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We compute gluelump masses and mass differences using SU(3) lattice gauge theory. We study states
with total angular momentum up to J ¼ 3, parity P ¼ þ;−, and charge conjugation C ¼ þ;−.
Computations on four ensembles with rather fine lattice spacings in the range from 0.040 to 0.093 fm
allow continuum extrapolations of gluelump mass differences. We complement existing results on hybrid
static potentials with the obtained gluelump masses, which represent the limit of vanishing quark-
antiquark separation. We also discuss the conversion of lattice gluelump masses to the renormalon
subtracted scheme, which is e.g. important for studies of heavy hybrid mesons in the Born-Oppenheimer
approximation.
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I. INTRODUCTION

Gluelumps are color-neutral states composed of a static
adjoint color charge and gluons. Even though they do not
seem to exist in nature, they are conceptually interesting
and relevant in the context of certain QCD calculations. An
example of the latter is the Born-Oppenheimer effective
field theory for heavy hybrid mesons, where gluelump
masses are the nonperturbative matching coefficients for
hybrid static potentials. Gluelump masses have to be
provided as input, when computing the spectrum of heavy
hybrid mesons (see e.g. Ref. [1]). Beyond the Standard
Model, gluelumps are candidates for additional bound
states, which contain gluinos, the counterparts of gluons
in supersymmetric models. Because of this, gluelump
masses help to investigate the spectrum of states in super-
symmetric theories (see e.g. Ref. [2]).
Gluelumps were studied within models or using sim-

plifying approximations of QCD, e.g. the bag model,
potential models, and Coulomb gauge QCD via the
variational approach (see e.g. Refs. [3–7]). The resulting
spectra, however, exhibit sizable discrepancies. Lattice
gauge theory, on the other hand, is a first-principles
approach, where the underlying quantum field theory,
typically SU(3) gauge theory, is solved numerically on a
hypercubic periodic spacetime lattice. The finite lattice

spacing can be varied and the functional dependence of
physical observables like gluelump masses or mass split-
tings is known, which allows trustworthy extrapolations to
the continuum. Thus, lattice gauge theory is the ideal tool to
compute the spectrum of gluelumps in a rigorous and
reliable way.
At the moment only few lattice computations of glue-

lump spectra exist in the literature. In Ref. [8] masses of ten
gluelump states were computed in SU(3) gauge theory and
five gluelump mass splittings were extrapolated to the
continuum. While gluelump mass splittings are scheme
independent, gluelump masses depend on the regulariza-
tion scheme and the value of the regulator, e.g. in lattice
gauge theory they diverge in the continuum limit. In
Ref. [9] the lightest gluelump mass, which is convention-
ally taken as reference mass, was thus converted to the
renormalon subtracted (RS) scheme, which is common in
perturbative calculations. The results of Refs. [8,9] are
frequently used, for example to compare with model
predictions or when computing heavy hybrid meson spectra
in Born-Oppenheimer effective field theory. However, the
precision of such applications is not only limited by
perturbative systematics, but also by the somewhat out-
dated lattice data from Ref. [8], which were generated
around 25 years ago. In a more recent lattice study [10] of
the gluelump spectrum, masses of 20 gluelump states in the
color octet representation were determined (and an even
larger number in higher color representations). In that
work, however, full QCD was used, not SU(3) gauge
theory without dynamical quarks as in Refs. [8,9]. As a
consequence, mixings with static adjoint mesons, which are
states composed of a static adjoint color charge and a light
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quark-antiquark pair, are possible. Even though such
mixings could be small, sea quarks are expected to have
non-negligible effects on gluelump masses. Thus, even
though technically more advanced, Ref. [10] cannot be
compared quantitatively to Ref. [8], nor can it replace
Ref. [8].
The aim of this work is to carry out an up-to-date

precision computation of the gluelump spectrum in SU(3)
lattice gauge theory, i.e. without dynamical quarks. We use
four different small lattice spacings, compute for each of
them 20 gluelump masses and are able to extrapolate 19
gluelump mass splittings to the continuum. In addition to
statistical errors, we also estimate systematic errors asso-
ciated with extracting the asymptotic exponential behaviors
of correlation functions as well as with the continuum
extrapolations. We also repeat the conversion of the lowest
lattice gluelump mass to the RS scheme following con-
ceptually Ref. [9], but using our new lattice data instead of
the results from Ref. [8]. While this leads to higher
precision, we show that the error of the RS gluelump mass
is currently dominated by uncertainties on the perturba-
tive side.
This paper is structured in the following way. In Sec. II

theoretical basics are discussed including gluelump quan-
tum numbers, operators and correlation functions.
Section III is devoted to the lattice setup and other
computational details. In Sec. IV, which is the main section
of this work, we present and discuss our results, in
particular gluelump masses and gluelump mass splittings.
For the latter we carry out continuum extrapolations. We
also discuss in detail the assignment of continuum total
angular momentum J, which is not obvious, because
rotational symmetry is broken by the hypercubic lattice
and there are cases of competing states with different J in
the same cubic representation. Moreover, we compare to
existing lattice results [8,10] and we complement our
previous lattice results [11,12] on hybrid static potentials,
since gluelump masses can be interpreted as the limit of
vanishing quark-antiquark separation of such potentials.
Finally, we convert the lightest gluelump mass from the
lattice to the RS scheme, as outlined in the previous
paragraph. We conclude in Sec. V.

II. GLUELUMP QUANTUM NUMBERS,
OPERATORS, AND CORRELATION FUNCTIONS

In the continuum, gluelumps are characterized by quan-
tum numbers JPC. J is the total angular momentum of the
gluons with respect to the position of the static adjoint
quark and P and C denote parity and charge conjugation.
A cubic lattice breaks rotational symmetry. The remain-

ing symmetry group is the full cubic group Oh. The
elements of this group are combinations of discrete 90°

rotations and spatial reflection. Lattice gluelumps can thus
be classified according to the four one-dimensional irre-
ducible representations RPC ¼ A�

1 , A�
2 , the two two-

dimensional irreducible representations, RPC ¼ E�, and
the four three-dimensional irreducible representations,
RPC ¼ T�

1 , T
�
2 . Since each representation of the full cubic

group corresponds to an infinite number of representations
of the continuous rotation group, the identification and
assignment of total angular momentum J to gluelump states
obtained by a lattice computation is a nontrivial task (see
Sec. IV B 3 for a detailed discussion).
We compute gluelump masses from temporal correlation

functions

CRPCðt2 − t1Þ ¼ Ha
RPCðrQ; t1ÞGabðrQ; t1; t2ÞHb†

RPCðrQ; t2Þ:
ð1Þ

rQ denotes the spatial position of the static quark. Due to
translational invariance, the correlation function does not
depend on rQ. Numerically, we can thus average the right-
hand side of Eq. (1) over all possible quark positions to
increase statistical precision. To keep the notation simple,
we omit the spatial coordinate rQ from now on.
G denotes the static quark propagator in the adjoint

representation. It is given by a product of adjoint temporal
gauge links [represented in SU(3) gauge theory by 8 × 8
matrices, where rows and columns are labeled by upper
indices a; b; c;… ¼ 1;…; 8] connecting time t1 and
time t2,

Gabðt1; t2Þ ¼ Uð8Þ;ac
t ðt1ÞUð8Þ;cd

t ðt1 þ aÞ
× Uð8Þ;de

t ðt1 þ 2aÞ…Uð8Þ;fb
t ðt2Þ: ð2Þ

Adjoint gauge links are related to ordinary gauge links in the

fundamental representation via Uð8Þ;ab
t ¼ Tr½TaUtTbU†

t �,
where Ta ¼ λa=

ffiffiffi
2

p
are the SU(3) generators with the

Gell-Mann matrices λa.
The operators HRPC at time t1 and time t2 contain gauge

links in the fundamental representation generating gluons
with definite lattice quantum numbers, i.e. excite the gluon
field according to one of the irreducible representations of
Oh (see above). We employ operators HRPC constructed
and discussed in detail in Ref. [10].
The operators are suitable linear combinations of closed

gauge link paths. There are 24 basic building blocks Ln,
n ¼ 1;…; 24, which have a chairlike shape, i.e. are 1 × 2
rectangles bent by π=2:

HERR, SCHLOSSER, and WAGNER PHYS. REV. D 109, 034516 (2024)

034516-2



L1 ¼ UNþxU
NþyU

NþzU
N
−xUN

−zUN
−y; L2 ¼ UN

−yUNþxU
NþzU

NþyU
N
−zUN

−x;

L3 ¼ UN
−xUN

−yUNþzU
NþxU

N
−zUNþy; L4 ¼ UNþyU

N
−xUNþzU

N
−yUN

−zUNþx;

L5 ¼ UNþyU
NþzU

NþxU
N
−yUN

−xUN
−z; L6 ¼ UNþxU

NþzU
N
−yUN

−xUNþyU
N
−z;

L7 ¼ UN
−yUNþzU

N
−xUNþyU

N
−xUN

−z; L8 ¼ UN
−xUNþzU

NþyU
NþxU

N
−yUN

−z;

L9 ¼ UNþzU
NþxU

NþyU
N
−zUN

−yUN
−x; L10 ¼ UNþzU

N
−yUNþxU

N
−zUN

−xUNþy;

L11 ¼ UNþzU
N
−xUN

−yUN
−zUNþyU

Nþx; L12 ¼ UNþzU
NþyU

N
−xUN

−zUNþxU
N
−y;

L13 ¼ UN
−yUN

−xUN
−zUNþyU

NþzU
Nþx; L14 ¼ UN

−xUNþyU
N
−zUNþxU

NþzU
N
−y;

L15 ¼ UNþyU
NþxU

N
−zUN

−yUNþzU
N
−x; L16 ¼ UNþxU

N
−yUN

−zUN
−xUNþzU

Nþy;

L17 ¼ UN
−zUN

−yUN
−xUNþzU

NþxU
Nþy; L18 ¼ UN

−zUN
−xUNþyU

NþzU
N
−yUNþx;

