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We introduce a new algorithm for the simulation of Euclidean dynamical triangulations that mimics the
Metropolis-Hastings algorithm, but where all proposed moves are accepted. This rejection-free algorithm
allows for the factorization of local and global terms in the action, a condition needed for efficient
simulation of theories with global terms, while still maintaining detailed balance. We test our algorithm on
the 2d Ising model, and against results for EDT obtained with standard Metropolis. Our new algorithm
allows us to simulate EDT at finer lattice spacings than previously possible, and we find geometries that
resemble semiclassical Euclidean de Sitter space in agreement with earlier results at coarser lattices. The
agreement between lattice data and the classical de Sitter solution continues to get better as the lattice
spacing decreases.
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I. INTRODUCTION

Lattice field theory is a versatile tool for investigating
quantum field theories in regimes where perturbation
theory is not applicable. Though it is well-known that
quantum gravity is nonrenormalizable in perturbation
theory [1], there remains the possibility that there is a
nontrivial ultra-violet fixed point, such that the theory is
effectively renormalizable nonperturbatively. Exploring the
asymptotic safety scenario for quantum gravity [2] requires
nonperturbative methods such as the functional renormal-
ization group (FRG) [3–6] (see, [7] for a review), or lattice
methods such as Euclidean/causal dynamical triangulations
(EDT/CDT) [8–13] (see [14,15] for reviews).
In this paper we focus on lattice methods, where the

emergence of semiclassical geometries from such calcula-
tions is by no means guaranteed. Numerical EDT calcu-
lations have nonetheless demonstrated the recovery of
geometries resembling semiclassical de Sitter space in

dimension four, and the agreement between the lattice
theory and the classical de Sitter solution improves as the
lattice spacing is made finer [13]. Pushing these studies to
still finer lattice spacings is important for testing the
asymptotic safety scenario, but it is difficult in current
implementations of lattice gravity using standard algo-
rithms. In this work we introduce and test an algorithm
for EDT that leads to significant speed-ups over current
algorithms, particularly at finer lattice spacings, which are
necessary to thoroughly investigate the phase diagram and
the emergent classical geometry.
Numerical calculations in lattice field theory typically

use Markov-chain Monte Carlo methods to stochastically
sample the phase space and estimate the path integral,
generating a series of configurations (for instance, of gauge
fields) that is representative of the equilibrium character
of the system. Since this is a stochastic sampling, more
accurate results can be achieved by running the calculation
for more time. However, lattice discretizations also involve
approximations: finite volumes, discretization of space-
time, and often others. These approximations contribute to
the error budget, and these errors can generally be reduced
by increasing the lattice volume and decreasing the lattice
spacing—both of which increase the computational cost.
Thus, lattice calculations are notoriously hungry for faster
algorithms and faster computers, since they can be used to
reduce either finite volume/discretization errors or statis-
tical errors.
The contributions to the numerical cost of a simulation

vary depending on the problem at hand. For instance, in
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many cases we want to simulate close to a continuous phase
transition, for example in Monte Carlo simulations of the
Ising model; here the main cost for a careful characteri-
zation of the phase transition is due to the critical slow-
down [16]. In lattice quantum chromodynamics (QCD)
this is also true; the inclusion of matter fields, especially
fermions, results in extra computational complexity. The
most general approach to Markov-chain Monte Carlo is the
famous Metropolis-Hastings algorithm [17], which often
serves as a “fallback” approach for simulations where no
other technique is known. In lattice QCD, we can greatly
accelerate the progress through phase space using global
update techniques such as hybrid Monte Carlo (HMC) [18],
allowing for a large change in the configuration that
nonetheless results in a small change in the action. For
the Ising model there exist the even more efficient cluster
algorithms [19] (see [20] for an overview), which also make
large changes in the configuration with high acceptance,
leading to fast sampling of the phase space.
Lattice quantum gravity calculations attempt to evaluate

the path integral over spacetime geometries using a similar
Markov-chain Monte Carlo calculation [21]. Spacetime is
discretized as a mesh of connected simplices; the con-
nections between these simplices characterize the geom-
etry, and the path integral becomes a sum over all possible
geometries, weighted by the Boltzmann factor for the
action. Since there is no known global update algorithm
(such as RHMD for lattice QCD), calculations have
generally used the Metropolis-Hastings algorithm. The
Metropolis suggestions come from a set of local trans-
formations known as the Pachner moves [9,22–24], which
are ergodic and reversible as required. The gravity simu-
lations suffer from the usual critical slowing down asso-
ciated with approaching a phase transition, but they also
suffer from dramatically lower acceptance of the local
moves in the region of the phase diagram corresponding to
the putative continuum limit. In this work we introduce a
rejection free algorithm that addresses this second problem
and leads to a speed-up of up to two orders of magnitude for
fine lattice generation compared to standard Metropolis.
There is a long history of using rejection free algorithms

to evaluate the partition function of models in the low
temperature regime where the acceptance of standard
Metropolis becomes very small [25–31] (see [32] for an
overview), but the algorithm we introduce here is new as far
as we are aware, in its ability to handle a change in action
with local and global terms, where the global terms arise in
lattice gravity due to the fluctuations in volume of the
geometry. We note that the algorithm introduced here is
more general than its application to gravity, and it may be of
interest for simulating other discrete systems that involve
global contributions to the action when the acceptance of
standard Metropolis is very low.
Our application to gravity requires that we take account

of global contributions when computing the probability of

making an update move. In order to separate out the global
and local contributions, we must generalize the notion of
the Metropolis accept probability to be no longer piecewise
defined. We refer to this generalized weight as the ponder-
ance, a quantity we discuss. We show that this method
leads to an OðlogðNÞÞ scaling as a function of the lattice
size N, independent of the Metropolis accept rate.
While the Ising model does not feature a global con-

tribution to the action, we use the example of the 2d-Ising
model to show that the algorithm framed in terms of
ponderances generates the correct canonical ensemble
when it is sampled correctly. We also validate the new
rejection free algorithm for EDT by comparing with results
generated with (a parallel version [13] of) standard
Metropolis. Finally, we use our new algorithm to generate
EDT ensembles that would not have been possible with our
previous algorithms, and we study the phase diagram of the
theory in a region in which we were previously unable to
simulate. We find that the agreement between our geom-
etries and the classical de Sitter solution continues to
improve at finer lattice spacing.
This paper is organized as follows: In Sec. II we review

the lattice gravity formulation of EDT in four dimensions.
In Sec. III, after reviewing the basic idea of rejection-free
algorithms, we introduce our new algorithm, and we
discuss its detailed implementation. Section IV discusses
performance and validation tests of the algorithm. These
tests include a study of the algorithm for the 2d-Ising model
and a series of tests for 4d EDT, the main target of this
work. Section V presents the results of our study of EDT at
finer lattice spacings than previously possible, including a
study of the phase diagram in this region and a comparison
of the new ensembles to the de Sitter solution. We conclude
in Sec. VI.

