direction
was chosen to be ten times the value of Nt;c to avoid finite
size effects (which in any case are strongly suppressed
thanks to the duality transformation). The values of R
were chosen so as to make higher-order energy levels in
Eq. (9) negligible within the errors. Thus we could fit the
R dependence of our Polyakov loop correlators using
Eq. (13). From the snake algorithm we directly obtain the
ratio of two nearby correlators FðR;NtÞ ¼ GðRþ
1; NtÞ=GðR;NtÞ which we thus fitted with the following
expression:

5For instance it can be shown in this way that the glueballs of
the Ising gauge model are mapped into bound states of the
fundamental scalar in the spin model [61].
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FðR;NtÞ ¼
K0ðE0ðNtÞðRþ 1ÞÞ

K0ðE0ðNtÞRÞ
ð30Þ

with E0ðNtÞ as the only free parameter of the fit. For all
values of Nt we found good values of the reduced χ2. We
report in Table III, as an example of the results obtained
with the snake algorithm, the values obtained for the
largest Polyakov loops correlators that we studied i.e.
those for β ¼ 0.756427 and Nt ¼ 24. As anticipated there
is no increase in the signal to noise ratio as R increases and
we could estimate the ratio of the two Polyakov-loop
correlators with less than 1% error for areas as large as
24 × 84 lattice spacings. We report in Tables IV and V the
results of these fits.
These are the values that we compared with the expect-

ation of Eq. (23). We performed two types of fit. First, we
kept as free parameters only σ0 and γ3. Accordingly we
truncated the square root of the Nambu-Goto action to the
same orderOðN9

t Þ at which the γ3 terms appears. Results of
these fits are reported in Table VI. Second, we included also

γ5 and, accordingly, truncated the square root to the order
OðN11

t Þ. The results of these fits are reported in Table VII.
A few observations on this result:
(i) In the first type of fits the values of σ0 that we obtain

are definitely larger (more than three standard
deviations) than the expected ones. Accordingly,
if we try to fit the data keeping σ0 to the expected
value we also found very large values of χ2. More-
over, the fact that the reduced χ2 is larger than 1
suggests that the inclusion of the next-order term in
the fits could lead to non-negligible corrections and
in fact the values of γ5 in the fits truncated atOðN11

t Þ
are different from zero within the errors. We also
tried to fit the data truncating the expansion at the
order OðN7

t Þ and keeping only the first correction
proportional to γ3, but we found values of σ0 even
further away from the expected values.

TABLE II. Some information on the simulations.

β Nt;c Nt R Ns

0.751800 8 9, 10, 11, 12, 14, 16, 18 8, 12, 16, 20, 24, 32, 40, 48 80
0.756427 12 13, 14, 15, 16, 18, 20, 24 18, 24, 30, 36, 48, 60, 72, 84 120

TABLE III. Results of the snake algorithm for β ¼ 0.756427
and Nt ¼ 24.

R GðRþ1Þ
GðRÞ

18 0.8914(29)
24 0.8969(31)
30 0.9003(32)
36 0.9030(33)
48 0.9036(33)
60 0.9035(33)
72 0.9070(35)
84 0.9085(35)

TABLE IV. Results of the fit with Eq. (30) for β ¼ 0.751800. In
the last column the reduced χ2 of the fits.

Nt E0 χ2r

9 0.0226(11) 0.90
10 0.0419(10) 0.13
11 0.0587(9) 0.33
12 0.0776(9) 0.34
14 0.1058(9) 0.16
16 0.1337(10) 0.08
18 0.1596(10) 0.05

TABLE V. Results of the fit with Eq. (30) for β ¼ 0.756427. In
the last column the reduced χ2 of the fits.