L19 ¼ UN
−zUNþyU

NþxU
NþzU

N
−xUN

−y; L20 ¼ UN
−zUNþxU

N
−yUNþzU

NþyU
N
−x;

L21 ¼ UN
−xUN

−zUN
−yUNþxU

NþyU
Nþz; L22 ¼ UNþyU

N
−zUN

−xUN
−yUNþxU

Nþz;

L23 ¼ UNþxU
N
−zUNþyU

N
−xUN

−yUNþz; L24 ¼ UN
−yUN

−zUNþxU
NþyU

N
−xUNþz; ð3Þ

with UN
�j denoting a product of N gauge links in the fundamental representation in �j direction. All 24 chairlike building

blocks are also defined in a graphical way in Fig. 1 of Ref. [10] (the red chair-shaped paths). Applying parity P (i.e. spatial
reflections) and/or charge conjugation C (i.e. Hermitian conjugation) to these 24 building blocks leads to a total of 96
building blocks.
Linear combinations of Ln that correspond to the five representations, A1, A2, T1, T2, and E, have been worked out in

Ref. [10] and are given by

Ha
A1

¼ ðH̃A1
ÞαβTa

αβ ¼
�X24

n¼1

Ln

�
αβ

Ta
αβ; ð4Þ

Ha
A2

¼ ðH̃A2
ÞαβTa

αβ ¼
�X12

n¼1

ð−1ÞaLn −
X24
n¼13

ð−1ÞaLn

�
αβ

Ta
αβ; ð5Þ

Ha
Tx
1
¼ ðH̃Tx

1
Þ
αβ
Ta
αβ ¼ ðL6 þ L20 þ L21 þ L11 − L18 − L8 − L9 − L23ÞαβTa

αβ; ð6Þ

Ha
Ty
1

¼ ðH̃Ty
1
Þ
αβ
Ta
αβ ¼ ðL5 þ L19 þ L24 þ L10 − L17 − L7 − L12 − L22ÞαβTa

αβ; ð7Þ

Ha
Tz
1
¼ ðH̃Tz

1
Þ
αβ
Ta
αβ ¼ ðL1 þ L2 þ L3 þ L4 − L13 − L14 − L15 − L16ÞαβTa

αβ; ð8Þ

Ha
Tx
2
¼ ðH̃Tx

2
Þ
αβ
Ta
αβ ¼ ðL6 − L20 þ L21 − L11 þ L18 − L8 þ L9 − L23ÞαβTa

αβ; ð9Þ

Ha
Ty
2

¼ ðH̃Ty
2
Þ
αβ
Ta
αβ ¼ ðL5 − L19 þ L24 − L10 þ L17 − L7 þ L12 − L22ÞαβTa

αβ; ð10Þ

Ha
Tz
2
¼ ðH̃Tz

2
Þ
αβ
Ta
αβ ¼ ðL1 − L2 þ L3 − L4 þ L13 − L14 þ L15 − L16ÞαβTa

αβ; ð11Þ

Ha
E1

¼ ðH̃E1ÞαβTa
αβ ¼ ðvx − vyÞαβTa

αβ; ð12Þ

Ha
E2

¼ ðH̃E2ÞαβTa
αβ ¼ ðvx þ vy − 2vzÞαβTa

αβ; ð13Þ

with

vx ¼ L6 þ L20 þ L21 þ L11 þ L18 þ L8 þ L9 þ L23; ð14Þ
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vy ¼L5þL19þL24þL10þL17þL7þL12þL22; ð15Þ

vz ¼ L1 þ L2 þ L3 þ L4 þ L13 þ L14 þ L15 þ L16; ð16Þ

where lower indices α; β ¼ 1;…; 3 refer to the rows and
columns of the 3 × 3 matrices Ln, which are defined in
Eq. (3). An operator generating a state, which has also
definite parity and charge conjugation, is given by

Ha
RPC ¼ Ha

R�� ¼ 1

4
ððHa

R � ðPHa
RÞÞ � CðHa

R � ðPHa
RÞÞÞ:
ð17Þ

The correlation function (1) can be simplified analytically,

CRPCðt2 − t1Þ ¼ Tr½H̃RPCðt1ÞQðt1; t2ÞH̃†
RPCðt2ÞðQðt1; t2ÞÞ†�

−
1

3
Tr½H̃RPCðt1Þ�Tr½H̃†

RPCðt2Þ�; ð18Þ

by exploiting Ta
αβT

a
γδ ¼ δαδδβγ − δαβδγδ=3.Qðt1; t2Þ denotes

a product of temporal gauge links in the fundamental
representation connecting time t1 and time t2.
To optimize the ground state overlaps, we chose N ¼ 2

[see Eq. (3)] and applied APE smearing to the spatial gauge
links appearing in the operators H̃RPC (see e.g. Ref. [13] for
detailed equations). The number of smearing steps was
optimized on ensemble B (see Table I) in Ref. [14]. The
APE step numbers NAPE applied for computations on the
other three ensembles were chosen according to a similar
optimization carried out in Ref. [12] (see Table VI in
Appendix A in that reference). In summary, we use
NAPE ¼ 33, 82, 115, and 164 for ensembles A, B, C,
and D, respectively.

III. COMPUTATIONAL SETUP AND DETAILS

The gluelump correlation functions (18) were computed
on four ensembles of SU(3) gauge link configurations with
gauge couplings β ¼ 6.594, 6.451, 6.284, 6.000. The
configurations were generated with the CL2QCD software
package [16] in the context of a previous project [12].
Physical units are introduced by setting r0 ¼ 0.5 fm, which
is a simple and common choice in pure gauge theory.
Details concerning these gauge link ensembles, which we
label by A, B, C, and D, can be found in Table I and in
Sec. III of Ref. [12].

We used the multilevel algorithm [17] to reduce stat-
istical errors in the gluelump correlation functions. Since
we applied the multilevel algorithm already in previous
projects, we refer for technical details to the corresponding
Refs. [12,18]. We employed a single level of time-slice
partitioning, a regular pattern with time-slice thickness
p1 ¼ p2 ¼ … ¼ pnts ¼ a and nm ¼ 10 sublattice configu-
rations, which are separated by nu ¼ 30 standard heat bath
sweeps. These parameters were optimized specifically for
gluelump computations in Ref. [14].
We carried out two computations of gluelump correla-

tion functions, one with unsmeared temporal links and the
other with HYP2 smeared temporal links [19–21]. HYP2
smearing leads to a reduced self-energy of the static adjoint
quark and, consequently, to smaller statistical errors.
However, the computation without HYP2 smearing is
equally important, because it allows us to complement
our previous results for hybrid static potentials from
Ref. [12], which were computed with unsmeared temporal
links (see Sec. IV C). Moreover, the conversion of glue-
lump masses from the lattice scheme to the RS scheme as in
Ref. [9] requires results with unsmeared temporal links (see
Sec. IV D).
Statistical errors of results corresponding to individual

ensembles were determined using the jackknife method.
For continuum extrapolations (see Sec. IV B), where we
had to combine data from several ensembles, the bootstrap
method was applied. This procedure is equivalent to the one
used and explained in Ref. [12]. Here we use NA ¼ 640,
NB ¼ 320, and NC ¼ ND ¼ 160 reduced jackknife bins
and K ¼ 10000 bootstrap samples.

IV. NUMERICAL RESULTS

In the following we determine lattice gluelump masses
and gluelump mass splittings. The methods we use are
based on the asymptotic exponential falloff in t of corre-
lation functions CRPCðtÞ defined in Eq. (18).
Numerically, the asymptotic t region is approximated by

large values of t. We assume in the following that the
numerically extracted asymptotic exponential falloff cor-
responds to a single state with mass mRPC , the ground state
in the RPC representation. In other words, we assume that
the data points of each correlation function CRPCðtÞ in the
numerically accessible large-t region are proportional to
e−mRPC t. For certain RPC representations one can expect

TABLE I. Gauge link ensembles.

Ensemble β a in fm [15] ðL=aÞ3 × T=a Nsim Ntotal Nor Ntherm Nsep Nmeas

A 6.000 0.093 123 × 26 4 60000 4 20000 50 3200
B 6.284 0.060 203 × 40 4 60000 12 20000 100 1600
C 6.451 0.048 263 × 50 4 80000 15 40000 200 800
D 6.594 0.040 303 × 60 4 80000 15 40000 200 800
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that this assumption is fulfilled, but for other RPC repre-
sentations this is questionable. In the latter situation there
might be two gluelump states with similar masses, which
have the same lattice quantum numbers RPC, but different
continuum total angular momenta J. Then one might
extract a mass somewhere between the masses of the
two states. In Sec. IV B 3, where we try to assign
continuum total angular momenta J to the extracted lattice
gluelump mass splittings, we discuss in detail which of our
results are solid and trustworthy and which of them should
be treated with caution.

A. Gluelump masses at finite values
of the lattice spacing

A straightforward approach to determine gluelump
masses is to compute effective masses

me;s
eff;RPCðtÞ ¼ 1

a
ln

�
Ce;s
RPCðtÞ

Ce;s
RPCðtþ aÞ

�
: ð19Þ

The large-t limit

me;s
RPC ¼ lim

t→∞
me;s

eff;RPCðtÞ ð20Þ

is obtained numerically from a fit of a constant to
me;s

eff;RPCðtÞ in the range t0min ≤ t ≤ t0max, where me;s
eff;RPCðtÞ

exhibits a plateau within statistical errors. This provides a
gluelump mass me;s

RPC for each representation RPC ∈
fA��

1 ; A��
2 ; E��; T��

1 ; T��
2 g, each ensemble e∈ fA;B;

C;Dg and both unsmeared and HYP2 smeared temporal
links indicated by labels s∈ fnone;HYP2g.
The fitting range is chosen individually for each glue-

lump mass me;s
RPC by an algorithm already used in previous

related work [11,12]:
(i) tmin is defined as the minimal t, where the values of

me;s
eff;RPCðtÞa and me;s

eff;RPCðtþ aÞa differ by less
than 2σ.

