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We study the topological phase transitions occurring in three-dimensional (3D) multicomponent lattice
Abelian Higgs (LAH) models, in which an N-component scalar field is minimally coupled with a
noncompact Abelian gauge field, with a global SUðNÞ symmetry. Their phase diagram presents a high-
temperature Coulomb (C) phase, and two low-temperature molecular (M) and Higgs (H) phases, both
characterized by the spontaneous breaking of the SUðNÞ symmetry. The molecular-Higgs (MH) and
Coulomb-Higgs (CH) transitions are topological transitions, separating a phase with gapless gauge modes
and confined charges from a phase with gapped gauge modes and deconfined charged excitations. These
transitions are not described by effective Landau-Ginzburg-Wilson theories due to the active role of the
gauge modes. We show that the MH and CH transitions belong to different charged universality classes.
The CH transitions are associated with the N-dependent charged fixed point of the renormalization-group
(RG) flow of the 3D Abelian Higgs field theory (AHFT). On the other hand, the universality class of the
MH transitions is independent of N and coincides with that controlling the continuous transitions of the
one-component (N ¼ 1) LAH model. In particular, we verify that the gauge critical behavior always
corresponds to that observed in the 3D inverted XY (IXY) model (dual to the 3D XY vector model with
Villain action) and that the correlations of an extended charged gauge-invariant operator (in the Lorenz
gauge, this operator corresponds to the scalar field, and thus, it is local, justifying the use of the RG
framework) have an N-independent critical universal behavior. This scenario is supported by numerical
results for N ¼ 1, 2, 4, 10, 25. The MH critical behavior does not apparently have an interpretation in
terms of the RG flow of the AHFT, as determined perturbatively close to four dimensions or with standard
large-N methods.

DOI: 10.1103/PhysRevD.109.034517

I. INTRODUCTION

Many emergent collective phenomena in condensed-
matter physics [1,2] are explained by effective three-
dimensional (3D) scalar Abelian gauge models, in which
scalar fields are coupled with an Abelian gauge field. We
mention the transitions in superconductors [3,4], in quantum
SUðNÞ antiferromagnets [5–13] and the unconventional
quantum transitions between the Néel and the valence-
bond-solid phases in two-dimensional antiferromagnetic
SUð2Þ quantum systems [14–21], which represent the
paradigmatic models for the so-called deconfined quantum
criticality [22]. The phase structure and the universal features
of the transitions in scalar gauge models have been exten-
sively studied [3–91], paying particular attention to the role
of the gauge fields and of the related topological features,
like monopoles and Berry phases, which cannot be captured
by effective Landau-Ginzburg-Wilson (LGW) theories with
gauge-invariant scalar order parameters [13,22,92–94].

Several lattice scalar gauge models have been consid-
ered, using both compact and noncompact gauge variables,
with the purpose of identifying the possible universality
classes of the continuous transitions that occur in generic
scalar gauge systems. They provide examples of topologi-
cal transitions, which are driven by extended charged
excitations with no local order parameter, or by a nontrivial
interplay between long-range scalar fluctuations and non-
local topological gauge modes.
In this paper, we address the topological deconfinement

transitions that occur in multicomponent lattice Abelian
Higgs (LAH) models with a global SUðNÞ symmetry, in
which a noncompact Abelian gauge field is coupled with an
N-component scalar field.
The phase diagrams of the 3D LAH models in the

Hamiltonian parameter space J-κ, see Eq. (1), are sketched
in Fig. 1. The phase diagram of the multicomponent LAH
models presents three phases, which differ in the properties
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of the gauge correlations, in the confinement or deconfine-
ment of the charged excitations, and in the behavior under
SUðNÞ transformations. In the small-J Coulomb (C) phase,
the scalar field is disordered, and gauge correlations are
long ranged. For large J, two phases occur, the molecular
(M) and Higgs (H) ordered phase, in which the global
SUðNÞ symmetry is spontaneously broken, the order
parameter being a gauge-invariant bilinear of the scalar
field. The two phases are distinguished by the behavior of
the gauge modes: The gauge field is long ranged in the M
phase (small κ), while it is gapped in the H phase (large κ).
Moreover, while the C and M phases are confined phases,
the H phase shows the deconfinement of charged gauge-
invariant excitations, represented by nonlocal dressed
scalar operators [30,31,89,95], whose correlations do not
vanish in the large-distance limit [30,31,34,89]. For N ¼ 1,
see the upper panel of Fig. 1, there are only two phases,
which differ for the gauge behavior, as no global symmetry

is present. As it occurs for N ≥ 2, charged scalar modes are
deconfined in the H phase [30,31,34].
In this paper, we show that multicomponent LAH

models can undergo different types of charged deconfine-
ment transitions, the CH transitions between the C and H
phases and the MH transitions between the M and H
phases. They are controlled by different charged fixed
points of the renormalization-group (RG) flow with non-
zero gauge coupling. Gauge correlations play an active, but
different, role at these deconfinement transitions and,
therefore, they cannot be described by effective LGW
theories.
We focus on the MH transitions of multicomponent LAH

models, which have not been thoroughly analyzed yet.
While transitions along the CM and CH lines are related to
the spontaneous breaking of the global SUðNÞ symmetry,
the MH line separates two ordered phases, both charac-
terized by the condensation of a gauge-invariant scalar-field
bilinear operator. Therefore, the MH transitions must be
driven by the qualitative change of the gauge correlations,
without a local gauge-invariant order parameter, as it also
occurs for the CH transitions in the one-component LAH
model; see Fig. 1.
To investigate the critical behavior of the multi-

component LAH models along the MH transition line
and of the one-component LAH model along the CH
transition line, we report finite-size scaling (FSS) analyses
of Monte Carlo (MC) data for N ¼ 1, 2, 4, 10, 25. The
results show that these charged topological transitions are
continuous, and their critical behaviors belong to the same
universality class; i.e., the continuous MH transitions of the
multicomponent LAH systems share the same universality
class of the CH transitions in the one-component LAH
model. See the upper panel of Fig. 1. Thus, gauge
correlations behave as in the so-called inverted XY
(IXY) model [24], related to the standard XY model by
duality [50]. Therefore, the critical behaviors of the
multicomponent LAH systems along the MH transition
line differ from those along the CH transition line, see
Fig. 1, which are controlled by the stable fixed point of the
3D AH field theory [83,88,89].
The paper is organized as follows. In Sec. II, we present

the 3D LAH model with noncompact gauge variables, we
specify the appropriate boundary conditions that ensure the
absence of unphysical divergences due to the gauge
invariance of the model, and we define the Lorenz gauge
fixing we use to compute nongauge invariant gauge and
scalar correlations. In Sec. III, we summarize the general
features of the phase diagram and of the transition lines. In
Sec. IV, we define the observables that we use in our
numerical analyses, and we report their expected FSS
behavior. Section V reports the numerical results, i.e.,
the FSS analyses of local and nonlocal gauge-invariant
observables. Finally, in Sec. VI, we summarize and draw
our conclusions.