II. EUCLIDEAN DYNAMICAL TRIANGULATIONS

In Euclidean quantum gravity the partition function is
formally given by a path integral sum over all geometries

ZE ¼
Z

D½g�e−S½g�; ð1Þ

where the exact form of the action S depends on the chosen
approach to quantum gravity.
In dynamical triangulations, the path integral is formu-

lated directly as a sum over geometries, without the need
for gauge fixing or the introduction of a metric. The
dynamical triangulations approach is based on the con-
jecture that the path integral for Euclidean gravity is given
by the partition function [8,33]

ZE ¼
X
T

1

CT

�YN2

j¼1

OðtjÞβ
�
e−SER ; ð2Þ
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where CT is a symmetry factor that divides out the number
of equivalent ways of labeling the vertices in the triangu-
lation T. Furthermore, SER is a discretized version of the
Einstein-Hilbert action

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p ðR − 2ΛÞ; ð3Þ

with R the Ricci curvature scalar, g the determinant of the
metric tensor, G Newton’s constant, and Λ the cosmologi-
cal constant. The term in brackets in Eq. (2) is a nonuniform
measure term [34], where the product is over all two-
simplices (triangles), andOðtjÞ is the order of triangle j, i.e.
the number of four-simplices to which the triangle belongs.
This corresponds in the continuum to a nonuniform
weighting of the measure in Eq. (1) by

Q
x

ffiffiffi
g

p β, with β
a free parameter in the simulations.
In four dimensions the discretized version of the

Einstein-Hilbert action is the Einstein-Regge action [35]

SER ¼ −κ
XN2

j¼1

V2δj þ λ
XN4

j¼1

V4; ð4Þ

where δj ¼ 2π −OðtjÞ arccosð1=4Þ is the deficit angle
around a triangular hinge tj, with OðtjÞ the number of
four-simplices meeting at the hinge, κ ¼ ð8πGÞ−1, λ ¼ κΛ,
and the volume of a d-simplex is

Vd ¼
ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p

d!
ffiffiffiffiffi
2d

p adlat; ð5Þ

where the equilateral d-simplex has a side of length alat.
After performing the sums in Eq. (4) one finds

SER ¼ −
ffiffiffi
3

p

2
πκN2 þ N4

�
κ
5

ffiffiffi
3

p

2
arccos

1

4
þ

ffiffiffi
5

p

96
λ

�
; ð6Þ

where Ni is the number of simplices of dimension i. We
rewrite the Einstein-Regge action in the simple form

SER ¼ −κ2N2 þ κ4N4; ð7Þ

where we introduce the parameters κ4 and κ2 in place of κ
and λ for convenience in the numerical simulations. Hence,
the Einstein-Regge action depends only on global quan-
tities of the discretized geometry, namely the number of
four- and two-simplices, but not on any local structure. The
local structure does enter through the measure term,
however.
Geometries are constructed by gluing together four-

simplices along their (4 − 1)-dimensional faces. The
four-simplices are equilateral, with constant edge length
alat. The set of all four-geometries is approximated by
gluing together four-simplices, and the dynamics is

encoded in the connectivity of the simplices. Most early
simulations of EDT [8–10,36–38] used a set of triangu-
lations that satisfies the combinatorial manifold con-
straints, so that each distinct 4-simplex has a unique set
of 4þ 1 vertex labels. The combinatorial manifold con-
straints can be relaxed to include a larger set of degenerate
triangulations in which distinct four-simplices may share
the same 4þ 1 (distinct) vertex labels [39]. It was shown
that the finite size effects of degenerate triangulations are a
factor of ∼10 smaller than those of combinatorial trian-
gulations [39]. This makes it easier to study the phase
diagram with degenerate triangulations, although there
appears to be no essential difference in the phase diagram
between degenerate and combinatorial triangulations in
four dimensions [40–42].
It is necessary to constrain the four-volume of the

lattices, either to a fixed value or to a window of values,
in order to efficiently sample the path integral at large
volumes. We choose to simulate at a fixed fiducial number
of four-simplices Nf

4 , though in practice the lattice volume
fluctuates somewhat around this value. This is due to the
fact that the local Pachner moves are not ergodic for fixed
volume, so the volume must be allowed to fluctuate in order
to properly sample the path integral. To keep the volume
fluctuations under control, a volume preserving term
δλjNf

4 − N4j is added to the action to keep the volume
close to the fiducial number of four-simplicesNf

4 . Although
the simulations are only ergodic in the limit that δλ goes to
zero, for sufficiently small δλ this is expected to introduce
only a small systematic effect. In practice we have found
that varying the value of a small but nonzero δλ has little
effect on the observables obtained from the simulations, as
discussed in more detail in Sec. IV B. Note that the
presence of fluctuating global terms in the action such
as this one complicates the implementation of standard
rejection free algorithms.

III. A NEW REJECTION-FREE ALGORITHM

For EDT, theMetropolis accept rate can be quite low, and
it decreases substantially as one approaches the continuum
limit; this provides a critical limitation on the ability to make
contact with the continuum, since a computer implementing
the Metropolis algorithm will spend most of its time
proposing moves that it will then reject.
We thus propose a rejection-free update that cannot fail to

make an update. This algorithm offers significant perfor-
mance gains for finer lattices since it overcomes the low
acceptance rate of traditional Metropolis. Rejection-free
approaches to Markov-chain Monte Carlo have been devel-
oped previously, although to our knowledge not for dynami-
cal triangulations.
The algorithm we present generates a Markov chain

based on the Pachner moves and, despite the presence
of a global contribution to the action, exhibits a naïve
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OðlogðNÞÞ scaling of the cost per move. It is not limited to
dynamical triangulations and can be applied to other
discrete systems; we use the 2d Ising model as a test case.
In this section we first briefly review the general idea of

rejection free algorithms for local actions, and then intro-
duce an alternative mathematical formulation of Markov
chain Monte Carlo to efficiently employ rejection free
algorithms for actions with global contributions; this
requires an alternative to the Metropolis accept probabil-
ities that we call ponderances.

A. Rejection free algorithm for local actions

The Metropolis algorithm generates a Markov chain that
progresses through configuration space by proposing
moves until one is accepted. As discussed previously, this
becomes slow if the accept rate is low. We wish to
determine which move iwill be the next one to be accepted
in a faster way.
We call the Metropolis accept probability of a move at

site i PðiÞ. Then, the probability P̃ðiÞ that the move at any
given site i will be the one eventually accepted is

P̃ðiÞ ¼ PðiÞP
jPðjÞ

; ð8Þ

that is, the probability of eventually accepting the move at
any particular site i is a fraction of the sum over Metropolis
probabilities for all possible successive moves.
The essence of the rejection-free algorithm (for purely

local actions) is to instead calculate in advance the
Metropolis accept probabilities of all possible moves, then
determine the next move that the Metropolis algorithm
would eventually accept.
Once this move is made, the new accept probabilities of

each possible move could in principle change. However, for
many models, the accept probability depends only on the
local neighborhood of a proposed move. For instance, in
the 2d Ising model, flipping one spin will change the accept
probabilities of five moves: itself and its four neighbors.
In particular, a standard rejection free algorithm for a

lattice with N sites and a single move that can be performed
(such as in the Ising model), follows the steps:
(1) Initialize

(i) Save Metropolis probabilities PðiÞ to perform a
move at lattice site i.

(2) Find and perform next move
(i) Generate a random number r∈ ð0;Pi PðiÞ�.
(ii) Determine the site j that corresponds to the

random number r1

(iii) Perform the move at the chosen site j.

(3) Update the stored Metropolis probabilities
(i) Determine the sites k for which the accept

probabilities have changed after making the
move at site j.

(ii) Update or recompute the Metropolis probability
of accepting the move at each site k.

(4) Repeat from step (2).
We can already see the potential speed-up: if the cost of

step (3) is fast compared to the cost of proposing a large
number of rejected moves before one move is accepted, this
algorithm will be faster. This will generally be true if the
number of moves whose probabilities need to be updated is
less than the number of rejected moves per accepted move
in standard Metropolis.
In the Metropolis algorithm, the Markov chain often

includes multiple steps in succession where the lattice does
not change due to a series of proposed moves being
rejected. To statistically reproduce the behavior of the
Metropolis algorithm using the rejection-free approach,
we need to determine the number nrej of moves that would
have been rejected before finally accepting one. As we
show in Appendix A,

nrej ¼ floorðlog1−PðiÞ=NðηÞÞ ð9Þ

with the total lattice size N and a random number η
such that

η∈ ð0; 1Þ: ð10Þ

We note that this relation was derived for the rejection-free
algorithm assuming that Metropolis probabilities are being
used to decide which move is accepted next (see steps 1 and
3 above). For applications with a global contribution to the
action such as EDT a different approach is needed, as we
show in Sec. III C. In that case nrej in (A5) can no longer
be used to compute the number of moves a Metropolis
algorithm would have rejected.