(ii) tmax is the maximal t, where Ce;s
RPCðtþ aÞ has been

computed, i.e. tmax ¼ 11a; 19a; 19a; 19a for ensem-
bles A, B, C, D, respectively.

(iii) Fits to me;s
eff;RPCðtÞa are performed for all ranges

t0min ≤ t ≤ t0max with tmin ≤ t0min, t0max ≤ tmax, and
t0max − t0min ≥ 3a.

(iv) The result of the fit with the longest plateau and
χ2red ≤ 1 is taken as result for me;s

RPCa, where

χ2red ¼
a

t0max − t0min

×
X

t¼t0min;t
0
minþa;…;t0max

ðme;s
eff;RPCðtÞa −me;s

RPCaÞ2
ðσ½me;s

eff;RPC �ðtÞaÞ2

ð21Þ
with σ½me;s

eff;RPC �ðtÞa denoting the statistical error
of me;s

eff;RPCðtÞa.
For around 10% of the fits the fitting range was adjusted
manually to correct for nonideal or unreasonable fitting
ranges. As a cross-check, we compared the resulting
masses to masses obtained by analogous fits in the range
t0min þ a ≤ t ≤ t0max and found agreement within statistical
errors. For RPC ¼ A−−

2 and unsmeared temporal links
(s ¼ none) statistical errors are rather large and the iden-
tification of effective mass plateaus is not possible.
Therefore, we do not quote gluelump masses for that
particular case. Moreover, we do not use the corresponding
correlator data for the remainder of this work.
The quality of our lattice data is exemplified by Fig. 1,

where we present two typical effective mass plots and the
corresponding plateau fits for representations RPC ¼ Tþ−

1

(left plot) and RPC ¼ Eþþ (right plot), e ¼ C, and both
s ¼ none and s ¼ HYP2.
The complete set of resulting gluelumpmassesme;s

RPCa (i.e.
for all 20 RPC representations, the four ensembles from
Table I and computations with unsmeared and with smeared
temporal links) are collected in Table IX in the Appendix.
Lattice gluelump masses contain an a-dependent self-

energy, which originates from the static adjoint quark and

0
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0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20
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m
C
,s e
ff
;R
PC
a

t/a

s = none
s = HYP2

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

RPC = E++

m
C
,s e
ff
;R
PC
a

t/a

s = none
s = HYP2

FIG. 1. Exemplary plots of effective massesmC;s
eff;RPCðtÞa and corresponding plateau fitsmC;s

RPCa. Left:RPC ¼ Tþ−
1 . Right:RPC ¼ Eþþ.
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diverges in the continuum limit. This self-energy is
reduced, when using HYP2 smeared temporal links, which
correspond to a less localized static charge. Because of the
divergent self-energy, one cannot carry out meaningful
continuum extrapolations. Nevertheless, such lattice glue-
lump masses at several finite values of the lattice spacing
are important. They can, for example, be converted into the
RS scheme (see Sec. IV D and Ref. [9]) and then be used to
fix the energy scale in Born-Oppenheimer effective field
theory determinations of the spectra of heavy hybrid
mesons (see e.g. Ref. [1]). Moreover, they complement
lattice results on hybrid static potentials computed within
the same lattice setup (see Sec. IV C and Refs. [11,12]).

1. Finite volume corrections

The gluelump results presented in this section have been
obtained using rather small spatial lattice volumes of L3 ≈
ð1.2 fmÞ3 with periodic boundary conditions (see Table I).
In Ref. [12] the same lattice ensembles were used to
compute closely related hybrid static potentials and pos-
sible sources for finite volume corrections were discussed
in detail and could be shown to be negligible within
statistical errors.

(i) First, there could be finite volume corrections caused
by a freezing of the topological charge during the
Monte Carlo simulations, in particular at our small-
est lattice spacing a ¼ 0.040 fm. We were able to
exclude such corrections by computing and check-
ing the topological charge histories.

(ii) Moreover, finite volume corrections due to the
interactions caused by virtual glueballs traveling
around the far side of the periodic lattice were found
to be negligible for lattice extents L≳ 1.0 fm.

(iii) A third type of finite volume corrections might
appear when the lattice size is smaller than the
extent of the (infinite volume) wave function of a
state. Then this wave function is inevitably squeezed
resulting in a positive shift of the associated energy
level [22]. Such effects were found to be negligible
for hybrid static potentials for L≳ 1.0 fm in
Ref. [12]. Since gluelumps can be considered as
the short distance limit of hybrid static potentials
(cf. Sec. IV C), it can be expected that their wave
functions are even smaller than those of the corre-
sponding hybrid potential states.

In summary, based on our previous detailed investigations
in Ref. [12], we do not expect any sizable finite volume
corrections to our gluelump mass results presented in this
section.

B. Continuum extrapolated gluelump mass splittings

As discussed in the previous subsection, the a-dependent
divergent self-energy is a consequence of the static adjoint

quark. It is thus independent of RPC and the same for all
gluelumps. Consequently, for gluelump mass splittings

ΔmRPC ¼ mRPC −mTþ−
1

ð22Þ

the self-energy cancels and a continuum extrapolation is
possible and should lead to a finite mass difference. As
previously done by other authors (see e.g. Refs. [8,10]), we
use the mass of the lightest gluelump, which has JPC ¼ 1þ−

corresponding to RPC ¼ Tþ−
1 , as reference mass.

1. Method 1: Continuum extrapolated gluelump
mass splittings from gluelump masses

A straightforward approach to compute gluelump mass
splittingsΔme;s

RPC for each e, s is to use the gluelump masses
from Sec. IVA extracted from effective mass plateaus.
There are correlations between me;s

RPC and me;s
Tþ−
1

, because

both quantities are evaluated on the same set of gauge link
configurations, but these correlations are taken into account
by a proper error analysis as stated in Sec. III.
The complete set of resulting gluelump mass splittings

Δme;s
RPCa (i.e. for all 19 RPC representations, the four

ensembles from Table I and computations with unsmeared
and with smeared temporal links) are collected in Table X
of the Appendix. Results from the computations with and
without HYP2 smeared temporal links are mostly consis-
tent within statistical errors. Moreover, the gluelump mass
splittings obtained for different lattice spacings, i.e. ensem-
bles A, B, C, and D are very similar, when not expressed in
units of a, but in physical units, e.g. in GeV. This supports
the above statement that there is no divergent self-energy in
gluelump mass splittings and that continuum extrapolations
are possible and should lead to finite mass differences.
In Fig. 2 we show the gluelumpmass splittingsΔme;s

RPC as
functions of a2 obtained from computations with HYP2
smeared temporal links (plots for computations with
unsmeared temporal links are quite similar, but exhibit
somewhat larger statistical errors). The observed a depend-
encies for the three smaller lattice spacings (e∈ fB;C;Dg)
are consistent with linear behaviors in a2. This is expected
for the Wilson plaquette action. Thus, to extrapolate to
a ¼ 0, we use the function

Δmfit;s
RPCðaÞ ¼ Δms

RPC;cont þ csRPCa2 ð23Þ

and carry out a χ2-minimizing fit for each representation
RPC to the corresponding three data points (see the dashed
lines in Fig. 2). The fit parameters are csRPC and Δms

RPC;cont,
where the latter represents the continuum limit of the
gluelump mass splitting. Most of the χ2red values are of
Oð1Þ, which indicate reasonable fits. We do not use data
points from ensemble A for the fits, because this ensemble
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has the largest lattice spacing and Fig. 2 indicates that
nonlinear contributions in a2 are already sizable.
The complete set of continuum extrapolated gluelump

mass splittings Δms
RPC;cont (i.e. for all 19 RPC representa-

tions and computations with unsmeared and with smeared
temporal links) are collected in Table II. For the majority of
RPC representations the resulting continuum extrapolations
Δmnone

RPC;cont and ΔmHYP2
RPC;cont obtained with unsmeared and

with HYP2 smeared temporal links are consistent within
statistical errors (the statistical error is the first of the two
errors provided in Table II).
We also checked the validity and stability of our

continuum extrapolations by extending the fit function
(23) by a term proportional to a4 and at the same time
including the data points from ensemble Awith the coarsest
lattice spacing in the fits. Again the resulting continuum
extrapolated gluelump mass splittings are mostly consistent
with those listed in Table II within statistical errors. We use
the differences as an estimate of the systematic error (the
second of the two errors provided in Table II).

2. Method 2: Continuum extrapolated gluelump mass
splittings from simultaneous fits to correlator

data from several ensembles

Each of the continuum extrapolations carried out in the
previous subsection is based on just three data points,
where some have rather large statistical errors. Moreover,
the data points are differences of gluelump masses, where
each gluelump mass is the result of a fit to a few effective
mass values consistent with a plateau. Some of these
effective mass values also exhibit large statistical errors
and there are cases where clear plateau identifications are
difficult. Because of these problems, we present and
employ another method in the following. The method is
based on simultaneous fits to several correlation functions
(18) computed on different ensembles both with unsmeared
and with HYP2 smeared temporal links. As one might
expect, we find that this method is more stable than that of
the previous Sec. IV B 1 and we consider our results for
continuum extrapolated gluelump mass splittings presented
in this section (Table III) to be superior to those presented in
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FIG. 2. Continuum extrapolations of gluelump mass splittings ΔmRPC for HYP2 smeared temporal links.
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the previous section (Table II). Within statistical errors they
are, however, identical.
The basic idea is that the gluelump mass splitting Δme;s

RPC

can be extracted from the asymptotic behavior of

C̃e;s
RPCðtÞ ¼

Ce;s
RPCðtÞ

Ce;s
Tþ−
1

ðtÞ ∼t→∞ Ae;s
RPC expð−Δme;s

RPCtÞ; ð24Þ

which is a ratio of temporal correlation functions Ce;s
RPCðtÞ

defined in Eq. (18). As discussed in Sec. IV B 1 the
dependence of Δme

RPC on the lattice spacing is expected
to be linear in a2 at leading order [see Eq. (23)]. For each
representation RPC we thus carry out a simultaneous nine-
parameter fit of

C̃fit;e;s
RPC ðtÞ ¼ Ae;s

RPC expð−ðΔmRPC;cont þ csRPCa2ÞtÞ ð25Þ

to the correlator data from ensembles B, C, and D for
unsmeared and HYP2 smeared temporal links.
Numerically, we find Ae;none

RPC ¼ Ae;HYP2
RPC and cnoneRPC ¼

cHYP2RPC within statistical errors. Thus we reduce the number
of fit parameters from 9 to 5 and repeat all fits using the fit
function

C̃fit;e;s
RPC ðtÞ ¼ Ae

RPC expð−ðΔmRPC;cont þ cRPCa2ÞtÞ: ð26Þ

The fitting range tmin ≤ t ≤ tmax is chosen individually
for each representation RPC in the following way:

(i) For each e, swe define te;smin ¼ t̃ − a=2with t̃ denoting
the smallest value of t, where the effective mass

m̃e;s
eff;RPCðtÞ ¼ 1

a
ln

�
C̃e;s
RPCðtÞ

C̃e;s
RPCðtþ aÞ

�
ð27Þ

satisfies jm̃e;s
eff;RPCðtÞa − m̃e;s

eff;RPCðtþ aÞaj < 2σ.
(ii) tmin is the largest t

e;s
min from the previous item, i.e. we

start the fit for all ensembles at the same temporal
separation in physical units.