FIG. 1. The κ-J phase diagram of the N-component LAH
model (1), for N ¼ 1 (top), generic N ≥ 2 (middle), and N ¼ ∞
(bottom). For N ¼ 1, there are two phases, the Coulomb (C) and
Higgs (H) phases, characterized by the confinement and decon-
finement of charged gauge-invariant excitations, respectively. For
N ≥ 2, the scalar field is disordered, and gauge correlations are
long ranged in the small-J Coulomb (C) phase. For large J, two
phases occur, the molecular (M) and Higgs (H) ordered phase, in
which the global SUðNÞ symmetry is spontaneously broken. The
two phases are distinguished by the behavior of the gauge modes:
The gauge field is long ranged in the M phase (small κ), while it is
gapped in the H phase (large κ). Moreover, while the C and M
phases are confined phases, the H phase shows the deconfinement
of charged gauge-invariant excitations.
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II. THE NONCOMPACT LATTICE ABELIAN
HIGGS THEORY

We consider a LAH model with N-component complex
vectors zx of unit length (z̄x · zx ¼ 1) and noncompact
gauge variables Ax;μ ∈R (μ ¼ 1, 2, 3). The Hamiltonian
and partition function are (see, e.g., Refs. [30,32,34,51,83])

H ¼ κ

2

X
x;μ>ν

F2
x;μν − 2NJ

X
x;μ

Reðλx;μz̄x · zxþμ̂Þ; ð1Þ

Z ¼
Z

½dAx;μdz̄zdzx�e−HðA;zÞ; ð2Þ

where λx;μ ≡ eiAx;μ , Fx;μν ≡ ΔμAx;ν − ΔνAx;μ and ΔμAx;ν ¼
Axþμ̂;ν − Ax;ν. We have rescaled the scalar-field coupling J
by a factor of N to ensure that the limit N → ∞ at fixed J is
finite; see, e.g., Ref. [49]. The model has a global SUðNÞ
symmetry, zx → Vzx with V ∈SUðNÞ, and a local Abelian
gauge invariance,

zx → eiΛx zx; Ax;μ → Ax;μ þ Λx − Λxþμ̂; ð3Þ

with Λx ∈R.
At variance with what happens for compact models, the

partition function (2) diverges, even on a finite lattice. This
is due to the existence of zero modes related with the gauge
invariance of the model. This problem is not completely
solved even by the use of a maximal gauge fixing if
periodic boundary conditions are chosen. With periodic
boundary conditions, the Hamiltonian H is indeed
invariant under the group of noncompact transformations
Ax;μ → Ax;μ þ 2πnμ, where nμ ∈Z depends on the direc-
tion μ but is independent of the point x. This invariance is
also (at least partially) present in the gauge-fixed theory,
and therefore Z is ill defined also in this case. To obtain a
well-defined finite-volume theory, we adopt C� boundary
conditions [83,96,97]. On a cubic lattice of size L, C�
boundary conditions are defined by

AxþLν̂;μ ¼ −Ax;μ; zxþLν̂ ¼ z̄x: ð4Þ

They preserve the local gauge invariance and softly break
the SUðNÞ global symmetry to OðNÞ, without affecting the
bulk critical behavior.
To compute some gauge and scalar correlation functions,

we will consider the Lorenz gauge fixing, defined by
requiring

X
μ

Δ−
μAx;μ ¼ 0; ð5Þ

for all lattice sites x, where Δ−
μAx;ν ¼ Ax;ν − Ax−μ̂;ν. It

breaks the invariance of the model under the gauge trans-
formations

Ax;μ → A0
x;μ ¼ Ax;μ þ Λx − Λxþμ̂;

zx → z0x ¼ eiΛx zx; ð6Þ

where Λx is an arbitrary function of the lattice sites, which
satisfies antiperiodic boundary conditions when C� boun-
dary conditions are adopted.
As demonstrated in Ref. [98], the lattice Lorenz gauge is

particularly convenient, as only zero-mode singularities
occur in the infinite-volume limit, at variance with what
happens when working in other lattice gauges, such as the
axial gauge or the soft Lorenz gauge. See Ref. [89] for
analogous considerations for the scalar correlator.
Note that, for N ¼ 1, one could also use the so-called

unitary gauge that fixes zx ¼ 1. The Hamiltonian becomes

Hug ¼ −2JN
X
x;μ

cosAx;μ þ
κ

2

X
x;μ>ν

F2
x;μν: ð7Þ

The unitary gauge fixing is not complete, and indeed the
Hamiltonian is still invariant under gauge transformations
in which Λx is a multiple of 2π. The model (7) represents a
soft version of the IXY gauge model that is obtained in the
limit J → ∞ of the LAH models; see below.

III. THE PHASE DIAGRAM

In this section, we summarize the general features of the
κ-J phase diagram of the 3D LAH models defined by the
Hamiltonian (1). They show different features for N ¼ 1
and N ≥ 2 due to the possibility of the spontaneous
breaking of the global SUðNÞ symmetry for N ≥ 2;
see Fig. 1.

A. The one-component phase diagram

For N ¼ 1, only two phases are present: a Coulomb
(C) phase, in which gauge correlators are gapless, and a
Higgs (H) phase in which gauge correlators are gapped; see,
e.g., Ref. [34]. The C andH phases can also be characterized
by the confinement/deconfinement of charged gauge-
invariant excitations, represented by nonlocal dressed scalar
operators [30,31,89,95], whose correlation functions do not
vanish in the large-distance limit [30,31,34,89] in the
H phase.
The C and H phases are separated by a transition line

connecting the transition points occurring in the J → ∞ and
κ → ∞ limits, where the noncompact LAH model becomes
equivalent to the IXY model and to the standard O(2)-vector
spin model, respectively. For J → ∞, the gauge field Ax;μ

takes only values which are multiples of 2π. Indeed, the
J → ∞ limit leads to the constraints

zx ¼ λx;μzxþμ̂; λx;μλxþμ̂;νλ̄xþν̂;μλ̄x;ν ¼ 1: ð8Þ

Then, by an appropriate gauge transformation, one can set
Ax;μ ¼ 2πnx;μ, where nx;μ ∈Z. The resulting IXY gauge
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model is a dual-loop representation of the 3D XY model;
more precisely, its free energy is related by duality to that of
the XY model with Villain action [24,50]. This dual-loop
model undergoes an IXY transition, i.e., a transition belong-
ing to the XY universality class, but with inverted high- and
low-temperature phases [24]. Moreover, in the dual-loop
model, only thermal RG operators perturb theXY fixed point
[no magnetic perturbations breaking the global Uð1Þ
symmetry are present]. Therefore, the 3D LAH models
must undergo a large-J IXY transition point located at
κcðJ → ∞Þ ¼ 0.076051ð2Þ [50,83].
In the limit κ → ∞, all plaquettes Fx;μν vanish, and thus,

the model is equivalent (up to a gauge transformation) to
the XY model. Therefore, for κ → ∞ the one-component
LAH model is expected to undergo an XY transition
at [99–101] Jcðκ → ∞Þ ¼ 0.22708234ð9Þ [this XY tran-
sition is denoted by O(2) in Fig. 1].