Nt E0 χ2r

13 0.0099(10) 0.55
14 0.0200(10) 0.44
15 0.0263(10) 0.26
16 0.0370(11) 0.31
18 0.0494(10) 0.29
20 0.0641(12) 0.21
24 0.0906(12) 0.14

TABLE VI. Results of the fits of E0ðNtÞ according to Eq. (23)
truncated at the order \mathord{\italic O}(\mathord{\italic N}_
{\mathord{\italic t}}^{9})\eqno{\normal{\normal{}}}:

β σ0 γ3 χ2r

0.751800 0.010671(30) −0.000357ð13Þ 1.81
0.756427 0.004771(27) −0.000329ð13Þ 1.62

TABLE VII. Results of the fits of E0ðNtÞ according to Eq. (23)
truncated at the order OðN11

t Þ.
β σ0 γ3 γ5 χ2r

0.751800 0.010629(35) −0.00061ð11Þ 0.00000042(11) 1.00
0.756427 0.004740(34) −0.00051ð13Þ 0.00000032(12) 1.53
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(ii) Including the OðN11
t Þ term in the fit the values of σ0

that we obtain move toward the expected values and
for both values of β are within two standard
deviations from the values reported in Table I.6

(iii) Accordingly, in all these fits, if we force σ to the
known values we always find unacceptably high
values of the χ2 which were associated to large
deviations in the best-fit values of γ3 and γ5.

(iv) The values of γ3 and γ5 that we find for the two
values of β are compatible with each other within the
errors.

Looking at the results we see that the estimates of γ3
and γ5 are affected by rather large errors and are strongly
influenced by the value of σ. This is due to the fact that the
fit is dominated by the Nambu-Goto part of the fitting
function and in particular by the σNt term and by the
Lüscher correction. It seems difficult to improve the
overall precision of the result in the framework discussed
in this section since the simulations (due to the peculiar
structure of the snake algorithm and the need to increase
the size of the lattice in the inverse temperature direction)
become more and more expensive as β moves toward the
continuum limit. For this reasons we decided to approach
the task following a different strategy which could
partially overcome these problems.

VI. USING THE MEAN FLUX DENSITY IN THE
PRESENCE OF THE POLYAKOV LOOPS TO

ESTIMATE THE EST GROUND-STATE ENERGY

To avoid the above problems we tried a completely
different approach. Following [50] instead of looking at the
interquark potential, we studied the changes induced in the
flux configuration by the presence of the Polyakov loops.
We shall show below that as a consequence of this choice
the explicit dependence on σ0 and on the Lüscher term
vanish. This makes this observable an unique tool to
explore higher-order corrections.
Another reason of interest of this approach is that it is

deeply related to another important issue of the effective
string description of LGTs, i.e. the study of the flux tube
thickness. It can be shown that in the high-temperature
regime in which we are presently interested the width of the
flux tube increases linearly with the interquark distance and
not logarithmicaly as one would naively expect [62–64].
This linear increase is related to the linear increase in the
flux energy that we observe here. In both cases the slope is
temperature dependent and contains information on the
higher-order effective string corrections in which we are
interested.

The lattice operator which measures the flux through a
plaquette p in presence of two Polyakov loops P, P0 for a
generic LGT is

hϕðp;P;P0Þi ¼ hPP0†Upi
hPP0†i − hUpi; ð31Þ

where Up is the trace of the ordered product of the link
variables along the plaquette and in our case coincides
with the product σ□ introduced above. This is the quantity
which is typically used to study the profile of the flux
tube. In our analysis we are actually interested in a much
simpler observable, the mean flux density, i.e. the sum of
ϕðp;P;P0Þ over all the positions and orientations of the
plaquettes, normalized to the number of plaquettes
of the lattice. Due to translational invariance this quantity
will depend only on the distance R between the two
Polyakov loops and on the inverse temperature Nt. Let us
define

hΦðR;NtÞi ¼
1

Np

X
p

hPP0†σ□i
hPP0†i − hσ□i; ð32Þ

where Np ¼ 3N2
sL denotes the number of plaquettes of

the lattice.
It is easy to see from the definition of GðR;NtÞ,

GðR;NtÞ ¼ hP†ðRÞPð0ÞiNt
¼ 1

Z

X
conf

P†ðRÞPð0Þeβ
P

p
σ□

ð33Þ

that the mean flux density hΦðR;NtÞi can be written as

hΦðR;NtÞi ¼
1

Np

d
dβ

logGðR;NtÞ: ð34Þ

Since β appears in the observable only through the scale
σ0ðβÞ the above equation can be rewritten as

hΦðR;NtÞi ¼
1

Np

dσ0
dβ

d
dσ0

logGðR;NtÞ: ð35Þ

This choice has two important consequences:
(i) In the term proportional to R, the string tension,

which was the major source of systematic uncer-
tainty in the previous calculation, is substituted by its
derivative with respect to β, which can be evaluated
with high confidence thanks to the very precise
knowledge we have of the scaling behavior of σ0ðβÞ.