(iii) tmax is the largest t, where the correlation functions
Ce;s
RPCðtÞ have been computed, i.e. tmax ¼ 20aðβ ¼

6.284Þ ¼ 1.20 fm.
Note that this procedure to select the fit range resembles
that used previously in Sec. IVA.
ForRPC ¼ A−−

2 we only include correlator data obtained
with smeared temporal links (s ¼ HYP2) in the fit since we
already saw in Sec. IVA that a clear plateau identification
in the corresponding effective masses obtained with
unsmeared temporal links (s ¼ none) is not possible and
statistical errors are large.
The complete set of continuum extrapolated gluelump

mass splittings ΔmRPC;cont (i.e. for all 19 RPC representa-
tions), which are the main results of this subsection, are
collected in Table III. The corresponding χ2red values are
Oð1Þ indicating reasonable fits.
To check the stability of the resulting continuum

extrapolated gluelump mass splittings with respect to a
variation of the fitting range, we repeat all fits using the
range t0min ≤ t ≤ tmax. t0min is defined in a similar way as tmin
with the difference that the condition below Eq. (27) is
replaced by jm̃e;s

eff;RPCðt − aÞa − m̃e;s
eff;RPCðtÞaj < 2σ, i.e. a

more restrictive condition shifted by a. This leads to a more
conservative fitting range with t0min > tmin. When using t0min
instead of tmin, statistical errors are increased by around
50%. Such an increase is expected, because the signal-to-
noise ratio of correlation functions becomes worse with
increasing t. Most importantly, mass splittings obtained
with tmin (i.e. those collected in Table III) and with t0min are
consistent within statistical errors. There is also no clear
systematic trend, i.e. t0min mass splittings are not generally
smaller, but in several cases also larger than tmin mass
splittings. We interpret this as indication that excited states
are strongly suppressed and that their effect is small
compared to statistical errors. We quote the differences
between those two sets of results as systematic errors (the
third of the three errors provided in Table III).
As in Sec. IV B 1 we also checked the validity and

stability of our continuum extrapolation by extending the fit
function (26) by a term proportional to a4,

TABLE II. Continuum extrapolated gluelump mass splittings
Δms

RPC;cont obtained by using the gluelump masses from Table IX

and a fit function linear in a2 [see Eq. (23)]. The first error is the
statistical error, while the second error is a systematic error
representing the difference between an a2 and an a4 ansatz for the
continuum extrapolation (see text for details).

RPC Δmnone
RPC;cont in GeV ΔmHYP2

RPC;cont in GeV

Tþþ
1

0.386(14)(17) 0.394(9)(8)
Tþ−
1

0 0
T−þ
1

0.282(7)(8) 0.250(15)(1)
T−−
1 0.066(4)(6) 0.066(4)(7)

Tþþ
2

0.363(10)(7) 0.362(10)(7)
Tþ−
2

0.185(7)(2) 0.186(6)(1)
T−þ
2

0.345(12)(9) 0.331(11)(8)
T−−
2 0.105(7)(0) 0.111(7)(7)

Aþþ
1

0.196(7)(1) 0.197(7)(1)
Aþ−
1

0.439(8)(3) 0.394(16)(21)
A−þ
1

0.467(12)(25) 0.477(15)(6)
A−−
1 0.381(31)(63) 0.292(9)(2)

Aþþ
2

0.437(15)(5) 0.438(14)(6)
Aþ−
2

0.327(25)(22) 0.273(24)(15)
A−þ
2

0.278(12)(16) 0.289(13)(9)
A−−
2 … 0.457(16)(20)

Eþþ 0.253(5)(3) 0.253(5)(2)
Eþ− 0.174(5)(3) 0.174(5)(3)
E−þ 0.317(10)(11) 0.314(10)(9)
E−− 0.118(5)(6) 0.122(8)(8)
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C̃fit;e;s
RPC ðtÞ ¼ Ae

RPC expð−ðΔmRPC;cont þ cRPCa2 þ dRPCa4ÞtÞ;
ð28Þ

and at the same time including correlator data from
ensemble A with the coarsest lattice spacing in the fits.
All 19 resulting continuum extrapolated gluelump mass
splittings obtained from such seven-parameter fits are
consistent with those listed in Table III (obtained from
five-parameter fits) within statistical errors. We quote the
differences between those two sets of results as systematic
errors (the second of the three errors provided in Table III).
In Figs. 3–5 we summarize our results on gluelump mass

splittings from Sec. IV B 1 and from this subsection.
(1) The black curves and data points represent results

from Sec. IV B 1.
(i) The black data points show the gluelump mass

splittings, Δme;s
RPC corresponding to finite lattice

spacing (see Table X in the Appendix), as well
as the continuum extrapolations Δms

RPC;cont (see
Table II).

(ii) The black dashed curves correspond to the fit
function (23), Δmfit;s

RPCðaÞ (see Sec. IV B 1).

(2) The blue curves and data points represent fit results
obtained with the five-parameter fit function (26):
(i) The error bands show

ΔmRPC;cont þ cRPCa2 ð29Þ

appearing in the exponent of the fit function
(26) and its statistical uncertainty.

(ii) The data points at a2 ¼ 0 correspond to
ΔmRPC;cont and their statistical error (see
Table III).

(3) The orange curves and data points represent fit
results obtained with the seven-parameter fit func-
tion (28):
(i) The error bands show

ΔmRPC;cont þ cRPCa2 þ dRPCa4 ð30Þ

appearing in the exponent of the fit function
(28) with its statistical uncertainty.

(ii) The data points at a2 ¼ 0 correspond to
ΔmRPC;cont and its statistical error.

(4) The red data points represent the main results of this
work, continuum extrapolated gluelump mass split-
tings ΔmRPC;cont obtained with the five-parameter fit
function (26). Uncertainties include both the stat-
istical and the two systematic errors, as quoted in
Table III, added quadratically.

3. Assigning continuum total angular momentum

In the following we try to assign the correct continuum
total angular momenta J to the lattice gluelump masses
computed in the previous sections. We start by repeating
our cautionary remarks made at the beginning of Sec. IV.
On a cubic spatial lattice each of the five irreducible
representations of the cubic group, denoted by R, contains
an infinite number of continuum total angular momenta J,

A1 ↔ 0; 4; 6; 8;…

T1 ↔ 1; 3; 4; 5;…

T2 ↔ 2; 3; 4; 5;…

E ↔ 2; 4; 5; 6;…

A2 ↔ 3; 6; 7; 9;… ð31Þ

(see e.g. Ref. [23]). Moreover, there are cases in the
gluelump spectra where states with the same lattice
quantum numbers RPC, but different continuum J could
have similar masses. In such cases it is not obvious which is
the correct J for such a state. Two competing states with
similar masses may also generate a fake effective mass
plateau within statistical errors and one might extract an
energy somewhere between the masses of the two states.

TABLE III. Continuum extrapolated gluelump mass splittings
ΔmRPC;cont obtained from five-parameter fits of the fit function
(26) to correlator data from ensembles B, C, andD. The first error
is the statistical error, while the second error is a systematic error
representing the difference between an a2 and an a4 ansatz for the
continuum extrapolation, respectively, and the third error repre-
sents the systematic error coming from the choice of fitting range
(see text for details).

RPC ΔmRPC;cont in GeV χ2red

Tþþ
1

1.793(94)(35)(42) 0.88
T−þ
1

1.213(59)(3)(24) 1.05
T−−
1 0.342(19)(22)(21) 0.43

Tþþ
2

1.771(85)(60)(35) 0.39
Tþ−
2

0.966(29)(2)(13) 0.64
T−þ
2

1.638(73)(78)(30) 1.38
T−−
2 0.503(12)(5)(5) 1.34

Aþþ
1

0.979(26)(21)(14) 1.00
Aþ−
1

2.088(51)(123)(36) 0.82
A−þ
1

2.354(53)(27)(106) 0.92
A−−
1 1.433(31)(31)(16) 0.91

Aþþ
2

2.210(66)(57)(38) 0.75
Aþ−
2

1.376(128)(155)(60) 0.92
A−þ
2

1.496(32)(109)(21) 0.48
A−−
2

a 2.149(340)(7)(133) 1.34
Eþþ 1.258(19)(2)(15) 0.83
Eþ− 0.858(21)(23)(18) 0.50
E−þ 1.511(162)(44)(81) 1.18
E−− 0.559(12)(44)(11) 0.87

aFor RPC ¼ A−−
2 we exclude correlator data obtained with

unsmeared temporal links (s ¼ none) from the fit (see the
discussion in Sec. IVA).
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A simple strategy to assign continuum total angular
momenta J, which was used e.g. in Ref. [10], is to assume
that the lowest state in a cubic representation R has the
smallest allowed J value, i.e. J ¼ 0 for A1, J ¼ 1 for T1,
J ¼ 2 for T2 and E, and J ¼ 3 for A2. It is possible to check
this assumption to some extent, because the majority of J
values appear in more than one cubic representation and
one should observe a corresponding pattern in the extracted
lattice spectra. In particular, J ¼ 2 is the lowest continuum
total angular momentum in both T2 and E and thus one
expects a degeneracy of the lowest energy levels in these
cubic representations within uncertainties. There is no

obvious contradiction to this assumption in our numerical
results, which are collected in Table III and summarized
graphically in Fig. 6. On the other hand, there are other
possible J assignments, which are also plausible or might in
some cases even be more likely. In the following we discuss
this individually for all RPC representations.
(1) A1 states:

(i) APC
1 → probably J ¼ 0:
The two lowest J values contained in A1 are

J ¼ 0 and J ¼ 4. Since significantly larger
angular momenta are typically associated with
larger energies, it seems natural to assign J ¼ 0
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FIG. 3. Summary of the results on gluelump mass splittings from Secs. IV B 1 and IV B 2 for representations (a) TPC
1 and (b) TPC

2 (see
text for details). The final result for each representation is represented by the red data point at a2 ¼ 0 (also provided in Table III).
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to the A1 energy levels. In particular, for the
lighter A1 states, A

þþ
1 and A−−

1 , J ¼ 0 seems to
be the only plausible assignment.