B. The multicomponent phase diagram

The κ − J phase diagram of the multicomponent LAH
models (see Refs. [60,61,83]) is sketched in the middle
panel of Fig. 1. For N ≥ 2, the model is also invariant under
SUðNÞ global transformations. Thus, transitions associated
with the breaking of the SUðNÞ symmetry and phases
characterized by standard, i.e., nontopological, order can
also be present. The breaking of the SUðNÞ symmetry
can be characterized by using the gauge-invariant order
parameter

Qab
x ¼ z̄axzbx − δab=N; ð9Þ

which transforms in the adjoint representation of the
SUðNÞ global symmetry group.
The phase diagram for N ≥ 2 is characterized by three

different phases. For small J, there is a Coulomb phase (C),
which is SUðNÞ symmetric (Qab

x is disordered) and in
which the gauge field is gapless. For large J values, there
are two phases in which the SUðNÞ symmetry is broken
(Qab

x condenses). They are characterized by the different
behavior of the gauge modes: In the molecular phase (M),
the gauge field is long ranged (as in the C phase), while in
the Higgs phase (H), it is short ranged. From the point of
view of the gauge-invariant charged excitations, the C and
M phases are confined, while the H phase is deconfined.
The existence of these three phases is consistent with the

analysis of the model behavior for large and/or vanishing
values of J and κ.

(i) For J ¼ 0, the LAH model reduces to the three-
dimensional CPN−1 model, which is known to
undergo a continuous Oð3Þ transition for N ¼ 2
and discontinuous transitions for N > 3 [77]. There-
fore, along the κ ¼ 0 line, we have a continuous
O(3) transition point located at Jcðκ ¼ 0Þ ¼
0.7102ð1Þ for N ¼ 2, and first-order transitions

for N > 2 [for example, at Jcðκ ¼ 0Þ ≈ 0.353 for
N ¼ 20]; see, e.g., Refs. [77,81].

(ii) For J → ∞, the multicomponent model behaves as
the one-component model [83]. Indeed, Eq. (8)
holds for any N, and therefore, in all cases, the
gauge field Ax;μ takes only values that are multiples
of 2π and the scalar field decouples. Therefore, we
have a large-J IXY transition for κ ¼ κcðJ → ∞Þ ¼
0.076051ð2Þ [50,83], independently of N.

(iii) For κ ¼ ∞, all plaquettes vanish, and the model
reduces, up to a gauge transformation, to the standard
O(2N) vector model. For example, we must
have Jcðκ → ∞Þ ¼ 0.23396363ð6Þ forN ¼ 2 [102],
and Jcðκ → ∞Þ ¼ Jc;∞ þ a1N−1 þ OðN−2Þ in
the large-N limit, with Jc;∞ ¼ 0.252731… and
a1 ≈ −0.234 [103].

C. Critical behaviors along the transition lines

The three phases of the multicomponent LAH model are
separated by three different transition lines, the CM, CH,
and MH transition lines, which start from the transition
points located at κ ¼ 0, J ¼ ∞ and κ ¼ ∞. The transitions
along the lines separating the different phases may be of
first order or continuous and, in the latter case, belong to
universality classes that may depend on the number N of
scalar components. The continuous transitions are related
to the stable (charged or uncharged) fixed points of the RG
flow, each one with its own attraction domain in the model
parameter space.
The CM and CH transition lines of the multicomponent

LAH models have already been thoroughly investigated.
The CM transitions are in the same universality class as that
of the 3D CPN−1 model (defined on the line κ ¼ 0). An
effective description is provided by a LGW model without
gauge fields [77,78,81,83]. The stable fixed point is
uncharged, and gauge fields have only the role of hindering
non-gauge-invariant modes from becoming critical. For
N ≥ 3, the LGW theory predicts a generic first-order
transition, while, for N ¼ 2, the transitions can be con-
tinuous in the O(3) vector universality class.
The continuous CH transitions are associated with the

stable charged fixed point of the RG flow of the AH field
theory (AHFT) [3,40,49,63,75,83,88,89]

L ¼ 1

4g2
F2
μν þ jDμΦj2 þ rΦ�Φþ 1

6
uðΦ�ΦÞ2; ð10Þ

(Fμν ≡ ∂μAν − ∂νAμ and Dμ ≡ ∂μ þ iAμ), which corre-
sponds to the formal continuum limit of the LAH model
(1), relaxing the unit-length constraint for the scalar field.
Continuous charged CH transitions in the 3D LAH model
occur for N > N⋆ with N⋆ ¼ 7ð2Þ [83,88]. Critical expo-
nents depend on N, consistently with the large-N field-
theory predictions [3,40,49,63,83,89]. The O(2N) vector
fixed point for g ¼ 0 (corresponding to κ → ∞ in the LAH
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model) is unstable with respect to gauge fluctuations for
any N [83].
The transitions along the MH line have not been

thoroughly analyzed yet. The MH line separates two
ordered phases, both characterized by the condensation
of the gauge-invariant bilinear Qab

x defined in Eq. (9).
Therefore, the MH transitions must be related to the
qualitative change of the gauge correlations, without a
local gauge-invariant order parameter, as it also occurs for
the CH transitions in the one-component LAH model. In
the following, we show that these topological transitions
are continuous, at least for sufficiently large (but finite)
values of J, and controlled by another charged fixed point,
different from the AHFT fixed point that controls the CH
transitions. As we shall see, the MH fixed point turns out to
be the same as that controlling the large-J IXY transition
and the continuous CH transitions in the N ¼ 1 LAH
model; see the upper panel of Fig. 1.
The existence of the MH transition line for N ≥ 2, see

Fig. 1, can be inferred from the presence of two low-
temperature phases distinguished by the nature of the gauge
correlations. This is already suggested by the IXY tran-
sition in the J → ∞ limit. A natural hypothesis is that the
large-J IXY transition point is the starting point of the MH
transition line for N ≥ 2 and of the CH line for N ¼ 1;
see Fig. 1.
We wish to understand whether the MH transitions

belong to the same universality class as the IXY transition
that occurs for J → ∞. This identification is not obvious.
Indeed, for N ≥ 2, in the M and H phases, scalar fluctua-
tions are only partially frozen, because of the presence of
2N − 2 massless Goldstone bosons related with the sponta-
neous breaking of the SUðNÞ symmetry, from SUðNÞ to
UðN − 1Þ [49]. Therefore, the multicomponent scalar
fluctuations may be relevant, giving rise to an N-dependent
critical behavior. In this case, the fluctuations of the scalar
field would drive the system toward a different asymptotic
behavior, giving rise to first-order transitions or to a
different critical behavior associated with a more stable
charged fixed point. Nonetheless, it is also possible that the
residual scalar fluctuations, and, in particular, the long-
range Goldstone modes, are irrelevant at the MH transi-
tions, somehow decoupling from the topological gauge-
field critical modes (this scenario was originally mentioned
in Ref. [60] as a plausible hypothesis, without providing
evidence). In this case, the critical behavior along the MH
line would be the same as that along the CH line for N ¼ 1,
where scalar fields can be eliminated by a gauge trans-
formation (unitary gauge), and therefore, IXY critical
behavior for finite J arises naturally.