(ii) The first-string correction (the “Lüscher term”)
which is universal and does not depend on σ0
disappears.

This makes the above observable a perfect tool to explore
higher-order corrections of the effective string.

6This trend suggests that including even the γ7 correction we
could reach the correct values of σ0. We tried to include also this
correction in the fits, but the value of γ7 turned always to be
compatible with zero within the errors.
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From Eq. (13) we have

N2
shΦðR;NtÞi ¼ αðβÞ

�
1

2Ntσ0
þ K0

0ðE0RÞ
K0ðE0RÞ

R
Nt

dE0

dσ0

�
; ð36Þ

where K0
0 denotes the derivative of the K0 Bessel function,

and α is defined as

αðβÞ ¼ −
1

3

dσ0
dβ

: ð37Þ

Using the identity K0
0ðzÞ ¼ −K1ðzÞ the logarithmic deriva-

tive K0
0ðzÞ=K0ðzÞ can be expanded in powers of 1=z as

follows:

K0ðzÞ
KðzÞ ¼ −

�
1þ 1

2z
−

1

z2
þ � � �

�
ð38Þ

which gives

N2
shΦðR;NtÞi¼αðβÞðRAðNtÞþBðNtÞþCðNtÞ=RÞ; ð39Þ

where the three functions A, B andC are defined as follows:

AðNtÞ ¼
1

Nt

dE0

dσ0
; ð40Þ

BðNtÞ ¼
1

2NtE0

dE0

dσ0
−

1

2Ntσ0
; ð41Þ

CðNtÞ ¼ −
1

8NtE2
0

dE0

dσ0
: ð42Þ

A crucial role in the analysis is played by αðβÞ, a precise
estimate of this quantity allows to strongly constrain the
results of the fits. α can be extracted from the scaling
function of the model and in its determination we leverage
the very precise knowledge we have of this scaling
function, thanks to the bootstrap results for the critical
indices of the 3D Ising model. A detailed derivation can be
found in [50]. We report for completeness the main steps of
the derivation in the Appendix. The values we used in the fit
are listed in Table I. Once the value of α is fixed, we can use
the values we obtain for AðNtÞ to estimate the corrections in
which we are interested.7 By setting x ¼ π

3σ0N2
t
we see that

we can express the Nambu-Goto expectation for A [see
Eq. (14)] as

AðNtÞNG¼
1− x

2ffiffiffiffiffiffiffiffiffiffi
1−x

p

¼1þx2

8
þx3

8
þ15x4

128
þ7x5

64
þ105x6

1024
þ��� : ð43Þ

As anticipated the expansion starts at the order x−2 i.e. N−4
t ,

this makes this observable particularly suited to evaluate
higher-order corrections.
If we introduce the corrections beyond Nambu-Goto [see

Eq. (23)] we find

AðNtÞ ¼ AðNtÞNG þ 864π2

25
γ3x4 þ

2304π2

25
γ3x5

þ
�
162π2γ3 þ

1474560π4

49
γ5

�
x6; ð44Þ

where the expansion of AðNtÞNG is truncated at the same
order at which the additional terms proportional to γ3 and γ5
appear. This is the function which we shall use to fit the
results of our simulations.

A. Numerical simulations

To estimate the function AðNtÞwe used again duality and
mapped the Polyakov-loop correlator into the partition
function of a 3D Ising spin model in which we changed the
sign of the coupling of all the links dual to the surface
bordered by the two Polyakov loops. This is the same
method which was used in [63,65] to estimate the width of
the flux tube.
We then estimated hΦðR;NtÞi by simply evaluating the

mean value of the plaquette in presence of these frustrated
links. We chose periodic boundary conditions in the
original gauge Ising model. These boundary conditions
are mapped by duality into a mixture of periodic and
antiperiodic boundary conditions in the dual-spin model.
However, we always chose Ns large enough to eliminate
any contribution from the antiperiodic sectors (which are
depressed by terms proportional to e−σ0NsNt or e−σ0N

2
s ).