(2) T1 states:
(i) Tþ−

1 → J ¼ 1:
Besides J ¼ 1 the next-lowest J value con-

tained in T1 is J ¼ 3, which is also part of A2.
The corresponding energy level for Aþ−

2 is,
however, significantly larger than its T1

counterpart, which is a clear sign that Tþ−
1

has J ¼ 1.

(ii) T−−
1 → J ¼ 1:
Explanation as for Tþ−

1 (see previous item).
(iii) T−þ

1 → could be J ¼ 1, but also J ¼ 3:
The energy level for T−þ

1 is consistent with
the energy level for A−þ

2 , which might be a sign
that they correspond to the same J ¼ 3 state.
On the other hand, the T−þ

1 energy level has a
rather large error and it could also be that T−þ

1

has J ¼ 1 and A−þ
2 has J ¼ 3, where both states

are in the same energy region, 1.0–1.5 GeV
above the lightest 1−þ gluelump.
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FIG. 4. Summary of the results on gluelump mass splittings from Secs. IV B 1 and IV B 2 for representations (a) APC
1 and (b) APC

2 (see
text for details). The final result for each representation is represented by the red data point at a2 ¼ 0 (also provided in Table III).
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(iv) Tþþ
1 → could be J ¼ 1, but also J ¼ 3:
Explanation as for T−þ

1 (see previous item).
(3) T2 and E states:

(i) T−−
2 , E−− → J ¼ 2:
Both T2 and E contain J ¼ 2. The energy

levels for T−−
2 and E−− are degenerate within

errors, which provides some indication that
they correspond to the same state, which has
J ¼ 2. In principle, a state appearing in both T2

and E could also have J ¼ 4, but this seems
unlikely, because the J ¼ 3 state is already
quite heavy, as indicated by the energy level
for A−−

2 , and the energy level for A−−
1 , which

can be considered as a lower bound for the
J ¼ 4 energy, is significantly above the T−−

2

and E−− energies. Thus, J ¼ 2 seems to be the
only plausible assignment.

(ii) Tþ−
2 , Eþ− → J ¼ 2:
Explanation as for T−−

2 , E−− (see previous
item).

(iii) Eþþ → J ¼ 2 (discard Tþþ
2 ):

The Tþþ
2 energy level is around 3σ above the

Eþþ energy level. This is surprising, because
Eþþ does not contain a small J value which is
not contained in Tþþ

2 . It could be that this
discrepancy is just a statistical fluctuation.
Another possible explanation is that the over-
laps generated by the Tþþ

2 operator are not
favorable for an extraction of the lowest state in
this sector. For example, there could be a large
overlap to a rather heavy J ¼ 3 state (the Aþþ

2

energy level indicates that 3þþ is quite heavy),
which generates a fake effective mass plateau
within errors. In any case, the assignment of
J ¼ 2 to the Eþþ energy level seems to be
plausible, while the interpretation of the Tþþ

2

energy level is less clear and thus should be
discarded.

(iv) T−þ
2 , E−þ → not inconsistent with J ¼ 2:
Both T2 and E contain J ¼ 2. The energy

levels for T−þ
2 and E−þ are degenerate within

errors, indicating that they could correspond to
the same state, probably with J ¼ 2. However,
their errors, in particular that of E−þ, are very
large, such that other J assignments cannot be
ruled out.
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FIG. 5. Summary of the results on gluelump mass splittings from Secs. IV B 1 and IV B 2 for representations EPC (see text for details).
The final result for each representation is represented by the red data point at a2 ¼ 0 (also provided in Table III).
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(4) A2 states:
(i) APC

2 → probably J ¼ 3: The two lowest J
values contained in A2 are J ¼ 3 and J ¼ 6.
Following the same argument as previously for
the A1 states, J ¼ 3 seems rather plausible and
J ¼ 6 rather unlikely. For A−þ

2 and Aþþ
2 this is

supported by our discussion of the T−þ
1 and

Tþþ
1 states above, where we have presented

scenarios which imply J ¼ 3 for A−þ
2 and Aþþ

2 .
We generate final results for JPC ¼ 2þ−, JPC ¼ 2−þ, and

JPC ¼ 2−− by carrying out additional combined fits for the
representations Tþ−

2 and Eþ−, T−þ
2 and E−þ, and T−−

2 and
E−−, respectively. In detail, these are χ2-minimizing nine-
parameter fits of Eq. (26) with a single fit parameter
ΔmRPC;cont linking the two representations EPC and TPC

2 ,
i.e. we set ΔmEPC;cont ¼ ΔmTPC

2
;cont ¼ ΔmJPC¼2PC;cont. The

resulting χ2red values are of Oð1Þ indicating consistency for
these combined fits.
We summarize our final results for gluelump mass

splittings with quantum numbers JPC in Table IV.
Energy levels, where the assignment of continuum total
angular momentum J is a plausible scenario, but not fully
established, are shaded in gray.
There are possibilities to check, whether there are close-

by competing states in certain RPC representations with
continuum quantum numbers J1 ≠ J2, and to resolve and
determine the masses of both states reliably. For example
one could design not just one but several operators
generating RPC trial states. If some of these trial states
are similar to continuum states with J1 and others to
continuum states with J2, the corresponding correlation
matrix should allow one to determine both energy levels. If
this is done e.g. by solving a generalized eigenvalue
problem, the eigenvector components should provide
information concerning the continuum total angular

momenta of the extracted states. While this seems to be
nontrivial for gluelumps and has not been attempted
previously in the literature, it might be an interesting
direction for future work.

4. Comparison of gluelump mass splittings
to existing lattice results

In Fig. 7 we compare our results for gluelump mass
splittings ΔmRPC to results from similar computations from
Refs. [8,10]. We show plots for the cubic representations
RPC ¼ T−−

1 ; T−−
2 ; Aþþ

1 ; Aþ−
2 ; Eþ−, for which continuum

extrapolations were carried out in Ref. [8].
(i) The orange data points represent our results, gen-

erated by evaluating ΔmRPC;cont þ cRPCa2 at a ¼ 0
and at our three smallest lattice spacings a ¼
0.040; 0.048; 0.060 fm (see Sec. IV B 2, in particu-
lar Table III).

(ii) The blue data points are the results from Ref. [8] for
three lattice spacings a ¼ 0.068, 0.095, 0.170 fm and
a corresponding continuum extrapolation linear in a2,
which is similar to themethodwe used in Sec. IV B 1.
Reference [8] is as well a computation in pure SU(3)
gauge theory, i.e. without dynamical quarks. Thus the
continuum extrapolated gluelump mass splittings
should be directly comparable to our work. While
there is qualitative agreement for the five shown
representations, one can observe quantitative discrep-
ancies of up to≈30%. Sincewe extract the continuum
mass splittings from a combined fit to a large number
of correlator data points (see Sec. IV B 2) instead of
extrapolating to a ¼ 0 with just three data points as
done in Ref. [8], and since our lattice spacings are
significantly smaller than those from Ref. [8], we
consider our continuum extrapolations superior and
more trustworthy than those from Ref. [8].

TABLE IV. Final results for gluelump mass splittings with quantum numbers JPC. The errors include statistical as
well as systematic errors (added in quadrature). The column RPC indicates, from which cubic representation the
result was taken. For J ¼ 2 and PC ¼ þ−;−þ;−− we generate the final results by carrying out additional
combined fits (see text for details). Energy levels, where the assignment of continuum total angular momentum J is a
plausible scenario, but not fully established, are shaded in gray.

JPC ΔmJPC in GeV RPC JPC ΔmJPC in GeV RPC

0þþ 0.979(36) Aþþ
1

2þþ 1.258(24) Eþþ

0þ− 2.088(138) Aþ−
1

2þ− 0.925(42) Tþ−
2 and Eþ− combined fit

0−þ 2.354(122) A−þ
1

2−þ 1.664(256) T−þ
2 and E−þ combined fit

0−− 1.433(47) A−−
1 2−− 0.523(11) T−−

2 and E−− combined fit

1þþ 1.793(108) Tþþ
1

3þþ 2.210(95) Aþþ
2

1þ− 0 3þ− 1.376(210) Aþ−
2

1−þ 1.213(64) T−þ
1

3−þ 1.496(116) A−þ
2

1−− 0.342(36) T−−
1 3−− 2.149(340) A−−

2
a

aSee footnote in Table III.
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(iii) The green data points are the results from Ref. [10]
for two lattice spacings a ¼ 0.0685 and 0.0982 fm.
A continuum extrapolation was not carried out in
Ref. [10]. Since the computations in Ref. [10] were
done in full QCD, i.e. with dynamical quarks (the
corresponding pion mass is around 3.5 times heavier
than its physical value), a quantitative comparison
might exhibit certain discrepancies. Still, one can
expect qualitative agreement, because gluelumps are
extracted from purely gluonic correlation functions.
This expectation is reflected by the plots in Fig. 7.