B. Evaluating the algorithmic complexity
of the rejection-free algorithm

Suppose that we wish to implement the rejection-free
algorithm on a model with Nm possible moves, and that
after making a move, the accept probabilities of Nc other
moves will change.
The algorithmic complexity of each accepted move

is thus:
(1) OðlogNmÞ to select the move to make (using a

binary decision tree; see Appendix B).
(2) Oð1Þ to actually make the move.
(3) OðNcÞ to calculate the new accept probabilities of

each move whose accept probability has changed;
this step can be quite readily parallelized.

1When saving the summed probabilities P̂ðjÞ ¼ P
i≤j PðiÞ in a

list, this corresponds to choosing the site j with P̂ðj − 1Þ < r ≤
P̂ðjÞ, with P̂ð0Þ ¼ 0. We discuss a more efficient implementation
via binary trees in Sec. III E.
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(4) OðNc logNmÞ to update the binary decision tree
with those changed probabilities; this step can also
be parallelized.

In general, we expect Nc ≪ Nm if the action is local;
regardless of the size of the lattice, only a small number of
probabilities must be updated once a move is made. This
algorithm thus does not include any steps of OðNmÞ and
does not depend on the Metropolis accept probability, so it
does not slow down for large lattices or low accept rates.

C. Incorporating global changes to the action

For actions that are not local, it may be the case that
Nc ∝ Nm, leading to high computational cost for steps (3)
and (4) above. In EDT simulations, there are global
contributions to the action that would require recomputing
all Metropolis probabilities after each local move. The
Einstein-Regge action (7) only depends on the total number
of two- and four-simplices, and not on any local structure.
However, the simulations do depend on the local geometry
through the measure term in (2). Exponentiating the
measure term and including it as a contribution to the
action, we write schematically

Stot ¼ Sloc þ Sglob; ð11Þ

where the Einstein-Regge action is part of the global
action Sglob, and the measure term is part of the local
action Sloc. The volume preserving term also contributes to
the global part of the action, as it only depends on the
number of four-simplices.
Since the total number of simplices can change after each

move, these global contributions to the action cause issues
with the above algorithm. They are uniform for each
Pachner move type, but the global action of each move
type can change every time a move is made. This would in
principle require updating the accept probability of every
move on the lattice, requiring a very large number of
updates of the probability decision trees. This would cause
an unacceptable impact on performance.
Since the global contributions to the change in action

ΔSglob are the same for every move type, one might
imagine separating out the contribution to the accept
probability from the local and the global terms in the
action. In this approach, one could imagine a rejection-free
algorithm that stores only the local contribution to the
accept probability. Then one could choose the next Pachner
move in a two-step process:
(1) Determine which of the five types of Pachner move

will be made, using only the global factors and the
summed accept probabilities of all moves of
each type.

(2) Once the Pachner move type is chosen, then use the
local contributions to the accept probability to
choose which simplex of the appropriate type to
apply that Pachner move to.

If the accept probability factorized neatly into local and
global contributions, this approach would work. However,
in the conventional Metropolis algorithm, it does not.
Recall the definition of the Metropolis accept probability:

PðA → BÞ ¼
(
1 if SB < SA
expðSA − SBÞ if SB > SA

ð12Þ

The piecewise definition of the accept probability thus
means the local and global parts do not factorize. Consider
a move that reduces the local action substantially; regard-
less of the global factors, its accept probability will be 1.
Thus, changes in the global factors for one Pachner move
type will affect the Metropolis probabilities of some moves
but not others.
This piecewise definition leads to a situation where

PðA → BÞ ≠ ðPðA → BÞÞlocðPðA → BÞÞglob: ð13Þ

Since the conventional Metropolis accept probability
does not factorize neatly into local and global parts, we
must either update every accept probability whenever the
global factors change (which is computationally expensive)
or develop an alternative to the Metropolis accept proba-
bility that can be factorized into local and global
contributions.

D. An alternative to the accept probability:
The “ponderance”

The rejection-free algorithm presented in Sec. III A is
designed to reproduce the same Markov chain as the
Metropolis algorithm, and thus uses the Metropolis accept
probabilities to calculate the next move that would be
accepted and the number of moves that would be rejected
before this accepted move. However, the notion of “accept
probability” here is purely vestigial: nothing is being
accepted or rejected, and these values do not represent the
probability of any event. Instead, the value stored in the
decision trees represents the relative likelihood that a
move will be chosen as the next move in the Markov
chain. Thus, we are free to store any other quantity in the
decision trees so long as the relative likelihoods are in the
correct proportion, ensuring that the algorithm preserves
detailed balance.
Detailed balance

PðA → BÞ
PðB → AÞ ¼

PðBÞ
PðAÞ ; ð14Þ

states that the ratio between the probability of the transition
from state A to state B [PðA → BÞ] and the probability of
the reverse transition from state B to state A [PðA → BÞ] is
equal to the ratio between the probability of state B being
sampled (PðBÞ) and the probability of state A being
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sampled [PðAÞ]. Since algorithms like these are generally
applied to the canonical ensemble, the target distribution is
PðXÞ ∝ e−SX . The Metropolis algorithm preserves detailed
balance using the definition in Eq. (12), since

PðA → BÞ
PðB → AÞ ¼

eðSA−SBÞ

1
¼ e−SB

e−SA
: ð15Þ

But this definition is not the only one that maintains
detailed balance. As an alternative we define a new
quantity, the ponderance PðA → BÞ, which we use to
replace the piecewise-defined Metropolis probability from
Eq. (12) in our algorithm:

PðA → BÞ ¼ e
1
2
ðSA−SBÞ: ð16Þ

This quantity cannot be interpreted as a Metropolis accept
probability, since it may be greater than unity. However, in
the rejection-free algorithm, the Metropolis accept proba-
bility is repurposed as a selection weight in a decision tree;
since it is not actually the probability of any event, there is
no mathematical reason that it cannot be greater than unity.
The factor 1=2 in Eq. (16) is necessary to maintain detailed
balance, as we discuss later.
Because it acts as a selection weight in our algorithm,

we could appropriately refer to this quantity e
1
2
ðSA−SBÞ as

the weight. However, this term in Markov-chain
Monte Carlo is usually reserved for sampling weights once
the sequence of configurations is generated (such as in the
technique called “reweighting”), and we use it with this
meaning below in Eq. (20). To avoid confusion, we
introduce a new term for it.
The term “ponderance” for e

1
2
ðSA−SBÞ is a mathematical

neologism: we choose this word since its first letter P
evokes its origin as an alternative to the Metropolis accept
probability P, while its meaning of “weight” in archaic
English describes its role in our algorithm as a selection
weight.
It is not piecewise defined, so it cleanly separates into

local and global contributions:

PðA → BÞ ¼ e
1
2
ðSA;locþSA;glob−ðSB;locþSB;globÞÞ

¼ e
1
2
ðSA;loc−SB;locÞe1

2
ðSA;glob−SB;globÞ

¼ ðPðA → BÞÞlocðPðA → BÞÞglob: ð17Þ

Even though the ponderance of a move cannot be
interpreted as a probability directly, it is proportional to
the probability that it will be chosen as the next move in the
Markov chain. Thus, replacing probabilities by ponder-
ances in the implementation discussed in Sec. III E retains
the character of the Metropolis Markov chain.
Once again we need to make sure to reproduce the

correct importance sampling, emulating the behavior of
the Metropolis Markov chain whereby configurations are

repeated whenever a move is rejected. The purely local
rejection-free algorithm based on accept probabilities that
is designed to exactly mimic the Metropolis algorithm
requires a determination of the number of rejected moves
nrej, Eq. (A5) at each step. We must derive an equivalent for
our new algorithm that instead uses ponderances.
The transition probability from state A to B can be

calculated as the probability of the particular move
being chosen multiplied by the probability the move is
accepted, and since this is a rejection-free algorithm,
PðA → BacceptedÞ ¼ 1 for all possible moves, so the tran-
sition probability is just the probability of the move being
chosen. We choose the move by generating a random
number between 0 and the total ponderance of all possible
moves in state A ðPN

i¼1 PðA → iÞÞ. Therefore, the tran-
sition probability of move A → B is

PðA → BÞ ¼ PðA → BchosenÞ × 1

¼ PðA → BÞP
N
i¼1 PðA → iÞ ð18Þ

Plugging Eq. (18) into (14), using (16), we get:

PðBÞ
PðAÞ ¼

e−SB
P

N
i¼1 PðB → iÞ

e−SA
P

N
i¼1 PðA → iÞ ð19Þ

This means that if we sample after a fixed number of moves,
the distribution we get is PðAÞ ∝ e−SA

P
N
i¼1 PðA → iÞ,

which deviates from our target distribution. Hence, this
version does not satisfy detailed balance; wewill call this the
move accumulating version (see Sec. IV).
However, we could compensate for this deviation by

assigning a weight ω

ω ¼ 1P
N
i¼1 PðA → iÞ ð20Þ

to each state; this weight is the inverse of the total
ponderance of moves exiting that state. We then sample
after a fixed amount of accumulated weight. This has the
effect of making it more likely to sample states with a large
weight, or equivalently a small total ponderance. This is
analogous in the Metropolis algorithm to the Markov chain
getting “stuck” in a state when all moves away from that
state have low accept probabilities, for example a highly
magnetized state at low temperature in the 2d Ising model.
The weight ω plays a similar role in our algorithm to the
quantity nrej that is used in rejection-free algorithms based
on Metropolis probabilities [See Eq. (A5)].
We can also understand the role of the weight factor at

low ponderances: low ponderances correspond to moves
that are unlikely to happen in the Metropolis algorithm.
Hence, a state with a small average ponderance of moves
leading away from it will remain unchanged for a long
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Monte Carlo time. Conversely, such a state will have a large
weight, such that the weight of a move can be understood as
the dwell time of the state before the move.
We might imagine that this algorithm generates a

weighted ensemble, producing a chain of configurations
combined with a weight factor for each; then, measuring
any observable on this ensemble involves computing a
weighted average. This is commonly done in lattice QCD
calculations using “reweighting,” but it involves an extra
complication in analysis. Instead, we choose to sample the
Markov chain at fixed intervals of accumulated weight
factor ω, such that configurations with large weight factor
are more likely to be sampled but all sampled configura-
tions contribute equally in analysis; we call this the weight
accumulating version (see Sec. IV). This reproduces the
importance sampling of the Metropolis algorithm, as we
demonstrate in Sec. IV, without the complication of the
weighted ensemble.

E. Implementation details: Binary trees and
parallelization

In this subsection we label moves, rather than lattice sites
where the move can be performed. In order to implement
this procedure, we must find an efficient way to select the
next move i from among all possible moves such that the
probability of choosing move i is proportional to PðiÞ.
Since the total number of possible moves may be quite
large, we want to avoid any operations that require us to
iterate over all possible moves.
We achieve this by storing the local part of the ponder-

ances ðPðiÞÞloc of each move in a binary decision tree. This
procedure allows the algorithm to select the move j in
OðlogðNÞÞ time. In practice, for EDT simulations this is a
trivial contribution to the overall runtime of the calculation.
Once the move j is chosen, we must update things to

reflect that move:
(1) Actually make that move (change the geometry of a

dynamical triangulation simulation, flip a spin in the
Ising model, etc.)

(2) Create a list of other moves whose local ponderance
Ploc might be changed by that move (i.e., those in
the local neighborhood of j).

(3) Recompute the local ponderances Ploc of moves on
that list.

(4) Update the binary decision tree to reflect the set of
changed local ponderances fPlocg.

It is worth noting at this point a peculiarity of dynamical
triangulation simulations. Unlike the Ising model, where
there are always a fixed number of possible moves (one per
spin), the collection of simplices in a dynamical triangu-
lation simulation must grow and shrink. As simplices are
created and destroyed by the Pachner moves, it is possible
to dynamically prune and grow the probability tree, taking
care to ensure that it stays balanced. However, this is not
necessary. If a simplex is deleted from the geometry, it

suffices to set Phere to zero for that move in the probability
tree, ensuring that it cannot be chosen; the tree-traversal
algorithm will then skip over it. Thus, in practice we create
a tree large enough to hold moves for the maximum
possible number of simplices, recognizing that as many
as half of them may have Phere ¼ 0 if those simplices
currently do not exist. This may seem inefficient, but due to
the OðlogNÞ cost of tree traversal it adds only a small
fraction to the time required to find the move j. This allows
us to keep the tree geometry fixed during a run.

IV. PERFORMANCE TESTS AND VALIDATION

A. Validation tests for the 2d Ising model

The Ising model serves as a test bed for new
Monte Carlo algorithms. In this work we focus on the
d ¼ 2 Ising model, which is exactly solvable in the
infinite-volume limit [43]. This exact solution allows
analytical access to some observables also for finite
systems. Hence, the 2d Ising model serves as a proof-
of-principle demonstration that the use of ponderances in
our rejection-free algorithm leads to the correct impor-
tance sampling. We test our algorithm by investigating
two observables: the average magnetization as a function
of the temperature T, and the probability distribution for
the energy of a state at fixed T. We perform all our studies
on an N ¼ 32 × 32 square lattice.
In order to illustrate our rejection-free algorithm we

compare the case where we take measurements after a
certain amount of weight has accumulated (the weight
accumulating version), which should mimic the counting of
rejected moves for the Metropolis algorithm, and satisfies
detailed balance, with the case where we take measure-
ments after a fixed number of accepted moves (the move
accumulating version), which we expect leads to the wrong
importance sampling, as it does not satisfy detailed balance.
This is demonstrated to be the case in our Ising model
simulations.

1. Magnetization as a function of the temperature

We first consider an analysis of the average magnetiza-
tion of the system. On the lattice the magnetization is
simply given by the sum of spins over all lattice sites, i.e.,

M ¼
XN
i¼1

si; ð21Þ

where si ¼ �1 is the spin at lattice site i.
We test the new algorithm for temperatures T ∈ ½0.5; 4�,

i.e., at temperatures on both sides of the transition, by
comparing the results of our rejection-free algorithm with
that of the standard Metropolis algorithm. At low temper-
atures we also compare the results of our rejection-free
algorithm to a perturbative expansion of the partition
function. The perturbative expansion proceeds as follows:
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one counts the magnetization and the multiplicity of states
at a given fixed energy

E ¼ −
X
i;j

sisj: ð22Þ

In particular, the energy above the ground state is deter-
mined by the number of misaligned boundaries, i.e., the
boundary between a spin up and a spin down, on a given
lattice. The ground state is the state where all spins
are aligned, and it comes with multiplicity N ¼ 1. The
leading-order perturbation to the ground state is a state with
one misaligned spin, corresponding to four misaligned

boundaries, and it comes with multiplicity N ¼ N. The
next-to-leading order term corresponds to six misaligned
boundaries, and so on. Within this expansion, the average
of the squared magnetization reads

hM2i ¼
P

i¼0

P
j M

2
ijN ije−EiP

i¼0N ie−Ei
; ð23Þ

where Ei is the energy of a given state,M2
ij are the different

squared magnetizations of a state with energy Ei and N ij

are the corresponding multiplicities. Up to ten misaligned
boundaries, this ratio of sums evaluates to

hM2i≈2Ne20=T þ2ðN−2Þ2e12=T þ4ðN−4Þ2e8=T þðN3þN2−120Nþ480Þe4=T þ4ðN3−7N2−92Nþ688Þ
Nð2e20=T þ2Ne12=T þ4Ne8=T þðNþ9ÞNe4=T þ4ðNþ5ÞNÞ : ð24Þ

Additionally, we know that the leading order contribu-
tion for 12 misaligned boundaries comes from a state with
three isolated flipped spins, with contribution

hM2iLO ∼
NðN − 5ÞðN − 10Þ

2
e2

N−12
T ; ð25Þ

which allows us to estimate the temperature Tcut where the
expansion breaks down, i.e., where

hM2iLO
hM2i ≈ 0.1: ð26Þ

For our order of approximation, we expect this to be

Tcut ≈ 1.1: ð27Þ
Figure 1 compares the numerical results for the squared

magnetization at low temperatures, showing the deviation
from a completely magnetized state. We compare the
results for the move accumulating and weight accumulating
versions of the rejection free algorithm with that of the

FIG. 1. Temperature dependence of the squared magnetization at low temperatures. The dashed (dotted) black line shows the
perturbative expansion (24) below (above) its expected range of validity. The blue boxes (red crosses, green circles) indicate the
numerical results obtained with the Metropolis algorithm (the rejection-free algorithm, measuring after a fixed number of accepted
moves, the rejection-free algorithm, measuring after a fixed number of accumulated weight).
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Metropolis algorithm. Additionally, we plot the perturba-
tive result, Eq. (24). We can clearly see that the weight
accumulating version of the rejection-free algorithm is in
excellent agreement with the Metropolis algorithm and
with the perturbative expansion within its range of validity.
However, the move accumulating version of the rejection
free algorithm consistently underestimates the correct
magnetization of the system and leads to wrong results.
This is expected, as this version of the algorithm does not
satisfy detailed balance, and hence does not perform the
correct importance sampling.