Since, as discussed, we are interested only in the term
proportional to R in hΦðR;NtÞi, we may neglect the
disconnected component hUpi in the evaluation of
hΦðR;NtÞi. Details on the simulations can be found in
Table VIII.
We performed simulations for all the three values of β

reported in Table I. For each value of β andNt we simulated
several values of the distance R between the two
Polyakov loops.
For each simulation we used 105 iterations to thermalize

the lattice and then performed 106 measures using a
Swendsen-Wang algorithm. The values of R were chosen
large enough so as to make the last term in Eq. (39)
negligible, thus allowing to perform a simple linear fit to
extract the values of AðNtÞ. In Table IX we report an
example of the data we obtained from the simulations (to

7In principle we could use also BðNtÞ or CðNtÞ to extract this
information, but these terms, due to their R dependence may be
affected by boundary corrections, moreover their estimates from
the simulations are much less precise than those of AðNtÞ, so we
neglected them in the following.
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allow a comparison, we chose the same values of β and Nt
reported in Table III) and in Tables X–XII the values of
AðNtÞ extracted from these linear fits.
We then fitted these values with Eq. (44) keeping as only

free parameters γ3 and γ5. Results are reported in Table XIII
and Fig. 1. Thanks to the high precision in the determi-
nation of α, the systematic uncertainty on γ3 and γ5 due to
the uncertainty on α is negligible and we quote in
Table XIII only the statistical errors of the fits.

Looking at these results we see that there is a remarkable
agreement between the values of γ3 and γ5 obtained with
this method and those obtained in the previous section with
the snake algorithm. We also see, as anticipated, that with
this method there is a significative decrease of the uncer-
tainty on the determination of γ3 and that the values
obtained (with both methods) for β ¼ 0.751800 do not
agree within the errors with those obtained with the other
two values of β. This suggests that, within the precision of
our analysis, β ¼ 0.751800 is still slightly outside the
scaling window, while the data for β ¼ 0.756427 and β ¼
0.758266 agree between them thus showing a good scaling
behavior.
We quote as our final result,

γ3 ¼ −0.00048ð4Þ; γ5 ¼ 3.0ð4Þ × 10−7; ð45Þ

obtained combining together the values obtained at β ¼
0.756427 and β ¼ 0.758266 with the present approach.
These values are compatible within the errors with the value
obtained with the snake algorithm at β ¼ 0.756427.

TABLE VIII. Some information on the simulations.

β Nt;c Nt R Ns

0.751800 8 9, 10, 11, 12, 16, 20, 24 16, 24, 32, 40, 48, 64 128
0.756427 12 13, 14, 15, 16, 18, 20, 24 36, 48, 60, 72, 84, 96 192
0.758266 16 17, 18, 19, 20, 21, 22, 24, 32, 48 32, 48, 64, 80, 96, 112 256

TABLE IX. Results of the algorithm for β ¼ 0.756427 and
Nt ¼ 24.

R hΦðR;NtÞi
36 0.927589(9)
48 0.927717(9)
60 0.927872(9)
72 0.927978(9)
84 0.928115(9)
96 0.928247(9)

TABLE X. Results of the linear fits of the first two terms of
Eq. (39) for β ¼ 0.751800.

Nt AðNtÞ
9 1.088(23)
10 1.071(10)
11 1.053(7)
12 1.044(5)
16 1.019(2)
20 1.008(3)
24 1.003(3)

TABLE XI. Same as Table X but for β ¼ 0.756427.

Nt AðNtÞ
13 1.168(26)
14 1.127(28)
15 1.096(8)
16 1.039(23)
18 1.034(33)
20 1.019(18)
24 1.034(18)

TABLE XII. Same as Table X but for β ¼ 0.758266.

Nt AðNtÞ
17 1.247(35)
18 1.134(9)
19 1.100(26)
20 1.114(23)
21 1.103(26)
22 1.065(12)
24 1.025(20)
32 1.005(14)
48 0.999(37)

TABLE XIII. Results of the fits of AðNtÞ according to Eq. (44)
truncated at the order Oðx6Þ i.e. OðN12

t Þ.
β γ3 γ5 χ2r

0.751800 −0.00057ð3Þ 0.00000038(3) 1.11
0.756427 −0.00046ð3Þ 0.00000028(3) 1.54
0.758266 −0.00049ð3Þ 0.00000031(3) 1.09
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VII. CONCLUDING REMARKS