C. Gluelumps as the r → 0 limit
of hybrid static potentials

Hybrid static potentials in the continuum are typically
characterized by quantum numbers Λϵ

η, where Λ ¼
0; 1; 2;…≡ Σ;Π;Δ;… is the absolute value of total
angular momentum with respect to the axis of separation
of the static charges, η corresponds to P∘C, and ϵ denotes
the behavior under reflection with respect to an axis
perpendicular to the separation axis (for details see e.g.
Ref. [11]). Because of the separation of the static charges, a

particular axis is singled out and, consequently, the
symmetry group is different from that of gluelumps.
In the limit of vanishing charge separation r, rotational
symmetry is, however, restored. Since the static quark-
antiquark pair in the fundamental representation (for hybrid
static potentials) is then equivalent to a static quark in the
adjoint representation (needed for gluelumps), gluelumps
can be interpreted as the r → 0 limit of hybrid static
potentials. The correspondence between gluelump quan-
tum numbers JPC and hybrid static potential quantum
numbers Λϵ

η in the limit r → 0 is discussed e.g. in
Ref. [1] and summarized in Table V.
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FIG. 7. Comparison of our results for gluelump mass splittings to results from Refs. [8,10]. Error bars represent exclusively statistical
errors.

TABLE V. Correspondence between gluelump quantum num-
bers JPC and hybrid static potential quantum numbers Λϵ

η in the
limit r → 0.

JPC Λϵ
η

1þ− Πu;Σ−
u

1−− Πg;Σþ0
g

2−− Π0
g;Σ−

g ;Δg

2þ− Π0
u;Σþ

u ;Δu
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In Refs. [11,12] we have computed hybrid static poten-
tials using the same lattice setup as for this work (see
Sec. III). We complement our lattice results from Ref. [12]
in Table VI, where we quote Tþ−

1 gluelump masses from
Table IX with s ¼ none as r → 0 limits of Πu and Σ−

u
hybrid static potentials. We also provide previously unpub-
lished results for r ¼ a computed as discussed in Ref. [12].
In Fig. 8 we plot these Πu and Σ−

u hybrid static potentials
for each of our four lattice spacings, i.e. e∈ fA;B;C;Dg,
together with the Tþ−

1 gluelump masses at r ¼ 0.
In Fig. 9 we show even higher hybrid static potentials

from our previous work [11] computed with a lattice
spacing equal to the one of ensemble Awith HYP2 smeared
temporal links together with the corresponding gluelump
masses obtained from ensemble A with s ¼ HYP2. In both

Figs. 8 and 9, hybrid static potential and gluelump data
points are consistent with smooth curves, which is a
valuable cross-check of this work as well as of our previous
work [11,12] on hybrid static potentials.

D. Conversion of 1+ − gluelump masses
from the lattice to the RS scheme

In this subsection we convert our lattice results for the
1þ− gluelump mass obtained at several values of a into the
RS scheme at a specific scale 2.5=r0 ≈ 1 GeV. The result is
an essential input for Born-Oppenheimer effective field
theory predictions of heavy hybrid meson masses [1,24]
(the scale νf ¼ 1 GeV was chosen because it can be
interpreted as a cutoff scale fitting in the hierarchy of
scales of this effective field theory [25]). The accuracy of
such predictions is currently limited by the precision of this
1þ− gluelump mass in the RS scheme. We follow the same
procedure discussed and employed in Ref. [9] using our up-
to-date precision lattice data on gluelump masses as input.
Our aim is to clarify the impact of this more accurate lattice
data on the current uncertainty of the 1þ− gluelump mass in
the RS scheme.

1. Method

We start by summarizing the method of conversion of
gluelump masses from the lattice to the RS scheme
proposed and used in Ref. [9]. The key equation is

ΛRS
B ðνfÞ ¼ ΛL

BðaÞ − ðδΛL
BðaÞ þ δΛRS

B ðνfÞÞ: ð32Þ
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FIG. 8. Hybrid static potentials Ve;none
Λϵ
η

ðrÞa with Λϵ
η ¼ Πu

(lower curves) and Λϵ
η ¼ Σ−

u (upper curves) for r=a ≥ 1 and
gluelump masses me;none

Tþ−
1

a at r=a ¼ 0. The hybrid static potential

data points at r=a ¼ 1 were computed in the context of this work,
while those for r=a ≥ 2 were taken from Ref. [12].

TABLE VI. Addendum to Table VI from Ref. [12]. Πu and Σ−
u

hybrid static potentials for r ¼ 0 (equivalent to Tþ−
1 gluelump

masses) and Σþ
g , Πu, and Σ−

u (hybrid) static potentials for r ¼ a.

Ensemble r=a Ve;none
Σþ
g

a Ve;none
Πu

a Ve;none
Σ−
u

a

A 0 1.3319(22) 1.3319(22)
1 0.411038(27) 1.2697(139) 1.2841(48)

B 0 1.0777(20) 1.0777(20)
1 0.365472(9) 1.0222(63) 1.0253(64)

C 0 0.9710(15) 0.9710(15)
1 0.345081(4) 0.9245(28) 0.9248(29)

D 0 0.8978(17) 0.8978(17)
1 0.329925(2) 0.8556(24) 0.8557(24)
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at r=a ¼ 0. The hybrid static potential data points were taken
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ΛL
BðaÞ≡me;none

Tþ−
1

is the lattice result for the Tþ−
1 gluelump

mass obtained with unsmeared temporal links at one of our
four lattice spacings, i.e. e ¼ A, B, C, D (see Table I).
Numerical values are listed in Table IX. ΛRS

B ðνfÞ is the
corresponding scale-dependent gluelump mass in the RS
scheme. The remaining two terms are perturbative expres-
sions, which are discussed below. a and νf are independent,
but in practice it is advantageous to choose νf ≈ 1=a, to
avoid large logarithms.
The lattice self-energy δΛLðaÞ is given by

δΛL
BðaÞ ¼

1

a

X∞
n¼0

cð8;0Þn ðαLðaÞÞnþ1; ð33Þ

where αLðaÞ is the lattice coupling (see below). The

coefficients cð8;0Þn were computed in Refs. [26,27] up to
n ¼ 19 [the label (8,0) indicates a static charge in the
adjoint representation and refers to the standard Wilson
plaquette action and a static propagator with unsmeared
temporal links; we use the improved determinations of

cð8;0Þn from Ref. [27] ].
δΛRS

B ðνfÞ is given by

δΛRS
B ðνfÞ ¼

X∞
n¼1

νfðṼRS
s;n − ṼRS

o;nÞðαMSðνfÞÞnþ1 ð34Þ

(see Ref. [9]), where αMSðνfÞ is the MS coupling. The
coefficients ṼRS

s;n and ṼRS
o;n are known exactly for n ¼ 0, 1, 2

and were estimated for n ¼ 3, 4 (see Table II in Ref. [9] and
references therein).
The lattice coupling αL and the MS coupling αMS can be

related perturbatively. For that we use

αLðaÞ ¼ αMSð1=aÞð1 − d1αMSð1=aÞ
þ ð2d21 − d2ÞðαMSð1=aÞÞ2Þ ð35Þ

with d1 ¼ 5.883… and d2 ¼ 43.407… (see Refs. [9,26]
and references therein), which was also used in Ref. [9] for
the conversion of the gluelump mass. We note that in
Ref. [26] an alternative relation between αL and αMS is
discussed (identical in the leading orders in αMS but
different in higher orders), denoted as MSa, which turned
out to be superior in the context of that reference.
Moreover, in Ref. [26] the estimate d3 ¼ 352 is provided
such that Eq. (35) can be extended by another order in αMS,

αLðaÞ ¼ αMSð1=aÞð1 − d1αMSð1=aÞ
þ ð2d21 − d2ÞðαMSð1=aÞÞ2
þ ð−5d31 þ 3d1d2 − d3ÞðαMSð1=aÞÞ3Þ: ð36Þ

In Fig. 10 we compare several truncations of the perturba-
tive expansion of αL in terms of αMS. As expected, there is

almost perfect agreement for small αMS ≲ 0.05. For larger
values of αMS, however, there are sizable discrepancies. This
concerns in particular the region 0.15≲ αMSð1=aÞ ≲ 0.20,
which corresponds to typical lattice spacings 0.040…
0.093 fm as used in this work (the region shaded in gray
in Fig. 10). This paragraph and Fig. 10 are intended as a
cautionary remark that systematic errors in the conversion of
a gluelump mass due to the perturbative relation between αL
and αMS might be large. We leave a future more detailed
investigation anddiscussionof these systematics to experts in
the field of perturbation theory. Our aim in the following is to
use exactly the same method as in Ref. [9], i.e. Eq. (35), but
with our updated andmore accurate lattice gluelumpmasses,
to clarify how these improved data affect the final uncertainty
of ΛRS

B ðνf ≈ 1 GeVÞ quoted in Ref. [9].
Numerical values for αMS are generated via the five-loop

running coupling from Ref. [28] using r0Λ
ð0Þ
MS

¼ 0.624ð36Þ
[29] and r0 ¼ 0.5 fm. In Table VII we list both αMSð1=aÞ
and αLðaÞ for a ¼ 0.040; 0.048; 0.060; 0.093 fm, i.e. the
four lattice spacings used in our simulations.
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FIG. 10. αLðaÞ as a function of αMSð1=aÞ. The three solid lines
represent the polynomial expression (35) [or equivalently (36)]
up to αn

MS
, n ¼ 2; 3; 4, with higher orders discarded. Similarly,

the data points represent a polynomial expansion of αMS in terms

of αL, i.e. αMS ¼ αLð1þ
P

n
j¼0 djα

j
LÞ up to n ¼ 1; 2; 3, respec-

tively (see Ref. [27] and references therein). The dashed line
represents the MSa conversion scheme [see Eq. (99) of Ref. [27]].
The shaded region shows the range of αMSð1=aÞ corresponding to
the lattice spacings 0.040…0.093 fm used in this work.