2. Energy distribution of states at fixed temperature

As a second test of the validity of our rejection-free
algorithm using the Ising model, we investigate the energy
distribution of states at a fixed temperature. In particular,
we follow [44], and study the probability distribution Pk of
finding an equilibrium state with energy 4kJ above the
ground state. This probability is given by

PkðTÞ ¼
gke

− 4kJ
kBTP

N
k¼0 gke

− 4kJ
kBT

; ð28Þ

where kB is the Boltzman constant, and gk is the number of
possible configurations, i.e., the multiplicity of a state with
energy 4kJ above the ground state, which can be computed
for a general square lattice of size N [44]. In our numerical
simulations we set J ¼ 1 and kB ¼ 1.
In the left panel of Fig. 2 we show the analytical result

for the energy distribution of an N ¼ 32 × 32 square lattice
at T ¼ 2 (black boxes). We compare the analytical result
with that of the rejection-free algorithm. Again, we see that
the move accumulating version (red crosses) gives wrong
results as expected, overestimating more energetic con-
figurations, and underestimating lower excitations to the
ground state. However, the weight accumulating version of
our algorithm (green dots) shows good agreement with
the analytical distribution. In the right panel of Fig. 2 we
show the deviation of the numerical results from the

analytical result in units of the statistical uncertainty.
While the move-accumulating version systematically devi-
ates from the analytical solution, the weight-accumulating
method shows small random deviations only. In particular,
for the 133 nonvanishing values shown in Fig. 2, we obtain
χ2Weight acc ¼ 129, and χ2Move acc ¼ 468353.
These results allow us to draw the following conclusion:

our rejection free algorithm yields the correct importance
sampling in Monte Carlo simulations when properly
implemented. These Ising model calculations demonstrate
that it is necessary to use the weight, (20), as a proxy for
Monte-Carlo time, and not the number of accepted moves.
The latter results in an importance sampling which deviates
systematically from the analytical results. Our rejection-
free algorithm thus passes a crucial consistency test.

3. Performance gains

For the 2d Ising model with nearest-neighbor interaction
the performance gains of the rejection free algorithm are
easy to estimate: for each accepted move of the rejection
free algorithm, the probabilities or ponderances of five
lattice sites have to be re-calculated. As the lattice is static,
this holds for any acceptance rate, which can be adjusted by
changing the temperature T. Figure 3 shows the speed-up
of the rejection free algorithm compared to the Metropolis
algorithm. Here, we define the speed-up as

speed-up ¼ ðaccepted moves=secondÞrejection-free
ðaccepted moves=secondÞMetropolis

: ð29Þ

To justify this as the appropriate comparison to make, we
note that after N accepted moves, both the Metropolis
algorithm and our new rejection free algorithm will have
generated comparable datasets. The Metropolis algorithm
will generate a sequence of N different configurations,
with each of those N repeated many times. Meanwhile
the rejection-free algorithm will have generated N different
configurations along with the weight factor for each.

FIG. 2. Left panel: probability distribution of energy states at T ¼ 2 for the analytical result (black squares), the weight accumulating
rejection-free code (green circles), and the move accumulating rejection-free algorithm (red crosses). The state k corresponds to an
energy of 4kJ above the ground state. Right panel: deviation of the numerical result from the analytical result, normalized to the
statistical uncertainty of the numerical result.
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Thus, in order to compare like-for-like in evaluating the
performance of these algorithms, we look at the number of
acceptedmoves in theMetropolis algorithm, not the number
of proposed moves; this allows us to compare the cost
of generating comparable datasets from each algorithm
using Eq. (29).
As expected, the speed-up is a power-law as a function

of the acceptance rate for small enough acceptance rates.
We can also see that for relatively large acceptance rates,
the Metropolis algorithm is faster than the rejection-free
algorithm. This is expected, since the advantage of rejec-
tion free disappears when the acceptance of standard
Metropolis is sufficiently high, given the extra overhead
of updating the ponderances in rejection free.

B. 4d EDT

1. Validation tests

Since our main purpose for the rejection-free algorithm
is the application to EDT, we demonstrate that it produces
correct results also for this case. In contrast to the 2d Ising

model, we do not have analytical results to compare to,
but we are still able to compare against results from the
Metropolis algorithm. We perform two independent tests:
first, we compare the determination of our preferred order-
parameter for studying the phase transition in EDT between
old and new algorithms for two volumes at fixed lattice
spacing. Second, we compare two lattice quantities, the
average local curvature, and the tuned value of κ4 at
(approximately) fixed volume, in the limit that the volume
preserving term in the action is taken to zero.

Peak height of shelling function. We introduce the shelling
function Nshell

4 ðτÞ in order to characterize the emergent
shape of our lattice geometries. Nshell

4 ðτÞ is the total number
of four-simplices in a spherical shell one four-simplex
thick, a geodesic distance τ away from a randomly chosen
four-simplex. This function is averaged over multiple
random sources on a given configuration and over all
configurations of an ensemble. The shelling function differs
markedly in the different phases of EDT, so that the height
of the peak of the shelling function Nshell

4;peak serves as a good
order parameter for studying the phase diagram. We
therefore use it for one of our validation tests by comparing
the peak height results between the rejection free and
standard Metropolis algorithms. Figure 4 shows the relative
difference of Nshell

4;peak between the two algorithms at κ2 ¼
3.0 for two different volumes. The relative difference is
statistically compatible with zero for the full dataset, where
a constant fit to the difference gives C ¼ 0.001ð4Þ for the
left panel (hN4i ¼ 6000), and a similar fit to the data in
the right panel gives C ¼ −0.004ð9Þ (hN4i ¼ 16000).
The errors are dominated by the statistical error of the
Metropolis algorithm runs, since it is more time consuming
to take data using this slower algorithm. The agreement
serves as a useful check of the new algorithm.

Lattice observables.As an even stronger test, we focus on a
single ensemble and compare two lattice quantities that can

FIG. 3. Performance gain of rejection-free algorithm compared
to the Metropolis algorithm. We compare the average time it takes
to perform a single move. For the Ising model, we tune the
acceptance rate by adjusting the temperature T. For EDT the
acceptance rate varies as a function of κ2 and β.