We studied, using two different methods and different
algorithms the correction beyond Nambu-Goto for the
confining potential in the three-dimensional gauge Ising
model. We found a good agreement between the two
approaches. The two largest values of β that we studied
show a good scaling behavior and lead to values for γ3 and
γ5 compatible within the errors. Our final estimate for these
parameters is γ3 ¼ −0.00048ð4Þ and γ5 ¼ 3.0ð4Þ × 10−7.
The value that we obtained for γ3 agrees with the bound

of Eq. (22), while γ5 is slightly below the bound of Eq. (21)
which, inserting the value of γ3 and keeping into account
the uncertainty in the determination of γ3, becomes
γ5 > 1.6 × 10−6. This difference is most probably due to
the truncation in the perturbative expansion. Keeping into
account higher-order terms, and including also γ7 might fill
this gap.
It is interesting to compare our result with the existing

estimates for γ3 for other LGTs. In [27] it was shown that
also for the SUð2Þ LGT in three-dimensional γ3 is negative.
The value quoted in [27] is γ3jSUð2Þ ¼ −0.00037ð6Þ which
is similar, but not compatible within the errors, with the one
we obtained here for the Ising model. On the contrary, for
SUð6Þ a positive value γ3 ≈ 3 × 10−4 was found [19,33,34].
These values represent the first steps toward a classification
of EST models for LGTs. Indeed, in the past years, one of
the main problems of the EST description of Yang-Mills
theories was its universality, i.e. the fact that it predicted
essentially the same behavior (with only a mild dependence
on the number of spacetime dimensions), for models as
different as the three-dimensional Z2 gauge model and the
four-dimensional SU(3) Yang-Mills theory. This feature is

now understood as a universality that manifests itself only
at low-energy (or, equivalently, a side effect of the high
accuracy of the Nambu-Goto approximation of EST), while
the details related to the gauge group (and, possibly, to the
confining mechanism into play) are instead encoded in the
γi corrections, which are not expected to be universal. In
particular, from the values quoted above, it seems that γ3 for
ordinary LGTs takes very small values, which seem to
increase with the complexity and size of the gauge group.
This should be contrasted with the case of the 3D Uð1Þ
model where sizeable deviations from the Nambu-Goto
prediction were observed in several quantities [49,66,67]
which most likely point to a much larger, positive value
of γ3.
Finally, let us add a comment on the numerical side of

our analysis. As we have seen, duality plays a crucial role in
our analysis and for this reason the approach discussed in
this paper is particularly suited for Abelian gauge theories,
however, apart from the numerical convenience, there is no
obstruction to extend the flux based method discussed in
Sec. VI, given enough computational power, also to non-
Abelian models. Moreover we have seen that with this
approach the error in the determination of AðNtÞ is
dominated by the statistical uncertainty while the system-
atic error due to σ and α is fully negligible. This means that
there would be in principle no obstruction to improve the
estimates of γ3 and γ5 with a larger statistics.
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APPENDIX: EVALUATION OF αðβÞ
A first approximation for α can be obtained assuming the

known scaling behavior for the string tension in the 3D
gauge Ising model

σðβÞ ¼ σcðβc − βÞ2ν

which leads to a simple and elegant expression for α

αðβÞ ¼ 2νσ

3N2
sðβc − βÞ :

However this is not enough for our purposes. In order to
estimate higher-order effective string corrections we need

to evaluate the flux density with an uncertainty smaller than
1% and thus it is mandatory to include in the expression the
next to leading terms of the scaling function. Following
[50] and using the results of [41] we can approximate the
scaling function as

σðβÞ ¼ σct2ν × ð1þ atθ þ btÞ;

where t ¼ β̃ − β̃c is the dual of the reduced temperature,
θ ¼ 0.5241ð33Þ is the next to leading scaling exponent and
the constants take the following values: σc ¼ 10.083ð8Þ,
a ¼ −0.479ð26Þ and b ¼ −2.12ð19Þ.
Inserting this correction in the definition of α and

approximating for simplicity 2θ ∼ 1 we finally obtain

αðβÞ ¼ 2νσ

3N2
sðβc − βÞ

�
1þ aθ

2ν
tθ þ ðb − a2Þθ

2ν
t

�
:

This is the expression that we used to obtain the values
listed in Table VIII.
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