TABLE VII. αMSð1=aÞ from the five-loop running coupling
from Ref. [28] and αLðaÞ according to Eq. (35) for the four lattice
spacings used in our simulations.

β a in fm 1=a in GeV αMSð1=aÞ αLðaÞ [Eq. (35)]
6.000 0.093 2.118 0.200 0.172
6.284 0.060 3.285 0.170 0.127
6.451 0.048 4.108 0.158 0.113
6.594 0.040 4.932 0.150 0.104
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2. Numerical results

To convert the Tþ−
1 ≡ 1þ− lattice gluelump mass

obtained with unsmeared temporal links at lattice spacing
a into the RS scheme at scale νf ¼ 1=a we use Eq. (32),
where we insert Eqs. (33) and (34) and eliminate αLðaÞ in
favor of αMSð1=aÞ via Eq. (35). The expression δΛL

BðaÞ þ
δΛRS

B ð1=aÞ on the right-hand side of Eq. (33) is then a
power series in αMSð1=aÞ. We truncate this power series,
i.e. keep all terms proportional to αMSð1=aÞn with n ≤ nmax

and discard all remaining terms corresponding to n > nmax.
For nmax ¼ 3, for example, Eq. (32) becomes

ΛRS
B ðνfÞ ¼ ΛL

BðaÞ −
1

a
cð8;0Þ0 αMSðνfÞ

þ
�
1

a
cð8;0Þ1 þ 1

a
cð8;0Þ0

�
−d1 þ

2β0
4π

lnðνfaÞ
�
þ νfðṼRS

s;1 − ṼRS
o;1Þ

�
ðαM̄SðνfÞÞ2

þ
�
1

a
cð8;0Þ2 þ 2

a
cð8;0Þ1

�
−d1 þ

2β0
4π

lnðνfaÞ
�
þ 1

a
cð8;0Þ0

�
−d2 þ

2β1
ð4πÞ2 lnðνfaÞ þ d21

�

þ 2

a
cð8;0Þ0

�
−d1 þ

2β0
4π

lnðνfaÞ
�
2

þ νfðṼRS
s;2 − ṼRS

o;2Þ
�
ðαMSðνfÞÞ3: ð37Þ

For nmax ¼ 2 this equation is identical to Eq. (70) in
Ref. [9].
As in Ref. [9] we use nmax ¼ 0, 1, 2, 3 denoted as leading

order (LO), next-to-leading order (NLO), next-to-next-to-
leading order (NNLO), and next-to-next-to-next-to-leading

order (NNNLO). InRef. [9] the coefficient cð8;0Þ2 appearing in

the nmax ¼ 3 expression was estimated, cð8;0Þ2 ¼ 193.8ð2.8Þ.
Meanwhile, it is now known quite accurately, cð8;0Þ2 ¼
193.2ð3Þ [27]. We use this more accurate value, but since
the difference between the two values is almost negligible,
wedonot expect a significant impact on the final result for the
gluelumpmass in the RS scheme.Moreover, as noted above,
we use the five-loop running coupling to generate numerical
values for αMSð1=aÞ, which is an improvement compared to
Ref. [9], where the four-loop running coupling was used.
In Fig. 11 we show ΛRS

B ð1=aÞ for our four lattice
spacings at LO, NLO, NNLO, and NNNLO [colored data
points; note that at LO ΛRS

B ð1=aÞ ¼ ΛL
BðaÞ, i.e. lattice and

RS masses are identical]. The corresponding numerical

values are collected in Table VIII. For comparison we also
show results from Ref. [9] (gray data points), where lattice
data from Ref. [8] at coarser lattice spacings were used. Our
converted results show the same convergence behavior as
the results from Ref. [9] and the two sets of data points
seem to be consistent with each other.
To obtain ΛRS

B at the scale νf ¼ 2.5=r0 ≈ 1 GeV, we
continue following Ref. [9]. In a first step, we fit the
NNNLO expression (37) with νf ¼ 1=amin ¼ 1=0.040 fm
to our four lattice data points ΛL

BðaÞ, where the only fit
parameter is ΛRS

B ðνf ¼ 1=0.040 fmÞ. Since νf ≠ 1=a for
the data points from ensembles A, B, and C, there are now
nonvanishing logarithms in Eq. (37). We obtain

ΛRS
B ðνf ¼ 1=0.040 fm ¼ 12.5=r0Þ ¼ 1.463ð3Þ GeV: ð38Þ

χ2red ¼ 4.36 indicates that our four lattice spacings together
with the perturbative conversion procedure do not lead to
four fully consistent results for ΛRS

B ðνf ¼ 1=0.040 fmÞ

TABLE VIII. ΛRS
B ð1=aÞ in GeV for our four lattice spacings at LO, NLO, NNLO, and NNNLO. The errors are

purely statistical.

a in fm ΛRS
B ð1=aÞ ¼ ΛL

BðaÞ LO ΛRS
B ð1=aÞ NLO ΛRS

B ð1=aÞ NNLO ΛRS
B ð1=aÞ NNNLO in GeV

0.093 2.821(5) 0.798(5) 1.298(5) 1.167(5)
0.060 3.541(7) 0.883(7) 1.440(7) 1.316(7)
0.048 3.990(6) 0.902(6) 1.502(6) 1.378(6)
0.040 4.429(8) 0.923(8) 1.568(8) 1.442(8)

0
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FIG. 11. ΛRS
B ð1=aÞ for our four lattice spacings at LO, NLO,

NNLO, and NNNLO.
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within our rather small statistical errors. The discrepancies
could originate either in the sizable separation of scales
νf ≠ 1=a and the corresponding large logarithms, the
truncation of the perturbative series, or in lattice discreti-
zation errors, which are expected to be proportional
to a2. To account for this tension we use the difference
to the result from an analogous fit excluding the lattice
gluelump mass ΛL

Bða ¼ 0.093 fmÞ, which gives ΛRS
B ðνf ¼

1=0.040 fmÞ ¼ 1.460ð4Þ GeV with χ2red ¼ 5.89, as part of
the final systematic error (see the discussion at the end of
this section). Moreover, we consider an additional a2 term
in Eq. (37) and carry out another fit including all four lattice
gluelump masses, which yields ΛRS

B ðνf ¼ 1=0.040 fmÞ ¼
1.454ð6Þ GeV with χ2red ¼ 4.94. Again we include the
difference to the result (38) in the final systematic error.
We note that a straightforward conversion of the lattice data
point at our smallest lattice spacing, as done for Fig. 11 and
Table VIII, givesΛRS

B ðνf ¼ 1=0.040 fmÞ ¼ 1.442ð8Þ GeV,
which is slightly lower.
In a second step, the result at νf ¼ 1=0.040 fm ¼

12.5=r0 is propagated to the scale ν0f ¼ 2.5=r0 ≈ 1 GeV
using

ΛRS
B ðν0f ¼ 2.5=r0Þ ¼ ΛRS

B ðνf ¼ 12.5=r0Þ
þ ðδΛRS;PV

B ðνfÞ− δΛRS;PV
B ðν0fÞÞ: ð39Þ

To avoid errors from widely separated scales ν0f and νf the
principal value (PV) prescription in the RS scheme is
used to compute δΛRS;PV

B . The key equation is Eq. (61) in
Ref. [9], where we replace Nm by NΛ using NΛ ¼
−1.37ð9Þ from Ref. [27]. We obtain

ΛRS
B ðνf ¼ 2.5=r0 ≈ 1 GeVÞ ¼ 0.857ð3Þ GeV: ð40Þ

This result is lower than the result of Ref. [9],
ΛRS
B ðνf ¼ 2.5=r0 ≈ 1 GeVÞ ¼ 0.912ð12Þ GeV, which is

based on lattice gluelump masses from Ref. [8]. The error
quoted in Eq. (40) is a statistical bootstrap error, which does
not include systematic uncertainties. As expected it is much
smaller than its counterpart from Ref. [9], roughly by a
factor of 4, because we provide more accurate lattice
gluelump masses as input.
Finally, we discuss systematic errors and compare them

to Ref. [9]. We use the five-loop running coupling instead
of the four-loop running coupling with a more precise ΛMS
value [29], which reduces the systematic error associated
with the uncertainty of ΛMS from 0.04 to 0.03 GeV.
Systematic errors already discussed in the context of our
result (38) above translate to ≈0.003 GeV (separation of
scales and large logarithms) and ≈0.01 GeV (discretization
errors), respectively. The perturbative error, which Ref. [9]
estimates as the difference between the NNLO and
NNNLO result, is in our case ≈0.03 GeV. Additionally,

there is a perturbative error coming from the 10% uncer-
tainty in NVs

− NVo
, i.e. a contribution of ≈0.07 GeV [9].

All these systematic errors, which are estimated in exactly
the same way as in Ref. [9], add up to 0.143 GeV compared
to 0.205 GeV quoted in Ref. [9]. Our final result is

ΛRS
B ðνf ¼ 2.5=r0 ≈ 1 GeVÞ ¼ 0.857ð3Þð143Þ GeV; ð41Þ

where the first error is statistical and the second error is
systematic. Clearly, the systematic error is much larger than
the statistical error associated with the lattice gluelump
masses. Consequently, improvements on the perturbative
side seem to be necessary to increase the precision of the
1þ− gluelump mass in the RS scheme.
For completeness we note that Ref. [9] also includes

a determination of ΛRS
B ðνf ¼ 2.5=r0 ≈ 1 GeVÞ via the

(hybrid) static potentials Σþ
g ;Πu, and Σ−

u resulting
in ΛRS

B ðνf ¼ 2.5=r0 ≈ 1 GeVÞ ¼ ½0.888� 0.039ðlatt:Þ�
0.083ðth:Þ � 0.032ðΛMSÞ� GeV, which is consistent with
our result (41).