FIG. 4. Relative difference of the peak heightNshell
4;peak of the shelling functionN

shell
4 ðτÞ between the two algorithms. We show the results

for fixed κ2, and as a function of β. Left panel: hN4i ¼ 6000, and κ2 ¼ 3. The fit to a constant C yields C ¼ 0.001ð4Þ with
χ2red=d:o:f: ¼ 0.521. Right panel: hN4i ¼ 16000, and κ2 ¼ 3. The fit to a constant C yields C ¼ −0.004ð9Þ with χ2red=d:o:f: ¼ 0.951.
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be determined to higher precision. We study the average
Regge curvature [41]

hRi ≈ 2π

10 arccosð1=4Þ
�
N2

N4

�
− 1; ð30Þ

and the tuned hκ4i value. Figure 5 shows the relative
difference between these quantities for the two different
algorithms. We display them as a function of δλ, the
coefficient of the volume preserving term introduced in
the simulations. The Pachner moves that evolve the Markov
chain are not ergotic, except in the limit that δλ goes to zero,
so a small systematic error is expected for all observables
within the approximation of finite δλ. Thus, a precision
comparison of observables using different algorithms must
take the δλ → 0 limit.
As one can see in Fig. 5 the two algorithms agree at the

per-mil level, even for rather large values of δλ.
Furthermore, the relative differences decrease with decreas-
ing δλ, showing that in the limit δλ → 0 the results of the
two algorithms agree. Figure 5 also indicates that the
residual error from not taking the δλ → 0 limit is small. We
have chosen δλ ¼ 0.04 for most of our simulations as a
compromise between precision and performance, since the
cost of simulations grows as δλ shrinks.
The good agreement between the new rejection-free

algorithm and standard Metropolis gives us confidence that
the new algorithm is also behaving correctly for 4d EDT.

2. Performance gains

Having established that the rejection free algorithm
agrees with the Metropolis algorithm, we turn to measure-
ments of the performance gains for EDT. After each local
update the rejection free algorithm requires that the ponder-
ances associated with that local region be updated. This is
the main overhead associated with the rejection free
algorithm, so to get a performance gain, this extra overhead

must not take longer than the time saved from not having
any proposed moves rejected. In the 2d Ising model, there
are only four neighbors to each spin, so with each spin flip
only five ponderances need to be updated. In 4d EDT the
situation is more complicated. The local measure term
involves the order of triangles, i.e. the number of
4-simplices to which they belong. When a local region
of the geometry is updated, all of the ponderances asso-
ciated with neighboring simplices and subsimplices must
be updated, and this can involve any simplex with a triangle
that lives on the boundary of the local region. The number
of ponderance updates thus depends on the connectivity of
the geometry, with high connectivity regions requiring a
large number of updates. This increase in overhead leads to
a smaller speed-up at finer lattices, which seem to have
regions of high connectivity.
The red crosses in Fig. 3 show the speed-up (29) of the

rejection free algorithm for EDT, compared to the pre-
viously used parallel-rejection algorithm [13]. Both algo-
rithms ran on four cores, and the same set of processors was
used for all the runs shown in Fig. 3. For EDT, the
acceptance rate changes when changing the bare parame-
ters κ2 and β, with the acceptance rate falling with larger κ2
and more negative β. The displayed data points are taken to
be close to what we have identified as the physical region of
the phase diagram.
We see in Fig. 3 that the rejection-free algorithm

provides a speed-up of up to two orders of magnitude,
which is achieved at an acceptance rate of about 10−5. The
speed-up starts to plateau as one moves to even lower
acceptance rates. The reason for this plateau lies in the
increased connectivity of the local geometry as we move to
larger values of κ2. For the future this might pose a serious
obstacle to performing efficient simulations at even larger
κ2; such simulations will likely require further optimization
of the parallel ponderance updates to ameliorate this bottle-
neck of the rejection free algorithm. For now, however, our
implementation of the rejection-free algorithm provides us
with about two orders of magnitude in speedup in the
region of interest, and this allows us to investigate ensem-
bles at finer lattice spacings and larger volumes than before.

V. RESULTS FOR EDT

We use the performance gains of our new algorithm to
continue to study the EDT phase diagram in a region that
was previously inaccessible to simulations. We focus in
particular on the region that earlier studies suggested
would lead to finer lattice spacings [13]. We find similar
results to those studies, where a particular tuning of
the bare parameters leads to an approximately four-
dimensional, semiclassical Euclidean de Sitter geometry
emerging from the simulations. Our new results show that
the agreement between our simulations and the classical
limit improves at finer lattice spacings, continuing the
trend found in Ref. [13].

FIG. 5. Relative difference for the average Regge curvature and
average κ4 between the metropolis and rejection free algorithm
for fixed κ2 ¼ 3.0, β ¼ −0.822, hN4i ¼ 6000, as a function of
the volume preserving term δλ. The relative difference decreases
for both quantities with decreasing δλ, indicating that both
algorithms approach agreement in the δλ → 0 limit.
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A. The phase diagram of EDT

The EDT phase diagram was first studied in the nineties
[10,33,45–47], and also more recently [13,40–42,48]. The
parameter κ4 must be adjusted to set the lattice volume,
leaving a two-dimensional parameter space in κ2 and β by
which to explore the phase diagram.A schematic of thephase
diagram is shown in Fig. 6. It was demonstrated already quite
early on that there are two phases in the theory: a collapsed
phase with large, possibly infinite, fractal dimension, and a
branched polymer phase with dimension below four. The
solid line AB in Fig. 6 shows a phase transition separating
the collapsed and branched polymer phases; there is now
substantial evidence that this transition line is first order
[41,45,46,48]. The crinkled region [33] on the phase diagram
shares features of both phases, but looks like the collapsed
phase for sufficiently large volumes [40,41]. There does not
appear to be a distinct phase transition between the crinkled
region and the collapsed phase, but rather a crossover, as
indicated by the dashed line CD in Fig. 6.
For generic bare coupling values the two phases do not

bear much resemblance to a four-dimensional, semiclass-
ical solution to the Einstein equations, and with a first order
phase transition between them, an approach to that line
cannot lead to the diverging correlation lengths needed to
define a continuum limit. However, the expanded diagram
that is obtained when adding the local measure term
suggests a way forward when we follow an analogy to
lattice QCD with Wilson fermions, as first suggested in
Ref. [13]. In this picture, one must tune close to the first-
order line in order to recover semiclassical physics, and
follow this line out to a possible critical endpoint.
The approach to this tuning that we have adopted is the

following. As discussed in more detail in the following
subsection, larger values of κ2 correspond to finer lattice
spacings. For sufficiently large κ2, the phase transition line
becomes nearly horizontal in the β-κ2 plane, as indicated in
Fig. 6. In this region our strategy is to fix κ2 and tune the
parameter β to approach the phase transition from below. At

coarser lattice spacings (smaller κ2), the phase transition
line becomes closer to vertical, and so we approach the line
from the left by fixing β and adjusting κ2. In practice, the
coarser ensembles where the latter tuning is adopted have
rather large discretization effects, so future analyses will
likely restrict to the region where the lattices are fine
enough that β is close to its asymptotic value, such that the
tuning of β for fixed κ2 can be straightforwardly carried out.
In the study of a UV-fixed point for gravity we do not have

the benefit of being able to use perturbation theory at short
distance scales, as in the case of QCD, which is asymptoti-
cally free. In the EDT formulation, we aremore dependent on
numerical simulations to investigate the short-distance behav-
ior. There are two tests that EDT must pass in order to realize
the asymptotic safety scenario for gravity. First, theremust be
a continuous phase transition, where the associated diverging
correlation length would allow the lattice spacing to be taken
to zero. Second, the formulation must recover the classical
Einstein theory in four dimensions, since this is a good
description of our world. Refs. [13,42,49–51] provide evi-
dence in favor of these tests, but further work is necessary.
Because the Metropolis acceptance rate drops rapidly as we
take κ2 large, it is difficult to follow the phase transition line in
Fig. 6 out to large κ2. The rejection free algorithm introduced
here allows us to push further into this regime and to generate
ensembles that were not feasible with previous algorithms.
In the rest of this section we present a first look at the basic
geometric properties of these new ensembles.
This section revisits the shelling function Nshell