D. The large-N phase diagram

For N ¼ ∞, the geometry of the phase diagram is
simpler. First, we argue that the MH line is a straight line
corresponding to κ ¼ κc;IXY . Indeed, since N and J appear

in the combination NJ, the N → ∞ limit is somewhat
similar to the J → ∞ limit. However, they are not equiv-
alent, since, by changing N, one also changes the number
of components of the scalar field. We shall now argue the
this equivalence holds in the M and H phases. Indeed, in
this case, the SUðNÞ symmetry is broken. We consider
magnetized boundary conditions; i.e., we set zx ¼ eiαxe1,
e1 ¼ ð1; 0;…Þ on the boundary, where eiαx is an uncon-
strained phase that guarantees that the boundary conditions
do not break the gauge invariance of the model. Since the
SUðNÞ symmetry is broken in the M and H phases, in the
bulk, we expect zx ¼ zke1 þ z⊥, with jzkj approximately
equal on all lattice sites. As the number of components N
increases, we expect zx⊥ · zy⊥ on neighboring sites to
decrease to zero, so that the scalar Hamiltonian would
converge to

−2NJ
X
xμ

Rez̄x;kzxþμ̂;kλx;μ; ð11Þ

in terms of the single-component quantity zk. It follows that
the two limits (N → ∞ and J → ∞) should be equivalent
implying the independence of the MH line on J. The
behavior along the CH line can be obtained by using the
AHFT, since these transitions are controlled by the field-
theory fixed point. The AHFT predicts the large-N behavior
to be independent of the gauge fields [49], and the same
should hold for the lattice model. Therefore, we predict the
CH line to be a straight line with J ¼ Jc;∞ ¼ 0.252731…,
where Jc;∞ is the values of J where the O(2N) transition
(κ ¼ ∞) occurs. The shape of the CM line is less clear, given
that standard large-N lattice calculations are not reliable
for the LAH model in the κ → 0 limit (i.e., for the CPN−1

model) [81].Numerical simulations indicate that the large-N
transitions are of first order for any N ≥ 3 and that they
become stronger and stronger with increasing N [81,83]. If
we accept the conjecture (supported by numerical data) of
Ref. [81] that the CPN−1 transition (κ ¼ 0) occurs at the
same value Jc;∞ ¼ 0.252731… where the O(2N) transition
(κ ¼ ∞) occurs, we can conjecture that also the CM
transition line corresponds to the line J ¼ Jc;∞ for all values
of κ. We thus obtain the simple phase diagram shown in the
bottom Fig. 1. In this case, the multicritical point would be
located at J ¼ Jc;∞ and κ ¼ κc;IXY .

IV. OBSERVABLES AND FINITE-SIZE SCALING

A. Observables

Most investigations of the multicomponent LAH model
studied the critical behavior of correlations of the gauge-
invariant bilinear operator Qab

x , which characterizes the
SUðNÞ symmetry breaking and is therefore an appropriate
order parameter for the CM and CH transitions (see, e.g.,
Refs. [83,89]). This gauge-invariant observable is not
relevant for the MH transitions, as the SUðNÞ symmetry
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is broken in both phases. We need therefore a different set
of observables to characterize the critical behavior.

1. The gauge-invariant energy cumulants

In our FSS analyses, we consider the gauge-invariant
energy cumulants Bk, which are intensive quantities related
to the energy central moments

Mk ¼ hðH − hHiÞki; ð12Þ

by

B1 ¼ L−3hHi; B2 ¼ L−3M2;

B3 ¼ L−3M3; B4 ¼ L−3ðM4 − 3M2
2Þ; ð13Þ

etc. Note that B2 is proportional to the specific heat. These
global quantities allow one to characterize topological
transitions in which no local gauge-invariant order param-
eter is present; see, e.g., Refs. [48,82,104].

2. Gauge-field correlations in the Lorenz gauge

To determine gauge-field correlations, we first define
gauge-dependent correlation functions in the Lorenz gauge.
In the next section, we will show that these quantities
provide information on the critical behavior of a set of
gauge-invariant correlators. We start by defining the
Fourier-transformed field ÃμðpÞ,

ÃμðpÞ ¼ eipμ=2
X
x

eip·xAx;μ; ð14Þ

where the prefactor takes into account that the gauge field is
naturally defined on the lattice links and guarantees that
ÃμðpÞ is odd under reflections in momentum space. The
correlation function is defined as

C̃μνðpÞ ¼ L−3hÃμðpÞÃνð−pÞi: ð15Þ

The momenta p run over the values pi ¼ πð2ni þ 1Þ=L
with ni ¼ 0;…L − 1 since Ax;μ is antiperiodic due to the
C� boundary conditions. In particular, p ¼ 0 is not allowed.
Note that hAx;μi ¼ 0 since the charge-conjugation sym-
metry Ax;μ → −Ax;μ is preserved both by the C� boundary
conditions and by the Lorenz gauge.
The gauge-field susceptibility is defined as

χA ¼ C̃μμðpaÞ; ð16Þ

where μ is one of the directions (no sum on repeated indices
implied), and pa is one of the smallest momenta compatible
with the antiperiodic boundary conditions:

pa ¼ ðπ=L; π=L; π=LÞ: ð17Þ

The second-moment correlation length of the gauge field is
defined by

ξ2A ¼ 1

ðp̂2
a − p̂2

bÞ
C̃μμðpbÞ − C̃μμðpaÞ

C̃μμðpaÞ
; ð18Þ

where

p̂2 ¼
X3
μ¼1

4 sin2ðpμ=2Þ; pb ¼ pa þ
2π

L
ν̂; ð19Þ

and, somewhat arbitrarily, we have taken ν ≠ μ. Any pair
of directions μ, ν are obviously equivalent. The Binder
cumulant of the gauge field is instead defined by

UA ¼ hm2
2;μi

hm2;μi2
; m2;μ ¼

����
X
x

eipa·xAx;μ

����
2

: ð20Þ

3. Gauge-invariant correlators of the gauge field

Let us now show that the gauge-dependent quantities
defined in the previous section allow us to determine the
critical behavior of gauge-invariant plaquette correlations.
Indeed, let us define the gauge-invariant correlator

CF;μν;αβðpÞ ¼
1

V
hF̃μνð−pÞF̃αβðpÞi; ð21Þ

where F̃αβðpÞ is the Fourier transform of the plaquette
operator Fx;μν:

F̃μνðpÞ ¼ eiðpμþpνÞ=2
X
x

eip·xFx;μν: ð22Þ

It is simple to relate correlations of this gauge-invariant
operator to correlations of Ax;μ computed in the Lorenz
gauge. For instance, we haveX

μν

CF;μν;μνðpÞ ¼ 2p̂2
X
ν

hÃνð−pÞÃνðpÞi: ð23Þ

From this relation, it immediately follows that the suscep-
tibility χA of the field Ax;μ is proportional to L2χF, where χF
is the plaquette susceptibility; more precisely, we have for
large values of L

χA ¼ L2

18π2
χF; χF ¼

X
μν

CF;μν;μνðpaÞ: ð24Þ

Also ξA can be related to particular correlations of the
plaquette operator. In particular, choosing μ ¼ 1 and ν ¼ 3
in the definition (18), for large values of L, we have
the relations

C̃11ðpaÞ ¼
L2

18π2
χF;

C̃11ðpbÞ ¼
L2

121π2
½10CF;12;12ðpbÞ þ 9CF;13;13ðpbÞ�: ð25Þ
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4. Scalar-field correlations in the Lorenz gauge

Scalar-field observables can be defined analogously,
by setting

z̃ðpÞ ¼
X
x

eip·zzx; G̃zðpÞ ¼
1

L3
hjz̃ðpÞj2i: ð26Þ

The corresponding susceptibility χz and length scale ξz are
defined as

χz ¼ G̃zð0Þ; ξ2z ≡ 1

4 sin2ðπ=LÞ
G̃zð0Þ − G̃zðpmÞ

G̃zðpmÞ
; ð27Þ

where pm ¼ ð2π=L; 0; 0Þ has been selected quite arbitrarily
since zx is neither periodic nor antiperiodic (see Ref. [89]
for a more detailed discussion of this issue). The Binder
cumulant for the scalar field is defined by

Uz ¼
hm2

2i
hm2i2

; m2 ¼
X
x;y

z̄x · zy: ð28Þ

5. Gauge-invariant correlations of
nonlocal charged operators

We now show that the above defined gauge-dependent
scalar quantities correspond to gauge-invariant observables
computed in the Lorenz gauge. To investigate the behavior
of charged quantities, one can consider the gauge-invariant
operator Γx defined by [95]

Γx ¼ zx exp
�
i
X
y;μ

Eμðy; xÞAy;μ

�
;

Eμðy; xÞ ¼ Vðyþ μ̂; xÞ − Vðy; xÞ: ð29Þ

In this expression, Vðx; yÞ is the lattice Coulomb potential
in x due to a unit charge in y, i.e., the solution of the lattice
equation

X
μ

Δ−
μΔμVðx; yÞ ¼ −δx;y; ð30Þ

in which the lattice derivatives act on the x variable. It is
easy to verify that the lattice Poisson equation always has a
unique solution when C� boundary conditions are used,
unlike the case of periodic boundary conditions. The
operator Γx is invariant under the local gauge transforma-
tions (6). It is enough to note that Δ†

μ ¼ −Δ−
μ so that

X
y;μ

Eμðy; xÞΔμΛy ¼ −
X
y;μ

Δ−
μEμðy; xÞΛy

¼
X
y

δy;xΛy ¼ Λx: ð31Þ

On the other hand, under the global U(1) transformation
zx → eiαzx (which is not an allowed gauge transformation

when C� boundary conditions are used), the operator Γx

transforms as Γx → eiαΓx and thus is a charged gauge-
invariant operator. In the Lorenz gauge

X
y;μ

Eμðy; xÞAy;μ ¼ −
X
y;μ

Vðy; xÞΔ−
μAy;μ ¼ 0 ð32Þ

so that Γx reduces to zx. Therefore, correlation functions of
Γx, such as

GΓðx; yÞ ¼ hΓ̄x · Γyi ð33Þ

can be computed as correlation functions of zx, i.e.,
Gzðx; yÞ ¼ hz̄x · zyi in the Lorenz gauge. We recall that,
as demonstrated for N ¼ 1 [30–33] and numerically con-
firmed for multicomponent systems [89], the charged
excitations associated with Γx condense in the H phase,
i.e., GΓðx; yÞ → c ≠ 0 [equivalently Gzðx; yÞ → c ≠ 0 in
the Lorenz gauge] in the large jx − yj limit.
It is interesting to observe that the correlations of the

operator Γx converge to correlations of the gauge nonlocal
operator

Γ̃x ¼ exp

�
i
X
y;μ

Eμðy; xÞAy;μ

�
; ð34Þ

in the limit J → ∞, i.e., in the IXY model. The operator Γ̃x
is invariant (the exponents vary by multiples of 2πi) under
the restricted gauge transformations that are appropriate for
the IXY model. Note that this identification allows us to
conclude that the critical behavior of Γ̃x in the IXY model
(no scalar fields are present here) is the same as that of the
scalar-field correlations in the LAH model with Lorenz
gauge fixing.

B. Finite-size scaling

We summarize here the main FSS relations that we
exploit in our numerical analysis. We consider simulations
varying κ at fixed J so that the basic FSS variable is

X ¼ ðκ − κcÞL1=ν; ð35Þ

where κc is the critical value, ν is the length-scale critical
exponent, and L is the lattice size.
RG invariant quantities, such as the ratios

RA ¼ ξA=L; Rz ¼ ξz=L; ð36Þ

and the Binder parameters UA, Uz, scale in the large-L
limit as

Rðκ; LÞ ¼ RðXÞ þOðL−ωÞ; ð37Þ

where R is universal apart from a normalization of the
argument X, and ω is the leading correction-to-scaling
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exponent. The scaling relation Eq. (37) can be written in a
different (and often more useful) way when two RG-
invariant quantities R and R1 are available, and R1 is
monotonic with respect to κ, as it occurs for the ratios RA
and Rz. In this case, we can replace X with R1 and write the
asymptotic FSS behavior as

Rðκ; LÞ ¼ R̂ðR1Þ þOðL−ωÞ; ð38Þ

where R̂ is a universal function with no nonuniversal
normalization. The FSS relation (38) is particularly useful
to check universality since it does not require any parameter
tuning.
To determine the scaling dimension of a local operator

Ox, we analyze the corresponding susceptibility χO, which
can be defined in terms of the Fourier-transformed two-
point correlation function at small momentum, as in
Eqs. (16) and (27). In the FSS limit, the susceptibility
χO behaves as

χO ≈ Ld−2yO FχðR1Þ ¼ L2−ηOFχðR1Þ; ð39Þ

where Fχ is a function that is universal apart from a
multiplicative factor, and we used the standard RG relation
yO ¼ ðd − 2þ ηOÞ=2. Note that Eq. (39) gives the leading
large-size behavior for κ ≈ κc only if yO < d=2 (or,
equivalently, if ηO < 2). If this is not the case, the analytic
background is the dominant contribution, and the nonana-
lytic scaling part represents a correction term.
The cumulantsBk are expected to show the FSS behavior