V. SUMMARY AND OUTLOOK

We have carried out a comprehensive up-to-date lattice
gauge theory computation of the gluelump spectrum in
pure SU(3) gauge theory. We have considered ground states
for 20 RPC representations and provide both the corre-
sponding masses and mass splittings. For the latter we have
studied the continuum limits using extrapolations based on
lattice data from four ensembles with rather fine lattice
spacings. Our computations complement and improve on
existing work, in particular on Ref. [8]:

(i) We use lattice spacings as small as a ¼ 0.040 fm,
which is significantly smaller than the smallest
lattice spacing from Ref. [8], a ¼ 0.068 fm.

(ii) Our continuum extrapolations of gluelump mass
splittings are based on fits to lattice data from
ensembles with four different lattice spacings, where
on each ensemble computations with unsmeared and
with HYP2 temporal links were performed.

(iii) We have computed gluelump masses for 20 RPC

representations and have studied the continuum
limits of the corresponding 19 gluelump mass
splittings with the Tþ−

1 gluelump mass as reference,
whereas previously only 10 ground state masses and
continuum limits of 5 mass splittings were provided.

(iv) The assignment of continuum total angular momen-
tum J to the lattice results on gluelump masses is
extensively discussed.

Our results on gluelump masses also complement and
extend our recent results on hybrid static potentials [11,12],
since gluelump masses can be interpreted as the r → 0 limit
of hybrid static potentials.
Moreover, we have repeated a perturbative analysis and

determination of the 1þ− gluelump mass in the RS scheme
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from Ref. [9] using our improved lattice gluelump data as
input. From this analysis it is obvious that the remaining
error of this RS gluelump mass is currently dominated by
perturbation theory and not by the accuracy of lattice
gluelump masses. We expect that this will motivate experts
from the field of perturbation theory to improve the
perturbative equations entering RS gluelump mass deter-
minations. Such an improvement might be within reach, in
particular in view of closely related perturbative advances
reported in the literature, e.g. the determination of the

coefficients cð8;0Þn , n ¼ 0;…; 19 (see Refs. [26,27]) appear-
ing in Eq. (33) up to order α20L .
A remaining problem on the lattice gauge theory side

concerns several of the higher gluelump states, where the
assignment of the correct continuum total angular
momentum J is not clear, or where states with similar
mass, but different J appear in the same cubic represen-
tation and might mix (see the detailed discussion in
Sec. IV B 3).We plan to continue our work in this direction,
by implementing several operators for each RPC represen-
tation, which resemble possibly competing continuum
angular momenta J. After diagonalizing the corresponding
correlation matrices, e.g. by solving generalized eigenvalue

problems, we expect that a clear assignment of continuum J
values is possible.
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APPENDIX: SUMMARY OF LATTICE FIELD
THEORY RESULTS

1. Lattice gluelump masses for all ensembles and
unsmeared and HYP2 smeared temporal links

TABLE IX. Lattice gluelump masses me;s
RPCa in units of the lattice spacing obtained from fits to effective mass

plateaus (see Sec. IVA). The row corresponding to the lightest gluelump with RPC ¼ Tþ−
1 is shaded in gray.

RPC mA;none
RPC a mB;none

RPC a mC;none
RPC a mD;none

RPC a mA;HYP2
RPC a mB;HYP2

RPC a mC;HYP2
RPC a mD;HYP2

RPC a

Tþþ
1

2.144(44) 1.633(17) 1.451(3) 1.279(6) 1.598(39) 1.155(7) 0.980(3) 0.828(6)

Tþ−
1 1.332(2) 1.078(2) 0.971(2) 0.898(2) 0.771(2) 0.580(2) 0.500(1) 0.448(2)

T−þ
1

1.936(7) 1.464(9) 1.292(5) 1.173(3) 1.378(6) 0.966(9) 0.813(8) 0.699(12)
T−−
1 1.474(9) 1.195(3) 1.062(3) 0.970(2) 0.907(16) 0.698(3) 0.592(3) 0.520(2)

Tþþ
2

2.071(9) 1.560(14) 1.382(3) 1.248(4) 1.513(9) 1.064(13) 0.912(3) 0.798(4)
Tþ−
2

1.735(9) 1.360(5) 1.198(5) 1.087(4) 1.181(8) 0.860(5) 0.726(4) 0.637(4)
T−þ
2

2.030(8) 1.489(26) 1.351(6) 1.222(4) 1.470(8) 1.029(11) 0.880(6) 0.768(6)
T−−
2 1.576(2) 1.211(14) 1.096(3) 1.001(2) 1.019(2) 0.717(12) 0.617(6) 0.551(2)

Aþþ
1

1.753(8) 1.371(5) 1.201(6) 1.099(3) 1.194(7) 0.873(5) 0.730(6) 0.648(3)
Aþ−
1

2.276(27) 1.748(6) 1.486(8) 1.351(4) 1.718(26) 1.251(6) 1.017(7) 0.875(16)
A−þ
1

2.159(108) 1.794(6) 1.551(7) 1.370(9) 1.776(24) 1.275(14) 1.082(7) 0.919(9)
A−−
1 1.966(10) 1.416(27) 1.314(4) 1.211(38) 1.407(10) 0.964(14) 0.844(4) 0.731(3)

Aþþ
2

2.351(6) 1.700(15) 1.500(8) 1.328(8) 1.793(6) 1.202(14) 1.029(8) 0.878(7)
Aþ−
2

1.887(8) 1.371(23) 1.288(6) 1.133(17) 1.306(20) 0.881(20) 0.795(12) 0.676(16)
A−þ
2

2.069(13) 1.580(4) 1.351(8) 1.205(9) 1.512(12) 1.069(8) 0.879(8) 0.757(9)
A−−
2 … … … … 1.546(91) 1.266(15) 1.059(8) 0.910(8)

Eþþ 1.917(9) 1.477(3) 1.255(11) 1.162(3) 1.359(8) 0.978(3) 0.785(11) 0.711(3)
Eþ− 1.726(12) 1.356(3) 1.181(6) 1.081(2) 1.165(11) 0.858(3) 0.710(6) 0.631(2)
E−þ 2.014(10) 1.521(15) 1.255(25) 1.209(3) 1.460(9) 1.027(15) 0.785(24) 0.759(3)
E−− 1.563(6) 1.227(7) 1.089(9) 1.010(2) 1.006(6) 0.727(6) 0.619(8) 0.563(5)
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2. Gluelump mass splittings for all ensembles and unsmeared and HYP2 smeared temporal links

TABLE X. Gluelump mass splittings Δme;s
RPCa in units of the lattice spacing obtained by subtracting the lattice

gluelump masses from Table IX (see Sec. IV B 1). Δme;s
Tþ−
1

¼ 0 by definition [see Eq. (22)], because we

use me;s
Tþ−
1

as reference mass.

RPC ΔmA;none
RPC a ΔmB;none

RPC a ΔmC;none
RPC a ΔmD;none

RPC a

Tþþ
1

0.812(44) 0.555(17) 0.480(3) 0.381(6)
Tþ−
1

0 0 0 0
T−þ
1

0.604(7) 0.386(9) 0.321(5) 0.276(3)
T−−
1 0.142(9) 0.118(3) 0.091(3) 0.072(2)

Tþþ
2

0.739(9) 0.482(14) 0.411(3) 0.350(4)
Tþ−
2

0.403(9) 0.282(5) 0.227(4) 0.189(4)
T−þ
2

0.698(8) 0.411(26) 0.380(6) 0.325(4)
T−−
2 0.244(3) 0.133(14) 0.125(2) 0.103(2)

Aþþ
1

0.421(8) 0.293(5) 0.230(5) 0.201(4)
Aþ−
1

0.944(27) 0.670(6) 0.515(8) 0.453(4)
A−þ
1

0.828(108) 0.716(6) 0.580(7) 0.472(9)
A−−
1 0.634(10) 0.338(27) 0.343(4) 0.313(38)

Aþþ
2

1.019(6) 0.622(15) 0.529(8) 0.430(8)
Aþ−
2

0.555(8) 0.294(22) 0.317(6) 0.235(17)
A−þ
2

0.737(13) 0.502(4) 0.380(8) 0.308(9)
A−−
2 … … … …

Eþþ 0.585(9) 0.399(3) 0.284(11) 0.264(3)
Eþ− 0.394(12) 0.279(4) 0.210(6) 0.183(3)
E−þ 0.682(10) 0.443(15) 0.284(25) 0.311(4)
E−− 0.231(6) 0.149(6) 0.118(9) 0.112(2)

RPC ΔmA;HYP2
RPC a ΔmB;HYP2

RPC a ΔmC;HYP2
RPC a ΔmD;HYP2

RPC a

Tþþ
1

0.827(39) 0.575(7) 0.480(3) 0.381(6)
Tþ−
1

0 0 0 0
T−þ
1

0.607(6) 0.387(9) 0.313(8) 0.251(12)
T−−
1 0.136(16) 0.119(3) 0.092(3) 0.072(2)

Tþþ
2

0.743(9) 0.484(13) 0.412(3) 0.350(4)
Tþ−
2

0.410(8) 0.281(5) 0.227(4) 0.189(4)
T−þ
2

0.699(8) 0.449(11) 0.380(6) 0.321(6)
T−−
2 0.249(2) 0.138(12) 0.117(5) 0.104(2)

Aþþ
1

0.424(7) 0.293(5) 0.231(5) 0.201(4)
Aþ−
1

0.948(26) 0.671(6) 0.518(7) 0.428(16)
A−þ
1

1.005(24) 0.695(14) 0.582(7) 0.471(9)
A−−
1 0.636(9) 0.384(14) 0.344(4) 0.283(3)

Aþþ
2

1.022(6) 0.622(14) 0.529(8) 0.430(7)
Aþ−
2

0.536(20) 0.302(20) 0.296(11) 0.229(15)
A−þ
2

0.741(11) 0.489(8) 0.379(8) 0.309(9)
A−−
2 0.776(91) 0.687(14) 0.559(8) 0.462(9)

Eþþ 0.589(9) 0.398(3) 0.285(11) 0.264(3)
Eþ− 0.394(11) 0.279(4) 0.210(6) 0.183(3)
E−þ 0.690(9) 0.448(15) 0.286(24) 0.311(4)
E−− 0.235(6) 0.148(6) 0.119(8) 0.115(4)
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