4 ðτÞ
introduced in Sec. IV as part of our validation tests.
Here it is used to characterize the emergent shape of our
lattice geometries. Given its sharp dependence on the phase
one is simulating, the height of the peak of the shelling
function serves as a good order parameter for identifying
the location of the phase transition. It is convenient to
consider the rescaled shelling function

n4ðρÞ ¼
1

N1−1=DH
4

Nshell
4 ðN1=DH

4 ρÞ; ð31Þ

where ρ ¼ τ=N1=DH
4 is the rescaled Euclidean distance, and

DH is the Hausdorff dimension. The Hausdorff dimension
is a fractal dimension that is defined by the scaling of the
volume of a sphere with its radius.
Figure 7 shows a plot of peak height of the rescaled

shelling curve n4ðρÞ as a function of β with κ2 fixed. For the
rescaling we chooseDH ¼ 4. In Fig. 7, the phase to the left
with more negative beta is the collapsed phase, and the
phase to the right is the branched polymer phase. There is
evidence for a phase transition in between, where the
decrease in peak height as a function of β becomes more
pronounced as the volume is increased. There is a “knee” in
the plots at each volume, just before the slope becomes
large and negative, that marks the onset of the phase
transition. The fact that this knee occurs at roughly the

FIG. 6. Schematic of the phase diagram as a function
of κ2 and β.
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same peak height in the rescaled volume is evidence that
the lattice geometries have Hausdorff dimension close to
four near the phase transition, since the rescaling was done
with DH ¼ 4. The left panel of Fig. 7 shows data at the
finest lattice spacing that was generated in previous work
[13], where the simulations were restricted to the smallest
volumes. The right plot shows an even finer lattice spacing
that was infeasible to simulate with earlier algorithms and is
new to this work. The cyan band in each plot is the peak
height of the n4ðρÞ function that has been chosen as the
tuned value for that lattice spacing. The ensembles at each
volume at a fixed lattice spacing (fixed κ2 value) are chosen
to match this value of the peak height as closely as possible.
In both the right and left panels of Fig. 7 it can be seen that
as the volume is increased, the curve becomes steeper,
typical behavior for a phase transition. We have not seen the
tunneling between metastable states that is characteristic of

a first order phase transition at these larger values of κ2, but
it may be that we have not yet reached large enough
volumes for the effect to be visible.
The tuned value of β at a fixed nominal lattice spacing

(fixed value of κ2) is determined by matching the peak
heights in the vicinity of the phase transition. A tuning to
the “knee” just to the left of the phase transition gives a DH
close to four. For convenience we assume that the peak
height rescaling is four-dimensional, and we tune all of the
other volume ensembles to the position of the knee on one
of our smaller volumes, the 8k volume at κ2 ¼ 3.0 and to
the 32k at κ2 ¼ 3.8. The agreement in Fig. 7 between the
cyan band and the location of the knee across volumes is an
indication of the DH ¼ 4 nature of the geometries in the
vicinity of the phase transition.
Figure 8 shows the shelling functions n4ðρÞ at the tuned

β values withDH ¼ 4 chosen for the rescaling. To compute

FIG. 7. Left panel: peak height of shelling function versus β at several volumes for κ2 ¼ 3.0 ensembles. The cyan band represents the
peak height that is used to match against for the different volumes at the same nominal lattice spacing. Right panel: same as left panel but
for κ2 ¼ 3.8. Note that the cyan band is close to the “knee” just before the slope in the lattice data becomes large and negative,
independent of the volume.

FIG. 8. Left: the rescaled shelling function n4ðρÞ at the tuned β values for a number of volumes at the same nominal lattice spacing,
with κ2 ¼ 3.0. The rescaling was done assuming DH ¼ 4 for all ensembles. Right: the rescaled shelling function n4ðρÞ for a finer lattice
spacing, with κ2 ¼ 3.8, again assuming DH ¼ 4. With DH ¼ 4, the horizontal axis and vertical axis have been rescaled by N1=4

4 and

N3=4
4 , respectively.
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the shelling function, 60 sources are chosen randomly on
each configuration. We account for autocorrelation errors
present in the data for the shelling function by blocking the
data before averaging. We study the variation of the error
with block size, and we continue to block until the error no
longer increases after taking the jackknife average over
configurations and computing its standard error. Table I
shows the parameters of the tuned ensembles and the
number of configurations used to calculate the shelling
function on each ensemble, as well as the block-size needed
to account for autocorrelation errors. In addition to the
standard rescaling of the horizontal and vertical axes, a
small shift in the horizontal direction that is proportional to
the inverse of the volume is applied in order to make the
location of the peaks coincide on the plot. This shift is
simply a knob which allows the collapse of the shelling
function in the semiclassical regime, and does not change
the shape of the curve. We expect at very short distances
that lattice artifacts distort the volume distribution, and at
slightly longer distances, possibly unknown short-range
physics dominates.
The agreement over the entire shelling curve is not

perfect, though the differences are not very big in absolute
terms. Since the peak was matched across volumes assum-
ing DH ¼ 4 at a given nominal lattice spacing (fixed κ2
value), the agreement of the peak in these curves is
assumed, but the agreement of the full shape of the shelling
function across volumes is nontrivial. The matching of the
peak heights to DH ¼ 4 is not arbitrary, but follows from
the good agreement of the knee just to the left of the phase
transition (see, for example the right panel of Fig. 7) with
the cyan band. We conclude that the large-scale geometry
of our lattices is consistent withDH ¼ 4, which agrees with
the desired behavior.

B. Approaching the de Sitter solution

Since the shelling function describes the emergent shape
of the lattice, it is natural to associate it with the global
dynamics of the scale factor of the universe and to try to
match the resulting dynamics to a cosmological solution of
the Einstein equations. Previous work [13] identified this
with Euclidean de Sitter space, which is the solution to the
(Euclidean) Einstein equations with a positive cosmologi-
cal constant. The Euclidean de Sitter solution can be
expressed as

Nshell
4 ¼ 3

4
N4

1

s0N
1
4

4

sin3
�

j

s0N
1
4

4

�
; ð32Þ

where the exponential expansion of the de Sitter solution in
real time has transformed to an oscillating function after
continuation. In this expression, s0 is a free parameter and j
is the Euclidean time in lattice units. In order to describe the
lattice data, we need to add some free parameters to this
formula,

Nshell
4 ¼ 3

4
ηN4

1

s0N
1
4

4

sin3
�

j

s0N
1
4

4

þ b

�
; ð33Þ

where we have introduced the parameters b and η. The
parameter b is an offset in the Euclidean time, and η
accounts for the volume of the universe that is actually
well-described by the classical solution. Figure 9 shows a
comparison between the theoretical expectation, Eq. (33),
and the data at multiple lattice spacings. The lattice data has
been rescaled so that each dataset overlaps with the
classical de Sitter solution in the region to the left of the

TABLE I. β and number of configurations used in analysis of tuned ensembles of κ2 ¼ 3.0 and κ2 ¼ 3.8.

κ2 ¼ 3.0 κ2 ¼ 3.8

Volume (N4) 8k 12k 16k 24k 32k 48k 64k 16k 24k 32k 48k 64k

β −0.80 −0.782 −0.771 −0.756 −0.746 −0.735 −0.729 −0.92 −0.894 −0.88 −0.868 −0.86
# configurations 1486 17350 21114 30555 36142 24295 97030 6096 2676 13137 5714 10096
Block size 743 946 782 507 1280 1052 998 879 578 517 986 1053

FIG. 9. The rescaled shelling function n4ðρÞ of one represen-
tative ensemble (N4 ¼ 4k for β ¼ 1.5 and β ¼ 0, and N4 ¼ 32k
for all others) at each lattice spacing. The black curve is the
classical de Sitter solution. All curves have been rescaled to
overlap in the region that matches the classical solution. This
matching is done by eye and only statistical errors are shown,
with no additional error associated with the tuning of the
ensemble. The asymmetry at large Euclidean time decreases as
the lattice spacing gets finer, so that the lattice results approach
the classical curve.
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classical peak. It is then clear that there is a large
discrepancy between the classical solution and the data
at large Euclidean time, but this discrepancy gets smaller as
one takes the lattice spacing ever finer. This trend was first
demonstrated in Ref. [13]. The present work follows this up
by adding two additional finer lattice spacings, and Fig. 9
shows that the trend towards greater agreement continues as
we follow κ2 to larger values. Work in progress shows that
the relative lattice spacing also continues to decrease as we
take κ2 larger, so that improved agreement with the classical
curve occurs at finer lattice spacings. This work involves
updating and extending our determination of Newton’s
constant using the de Sitter instanton method introduced in
Ref. [51]. Preliminary results for our new lattice-spacing
ensembles show that the value of G in lattice units
continues to increase as κ2 is made larger, indicating that
the lattices are in fact getting finer as we follow the
transition line out to larger κ2. A detailed study is in
progress, with a paper forthcoming.
Note that the biggest discrepancy here occurs at large