[48,82,104]

Bkðκ; LÞ ≈ Lk=ν−3½BkðXÞ þOðL−ωÞ� þ bk; ð40Þ

where the constant bk represents the analytic back-
ground [82,93]. The scaling functions BkðXÞ are universal
apart from a multiplicative factor and a normalization of the
argument. We recall that they generally depend on the
chosen boundary conditions.
Some important remarks are in order before applying the

FSS approach to determine the universal features of the MH
transitions. If the critical behavior is the same as in the IXY
model, which, in turn, is related by duality to the standard
XY model, we should have [93,99,100,105–107], ν ¼
νXY ¼ 0.6717ð1Þ and ω ¼ ωXY ≈ 0.79. In this case, B2 is
not convenient, as the leading behavior is dominated by the
constant b2, due to the fact that α ¼ 2–3ν < 0. Thus, we
focus on the third cumulant that diverges with expo-
nent 3=ν − 3 ≈ 1.47.
It is important to stress that the Lorenz-gauge represen-

tation of the charged operator Γx in terms of the local scalar
field zx allows us to use the standard RG framework
[93,108–111] to predict the critical behavior of its corre-
lations. This allows us to write down power-law FSS
behaviors analogous to those valid for correlations of local

operators. As we shall see, this allows us to characterize
their critical behavior, showing that their power laws are
controlled by a new universal critical exponent, which turns
out not to depend on the number of components.
Finally, we note that the relation (24), which is valid for

any J and, in particular, in the limit J → ∞, allows us to
prove ηA ¼ 1 in the IXY model. Reference [50] explicitly
showed that χF in the IXY model is related by a duality
transformation to the helicity modulus ϒ in the Villain XY
model, i.e., χF ∼ϒ. Since ϒ ∼ L−1 at an XY critical point,
see Ref. [112], we obtain

χA ∼ L2χF ∼ L2ϒ ∼ L: ð41Þ

The exponent ηA can be determined from the large-size
behavior of χA, as χA ∼ L2−ηA . We thus conclude that ηA ¼
1 in the IXY model. We will show below that this result
extends to all MH transitions for any value of N.

V. NUMERICAL RESULTS

A. Monte Carlo simulations

To investigate the nature of the critical behavior along the
MH transition line and to compare it with the behavior
observed along the N ¼ 1 CH line, we present numerical
FSS analyses of data obtained by MC simulations, con-
sidering cubic lattices of size L3 with C� boundary
conditions, defined in Eq. (4).
We have performed MC simulations at fixed J, varying κ

close to the MH (CH for N ¼ 1) transition line. We have
obtained results for N ¼ 1, 2, 4, 10, 25 along the line
J ¼ 1, considering lattices of size L up to 26, 26, 20, 20,
20, respectively. For N ¼ 25, we have also performed
simulations along the line J ¼ 0.4, with L up to 32.
For comparison, note the transition value JcðNÞ for
κ ¼ 0 (CPN−1 model) is a decreasing function of N and
that [77,81] Jcð2Þ ¼ 0.7102ð1Þ, Jcð20Þ ≈ 0.353. Thus, the
transitions we consider for N ≥ 2 should belong to the MH
line. As a check, we have measured the Binder cumulant of
the bilinear operator Qx defined in Eq. (9). The numerical
results show that it converges to 1 on both sides of the
transitions as L → ∞, confirming that the SUðNÞ sym-
metry is broken in both phases.
Note that J ¼ 1 is less than twice JcðNÞ at κ ¼ 0 for

most of the N simulated (N ≤ 10), so we do not expect
significant crossover effects from the IXY point at J ¼ ∞.
This is not true for N ¼ 25, so in this case, we also
performed simulations at J ¼ 0.4 to verify that the results
are independent of the specific value of J adopted. Close to
the multicritical point where the three transition lines
meet, see Fig. 1, the transitions along the MH line could
in principle become discontinuous. However, we have
no indications of this behavior from the performed
simulations.
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MC simulations have been performed by using a
combination of Metropolis and microcanonical updates;
see, e.g., Ref. [83] for more details. To estimate mean
values in the Lorenz gauge, we have performed simulations
using the weight e−H (i.e., without gauge fixing) and
implemented the gauge fixing before each measure.
Given a MC configuration fAx;μ; zxg, we have determined
(by using a conjugate gradient solver) the gauge trans-
formation Λx ∈R such that the new field A0

x;μ ¼ Ax;μ −
Λx þ Λxþμ̂ satisfies the Lorenz condition (5). Correlations
are then computed using the configuration fA0

x;μ; z0xg. It is
simple to show that this procedure is equivalent to directly
sampling configurations satisfying the Lorenz gauge con-
dition with weight e−H.

B. Critical points from the RG invariant observables

We have first determined the critical values κc, fitting the
MC data of RA, Rz, UA, and Uz to Eq. (37). For this
purpose, we have parametrized the corresponding scaling
functionsRðXÞ with a polynomial in X of degree n (with n
varying between 10 and 12). The fits allow us to determine
both κc and ν. Given the small range of available values of
L, we can only verify that the estimates of ν are substan-
tially consistent with the XY value [93,99,100,105–107],
νXY ¼ 0.6717ð1Þ. More evidence of a universal IXY
behavior is provided below. To obtain accurate estimates

of κc, we have repeated the fits fixing ν ¼ 0.6717. We
obtain

N ¼ 1 J ¼ 1.0∶ κc ¼ 0.10745ð5Þ;
N ¼ 2 J ¼ 1.0∶ κc ¼ 0.08931ð5Þ;
N ¼ 4 J ¼ 1.0∶ κc ¼ 0.08179ð6Þ;
N ¼ 10 J ¼ 1.0∶ κc ¼ 0.07821ð10Þ;
N ¼ 25 J ¼ 1.0∶ κc ¼ 0.07685ð8Þ;
N ¼ 25 J ¼ 0.4∶ κc ¼ 0.07996ð4Þ: ð42Þ

Note that for J → ∞, the MH line is expected to converge
to κc;IXY ¼ 0.076051ð2Þ for all values of N. Thus, the J
dependence of κc becomes weaker as N increases, in
agreement with the general argument presented in
Sec. III D. The scaling relation (37) is well satisfied by
the data, with scaling corrections that increase with
increasing N and decreasing J. As an example in Fig. 2,
we report RA versus X for the six different cases mentioned
above. The agreement is excellent. Moreover, in Table I, we
report our estimates R�

A, R
�
z , U�

A and U�
z of the RG invariant

quantities RA, Rz,UA andUz at the critical point of the one-
component and multicomponent LAH models that we have
considered. Their global agreement is a further robust
evidence of universality.

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Plot of RA ¼ ξA=L versus X ¼ ðκ − κcÞL1=ν with ν ¼ 0.6717 for: (a) N ¼ 1, J ¼ 1; (b) N ¼ 2, J ¼ 1; (c) N ¼ 4, J ¼ 1;
(d) N ¼ 10, J ¼ 1; (e) N ¼ 25, J ¼ 1; (f) N ¼ 25, J ¼ 0.4.
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C. The gauge-invariant energy cumulants

MC results forB3 are reported in Fig. 3 forN ¼ 1,N ¼ 2
(for J ¼ 1) andN ¼ 25 (for J ¼ 0.4). Analogous results are
obtained forN ¼ 4, 10, 25 at J ¼ 1. The observed behaviors
are definitely consistent with Eq. (40) when using the XY
exponent νXY ¼ 0.6717. Note that, if we appropriately tune
the vertical and horizontal scale by adding two nonuniversal
constants, the scaling behavior is universal; i.e., the scaling
curve is quantitatively the same for all values ofN and for the
IXY model at J ¼ ∞. The scaling curve of the IXY model
has been computed in Ref. [91] by performing an interpo-
lation of MC results for the IXY model. Analogous results
are obtained for the higher cumulants. We can therefore
conclude that transitions along the MH line for any N ≥ 2
andalong theCHline forN ¼ 1have the same IXY universal
behavior.

D. Nonlocal charged correlations

We now determine the critical behavior of the charged
operator Γx defined in Eq. (29). Charged correlations are
expected to have a nontrivial behavior along the MH line.

Indeed, in the H phase, we have GΓðx; yÞ → c ≠ 0 [thus,
Gzðx; yÞ → c ≠ 0 in the Lorenz gauge] in the large jx − yj
limit, as demonstrated for N ¼ 1 [30–33] and numerically
confirmed for multicomponent systems [89].
The numerical results confirm that charged correlations

have an N-independent critical behavior, which is the same
as that occurring in the one-component LAH model along
the CH line. In particular, the Lorentz-gauge susceptibility
χz scales as

χz ≈ L2−ηzFχðXÞ; ð43Þ

with ηz independent of N. The analysis of the scalar
correlations in the Lorenz gauge gives ηz ¼ −0.74ð4Þ,
−0.76ð2Þ, −0.74ð3Þ, −0.75ð3Þ, −0.72ð4Þ for N ¼ 1, 2,
4, 10, 25 (in all cases J ¼ 1). We thus end up with the
N-independent estimate

ηz ¼ −0.74ð4Þ: ð44Þ

The plots of the MC data of χz shown in Fig. 4 nicely
support the scaling behavior (43) with the above estimate
of ηz.
To provide additional, and more compelling, evidence

that the critical MH transitions belong to the same
universality class, irrespective of the value of N, we
consider the FSS relation Uz ≈ FUðRzÞ between the
Binder parameter and Rz ≡ ξz=L. For given boundary
conditions and lattice shape, the function FU depends only
on the universality class without requiring the tuning of
nonuniversal parameters [83,93]. The scaling curves shown
in Fig. 5 are the same for all values of N, confirming that
the critical behavior of the charged sector is N independent.
It is interesting to observe that these results are also

relevant for the IXY model as they characterize the critical
behavior of the nonlocal operator Γ̃x, which corresponds to
the insertion of static charges in the system.

E. Local gauge correlations

Gauge and charged correlations show a critical behavior
for any N. The FSS analysis of the Fx;μν correlations or,
equivalently, of the susceptibility χA ¼ V−1 P

xy Cμμðx; yÞ
in the Lorenz gauge [89], allows us to estimate the gauge-
field exponent ηA (χA ∼ L2−ηA at the critical point). In the
IXY model, we have ηA ¼ 1, an exact result that follows
from the correspondence between the small-momentum
correlation of Fx;μν in the IXY model and the helicity
modulus ϒ computed in the dual XY model [50], and from
the fact that ϒ scales as L−1 in the XY model [112]. If the
critical behavior along the MH line (CH line for N ¼ 1) is
the same as in the IXY model, we expect ηA ¼ 1 in
all cases.
This result is confirmed by the numerical analyses of χA

for all values of N considered, see Fig. 6. Note that ηA ¼ 1

FIG. 3. Scaling plot of B3 for N ¼ 1, N ¼ 2 (for J ¼ 1) and
N ¼ 25 (for J ¼ 0.4), from left to right.We plot B̃3 ¼ cBB3L3−3=ν

versus X̃ ¼ cXðκ − κcÞL1=ν, fixing ν ¼ νXY ≈ 0.6717 and the
critical values κc ¼ 0.10745ð5Þ; 0.08931ð5Þ; 0.07996ð4Þ, respec-
tively. The continuous curve that appears in the three panels is the
scaling curve computed in the IXY model [91] with cX ¼ cB ¼ 1.
The nonuniversal constants cX and cB of the LAHmodels are fixed
by matching the curves, obtaining cB ¼ 1.5, 1.05, 0.95 and
cX ¼ 0.52, 0.75, 0.9 for N ¼ 1, 2, 25, respectively. Analogous
results are obtained for N ¼ 4, 10, 25 along the J ¼ 1 line.

TABLE I. Estimates of the critical-point values of the
RG-invariant quantities Rz, RA, Uz, and UA, for the different
values of N. They turn out to be in good agreement, supporting
universality.

N ¼ 1 N ¼ 2 N ¼ 4 N ¼ 10
N ¼ 25,
J ¼ 1

N ¼ 25,
J ¼ 0.4

R�
z 1.45(5) 1.42(8) 1.35(12) 1.45(10) 1.40(10) > 1.25

R�
A 0.064(4) 0.067(5) 0.075(9) 0.069(6) 0.073(6) 0.071(6)

U�
z 1.078(10) 1.080(13) 1.09(3) 1.08(2) 1.081(17) 1.12(5)

U�
A 3.3(1) 3.5(1) 3.6(2) 3.7(2) 3.7(3) 3.2(2)
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also holds along the CH line for N > N⋆, where the
transition is controlled by the charged fixed point of the RG
flow of the AHFT [37,38,44,45,89], and, more generally,
at any continuous transition controlled by a charged

field-theoretical fixed point, as a consequence of the
Ward identities [92].