Euclidean time, and although one might expect that long-
distance quantities should not be modified by lattice cutoff
effects, this can happen when the lattice regulator breaks a
symmetry that is important at long distances, such as chiral
symmetry in the case of Wilson fermions. The pion sector
of QCD is not correctly described at coarse lattice spacings
for Wilson fermions, even though this is the lightest particle
in the physical spectrum with the longest Compton wave-
length. Only in the continuum limit does the residual chiral
symmetry breaking vanish [52]. The behavior seen here is
reminiscent of that of QCD with Wilson fermions, further
suggesting that a symmetry that is broken by the EDT
lattice regulator is restored in the continuum limit. This is
one of the main arguments suggesting that the tuning of β is
needed to restore a broken symmetry of EDT. If the
symmetry is an exact symmetry of the quantum theory,
as one would expect if the symmetry is continuum diffeo-
morphism invariance, then the number of relevant param-
eters in the symmetry-preserving theory would be less than
the three that are needed in the lattice formulation.
Reconciling this result with the three-dimensional ultra-
violet critical surface found in many different truncations of
the FRG is a strong motivation for future work.

VI. CONCLUSION AND OUTLOOK

In this work we have introduced a new, faster algorithm
for doing simulations of EDT. This algorithm mimics the
Metropolis algorithm in its evolution along the Markov
chain, but its proposals are never rejected. Such algorithms
have been around for a long time, but this one is new to the
best of our knowledge, in that it allows for the factorization
of local and global terms in the update while still main-
taining detailed balance. This is made possible by intro-
ducing what we call the ponderance, which is the square
root of the standard Metropolis accept probability. The

rejection-free algorithm requires keeping track of the
ponderances of all possible moves as the Markov chain
progresses. After each local move, all possible moves
whose associated ponderance is altered must be updated.
The presence of global terms in the action that change after
every local move requires the factorization of global and
local terms for an efficient implementation. Otherwise, all
probabilities would need to be updated, which would be
prohibitively expensive. By using the ponderance instead
of the probability, we have shown that it is possible to factor
the action into local and global parts, leading to an efficient
rejection-free algorithm for EDT.
We test this algorithm on the 2d Ising model, where we

show that the results from the new algorithm match those of
the Metropolis algorithm, and they also match the analyti-
cal results in the low temperature regime. This validation
gives us confidence that the algorithm is behaving as it
should. This algorithm has significant advantages when the
Metropolis acceptance rate is low, and as expected, the
performance is orders of magnitude better for the Ising
model in the low-temperature regime, where the standard
Metropolis acceptance rate is low. We further test the new
rejection free algorithm on 4d EDT, where we once again
see good agreement between rejection free and standard
Metropolis. A similar improvement in performance is seen
for EDT, which also suffers from the low acceptance of
standard Metropolis, especially as one moves to finer lattice
spacings. The improvement of EDT is not as pronounced as
that of the Ising model at very low acceptances because of
the high connectivity of the EDT model, at least in the
region of the phase diagram that we explore. This could
potentially be improved by additional parallelization of the
ponderance updates after each move.
Our new algorithm allows us to simulate in a region of

the phase diagram of EDT that was previously inaccessible,
and thus to further test whether the results match expect-
ations if EDT is to provide a viable formulation of quantum
gravity. The qualitative behavior of the phase transition that
was observed in Ref. [13] does persist out to larger values
of the coupling κ2, with the emergence of semiclassical
geometries that approximately match the Euclidean de
Sitter solution close to the phase transition. The agreement
with the classical solution gets better as the lattice spacing
is made finer, and there appears to be no barrier, in
principle, to taking the continuum limit. A more detailed
study of the new EDT ensembles that were generated with
the rejection-free algorithm introduced here will be pre-
sented in forthcoming work.
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APPENDIX A: RECOVERING MONTE-CARLO
TIME FROM REJECTION-FREE ALGORITHMS

This appendix discusses a rejection-free algorithm that
does not have a global contribution to the action. In that
case we emulate the Metropolis algorithm directly.
In short, we need to determine:
(i) Which move i will be the first one to be accepted by

Metropolis.
(ii) How many tries it took to accept that move (since

per the Metropolis algorithm simulation time is
measured in attempted moves, not accepted ones).

Call the probability that any given move iwill be the one
eventually accepted P̃ðiÞ. Then

P̃ðiÞ ¼ PðiÞP
jPðjÞ

; ðA1Þ

that is, the probability of eventually accepting any particu-
lar move i is a fraction of the sum over Metropolis
probabilities for all possible successive moves.
For the second point, the number of Metropolis sugges-

tions that are rejected before one is eventually accepted is
independent of which one is eventually chosen. Thus it
suffices to determine the probability that any given
Metropolis suggestion will result in a rejection.
The probability of accepting any move i on any

particular trial is equal to the probability of choosing it
multiplied by the probability of accepting it, i.e.,

PaðiÞ ¼
PðiÞ
N

; ðA2Þ

where N is the total number of possible moves that could
be chosen.

Since these probabilities are mutually exclusive, we can
just add them, to determine that the probability of accepting
the move that we choose is

Pa ¼
P

iPðiÞ
N

ðA3Þ

that is, the probability that the move that is chosen at
random will be accepted is just the average accept prob-
ability of all the moves.
However, the Metropolis Markov chain will have a long

sequence of one configuration, since every time a move is
rejected, that configuration is added to the chain again. It is
thus insufficient to calculate the next configuration; one
must also calculate how long the system stays stuck in the
current one.
The probability of accepting any move after rejecting n

previous trials is thus

PðnÞ ¼ Pað1 − PaÞn ðA4Þ

and the number of previously rejected trials can be
determined from a single random number r from (0,1) as

nreject ¼ floorðlog1−Pa
ðrÞÞ: ðA5Þ

APPENDIX B: IMPLEMENTATION DETAILS OF
A BINARY DECISION TREE

The rejection-free algorithm requires us to select a move
from among a list of N moves such that the relative
probability of selecting any given move i is proportional
to its local ponderancePlocðiÞ. This can be accomplished in
OðlogNÞ time using a binary decision tree.
Such a tree contains one node for each possible move.

Each node in the tree has two child nodes, such that
storing N moves in the tree requires log2 N layers. Each
node in the tree is indexed by a move index i; this index
need have no relation to the geometry or properties of the
physics being simulated.
Each node contains three pieces of data:
(1) The move index i.
(2) The local contribution to the ponderance of that

move PlocðiÞ, which we call Phere.
(3) The sum of the values of PlocðiÞ of this node and all

of its children, which we call Pbelow.
To determine which move j will be the one that the

Metropolis algorithm eventually accepts:
(1) Generate a random number r between 0 and the sum

of all ðPðiÞÞloc in the whole tree (which is equal to
Pbelow in the root node).

(2) Start at the root of the tree and traverse it, looking for
the node j that will be accepted.
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(3) At each node, we have three options: the move we
are seeking either is the one in the current node, or it
lives somewhere along the left or the right branch.

(4) Define Phere as the probability of the current node,
Pleft as the total probability along the left branch,
and Pright as the total probability along the right
branch. (These quantities are stored as Pbelow in the
child nodes so they are quick to access.)

(5) Traverse the tree according to the following:
(i) If r < Pleft, then go left and repeat the

procedure.
(ii) If Pleft < r < Pleft þ Phere, then the desired

move j is the one at the current node.
(iii) If r > Pleft þ Phere, then go right and

redefine r → r − ðPleft þ PhereÞ and repeat
the procedure.
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