VI. CONCLUSIONS

We have studied the topological phase transitions occur-
ring in the 3D LAH model, in which an N-component
scalar field is minimally coupled with a noncompact
Abelian gauge field, with a global SUðNÞ symmetry.
The phase diagram, see Fig. 1, presents three phases,
which differ in the properties of the gauge correlations,
in the confinement or deconfinement of the charged
excitations, and in the behavior under global SUðNÞ
transformations.
We have shown that multicomponent LAH models can

undergo different types of transitions driven by the con-
densation of charged excitations: CH and MH transitions
along the lines that separate the H phase from the C and M
phase, respectively. They are controlled by different
charged fixed points of the renormalization-group (RG)
flow with nonvanishing gauge coupling. Gauge correla-
tions play an active, but different, role at these deconfine-
ment transitions, and, therefore, they cannot be described
by effective LGW theories. While transitions along the
CM and CH lines are related to the spontaneous breaking of
the global SUðNÞ symmetry, the MH line separates two
ordered phases, both characterized by the condensation

FIG. 5. The Binder parameter Uz versus the ratio Rz ¼ ξz=L in
the Lorenz gauge, forN ¼ 25with J ¼ 0.4 (top), N ¼ 2 (middle)
and N ¼ 1 (bottom) with J ¼ 1. They appear to converge to the
same universal curve. Analogous results are obtained for N ¼ 4,
10, 25 at J ¼ 1.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Plot of χz=L2−ηz for ηz ¼ −0.74 versus RA ¼ ξA=L for: (a) N ¼ 1, J ¼ 1; (b) N ¼ 2, J ¼ 1; (c) N ¼ 4, J ¼ 1; (d) N ¼ 10,
J ¼ 1; (e) N ¼ 25, J ¼ 1; (f) N ¼ 25, J ¼ 0.4. The data approach a unique curve, apart from a multiplicative normalization, supporting
universality.
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of a gauge-invariant bilinear of the scalar field. The MH
transitions are driven by gauge modes that undergo a
critical transition without a local gauge-invariant order
parameter, as it also occurs for the CH transitions in the
one-component LAH model; see Fig. 1.
The numerical results we have presented show that, for

any N ≥ 2 (including the N → ∞ limit), the topological
MH transitions belong to the same universality class as the
transitions along the CH line for N ¼ 1. Charged excita-
tions associated with Γx, deconfine at the transition. In the
Lorenz gauge, Γx is equivalent to the scalar field zx, and it is
therefore a local operator, allowing us to exploit the
standard RG framework. We estimate the RG dimension
of Γx, obtaining yΓ ¼ ðd − 2þ ηzÞ=2 ≈ 0.13ð2Þ. We
observe that excitations with RG dimensions yΓ also exist
in the IXY model, i.e., in the absence of explicit scalar
fields, and are associated with the operator Γ̃x defined in
Eq. (34). We finally note that charged excitations are also
relevant along the CH line [89]. The Γx operator has here a
different N-dependent RG dimension yΓ: yΓ ¼ 0.4655ð5Þ
forN ¼ 25 [89] andyΓ ≈ 1=2 − 10=ðπ2NÞ for largeN [3,63].
We have also discussed the critical behavior of gauge

local correlations, showing that the associated susceptibil-
ity exponent ηA satisfies ηA ¼ 1, as in the IXY model. For
the latter model, ηA ¼ 1 is an exact result that can be proved
using duality.

Note that, although the IXY model is dual to the XY
model, the critical behavior of the charged scalar correlations
along the N ¼ 1 CH line is not related to that of the scalar
correlations in theXY model obtained for κ → ∞; see Fig. 1.
Obviously, the Lorenz-gauge correlations of the field zx
along the CH line converge to the scalar correlations of the
XY model for κ → ∞ at fixed system size L. However, since
the κ → ∞ and theL → ∞ limits do not commute, this result
does not imply that their asymptotic infinite-volume behav-
ior is the same. Indeed, charged scalar correlations are
characterized by the critical exponent ηz ≈ −0.7 along the
CH line at finite κ, definitely differing from the value
ηz ≈ 0.038 at the vector spin XY transition [93]. This is
consistent with the RG field-theory result that predicts the
XY RG fixed point to be unstable with respect to gauge
fluctuations [83].
Although the CH and MH transitions both separate a

phase with confined charges from a deconfined Higgs
phase, their critical behavior shows notable differences
since the transitions are associated with different charged
RG fixed points. Indeed, the critical MH transitions are
effectively controlled by the charged IXY fixed point, while
the continuous CH transitions, which occur forN > N⋆ ≈ 7
[75,83,88,90], are controlled by the different,N-dependent,
charged fixed point that is obtained in the AHFT. Estimates
of the corresponding N-dependent critical exponents are

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Plot of χA=L2−ηA ¼ χA=L (ηA ¼ 1) versus Rz ¼ ξz=L for: (a) N ¼ 1, J ¼ 1; (b) N ¼ 2, J ¼ 1; (c) N ¼ 4, J ¼ 1; (d) N ¼ 10,
J ¼ 1; (e) N ¼ 25, J ¼ 1; (f) N ¼ 25, J ¼ 0.4. The data approach a unique curve, apart from a multiplicative normalization, supporting
universality. For Rz → 0, data scale as 1=Rz, to guarantee the correct Coulomb behavior of the susceptibility χA ∼ L2.
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reported in Refs. [83,89]; for instance, ν ¼ 0.802ð8Þ for
N ¼ 25, and ν ≈ 1–48=ðπ2NÞ for largeN [3,49]. Therefore,
LAH models with N > N⋆ show two distinct charged
critical behaviors along the MH and CH transition lines.
Note that, if the MH and CH transitions remain continuous
up to their intersection point (they could turn into first-
order transitions before it), a nontrivial multicritical
behavior can occur [93], calling for further investigations.
We finally remark that the N-independent MH critical
behavior does not have a counterpart in the RG flow of
the AHFT, as determined using the perturbative ϵ ¼ 4 − d
expansion [3,75], or in the standard large-N approach [49].
It would be interesting to add fermionic fields to the

LAH model minimally coupled to the gauge field. Also in
this case, one expects Higgs phases bounded by topological
transitions. In particular, for large J, one still expects
a transition line where gauge fields behave as in the
IXY model. While massive fermions should not change
the critical behaviors (they can be effectively integrated

out), massless fermions may lead to different topological
universality classes, which may be of interest for condensed-
matter systems. At these transitions, the charged gauge-
invariant fermionic excitations [95] may be studied as the
scalar ones. Topological charged transitions driven by gauge
fields can also be present in 3D non-Abelian gauge theories
with scalar fields in diverse representations; see, e.g.,
Refs. [13,113–116]. However, in this case, the identification
of the relevant gauge-invariant matter excitations is more
complex. In particular, the nonlinearity of the gauge con-
ditions [117–119] does not allow us to extend to the non-
Abelian case the simple gauge-fixing approach exploited in
this work. These issues call for further investigation.

ACKNOWLEDGMENTS

Numerical simulations have been performed on the
CSN4 cluster of the Scientific Computing Center at
INFN-PISA.

[1] P. W. Anderson, Basic Notions of Condensed Matter
Physics (The Benjamin/Cummings Publishing Company,
Menlo Park, California, 1984).

[2] X.-G. Wen,Quantum Field Theory of Many-Body Systems:
From the Origin of Sound to an Origin of Light and
Electrons (Oxford University Press, New York, 2004).

[3] B. I. Halperin, T. C. Lubensky, and S. K. Ma, First-order
phase transitions in superconductors and smectic-A liquid
crystals, Phys. Rev. Lett. 32, 292 (1974).

[4] I. Herbut, A Modern Approach to Critical Phenomena
(Cambridge University Press, Cambridge, England, 2007).

[5] N. Read and S. Sachdev, Spin-Peierls, valence-bond solid,
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